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ABSTRACT
Given a vector objective function f = (f1, . . . , fn) defined on a
set X, a point y ∈ X is dominated by a point x ∈ X if fi(x) ≤
fi(y) for all i ∈ {1, . . . , n} and there exists an index j ∈
{1, . . . , n} such that fj(x) < fj(y). The non-dominated points
of X are called the Pareto optima of f . H. Kuhn (1967,1973)
applied the concept of Pareto optimality to distance functions
and characterized the convex hull conv(T ) of any set T =
{t1, . . . , tn} of R

m as the set of all Pareto optima of the vector
function d2(x) = (d2(x, t1), . . . , d2(x, tn)), where d2(x, y) is
the Euclidean distance between x, y ∈ R

m. Motivated by this
result, given a metric space (X, d) and a set T = {t1, . . . , tn}
of X, we call the set Pd(T ) of all Pareto optima of the function
d(x) = (d(x, t1), . . . , d(x, tn)) the Pareto envelope of T .

In this paper, we investigate the Pareto envelopes in R
m en-

dowed with l1- or l∞-distances. We characterize Pd∞
(T ) in all

dimensions and Pd1(T ) in R
3. Using these characterizations,

we design efficient algorithms for constructing these envelopes
in R

3, in particular, an optimal O(n log n)-time algorithm for
Pd1(T ) and an O(n log2 n)-time algorithm for Pd∞

(T ).
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1. INTRODUCTION

1.1 Pareto envelopes
Convex hulls, in particular convex hulls in 2- and 3-

dimensional spaces, are used in various applications and rep-
resent a basic object of investigations in computational ge-
ometry. Efficient algorithms for computing convex hulls are
described in the textbooks [4, 11, 26]. The convex hull of
an n point set T = {t1, . . . , tn} of R

m also hosts such re-
markable points like the center, the barycenter, the Fermat-
Torricelli point (the median) of T as well as the optimal
solutions of several NP -hard problems like the Steiner tree
problem, the p-median, or the p-center problem for T . All
such problems consist in minimizing a certain function de-
pending of the Euclidean distances to (or between) the ter-
minals of T . This leads H. Kuhn [22, 23] to character-
ize conv(T ) in truly distance terms: a point x ∈ R

m be-
longs to conv(T ) if and only if the Euclidean distance vector
d2(x) = (d2(x, t1), d2(x, t2), . . . , d2(x, tn)) of p is not domi-
nated by the distance vector d2(y) of any other point y ∈ R

m.
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Kuhn’s characterization of conv(T ) invites to investigate
analogous geometric objects obtained by replacing the Eu-
clidean distance d2 by any other distance d on R

m, in partic-
ular by a distance induced by a norm. For this, we recall the
fundamental notion from multi-objective optimization, that of
Pareto optimality [21, 28]. Given a vector objective function
f = (f1, . . . , fn) defined on a set X, a point y ∈ X is dominated
by a point x ∈ X if fi(x) ≤ fi(y) for all i ∈ {1, . . . , n} and
there exists an index j ∈ {1, . . . , n} such that fj(x) < fj(y).
The non-dominated (also named efficient) points of X are
called the Pareto optima with respect to the vector function
f . Now, given a metric d on R

m(=: X) and a set of n termi-
nals T = {t1, . . . , tn}, we consider the vector objective func-
tion d(x) = (d(t1, x), . . . , d(tn, x)) and Pareto optimality with
respect to this particular function. We write p ≻T q (or sim-
ply p ≻ q) if p dominates q, and p ∼T q if p and q have
the same distance vector. In view of Kuhn’s result, we call
the set of Pareto optima of d the Pareto envelope of T and
denote it by Pd(T ). The set of all points p ∈ Pd(T ), such
that d(p) 6= d(q) for any other point q, constitute the strict
part of the Pareto envelope and is denoted by P0

d (T ). Notice
that strict Pareto envelopes share the monotonicity property
of usual convex hulls (and of all closure operators): T ′ ⊆ T
implies P0

d (T ′) ⊆ P0
d(T ). In this paper, we investigate Pareto

and strict Pareto envelopes for l1 and l∞ distances; for illus-
tration of these envelopes see Figures 1 and 2.

1.2 l1 and l∞ distances
Recall that, given two points p = (p1, . . . , pm) and q =

(q1, . . . , qm) of R
m, the l1-distance between p and q is

d1(p, q) =
∑m

i=1 |p
i − qi| and the l∞-distance between p and

q is d∞(p, q) = max{|pi − qi| : i = 1, . . . , m}. For a distance d
on R

m denote by Bd(p, r) the closed ball of radius r centered
at p, i.e., Bd(p, r) = {q ∈ R

m : d(p, q) ≤ r}. Denote also by
Id(p, q) = {x ∈ R

m : d(p, x) + d(x, q) = d(p, q)} the interval
between the points p and q. The l1- and l∞-distances are par-
ticular cases of distances on R

m induced by polyhedral norms,
because any ball Bd∞

(p, r) is a cube and any ball Bd1(p, r) is
a cross-polytope (regular octahedron). The interval Id1(p, q)
is the axis-parallel box having the segment [p, q] as a diagonal.
On the other hand, Id∞

(p, q) is an octahedron obtained as an
intersection of two particular cones, one with vertex at p and
another at q; see [6] for details. Finally notice that there is
an isometry from the l1-plane to the l∞-plane: it suffices to
rotate the plane by 45◦ and then shrink it by a factor 1√

2
.

Therefore all results about Pareto envelopes in the l1-plane
immediately apply to the l∞-plane and vice versa. This is
not longer true for dimensions larger than 2.



1.3 Related work
As we mentioned already, Pareto optimality was first ap-

plied to distance vectors by H. Kuhn [22, 23], who estab-
lished the equality Pd2(T ) = conv(T ) (in fact, any point q
outside conv(T ) is dominated by its unique closest point q′

in conv(T )). In [30], Thisse, Ward, and Wendell proved that
this equality is true for all distances induced by round norms.
In general, neither Pd(T ) ⊆ conv(T ) nor conv(T ) ⊆ Pd(T )
hold for all normed spaces, in particular these inclusions are
not true for l1- and l∞-norms. Nevertheless, Wendell and
Hurter [34] established that the strict Pareto envelope P0

d(T )
is always included in conv(T ).

The investigation of Pareto envelopes for particular norms
has been initiated by Wendell, Hurter, Lowe [35] and contin-
ued by Chalmet, Francis, Kolen [7] and Durier, Michelot [14,
15]. The main result of [7] is the following nice characteriza-
tion of Pareto envelopes in the l1-plane:

Pd1(T ) = ∩n
i=1(∪

n
j=1Id1(ti, tj)) =: Υd1(T ). (1)

This result is used in [7] to establish the correctness of an
optimal O(n log n) sweeping-line algorithm for constructing
Pd1(T ) in the l1-plane (notice that the first algorithm for this
problem was proposed in [35] and has complexity O(n2)). For
polyhedral norms, Durier and Michelot [14, 15, 16] introduce
the notion of elementary convex sets as closed convex sets C
of R

m which can be written as the intersection of cones gen-
erated by facets of the unit ball and centered at terminals.
They proved that for any polyhedral norm, R

m is partitioned
into elementary convex sets and that the Pareto envelope is a
connected union of a finite number of such cells. Durier [14]
presents two rules to test if a point p belongs to the Pareto en-
velope, nevertheless no characterizations or algorithmic proce-
dures for constructing Pareto envelopes in polyhedral norms
have not been proposed in [14, 15]. Consequently, Pelegrin
and Fernandez [25] describe an algorithm for constructing
Pareto envelopes in the plane endowed with a polygonal norm
(its complexity depends on the number of extremal vertices
of the unit ball and the number of terminals).

In several papers, Pareto envelopes are used to reduce the
search space in some optimization problems (notice that in
this literature, Pareto envelopes are named efficient sets [7,
14, 15, 16, 25, 30, 34, 35]) by showing that Pareto envelopes
host all or at least one optimal solution(s) of respective prob-
lems. For example, Wendell and Hurter [34] establish this
type of results for Weber problem (the weighted version of
the median problem), while Hansen, Perreur, and Thisse [18]
prove a similar result for the NP-hard multifacility location
problem. In [9], we show that Pareto envelopes in the l1-plane
contains at least one minimum Manhattan network and we
use this to design a factor 2 approximation algorithm for min-
imum Manhattan network problem. For other results in this
vein, see [15, 30]. Notice also that distance problems induced
by polyhedral norms have been investigated from algorithmic
point of view by Widmayer, Wu, and Wong in [36]; for results
and additional references on fixed-orientation computational
geometry see the book by Fink and Wood [17]. Voronoi dia-
grams with polyhedral metrics in high dimensions have been
investigated by Boissonnat, Sharir, Tagansky, and Yvinec [5].

1.4 Our results
In this paper, we investigate Pareto and strict Pareto en-

velopes in l1- and l∞-norms. The departing point of our re-
search was the paper by Chalmet, Francis, and Kolen [7], in
particular, the equality (1) in the l1-plane. Due to the isom-
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Figure 1: Examples of Pd1(T ).

etry between the l1- and l∞-distances in the plane, a similar
result holds in the l∞-plane. We establish below that, in
fact, the equality Pd∞

(T ) = Υd∞
(T ) holds in l∞-spaces of

arbitrary dimension. Surprisingly, our proof is much simpler
than the proof given in [7] for the plane. We also characterize
the strict Pareto envelope P0

d∞
(T ) as the intersection of 2m

unions of cones, each union consisting of cones centered at
the terminals and oriented in the same coordinate direction.
We also establish a relationship between Pareto envelopes in
l∞-spaces and the injective hulls of finite metric spaces, in-
troduced and investigated in [13, 19].

We characterize the Pareto envelopes in R
3 with l1-norm

using the equality Pd1(T ) = I(T ) = M(T ), where the sets
I(T ) and M(T ) are defined in the following way. I(T ) is
the intersection of three polyhedra I1(T ), I2(T ), and I3(T ),
where Ii(T ) (i ∈ {1, 2, 3}) is the Cartesian product of the
Pareto envelope of the orthogonal projection of T onto the
coordinate plane Hi := {x ∈ R

3 : xi = 0} with the line or-
thogonal to this plane. On the other hand, M(T ) is a cubical
complex obtained from the median closure of the set T in R

3.
Recall that the median m(x, y, z) of three points x, y, and z
is a point having as its ith coordinate the median of ith coor-
dinates of x, y, and z. Then the median closure med(T ) of T



Figure 2: Examples of Pd∞
(T ).

is the smallest set containing T which together with any three
points also contains their median. Median structures arise in
discrete mathematics, theoretical computer science, geometry
of metric spaces of non-positive curvature, and theory of ab-
stract convexity; for an overview, see the book [31] and the
papers [2, 3, 8, 20]. M(T ) is the cubical complex obtained by
replacing the graphical cubes of med(T ) by solid boxes. The
equality Pd1(T ) = M(T ) also holds in the l1-plane, however
neither of the equalities Pd1(T ) = I(T ) or Pd1(T ) = M(T )
is no longer true in dimensions larger than 3.

The characterizations of Pd∞
(T ),P0

d∞
(T ), and Pd1(T ) lead

to efficient algorithms of their construction. For example,
Pd1(T ) = I(T ) allows to construct Pd1(T ) in R

3 in optimal
O(n log n) time. For P0

d∞
(T ) in R

3, we present an O(n log2 n)-
time algorithm. More related results and a detailed treatment
of Pareto envelopes are given in the doctoral thesis of the
second author [24]. The thesis also contains a description
of the implementation of algorithms for constructing Pareto
envelopes in R

2 and R
3.

The rest of this paper is organized in the following way.
In Section 2, we present some preliminary results. Section 3
presents the characterization of Pd∞

(T ) and P0
d∞

(T ), while
Section 4 that of Pd1(T ). Section 5 describes the algorithms
for constructing Pd∞

(T ) and Pd1(T ) in R
3.

2. PRELIMINARY RESULTS
In this section, we establish some results which are true for

Pareto envelopes in all metric spaces or all normed spaces.
For a metric space (X, d) and a finite subset T = {t1, . . . , tn}
of X, set Υd(T ) = ∩n

i=1(∪
n
j=1Id(ti, tj)).

Lemma 1. Υd(T ) ⊆ Pd(T ).

Proof. Suppose by way of contradiction that there ex-
ist two points p, q ∈ R

m such that p ≻ q and q ∈ Υd(T ).
Then there exists a terminal ti so that d(p, ti) < d(q, ti).
Since q belongs to Υd(T ), it also belongs to ∪n

j=1Id(ti, tj),
thus there exists a terminal tk such that q ∈ Id(ti, tk).
This yields d(ti, tk) = d(ti, q) + d(q, tk). Notice also that
d(p, tk) ≤ d(q, tk) because p ≻ q. All this implies that
d(p, ti) + d(p, tk) < d(q, ti) + d(q, tk) = d(ti, tk), contrary to
the triangle inequality.

The following result shows that the operator P0
d is mono-

tone, thus justifying the name “Pareto envelope”.

Lemma 2. If T ′ ⊂ T, then P0
d (T ′) ⊆ P0

d(T ).

Proof. Suppose by way of contradiction that q ∈ P0
d(T ′)\

P0
d(T ). Then there exists a point p such that either p ≻T

q or p ∼T q. Since T ′ ⊂ T, in the second case we obtain
p ∼T ′ q, while in the first case we have p ≻ q or p ∼T ′ q, a
contradiction.

For p ∈ X and ti ∈ T , set rp
i := d(p, ti). The points of

P0
d(T ) can be easily characterized in the following way:

Lemma 3. A point p ∈ X belongs to P0
d(T ) if and only if

∩n
i=1B(ti, r

p
i ) = {p}.

Now, consider Pareto optimality for distances induced by
norms. In this case, d(p, x) is a convex function of variable x,
therefore the following useful fact holds:

Lemma 4. If p, q ∈ R
m and p ≻T q, then p′ ≻T q for any

point p′ ∈ [p, q].

3. ENVELOPES Pd∞(T ) AND P0

d∞
(T )

3.1 Pd∞(T )
Let Bd∞

(p, 1) be the unit ball centered at a point p (as we
notices already, Bd∞

(p, 1) is an axis-parallel cube). For each
coordinate i ∈ {1, . . . , m}, let F i

+(p) = {x ∈ Bd∞
(p, 1) : xi =

pi + 1} and F i
−(p) = {x ∈ Bd∞

(p, 1) : xi = pi − 1} be the two
opposite facets of the cube Bd∞

(p, 1) which are orthogonal
to the ith coordinate line. Denote by Ci

+(p) and Ci
−(p) the

cones having their apex at the point p and induced by F i
+(p)

and F i
−(p). They can be equally defined as

Ci
+(p) = {x ∈ R

m : xi ≥ pi and d∞(p, x) = |pi − xi|},
Ci

−(p) = {x ∈ R
m : xi ≤ pi and d∞(p, x) = |pi − xi|}.

Using these cones, we recall the construction of intervals in
(Rm, d∞) resulting from a general description of intervals in
all normed spaces given by Boltyanski and Soltan:

Lemma 5. [6] For two points p, q ∈ R
m, if d∞(p, q) = pi −

qi (pi ≥ qi), then Id∞
(p, q) = Ci

−(p) ∩ Ci
+(q). In particular,

x ∈ Id∞
(p, q) if and only if p ∈ Ci

+(x) and q ∈ Ci
−(x).

A metric space (X, d) is called hyperconvex (or injective)
[1, 19] provided that any family of closed balls B(xi, ri) with
centers xi and radii ri, i ∈ I, satisfying d(xi, xj) ≤ ri + rj

for all i, j ∈ I has a nonempty intersection, that is, (X, d)
is a Menger-convex space (i.e., for any two distinct points x
and y there exists another point z between x and y) such
that the closed balls have the (infinite) Helly property (which
means that every family of closed balls that pairwise intersect
has a nonempty intersection). The metric space (Rm, d∞) is
hyperconvex because the closed balls are axis-parallel cubes,
and they obviously satisfy the Helly property.

We continue with the characterization of Pd∞
(T ) in R

m

which generalizes the result of [7]. Since the proof uses only
the Helly property for balls, a similar characterization holds
in all hyperconvex metric spaces (X, d).

Theorem 1. Pd∞
(T ) = Υd∞

(T ) for any T ⊂ R
m.

Proof. The inclusion Υd∞
(T ) ⊆ Pd∞

(T ) follows from
Lemma 1. It remains to show that q 6∈ Υd∞

(T ) implies
q 6∈ Pd∞

(T ). Let T = {t1, . . . , tn}. Since the point q does not



belong to Υd∞
(T ), there exists a terminal ti such that q /∈

∪n
j=1Id∞

(ti, tj), i.e. d∞(ti, tj) < d∞(ti, q)+d∞(q, tj) for each
terminal tj . This means that ε := min{d∞(ti, q)+ d∞(q, tj)−
d∞(ti, tj)} > 0. For each tk ∈ T , set rk := d∞(tk, q) if tk 6= ti

and rk := d(tk, q) − ε if tk = ti. Let B = ∩n
k=1Bd∞

(tk, rk).
We assert that B is non-empty and that the point q is dom-
inated by any point from this intersection. Since q belongs
to the ball Bd∞

(tk, rk) for each k 6= i, we conclude that
the balls Bd∞

(tj , rj) and B(t′j , rj′) intersect for all indices
j, j′ 6= i. For each tj , the balls Bd∞

(ti, ri) and Bd∞
(tj , rj)

equally intersect because ri + rj = d∞(ti, q)− ε + d∞(tj , q) =
d∞(ti, q) + d∞(q, tj) − ε and ri + rj is larger or equal than
d∞(ti, tj) because d∞(ti, q) + d∞(q, tj) − ε ≥ d∞(ti, q) +
d∞(q, tj) − (d∞(ti, q) + d∞(q, tj) − d∞(ti, tj)) ≥ d∞(ti, tj).
Since (Rm, d∞) is Menger-convex and its balls satisfy the
Helly property and since the balls defining the intersection
B pairwise intersect, we deduce that B 6= ∅. But q does not
belong to the ball Bd∞

(ti, ri), yielding q /∈ B, whence q is
dominated by any point p of B.

A set S is called empty if S ∩ T = ∅. Using Lemma 5, we
can re-phrase Theorem 1 in the following way.

Corollary 1. A point p ∈ R
m belongs to Pd∞

(T ) iff
whenever a terminal belongs to the interior of a cone Ci

+(p)
or Ci

−(p) then the opposite cone is non-empty and whenever
a terminal belongs to the boundary of several such cones, then
at least one of respective opposite cones is non-empty.

3.2 P0

d∞
(T )

To characterize the strict Pareto envelope P0
d∞

(T ) we in-
troduce two sets C(T ) and U(T ). For a point p ∈ R

m, let
C(p) denote the union of all non-empty cones of the form
Ci

+(p) or Ci
−(p). Then C(T ) = ∩{C(p) : p ∈ R

m}. For
each index i ∈ {1, . . . , m}, set U i

+(T ) = ∪n
j=1C

i
+(tj) and

U i
−(T ) = ∪n

j=1C
i
−(tj). Then the set U(T ) is defined as the

intersection of these 2m sets: U(T ) = ∩m
i=1(U

i
+(T ) ∩ U i

−(T )).

Theorem 2. P0
d∞

(T ) = U(T ) = C(T ) for any T ⊂ R
m.

Proof. First we show that U(T ) ⊆ C(T ). Suppose by way
of contradiction that q belongs to U(T )\C(T ). Then there ex-
ists a point p such that q 6∈ C(p). We can suppose without loss
of generality that there exists an index i ∈ {1, . . . , m} so that
q ∈ Ci

+(p) and Ci
+(p) ∩ T = ∅. In this case, the cone Ci

+(q)
is equally empty. Then q /∈ U i

−(T ), because all cones Ci
−(tj)

containing the point q have their apex in the cone Ci
+(q) and

the latter cone is empty. This contradicts the assumption
that q belongs to U(T ). To establish that C(T ) ⊆ U(T ), we
show if p /∈ U(T ), then p /∈ C(T ). Indeed, if p /∈ U(T ), then
necessarily at least one of the 2m cones centered at p, say the
cone Ci

+(p), is empty. Then, decreasing appropriately the ith
coordinate of the point p, we can derive another point p′ so
that Ci

+(p′) ∩ T = ∅. Since p belongs to the interior of the
cone Ci

+(p′), we deduce that p /∈ C(T ).
To establish that U(T ) ⊆ P0

d∞
(T ), by Lemma 3 it suf-

fices to show that if p ∈ U(T ), then the intersection B :=
∩n

i=1Bd∞
(ti, r

p
i ) consists of the point p only. Since p ∈ U(T ),

for each i ∈ {1, . . . , m} there exist two terminals tj , tk so
that tj ∈ Ci

+(p) and tk ∈ Ci
−(p). Then p ∈ Id∞

(tj , tk), thus
p ∈ F i

−(tj) ∩ F i
+(tk) ⊂ {x ∈ R

m : xi = pi}. Since the inter-
section of the m hyperplanes {x ∈ R

m : xi = pi} coincides
with the point p, we conclude that the required intersection
B coincides with p as well, establishing that U(T ) ⊆ P0

d∞
(T ).

Finally, we show that P0
d∞

(T ) ⊆ U(T ). For this, we prove

that if p /∈ U(T ), then p /∈ P0
d∞

(T ). Indeed, since p /∈ U(T ),
we can suppose that there exists i ∈ {1, . . . , m} so that
p /∈ U−

i (T ). This means that the cone Ci
+(p) is empty. This

implies that the intersection of the closed ball Bd∞
(tj , r

p
j )

with the line L parallel to the ith axis and passing via p is
a segment containing p and a point q ∈ Ci

−(p) \ {p}. Hence
the intersection of the balls Bd∞

(t1, r
p
1), . . . , Bd∞

(tn, rp
n) with

L is also a segment containing p and yet another point
q′ ∈ Ci

−(p) \ {p}. Lemma 3 shows that p /∈ P0
d∞

(T ), thus

the inclusion P0
d∞

(T ) ⊆ U(T ) is verified.

For each i = 1, . . . , m, denote by Li the set of all lines of R
m

passing via the origin o and contained in the cones Ci
+(o) and

Ci
−(o). Then the sets U i

+(T ) and U i
−(T ) and their intersection

U i
+(T ) ∩ U i

−(T ) are Li-convex (recall, that for a set of lines
L, a set S is L-convex [17] if the intersection of S with any
line parallel to a line of L is convex). Since the intersection
S′ ∩ S′′ of an L′-convex set S′ with an L′′-convex set S′′ is
L′ ∩ L′′-convex, from Theorem 2 we conclude that P0

d∞
(T )

is L∗-convex, where L∗ consists of the 2m−1 lines l1, l2, . . .
defined by the opposite corners of the unit l∞-ball centered
at the origin (they are also the lines defining the extremal
rays of the cones from each of 2m families).

3.3 Pareto envelopes and injective hulls
In this subsection, we establish a close relationship between

Pd∞
(T ),P0

d∞
(T ) and the injective hulls of metric spaces de-

fined by Isbell [19], Dress [13], and Chrobak and Larmore [10].
Given a finite metric space (X, d) with X = {x1, . . . , xn}, de-
note by Kd(X) the set of all points u of R

n so that |ui −uj | ≤
d(pi, pj) ≤ ui + uj . Kd(X) is an unbounded convex polyhe-
dron of R

n
+. This polyhedron endowed with the distance d∞

is called the extension of the metric space (X, d) because the
map φ : X 7→ R

n defined by φ(x) = (d(x, x1), . . . , d(x, xn)) is
an isometric embedding (i.e., d(xi, xj) = d∞(φ(xi), φ(xj)) for
all i, j ∈ {1, . . . , n}). For u, v ∈ Kd(X), let u 4 v if ui ≤ vi

for all i ∈ {1, . . . , n}. The set of all minimal points of Kd(X)
with respect to the partial order 4 is denoted by IH(X, d).
It was shown in [13] that IH(X, d) consists exactly of all
compact faces of the polyhedron Kd(X). The set IH(X, d)
endowed with the metric d∞ is called the injective hull, the
tight span, or the hyperconvex hull of the metric space (X, d)
[10, 13, 19]. This metric space is hyperconvex [13, 19], in
fact, it is the smallest hyperconvex space into which (X, d)
embeds isometrically. By a classical result of Aronszajn and
Panitchpakdi [1], hyperconvex spaces are exactly the injective
metric spaces. A map f from a metric space (Y, d′) to a met-
ric space (Z, d′′) is non-expansive if d′′(f(x), f(y)) ≤ d′(x, y)
for all x, y ∈ Y . A metric space (Z, d′′) is injective if, for
each metric space (Y, d′) and each subspace Y ′ ⊂ Y, if there
exists a non-expansive map f ′ from (Y ′, d′) to (Z, d′′), then
f ′ extends to a non-expansive map f from (Y, d′) to (Z, d′′).

Now, we relate the Pareto envelopes Pd∞
(T ) and P0

d∞
(T )

with the injective hull T (T, d∞) of the metric space (T, d∞).
Since the metric space (Rm, d∞) is injective, it contains the in-
jective hull IH(T, d∞) of (T, d∞) as a subspace. The identity
map id : IH(T, d∞) 7→ IH(T, d∞) is non-expansive, therefore
id can be extended to a non-expansive map α from (Rm, d∞)
to (IH(T, d∞), d∞).

Proposition 1. For any finite subset T of R
m, we have

P0
d∞

(T ) ⊆ IH(T, d∞) ⊆ Pd∞
(T ). Moreover, P0

d∞
(T ) =

{α−1(u) : u ∈ IH(T, d∞) and |α−1(u)| = 1}.



Proof. First notice that IH(T, d∞) ⊆ Pd∞
(T ) : indeed

according to a result of [13, 19], a point p ∈ Kd(X) belongs
to IH(T, d∞) if and only if for any terminal ti ∈ T there
exists a terminal tj ∈ T such that p lies between (in the d∞-
metric) φ(ti) and φ(tj). Thus IH(T, d∞) ⊆ Υd∞

(T ). Since
Υd∞

(T ) = Pd∞
(T ) by Theorem 1, we obtain the required

inclusion. For each point p ∈ R
m, we have d∞(α(p), α(ti)) ≤

d∞(p, ti) for any terminal ti ∈ T . If at least one of these
inequalities is strict, then α(p) ≻ p and therefore p 6∈ Pd∞

(T ).
Otherwise, we obtain d∞(α(p), ti) = d∞(p, ti) for all terminals
ti ∈ T , thus p and α(p) have the same distance vector. Since
Id∞

(T ) ⊆ Pd∞
(T ), we deduce that the point p also belongs

to Pd∞
(T ). Hence p ∈ P0

d∞
(T ) if and only if α(p) = p, i.e., if

p ∈ Id∞
(T ) and α−1(p) = {p}.

Proposition 3.3 can be used to visualize the injective
hulls, in particular, the injective hulls of metric subspaces
of (R3, d∞); see Fig. 2 for an illustration. In general, the
injective hull of a finite metric space (X, d) may have quite a
sophisticated shape. It was shown in [13] that if |X| = 3, then
the injective hull consists of three segments glued along a com-
mon end-point, if |X| = 4, then it consists of a rectangle and
four segments glued to the corners of the rectangle and that
if |X| = 5, then IH(X, d) has one of three canonical forms
(each of them is two-dimensional). More recently, Sturmfels
and Yu [29] established that there exist 339 canonical forms
of the injective hulls of metric spaces on 6 points.

4. ENVELOPE Pd1(T ) IN R
3

In this section, we establish that for any set of terminals T
of R

3, the Pareto envelope Pd1(T ) coincides with the cubical
polyhedron M(T ) induced by the median closure med(T ) of
T and with the cubical polyhedron I(T ) defined below.

For a set T of R
3 and i ∈ {1, 2, 3}, denote by T i the orthogo-

nal projection of T on the hyperplane Hi = {x ∈ R
3 : xi = 0}.

Let Pd1(T
i) be the Pareto envelope of the set T i in the

plane Hi. Finally, let Ii(T ) denote the Cartesian product of
Pd1(T

i) with the line li orthogonal to the plane Hi. Then
I(T ) is defined as the intersection of the three “cylindrical”
sets I1(T ),I2(T ), and I3(T ); for an illustration, see Fig. 3.
In the same way, we can define I(T ) for any set T of R

m.
The median of three points u, v, w ∈ R

m is a point
m(u, v, w) = m ∈ R

m such that mi is the median value of
the triplet ui, vi, and wi for all i ∈ {1, . . . , m}. The median
m(u, v, w) is the unique point of R

m which belongs to the in-
tervals Id1(u, v), Id1(u, w), and Id1(v, w). A subset S ⊂ R

m

is called median (or median stable) iff m(u, v, w) ∈ S for each
triplet u, v, w ∈ S. Since the intersection of median stable
sets is median stable, for a set T of R

m one can always de-
fine the smallest median stable set med(T ) containing T (the
median closure of T ). If T is finite, then med(T ) is finite as
well [31]. Moreover, if T ⊂ R

2, then med(T ) consists of T and
the medians of all triplets of T . If T ⊂ R

3, then to obtain
med(T ), one extra-iteration suffices [33]. With med(T ), one
can associate a median graph G(T ) [2, 31] having med(T )
as a vertex set and u, v ∈ med(T ) define an edge of G iff
Id1(u, v) ∩ med(T ) = {u, v}. There is a standard way to de-
rive a cubical complex from the median graph G(T ): replace
every graphic cube by a solid box of the same dimension. The
resulting cubical polyhedron (which is a median space itself)
is denoted by ||med(T )||. Endowed with intrinsic l1, l2, or l∞
metric, ||med(T )|| has many nice characteristic properties; for
more details on this construction and its properties, see [2, 8,
31]. In particular, ||med(T )|| is a median isometric subspace

b

b

b

b

b

b

b
b

b

b

b
b

1

2

3

b
b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

1

2

3

b
b

b

b

b
b

I
3(T )

1

2

3

b

b

b

b

b

b

I
2(T )

1

2

3

b

b

b

b

b

b

I
1(T )

1

2

3

b

b

b

b

b

b

I(T ) = I
1(T ) ∩ I

2(T ) ∩ I
3(T )

1

2

3

Figure 3: The set I(T ) in R
3

of (Rm, d1). We will slightly modify this construction to ob-
tain M(T ).

Given T ⊂ R
m, denote by Γ(T ) the grid obtained by

drawing for each terminal ti the m axis-parallel planes
H1(ti), . . . , H

m(ti) passing via ti. It can be easily seen that
the vertex-set of Γ(T ) contains med(T ). For T ⊂ R

3, the
cell complex M(T ) consists of certain boxes, rectangles, and
edges of the grid Γ(T ). If we consider a 3-cube F of the un-
derlying median graph G(T ), then all its vertices are corners
of a solid box Q(F ) of the grid Γ(T ). We replace the graphic
cube F by Q(F ) and add it to M(T ) (notice that Q(F ) also
belongs to the polyhedron ||med(T )||). If F is a square of
G(T ), then the four vertices of this square are either corners
of a rectangular face R(F ) of Γ or they define two opposite
sides of a box Q(F ) of Γ(T ). In the first case, we replace F
by the rectangle R(F ) and in the second case we replace F by
the box Q(F ); in both cases, we insert them in M(T ). Finally,
if an edge e = xy of G(T ) is an edge of Γ(T ), then we add
the segment [x, y] to M(T ). Otherwise, if e is a diagonal of
a 2-dimensional or 3-dimensional box Q(e) of Γ, then we add
Q(e) to M(T ). In analogy to the cubical complex ||med(T )||,
it can be shown that the cell complex M(T ) is a median sub-
space of R

3; moreover, M(T ) is l1-isometric, in the sense that
any two points p, q ∈ M(T ) can be connected inside M(T ) by
a path of length d1(p, q); for more details see the van de Vel’s
book [31]. The rest of this section is devoted to the proof of



the following result (due to space limitations, some details are
deferred to the full version; see also [24]).

Theorem 3. Pd1(T ) = M(T ) = I(T ) for any T ⊂ R
3.

A similar characterization is not longer true in higher
dimensions, in particular in R

4. Let p = (1, 1, 1, 1) and
q = (0, 0, 0, 0) be two opposite vertices of the unit 4-cube
Q4 = [0, 1]4. Let T consist of all vertices t of Q4 such that
d1(p, t) ≤ d1(q, t). For this set of terminals, med(T ) consists
of all corners of the cube Q4, therefore M(T ) = [0, 1]4. The
set I(T ) is also the whole cube because the Pareto envelopes
of the projections of T on four coordinate hyperplanes are all
3-dimensional cubes. However, the point q does not belongs to
Pd1(T ), because q is dominated by p. Thus Pd1(T ) 6= M(T )
and Pd1(T ) 6= I(T ).

Notice also that, analogously to Theorem 3, one can char-
acterize the strict envelope P0

d1
(T ). Then I0(T ) is defined

as I(T ), only instead of Pareto envelopes Pd1(T
i) we should

consider the strict envelopes P0
d1

(T i), i = 1, 2, 3. On the

other hand, M0(T ) is the union of the boxes of M(T ) for
which all corners belong to med(T ). Then one can show that
P0

d1
(T ) = M0(T ) = I0(T ) holds.

4.1 Auxiliary results
In this subsection we establish the notation and some aux-

iliary results used in the proof of Theorem 3. Throughout
this section, by a hyperplane of R

m we will mean an axis par-
allel hyperplane. First we recall the notion of “gate” which
for l1-spaces plays the same role as the metric projection for
Euclidean spaces. A subset S of (Rm, d1) is called gated [31]
if any point p /∈ S contains a (necessarily unique) gate in S,
i.e., a point p′ ∈ S such that p′ ∈ Id1(p, q) for any q ∈ S.
Closed half-spaces of R

m defined by axis-parallel hyperplanes
and their intersections are basic examples of gated sets of
(Rm, dl1); cf. [31]. Axis-parallel boxes and orthants are par-
ticular instances of such sets. It can be easily shown that if a
gated set Π contains the set T , then any point p outside Π is
dominated by its gate in Π. This gives the first “approxima-
tion” for Pd1(T ).

Lemma 6. Pd1(T ) is contained in the smallest axis-parallel
box Π(T ) spanned by T.

For an axis-parallel box Π of R
m (not necessarily full-

dimensional) and a corner p of Π, the set of all points q of R
m

such that the gate of q in Π is the point p, is called the or-
thant of p with respect to Π and is denoted by Ort(Π, p). Then
p ∈ Id1(q, x) for any q ∈ Ort(Π, p) and x ∈ Π. Notice also that
the orthant Ort(Π, p) is gated and p is the gate in Ort(Π, p)
of all points x ∈ Π. Geometrically, in R

3, Ort(Π, p) is either a
closed halfspace if Π is 1-dimensional, or a closed wedge (the
intersection of two closed halfspaces) if Π is 2-dimensional, or
the intersection of three closed pairwise crossing halfspaces if
Π is 3-dimensional.

Lemma 7. Let p, q ∈ R
m and set Π := Id1(p, q). If p ≻ q,

then Ort(Π, q) ∩ Pd1(T ) = ∅.

Proof. The proof uses the following easily verified asser-
tion: if a, b, δ are real numbers such that a ≥ b and δ ≤ 0,
then |a| − |b| ≥ |a + δ| − |b + δ|.

Pick q′ ∈ Ort(Π, q) and suppose without loss of generality
that q′i ≤ qi ≤ pi for each index i. We assert that q′ is

dominated by the point p′ obtained from p by translation
−→
qq′

(i.e., p′i = pi + (q′i − qi) for each i). The auxiliary assertion
yields |pi − ti| − |qi − ti| ≥ |pi − ti + (q′i − qi)| − |qi − ti +
(q′i−qi)| ≥ |p′i−ti|−|q′i −ti|. Hence, for each terminal t ∈ T
we have d1(p, t) − d1(q, t) =

∑m

i=1 |p
i − ti| −

∑m

i=1 |q
i − ti| =

∑m

i=1(|p
i − ti| − |qi − ti|) ≥

∑m

i=1(|p
′i − ti| − |q′i − ti|) ≥

∑m

i=1 |p
′i − ti| −

∑m

i=1 |q
′i − ti| ≥ d1(p

′, t) − d1(q
′, t). Since

p ≻ q, we infer that p′ ≻ q′.

From this result one can easily conclude that Pd1(T ) is
ortho-convex in the sense that the intersection of Pd1(T ) with
any line parallel to a coordinate axis is convex. This general-
izes an analogous property of planar l1-envelopes established
by [7, 35].

Given two sets T, S ⊂ R
m, |T | = |S|, we say that S is

obtained from T via a coordinate-wise isotonic map if tk
i < tk

j

iff sk
i < sk

j and tk
i = tk

j iff sk
i = sk

j . In particular, consider the
map ϕ which associate to each terminal ti ∈ T the vertex ϕ(ti)
of the uniform grid Z

m so that the kth coordinate of ϕ(ti) is
the rank of tk

i in the sorted list of the pairwise distinct values
of kth coordinates of the terminals of T. Notice that ϕ(T ) can
be constructed in O(mn log n) time. Then ϕ can be extended
accordingly to a map from the grid Γ(T ) to the uniform grid
defined by Z

m.
Lemma 8. Pd1(ϕ(T )) = ϕ(Pd1(T )).
Proof. It suffices to show that if q /∈ Pd1(T ), then ϕ(q) /∈

ϕ(Pd1(T )) (the converse inclusion can be proven in the same
way). Consider a translation of R

m which identifies the points
q and ϕ(q). Denote by S the image of ϕ(T ) under this trans-
lation. Let p ≻T q. By Lemma 4 we can select the point
p enough close to q so that the box Π := Id1(p, q) satis-
fies the condition: for each t ∈ (T ∪ S), there exists a cor-
ner c of Π such that t ∈ Ort(Π, c). We assert that p ≻S q.
Pick ti ∈ T and let si be its image in S. By definition
of ϕ and Π, we conclude that there exists a corner c of
Π such that ti, si ∈ Ort(Π, c). Since d1(p, x) − d1(q, x) =
d1(p, c)− d1(q, c) for any point x ∈ Ort(Π, s), we deduce that
d1(p, ti) − d1(q, ti) = d1(p, si) − d1(q, si). Thus p ≻S q, and
therefore the pre-image of p under the translation will domi-
nate the point ϕ(q).

We call a set of terminals T uniform if ϕ(T ) = T. In view
of Lemma 8, further we can assume without loss of generality
that T is uniform. Then med(T ) ⊂ Z

m and ||med(T )||,M(T ),
and I(T ) are all three cubical complexes. We call a finite cu-
bical complex C with vertices in Γ(T ) conformal if a face Π
of Γ(T ) belongs to C whenever all corners of Π belongs to C.
The cubical complexes ||med(T )|| and M(T ) are conformal
by definition. Now, since Pd1(T ) = M(T ) holds in R

2 by
Proposition 2, we can easily deduce that I(T ) in R

3 is con-
formal as well. In fact I(T ),M(T ), and Pd1(T ) (see the next
result) are conformal in all dimensions.

Lemma 9. For T ⊂ R
m, the Pareto envelope Pd1(T ) is a

conformal cubical complex of Γ(T ).

Proof. Let Π be a cell of Γ(T ) whose all corners belong to
Pd1(T ). Suppose by way of contradiction that a point q ∈ Π
is dominated by a point p. Let Π′ := Id1(p, q). At least one
corner c of Π belongs to Ort(Π′, q). By Lemma 7, c /∈ Pd1(T ),
contrary to our choice of Π.

The following result (given here without proof) presents a
discrete analogous of local domination provided by Lemma 4.

Lemma 10. If T is an uniform set of R
3, then a vertex

q ∈ Γ(T ) belongs to Pd1(T ) if and only if q is not dominated
by opposite to q corners of the 2-dimensional faces of Γ(T )
incident to q.



We continue with the following characterization of med(T ).

Lemma 11. [31] For T ⊂ R
m, a point p belongs to med(T )

if and only if for each pair of halfspaces H1, H2 of R
m con-

taining p, we have T ∩ (H1 ∩ H2) 6= ∅.

Proposition 2. Pd1(T ) = M(T ) = Υd1(T ) for T ⊂ R
2.

Proof. The equality Pd1(T ) = Υd1(T ) is a result of [7]; see
also Theorem 1. The inclusion M(T ) ⊆ Pd1(T ) will be estab-
lished below for R

3. It remains to show that Pd1(T ) ⊆ M(T ).
Since the complexes Υd1(T ) and Pd1(T ) are conformal, to
show that Υd1(T ) = Pd1(T ) ⊆ M(T ) it suffices to show that
every p ∈ Υd1(T ) \med(T ) which is a vertex of Γ(T ) belongs
to M(T ). Then the vertical line lv and the horizontal line lh

passing via p each contain a terminal ti and tj , respectively.
Suppose that p is below ti and to the left of tj . The quad-
rant Q1 = {q ∈ R

2 : q1 ≥ p1 and q2 ≥ p2} contains the
terminals ti and tj . If the quadrant Q3 opposite to Q1 is non-
empty as well, then for any terminal tk located in Q3 we have
m(ti, tj , tk) = p, thus p ∈ med(T ). Otherwise, if Q3 is empty,
then Corollary 1 implies that the terminals located in Q1 all
belong to its boundary. Thus, all terminals of T are located in
the second and fourth quadrants. Let Π denote the rectangle
of Γ(T ) located in the first quadrant and having the corners
p, a, b, c. The definition of Γ(T ) and the emptiness of interiors
of Q1 and Q3 implies that the second quadrant contains a ter-
minal tl and the fourth quadrant contains a terminal tk on the
same horizontal and vertical lines as b. Then a = m(tl, ti, tj)
and c = m(tj , tk, ti). Since all terminals are located in Q2∪Q4,
the corners p and b are not medians of triplets of terminals.
Thus Π and its corners belong to M(T ).

4.2 Pd1(T ) = I(T )
First we prove that Pd1(T ) ⊆ I(T ) (this inclusion holds in

all dimensions). For this, it suffices to show that q /∈ Pd1(T )
whenever there exists an index i ∈ {1, 2, 3} such that the or-
thogonal projection of q on Hi does not belong to Pd1(T

i).
Suppose without loss of generality that i = 3, i.e., q′ =
(q1, q2) /∈ Pd1(T

3). Suppose that q′ is dominated by a point
p′ = (p1, p2) of Hi. We assert that q is dominated by the point
p = (p1, p2, q3). Since p3 = q3, for any terminal ti ∈ T we have
d1(p, ti)− d1(q, ti) = |t1i − p1|+ |t2i − p2| − |t1i − q1| − |t2i − q2|.
Therefore p ≻T q if and only if p′ ≻T3 q′, yielding q /∈ Pd1(T ).

Conversely, let q 6∈ Pd1(T ). We assert that q 6∈ I(T ). Since
Pd1(T ) and I(T ) are conformal cubical complexes, we can
suppose that q is a vertex of the (uniform) grid Γ(T ). By
Lemma 10, q is dominated by a point p such that p and q
are opposite corners of a 2-dimensional face of Γ(T ). Thus
p and q differ in exactly two coordinates, say p3 = q3. Let
q′ = (q1, q2) and p′ = (p1, p2). For any terminal ti we have
|t3i − p3| = |t3i − q3|, therefore, if we denote t′i = (t1i , t

2
i ), we

obtain d1(p, ti) − d1(q, ti) = |t1i − p1| + |t2i − p2| − |t1i − q1| −
|t2i − q2| = d1(p

′, t′i) − d1(q
′, t′i). Since p ≻T q, we conclude

that p′ ≻T3 q′, thus q′ 6∈ Pd1(T
3). This shows that q 6∈ I(T ).

4.3 M(T ) ⊆ Pd1(T )
First notice that I(T ) = Pd1(T ) is a median stable set. In-

deed, the three sets Pd1(T
i) as well as their Cartesian prod-

ucts with lines are median stable. Since the intersection of me-
dian stable sets is median stable, we conclude that I(T ) is me-
dian. Thus med(T ) ⊂ I(T ) = Pd1(T ). Now, we will show that
any cell Π of M(T ) also belongs to Pd1(T ). If all corners of Π
belong to med(T ), then since med(T ) ⊂ Pd1(T ) and the cu-
bical complex Pd1(T ) is conformal, we deduce that Π belongs
to Pd1(T ). On the other hand, if Π ∩ med(T ) = {a, b, a′, b′}

and ab, a′b′ are opposite edges of Π, then from Lemma 11 we
deduce that T ⊂ Ort(Π, a)∪Ort(Π, b)∪Ort(Π, a′)∪Ort(Π, b′)
and each of these orthants contains at least one terminal. Pick
any two terminals ti and tj belonging to opposite orthants.
Then Π ⊆ Id1(ti, tj) ⊆ ∪n

k=1Id1(ti, tk), thus Π ⊆ Pd1(T ), be-
cause Υd1(T ) ⊆ Pd1(T ) by Lemma 1. Finally suppose that
only the opposite corners a, b of Π belong to med(T ). Again,
Lemma 11 implies that T ⊂ Ort(Π, a) ∪ Ort(Π, b) and each
of these orthants contains terminals. As in previous case, we
conclude that Π ⊆ Υd1(T ) ⊆ Pd1(T ).

4.4 I(T ) ⊆ M(T )
Since I(T ) and M(T ) are conformal, it suffices to show

that if a vertex q of the uniform grid Γ(T ) belongs to I(T ) =
Pd1(T ), then q also belongs to M(T ). Since med(T ) ⊂ M(T ),
we can suppose that q /∈ med(T ). Then the projection of q on
at least one of the coordinate planes, say on H3, does not
belong to med(T 3), otherwise it can be easily shown that
q ∈ med(T ). Let q′ = (q1, q2). Since q ∈ I(T ), we must
have q′ ∈ Pd1(T

3). Hence q′ ∈ M(T 3) by Proposition 2,
i.e., q′ belongs to a square Π0 of Γ(T 3) having either all cor-
ners in med(T 3) or only two opposite corners in med(T 3).
The first case is impossible because q′ 6∈ med(T 3). Therefore,
only two opposite corners s1 and s2 (both different from q′)
of Π0 belong to med(T 3). Let s3 and s4 be the two other
corners of Π0 (see Fig. 4(a)). Let Π be a 3-dimensional cell
of Γ(T ) having q as a corner and whose orthogonal projec-
tion on the plane H3 is the cell Π0. Denote by a, b, c, d, e, f,
and g the seven remaining corners of Π, as indicated in Fig.
4(a). Lemma 11 implies that T 3 ⊂ Ort(Π′, s1) ∪ Ort(Π′, s2),
because s3 and s4 are not median points of T 3. Since T 3

is the projection of T on the plane H3, we deduce that
T ⊂ Ort(Π, a)∪Ort(Π, b)∪Ort(Π, c)∪Ort(Π, d) and that four
other orthants are empty. Lemma 11 yields that the vertices
e, f, g, and q do not belong to med(T ), because each of them
belongs to an empty wedge. The definition of Γ(T ) implies
that the hyperplane passing via a and c contains a terminal,
which we denote by ta. We will assume without loss of gen-
erality that ta belongs to Ort(Π, a). Using this information
about Ort(Π, a), we will proceed with a case analysis depend-
ing of the presence or absence of terminals in the orthants
defined by the corners b, c, and d of Π.

If each of the four orthants defined by a, b, c, and d is non-
empty, then a, b, c, and d belong to med(T ), moreover they
are the only corners of Π from med(T ). Thus q ∈ M(T ),
because Π ⊆ M(T ) by the definition of M(T ). If only two
orthants are non-empty, since ta ∈ Ort(Π, a), from the def-
inition of Γ(T ) we infer that Ort(Π, d) is the second non-
empty orthant. Since these two orthants are opposite, we
conclude that a and d are the only corners of Π belonging to
med(T ), whence q ∈ Π ⊆ M(T ). Now suppose that there are
exactly three non-empty orthants. If these are the orthants
of a, b, and c, then a dominates q because the terminals from
Ort(Π, b) ∪ Ort(Π, c) are equidistant from a and q, while the
terminals from Ort(Π, a) are closer to a than to q. This contra-
dicts our choice of q. Analogously, if the non-empty orthants
are those defined by a, c, and d, then we show that q is dom-
inated by the point c. Finally, suppose that the non-empty
orthants are the orthants defined by a, b, and d. Since Π is
a cell of the grid Γ(T ), there exists a terminal t1 in the hy-
perplane passing via e and d, a terminal t2 in the hyperplane
passing via d and g, a terminal t3 in the hyperplane H passing
via d and b, and, finally, a terminal tb located in the orthant
Ort(Π, b). Since all terminals are located in three orthants



defined by a, b, and d, we conclude that t1, t2 ∈ Ort(Π, d) and
t3 ∈ Ort(Π, b) ∪ Ort(Π, d). If the intersection Ort(Π, d) ∩ H
contains some terminal t′, then from Lemma 11 and the lo-
cation of the terminals t′, ta, and tb we infer that the points
b and d must belong to med(T ). In this case, q belongs to
M(T ) because the 2-dimensional cell defined by f, b, q and d
has exactly two corners in med(T ). If Ort(Π, d)∩ H does not
contain terminals, then t3 is located in Ort(Π, b)∩H (see Fig.
4(b)). In this case, let Π′ denote the 3-cell located immedi-
ately below the cell Π. This cell necessarily exists because
the terminals t1 and t2 are below the plane H . Denote by
b′, d′, f ′, and q′ the corners of Π′ which are incident in Γ(T )
to b, d, f, and q, respectively. Since Ort(Π, d) ∩ H ∩ T = ∅,
we infer that Ort(Π, d) ∩ T = Ort(Π′, d′) ∩ T 6= ∅. If the
orthant Ort(Π′, b′) is non-empty, then the location of termi-
nals yields that q is dominated by b′. Otherwise, we conclude
that b and d′ are the only corners of Π′ ∩ med(T ), because
T ⊂ Ort(Π′, d′) ∪ Ort(Π′, b). In this case, the definition of
M(T ) yields q ∈ Π′ ⊆ M(T ). This establishes the inclusion
I(T ) ⊆ M(T ) and concludes the proof of Theorem 3.
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Figure 4: To the proof of I(T ) ⊆ M(T ).

5. ALGORITHMS
5.1 O(n log n) algorithm for Pd1(T ) in R

3

The equality Pd1(T ) = I(T ) from Theorem 3 paves the
way to an optimal O(n log n)-time algorithm for constructing
Pareto envelopes Pd1(T ) in R

3 (its optimality follows from
[7], which shows that the sorting problem reduces in linear
time to the construction of Pd1(T ) in the plane). As a by-
product of our algorithm, we obtain an O(n log n) algorithm
for computing the median closure med(T ) and its geometric
realization ||med(T )||. Let T ⊂ R

3. After sorting the ter-
minals of T by each coordinate, we can perform in O(n log n)
time the coordinatwise-isotonic transform ϕ, which maps T to
an uniform set ϕ(T ) of terminals. Since from cubical complex
Pd1(ϕ(T )) we can easily reconstruct the cell complex Pd1(T ),
further, for simplicity, we will assume without loss of gener-
ality that T is uniform, i.e., that T = ϕ(T ). The algorithm,
called ParetoR3L1, consists of the following three phases:

1. Compute Pd1(T
1),Pd1(T

2), and Pd1(T 3).
2. Construct the faces of the sets I1(T ), I2(T ), I3(T ).
3. Restrict each face of I1(T ), I2(T ), I3(T ) to Pd1(T ).

Algorithm ParetoR3L1(T)

Phase 1. In this phase, using the algorithm of [7] we con-
struct the 2-dimensional Pareto envelopes Pd1(T 1),Pd1(T 2),

and Pd1(T
3). Since Pd1(T

i) are ortho-convex, the intersection
of any Pd1(T

i) with a horizontal or vertical line is empty or a
segment. We call the intersection of Pd1(T

i) with a horizontal
line passing via a terminal a horizontal cut (vertical cuts are
defined in a similar way). The horizontal lines passing via the
terminals of T i partition the plane into horizontal slabs. The
intersection of each slab with Pd1(T i) is a rectangle, which we
call a horizontal strip. The vertical slabs and strips are de-
fined in similar way. We modify the algorithm of [7] so that,
together with the boundary of Pd1(T

i), for each horizontal
cut c = [a, b] it returns the ranks of the abscises of a and b
in the sorted list of abscises of the terminals. Analogously,
for each horizontal strip, the algorithm returns the ranks of
the abscises of its vertical sides. The same computations are
done for vertical cuts and strips. The boundary of Pd1(T

i) is
subdivided into a linear number of segments which are either
vertical sides of horizontal strips or horizontal sides of vertical
strips of P . We call such segments boundary segments of P .
For each vertical boundary segment s, we keep the rank of the
horizontal strip defining it as well at the rank of the abscise
of its end-vertices. We call the resulting arrays, the cut-strip
representation of P . Obviously, its size is O(n).
Phase 2. The sets I1(T ),I2(T ),I3(T ) are constructed us-
ing the cut-strip representation of Pd1(T

1),Pd1(T
2),Pd1(T

3)
by taking the Cartesian product of each boundary segment s
of the respective envelope with the line perpendicular to the
plane containing it, thus getting unbounded strips.
Phase 3. For each unbounded strip f constructed in previ-
ous phase, we compute its intersection with I(T ). Suppose
without loss of generality that f is a face of I1(T ), i.e., f
is the Cartesian product of the line l1 with the vertical side
s of a horizontal strip of Pd1(T

1). By definition of I(T ), to
compute the restriction of f to I(T ), it suffices to compute its
intersection with I2(T ) and I3(T ). The algorithm first com-
putes the intersection f ′ = f ∩ I3(T ) and then the intersec-
tion f ′′ = f ′ ∩I2(T ) = (f ∩I3(T ))∩I2(T ), which is the final
“contribution” of f to I(T ). To compute the intersection of f
with I3(T ), it suffices to find the cut of the envelope Pd1(T

3)
which is contained in the projection of the unbounded strip
f to the plane H3. The minimum and the maximum ranks of
this cut defines the rectangle f ′ = f ∩ I3(T ); see Fig. 5(a).
To compute the intersection of f ′ with I2(T ), first we find
the horizontal slab of H2 containing the projection of f ′ on
this plane. This is easy because the rank of the strip defined
by this slab coincides with the rank of the horizontal strip
of Pd1(T

1) defining the boundary segment s. Using the mini-
mum and the maximum ranks of this strip of Pd1(T

2) and the
coordinates of f ′, we compute the rectangle f ′′; see Fig. 5(b).
Notice that using the cut-strip representation of the three 2-
dimensional Pareto envelopes, f ′ and f ′′ can be computed in
constant time.

For example, in Fig. 5, f is defined by the vertical boundary
segment s of the 3rd horizontal strip of Pd1(T

1) and the end-
vertices of s have rank 2. The projection of f on the plane
H3 is a ray defining the 2nd vertical cut of Pd1(T

3). The end-
vertices of this cut have ranks 1 and 4. Using these values,
we compute the rectangle f ′, namely, f ′ is defined by the 3rd
horizontal strip of Pd1(T

1) and the ranks 1 and 4 of the 2nd
vertical cut of Pd1(T

3). The rectangle f ′ projects precisely
on the 3rd horizontal strip of Pd1(T

2). The vertical sides of
this strip have ranks 2 and 4. Intersecting [1..4] and [2..4],
we deduce that the vertical sides of f ′′ have ranks 2 and 4.
Since the cut-strip representation is implemented using an
array, all such computations are done in constant time per



boundary segment s.
Notice that all rectangles f ′′ computed in Phase 3 belong

to the boundary of I(T ). We assert that ParetoR3L1 com-
pletely describe the boundary of I(T ), i.e., that each bound-
ary point p of I(T ) belongs to a face returned by this algo-
rithm. Since I(T ) is the intersection of the polyhedra I1(T ),
I2(T ), and I3(T ), the point p necessarily belongs to some un-
bounded strip f occurring at Phase 2, say to f from I1(T ).
Since p belongs to the restriction of f to I(T ), we see that p
will belong to f ′, and then it will belong also to f ′′.
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Figure 5: Generating a face of I(T )

The algorithm returns a subdivision of the boundary of
I(T ) into a linear number of rectangular faces, thus the com-
plexity of Pd1(T ) = I(T ) is linear. Using a standard sweeping
procedure, one can concatenate the sets of coplanar incident
faces of I(T ) into single faces. Notice also that, as described
above, the Phase 3 of the algorithm returns the faces of the
Pareto envelope in an arbitrary order. To retrive the incidence
between these rectangular faces, each time when a new face
f ′′ is computed, we call Phase 3 to the boundary segments
of the strip used to derive f ′′ from f ′.

The algorithm ParetoR3L1 runs in total O(n log n) time
because the envelopes Pd1(T

1),Pd1(T
2), and Pd1(T 3) can be

constructed in O(n log n) [7] as well as their cut-strip represen-
tations. The (unbounded) faces of I1(T ), I2(T ), and I3(T )
are defined in O(n) time. Finally, each of these unbounded
faces induces a rectangular face of I(T ), which is computed in
constant time. Summarizing, we obtain the following result:

Theorem 4. The algorithm ParetoR3L1 computes the
faces of the boundary of Pd1(T ) in optimal O(n log n) time.

5.2 O(n log2
n) algorithm for P0

d∞
(T ) in R

3

5.2.1 Complexity of P0

d∞
(T )

We establish that the boundary of the strict Pareto envelope
P0

d∞
(T ) = ∩3

i=1(U
i
+(T ) ∩ U i

−(T )) in R
3 has linear complexity

κ(P0
d∞

(T )). Denote by ∂U i
+(T ) and ∂U i

−(T ) the boundaries of

the unions of cones U i
+(T ) and U i

−(T ). The 6 surfaces ∂U i
−(T ),

∂U i
+(T ), i = 1, 2, 3, subdivide R

3 into cells which define a
cellular complex Γ0

∞(T ). The equality established in Theorem
2 implies that P0

d∞
(T ) is a subcomplex of Γ0

∞(T ). Moreover,

any cell C of Γ0
∞(T ) belongs to P0

d∞
(T ) if and only if any

interior point of C does. Every edge e of Γ0
∞(T ) belongs to a

line l(e) which is either parallel to one of the lines l1, l2, l3, l4

or is parallel to one of the coordinate lines m1, m2, m3 (mi is
perpendicular to the plane Hi). We will show below that in
fact the complexity κ(Γ0

∞(T )) of the cell complex Γ0
∞(T ) is

linear.

Denote by F the collection of all faces of the surfaces
∂U i

+(T ) and ∂U i
−(T ), i = 1, 2, 3. Any face F ∈ F is a part

of an unbounded face of some cone of one of the six families.
To fix the notation, we will assume without loss of general-
ity that F belongs to the face F (tj) of the downward cone
C3

−(tj) visible from the direction m1. Then the boundary
of F contains two incident at tj edges which are parts of
the extremal rays of F (tj) plus a polygonal chain Q3

−(F ),
each edge of which is either horizontal or parallel to an ex-
tremal ray of F (tj) (see Fig. 6(a)). Denote by Q3

+(F (tj))
the polygonal line obtained as the intersection of F (tj) with
the surface ∂U3

+(T ) (see Fig. 6(b)). Analogously, for each
i = 1, 2, denote by Qi

−(F (tj)) and Qi
+(F (tj)) the intersec-

tions of F (tj) with the surfaces ∂U i
−(T ) and ∂U i

+(T ). Denote
by Qi

−(F ) and Qi
+(F ) (i = 1, 2, 3) the upper envelopes on

F (tj) of the chain Q3
−(F ) and each of the chains Qi

−(F (tj))
and Qi

+(F (tj)), respectively (see Fig. 6(c)). Each of 6 result-
ing polygonal lines Qi

−(F ),Qi
+(F ), i = 1, 2, 3, is monotone

with respect to the extremal rays of F (tj). They induce a
subdivision of F into 2-dimensional cells, which are nothing
else than the 2-dimensional faces of Γ0

∞(T ) belonging to F .
The vertices and the pairwise intersections of the 6 polygonal
chains Qi

−(F ) and Qi
+(F ), i = 1, 2, 3, taken over all F ∈ F

define the vertices of Γ0
∞(T ). Finally, the resulting subdivi-

sion of the polygonal chains Qi
−(F ) and Qi

+(F ) induced by
the intersection points define the edges of Γ0

∞(T ). For each
of the polygonal lines Qi

−(F ) and Qi
+(F ), we call its vertex

convex if this is a locally convex vertex in the intersection of
F with the respective union of cones and concave otherwise.

Theorem 5. κ(Γ0
∞(T )) = κ(P0

d∞
(T )) = O(n).

Proof. Since every vertex of the cell complex Γ0
∞(T ) is

incident to a constant number of edges and cells, it suffices to
show that the cell complex Γ0

∞(T ) contains a linear number
of vertices. Pick any face F ∈ F . To fix the notation, we
will assume as before that F belongs to the face F (tj) of the
downward cone C3

−(tj) visible from the direction m1.

Claim 1: ∂U i
−(T ) and ∂U i

+(T ) contain O(n) vertices.

Proof. The result follows from Theorem 2.1 of [27] about
linearity of lower envelopes of particular bivariate functions
or, as noticed by R. Klein, because the projection of ∂U i

+(T )
on Hi can be viewed as a planar Voronoi l1-diagram with
additive weights. We provide an alternative proof to give
a better understanding of more complicated cases. Suppose
i = 3, i.e., we consider the union of downward cones C3

−(tj).
As we noticed above, the edges of the polygonal line Q3

−(F )
are either horizontal or parallel to the extremal rays of the
face F (tj). Each vertex v of Q3

−(F ) gives rise to a vertex of
U3
−(T ) and vice versa. Each convex vertex v of Q3

−(F ) is
the intersection of F with an extremal ray R of some cone
C3

−(tk). We charge the terminal tk for v. Notice that each
tk is in charge of at most 4 such vertices of U3

−(T ) : indeed,
since the intersection of U3

−(T ) with R is convex, R contains
at most one vertex of U3

−(T ). On the other hand, each concave
vertex of Q3

−(F ) necessarily is incident to a convex vertex of
this chain (see Fig. 6(a)). Summing up over all faces F of
∂U3

−(T ), our charging scheme implies that ∂U3
−(T ) contains

O(n) vertices.

Claim 2: ∂U i
−(T ) ∩ ∂U i

+(T ) contains O(n) vertices.

Proof. Let i = 3. To count the number of vertices of
∂U3

−(T )∩∂U3
+(T ) located on the faces F of the surface ∂U3

−(T )
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(see Fig. 6(c)), we will charge the terminals of T and the edges
of ∂U3

+(T ) to pay for such vertices. Every vertex of Q3
−(F ) is

payed as in the proof of Claim 1. Analogously, every convex
vertex of Q3

+(F ) \ Q3
−(F ) is payed by a terminal. It remains

to pay the concave vertices of Q3
+(F ) and the points obtained

as the intersection of two chains. The latter are incident to
concave vertices, thus it suffices to count only the concave
vertices. Every such vertex v belongs to an edge e of ∂U3

+(T )
parallel to the line m1. Suppose that this edge e belongs to the
intersection C3

+(ti)∩C3
+(ti′). In general, e may contain convex

vertices of other polygonal lines Q3
−(F ′). If this happens, and

e contains several such vertices, then e traverses all respective
downwards cones except the first and the last one. Then we
assert that all cones traversed by e cannot be intersected by
another m1-edge e′ of ∂U3

+(T ). Suppose by way of contradic-
tion that the edge e traverses the cone C3

−(tj) and the face
F contains a vertex v′ := e′ ∩ F different from v = e ∩ F.
Suppose without loss of generality that v′ is above v (other-
wise, interchange v and v′). Consider the sections of the three
cones in question with the horizontal plane H3(v) (see Fig.
6(d)). Since H3(v) ∩ (C3

+(ti) ∪ C3
+(ti′)) contains the square

H3(v) ∩ C3
−(tj), necessarily each point of the part of C3

−(tj)
lying above H3(v) belongs either to the interior of C3

+(ti) or
to the interior of C3

+(ti′). This contradicts the fact that v′ is a
boundary point of U i

−(T )∩U i
+(T ), establishing our assertion.

Thus, if the face F is intersected by several m1-edges of
U3

+(T ), then we can assign all vertices of ∂U3
−(T ) ∩ ∂U3

+(T )
obtained in such a way to respective incident m1-edges. Oth-
erwise, if F contains only one such convex vertex, then we
charge this vertex to the terminal tj defining F . Since by
Claim 1 the number of m1-edges of ∂U3

+(T ) is linear, and each
m1-edge and each terminal is in charge of at most one con-
vex vertex of Q3

+(F ), summing up over all faces of all cones,
we deduce the linearity of ∂U i

−(T )∩∂U i
+(T ). This establishes

Claim 2.
The proof of next claim uses the same arguments as the

proof of Claim 2 and is deferred to the complete version:

Claim 3: ∂U i
−(T )∩∂Uj

+(T ), ∂U i
−(T )∩∂Uj

−(T ), and ∂U i
+(T )∩

∂Uj
+(T ) contain O(n) vertices.

For each face F of F we have defined 6 polygonal chains
Qi

−(F ), Qi
+(F ), i = 1, 2, 3. Each of these chains is convex with

respect to the lines defining the extremal rays of F. Claims
1,2, and 3 show that the total number of vertices on all chains
taken over all faces F of F is linear. Using the directional con-

vexity of the chains of F , we conclude that the total number
of the intersection points of any two from the 6 chains of F is
also linear in the size of respective chains. Since every vertex
of Γ0

∞(T ) is obtained in this way, the proof of the theorem is
finished.

5.2.2 The algorithm
Our algorithm first constructs the vertices and the edges of

the cell complex Γ0
∞(T ) by using ray shooting queries. After

deriving the cells of Γ0
∞(T ), for each cell, it tests if it be-

longs or not to P0
d∞

(T ). The algorithm, called ParetoR3LINF,
consists of the following five phases:

1. Compute the 6 boundaries ∂U i
−(T ) and ∂U i

+(T ).
2. Compute the vertices and the edges of the 6 polygonal

chains Qi
−(F ),Qi

+(F ) for each face F ∈ F .
3. Compute the subdivision of any face F ∈ F induced by the

6 monotone chains Qi
−(F ), Qi

+(F ).
4. Compute Γ0

∞(T ) by merging the incidence lists of the

vertices of the subdivisions obtained in Phase 3.

5. Compute the cells of Γ0
∞(T ) which belong to

P0
d∞

(T ) = ∩3
i=1(U

i
+(T ) ∩ U i

−(T )).

Algorithm ParetoR3LINF(T)

Phase 1. The surfaces ∂U i
−(T ) and ∂U i

+(T ), i = 1, 2, 3, can
be viewed as lower envelopes of bivariate functions satisfy-
ing the conditions of Theorem 2.1 of [27] and therefore can
be computed in O(n log n)-time as described in this paper.
Each of the 6 resulting boundaries is preprocessed in order
to support ray shootings in 14 directions defined by the lines
l1, l2, l3, l4 and m1, m2, m3 in fixed-oriented polyhedra as de-
scribed in [12] (this can be done in total O(n log2 n) random-
ized time).
Phase 2. For any face F ∈ F , to compute the vertices and
the edges of the 6 polygonal chains Qi

−(F ), Qi
+(F ), i = 1, 2, 3,

it suffices to find the end-vertices of each chain, and then
to construct the respective chain edge-by-edge by performing
repetitive ray shootings in certain directions belonging to the
face F . For example, to compute the chain Q3

+(F ) as defined
in Fig. 6(c), first we find its end-vertices v0, w0 by perform-
ing two ray shootings from the terminal tj defining F in the
directions of the extremal rays of F. Letting initially v := v0,
and, given the current vertex v of Q3

+(F ), we perform ray
shootings from v in a constant number of directions with re-
spect to ∂U3

−(T ) and ∂U3
+(T ) to find the next neighbor of v in

Q3
+(F ), and so on until we reach w0 (see Fig. 6(c)). Each ray

shooting query can be answered in O(log2 n) time using the
algorithm described in Subsection 6.2 of [12]. Since in order
to find a new vertex, we perform a constant number of ray
shootings, the total number of such queries is linear.
Phase 3. By sweeping each pair of 6 monotone chains
Qi

−(F ),Qi
+(F ), i = 1, 2, 3, we can find they pairwise intersec-

tions. These points together with the vertices of the chains
define the vertex-set of the subdivision. To obtain the sub-
division itself, each time when an intersection point is found,
the respective crossing segments are subdivided accordingly.
Phase 4. To construct the cells of Γ0

∞(T ), it suffices to detect
the coinciding vertices coming from different face-subdivisions
and merge their incidence edge lists (for this, it suffices to sort
the O(n) vertices of all subdivisions obtained in Phase 3 in
lexicographic order).
Phase 5. To decide if a cell C of Γ0

∞(T ) belongs to P0
d∞

(T ),

we pick any interior point p of C and add C to P0
d∞

(T ) if



and only if p ∈ ∩3
i=1(U

i
+(T )∩U i

−(T )) = P0
d∞

(T ). For this, we

compute the intersection of each ∂U i
+(T ) and ∂U i

−(T ) with
the line passing via p and parallel to l1 (in fact, any other
convexity direction lj does the job). To find this intersection,
we perform two ray shootings from p in the opposite directions
defined by l1. Since Γ0

∞(T ) contains O(n) cells, this phase
can be implemented in total O(n log2 n) time. Concluding,
we obtain the following result:

Theorem 6. The algorithm ParetoR3LINF computes the
cells of P0

d∞
(T ) in O(n log2 n) randomized time.
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