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Local search [1] is a practical solution approach for tackling large-scale dis-
crete optimization problems, particularly whose arising in real-life applications.
The authors have designed a methodology [5] for designing and engineering
high-performance local-search heuristics in such contexts. This methodology
has been shown to be successful for solving various industrial problems; several
of these applications have been awarded on the occasion of OR competitions
(1er Junior/Senior Prize at ROADEF 2005 Challenge [4], 2nd Senior Prize at
ROADEF 2007 Challenge [5]). Recently, this methodology was extended to deal
with mixed-integer optimization problems (linear as well as nonlinear). Note
that local search is rarely used for solving mixed-integer optimization problems.
A classical way to address these problems in practice is to use decomposition
approaches (empirical or mathematical). Here we present the main ingredients of
our methodology and its application for solving three industrial problems with
high economic stakes (but short running times): rich inventory routing [2], re-
source scheduling for mass transportation [8], nuclear maintenance planning [6].
This methodology seems to be suited for tackling large-scale unit commitment
problems arising in energy management, especially in operational contexts (daily
or hourly use, very short running times, on-line replanification).

The first particularity of our local search is to be pure and direct. Indeed,
no decomposition is done; the problem is tackled frontally. The search space ex-
plored by our algorithm is close to the original solution space. In particular, the
combinatorial and continuous parts of the problem are treated together: com-
binatorial and continuous decisions can be simultaneously modified by a move
during the search. By avoiding decompositions or reductions, no solution is lost
and the probability to find good-quality ones is increased. Then, no hybridization
is done: no particular metaheuristic is used, no tree-search technique is used. In
this way, we avoid complex parameter tuning and simplify the architecture of the
resulting software. Then, the second specificity of our local search is to be highly
randomized, in order to avoid bias while exploring the search space. Such a diver-
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sification of the search is obtained by exploring in a first-improvement fashion
a large variety of randomized neighborhoods. The union of these (small) ran-
domized neighborhoods induces in effect a very large neighborhood, allowing to
converge in practice toward high-quality local optima despite hard constraints.
Finally, its third specificity is to be very aggressive: millions of feasible solu-
tions are visited within the time limit. Indeed, randomized local search is a non
deterministic, incomplete exploration of the search space. Therefore, exploring
a huge number of (feasible) solutions during the allocated time augments the
probability to find good-quality solutions.

Our local-search heuristics are composed of three layers: general heuristic,
moves, evaluation machinery. The evaluation machinery forms the engine of the
local search; it computes the impacts of moves on constraints and objectives
during the search. The time spent to engineer each layer during the project
follows the following distribution: 10% on general heuristic, 20% on moves, 70%
on evaluation machinery. In summary, our work was focused on: designing a large
variety of randomized moves allowing an effective exploration of the search space,
and speeding up the evaluation of these moves. In a mixed-integer optimization
context, these two points are declined as follows. First, the moves are designed
in order to treat together the combinatorial and continuous dimensions of the
problem. For this, discrete and continuous decisions are simultaneously modified
by the moves during the search. Then, a difficulty arises: recovering the feasibility
of the continuous part of the solution for evaluating the move. Roughly speaking,
it imposes to be able to solve the continuous subproblem, which is generally very
time-consuming. That is why the second point is concentrated on implementing
an incremental randomized combinatorial algorithm for solving approximately
but very efficiently the continuous subproblem (even if it is polynomial-time
solvable). Numerical experiments show that such approximate algorithms are
more than 1000 times faster than state-of-the-art exact algorithms (in particular,
linear programming approaches), while providing near-optimal solutions.

As first application, a new practical solution approach based on randomized
local search is presented for tackling a real-life inventory routing problem [2].
This problem was posed in 2008 to Bouygues e-lab by a major French indus-
trial actor. Inventory routing refers to the optimization of transportation costs
for the replenishment of customers’ inventories: based on consumption forecasts,
the vendor organizes delivery routes. The instances contain several hundreds
customers, while the running time is limited to 5 minutes. Our model takes into
account pickups, time windows, drivers’ safety regulations, orders and many
other real-life constraints. This generalization of the vehicle routing problem
was often handled in two stages in the past: inventory first, routing second. On
the contrary, a characteristic of our local-search approach is the absence of de-
composition, made possible by the use of a fast incremental greedy heuristic for
maximizing flows in a directed acyclic graph. Moreover, thanks to a large variety
of randomized neighborhoods, a simple first-improvement descent is used instead
of tuned, complex metaheuristics. An extensive computational study shows that
our solution is effective, efficient and robust, providing long-term savings exceed-
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ing 20% on average compared to solutions built by expert planners or even a
classical urgency-based constructive algorithm. Confirming the promised gains
in operations, the resulting decision support system is progressively deployed
worldwide.

The second application addressed is a real-life earthmoving optimization
problem [8]. The problem takes as input the optimal solution of a mass trans-
portation problem which is one of the first operation research problems, known
as Monge-Kantorovich problem (introduced by Monge in 1781 in his famous
“Mémoire sur la théorie des déblais et des remblais”). The earthmoving opti-
mization problem addressed here consists in scheduling a set of resources travel-
ing between blocks located on a linear axis, while ensuring the transportation of
earth quantities from sources to destinations. This problem was posed in 2009 to
Bouygues e-lab by DTP Terrassement, a subsidiary of Bouygues Construction.
The resulting software, based on randomized local search, is now exploited for
optimizing the provisional schedule of large linear construction sites (highways
and high-speed railways) over several years, in less than 1 minute of running
time.

The third application was posed by Électricité de France (EDF) as subject
of the ROADEF/EURO Challenge 2010 [9]. It is focused on the medium-term
(5 years) management of the EDF French thermal power park, and especially of
nuclear plants which have to be repeatedly shut down for refueling and main-
tenance. The resulting optimization problem is a very large-scale mixed-integer
nonlinear problem (involving more than one billion decision variables), whereas
the running time is restricted to 1 hour on a standard computer. The solution
approach that we have implemented during the competition [6] is a random-
ized local search, which follows the methodology presented above. The results
obtained by our algorithm are among the best ones of the competition. Bench-
marks are divided into three categories A, B, X containing each one 5 instances.
Our algorithm was ranked 1st on instances A and B (among 44 teams engaged,
16 finalists), before falling to the 8th place due to a late-working-hours bug ap-
pearing on some instances X (note that only 4 teams among the 16 finalists have
been able to provide all the solutions to instances X). Once corrected, our al-
gorithm provides state-of-the-art results on instances X in conditions similar to
ones of the Challenge. The results on the realistic instances B, as computed by
the Challenge’s organizers3, show an average gap greater than 1% (resp. 10%)
between our solutions and the ones of the team ranked 3rd (resp. 6th). Such gaps
are important because corresponding from dozens to hundreds million euros of
savings [7]. One can observe that the majority of approaches proposed by the
other competitors corresponds to MIP/CP-based decomposition heuristics.
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