
Mixed covering of trees and the augmentation

problem with odd diameter constraints

Victor Chepoi, Bertrand Estellon, Karim Nouioua, Yann Vaxès

Laboratoire d’Informatique Fondamentale de Marseille,

Faculté des Sciences de Luminy, Université de la

Méditerranée, F-13288 Marseille Cedex 9, France,

{chepoi,estellon,nouioua,vaxes}@lif.univ-mrs.fr

Abstract. In this paper, we present a polynomial time algorithm for solving the problem of

partial covering of trees with n1 balls of radius R1 and n2 balls of radius R2 (R1 < R2) so

as to maximize the total number of covered vertices. The solutions provided by this algorithm

in the particular case R1 = R − 1, R2 = R can be used to obtain for any integer δ > 0 a factor

(2+ 1

δ
) approximation algorithm for solving the following augmentation problem with odd diameter

constraints D = 2R + 1 : given a tree T, add a minimum number of new edges such that the

augmented graph has diameter ≤ D. The previous approximation algorithm of Ishii, Yamamoto,

and Nagamochi (2003) has factor 8.

Key Words. Partial covering, Diameter, Augmentation problem, Dynamical program-

ming, Approximation algorithms.

1

1 Introduction

In this paper, we present a polynomial time algorithm for solving the following covering

problem on trees:

Problem PARTIAL MIXED COVERING: Given a tree T = (V, E) with n vertices, the

non-negative integers R1, R2 (R1 < R2) and n1, n2, locate n1 balls of radius R1 and n2

balls of radius R2 so as to maximize the total number of covered vertices.

This problem generalizes the MAXIMUM COVERAGE problem investigated by Megiddo,

Zemel, and Hakimi [14], in which, given a tree T and the integers R0 and n0, one wish

to locate n0 balls of radius R0 so as to maximize the total number of covered vertices.

Unlike the R-DOMINATING problem on trees (asking for covering of a tree with a mini-

mum number of balls of radius R), which is easily solvable in linear time, the existence of

polynomial time algorithms for PARTIAL MIXED COVERING and MAXIMUM COV-

ERAGE problems is nontrivial. The difficulty resides in the fact that we have to decide

which vertices should be covered, which vertices should be chosen as centers, and balls of

which radius should be located at those centers.

In [14], the initial motivation for studying the MAXIMUM COVERAGE problem

came from the problem of locating a given number of facilities in a transportation network

to cover a maximum number of customers. The more general setting of the PARTIAL

MIXED COVERING problem allows to model situations in which two kinds of facilities

are available, the difference between them being their range, i.e. the maximum distance

between a facility and a customer supplied by it. Also, it turns out that the MAXI-

MUM COVERAGE and the PARTIAL MIXED COVERING problems are (polynomially

solvable) special cases of the (NP-hard) general PARTIAL COVERING problem intro-

duced by Kearns [12] and recently revisited in [9]. In the present paper, we provide yet

another motivation for studying PARTIAL MIXED COVERING by deriving from it an

approximation algorithm for the augmentation problem with diameter constraints which

we formulate below. Notice also that several related problems can be reduced to PAR-

TIAL MIXED COVERING. For example, running the algorithm for PARTIAL MIXED

COVERING for all feasible pairs (n′
1, n

′
2), we obtain a polynomial time algorithm for the

following problem:

Problem MIXED COVERING: Given a tree T = (V, E) with n vertices, a function f of

two non-negative integer variables, the non-negative integers R1, R2 (R1 < R2) and n1, n2,

find a covering (if it exists) of T with n′
1 ≤ n1 balls of radius R1 and n′

2 ≤ n2 balls of

radius R2 minimizing the function f(n′
1, n

′
2).

(If f(n′
1, n

′
2) = n′

1, we obtain the problem of covering T with n2 balls of radius R2 and a

minimum number of balls of radius R1. In particular, if R1 = 0, we get yet another for-

2

mulation of the MAXIMUM COVERAGE problem.) The MIXED COVERING problem

was first formulated in [3] in connection with the following augmentation problem:

Problem ADC (AUGMENTATION under DIAMETER CONSTRAINTS): Given a

graph G = (V, E) with n vertices and a positive integer D, add a minimum number OPT

of new edges E′ such that the augmented graph G′ = (V, E ∪E′) has diameter at most D.

Due to its practical importance for improving the reliability of existing communication

networks, the AUGMENTATION under DIAMETER CONSTRAINTS problem has re-

ceived much attention in the literature [1, 3, 4, 5, 6, 7, 11, 13, 15]. In particular, it

was shown to be NP-hard for any D ≥ 2 and at least as difficult to approximate as

SET COVER [3, 13, 15]. However, the complexity status of this problem is unknown

if the input graph G is a tree. In case of paths, OPT is determined up to an addi-

tive constant error term. Namely, in this case, Chung and Garey [5] established that

(n − D − 1)/(D + 1) ≤ OPT ≤ (n − D + 2)/(D − 2), and Alon, Gyárfás and Ruszinkó

[1] refined this bound by establishing that the values of OPT for the n-cycle (i.e., a path

plus one additional edge) satisfy bn/(D − 1)c − 7 ≤ OPT ≤ bn/(D − 1)c for even D and

bn/(D − 2)c − 146 ≤ OPT ≤ bn/(D − 2)c for odd D. Other lower and upper bounds for

more general classes of graphs have been considered in [1, 7]; see also the survey of Chung

[4] which contains further references and related problems.

For the problem ADC on trees, Chepoi and Vaxès [3] presented a factor 2 approxima-

tion algorithm for even D = 2R and Ishii, Yamamoto, and Nagamochi [11] presented a

factor 8 approximation algorithm for odd D = 2R + 1. In [3] it was conjectured that the

optimal solutions provided by MIXED COVERING may be used to derive approximate

feasible solutions for the problem ADC with odd D. In this paper, we prove that indeed

any mixed covering of the input tree T with n1 balls of radius R−1 and n2 balls of radius

R minimizing the function f(n1, n2) = n1 + n2(n2−1)
2 can be transformed into a feasible

solution for the problem ADC with D = 2R + 1 containing at most (2 + 1
δ
)OPT + O(δ5)

added edges for any integer δ > 0, thus asymptotically matching the approximation ratio

for even D. This augmentation (using at most n1 + n2(n2−1)
2 new edges) is obtained by

drawing an edge between any pair of centers of n2 balls of radius R and between the center

of any of n1 balls of radius R− 1 and the center of some ball of radius R. Notice that the

performance guarantees of all mentioned algorithms for trees should be much better, how-

ever the bottleneck in analyzing them is the difficulty of establishing better lower bounds

for the minimum number of added edges; for example, the proof of the above mentioned

lower bound for paths [5] is already quite involved.

The paper is organized as follows. In Section 2 we present a few necessary defini-

tions and notations. Section 3 describes a dynamic programming algorithm for solving

the PARTIAL MIXED COVERING problem. It also discusses the complexity and the

3

correctness of the algorithm and presents some further problems which are solvable by a

similar approach. Finally, in Section 4 we establish and analyze a factor 2 + 1
δ

approxi-

mation algorithm for the problem ADC with odd diameter constraints.

2 Preliminaries

For a graph G = (V, E), the length of a path between two vertices is the number of edges in

this path. The distance dG(u, v) between two vertices u, v of G is the length of the shortest

path between these vertices. The diameter of G is the largest distance between two vertices

of G. For an integer k ≥ 0 and a vertex v ∈ V, let Bk(v) = {x ∈ V : dG(v, x) ≤ k} denote

the ball of radius k centered at v. Set also B−1(v) = ∅. The relative radius rr(x, Bk(v))

of a ball Bk(v) in a vertex x of a tree T = (V, E) equals k − dT (v, x). We say that a ball

Bk(v) is located in a subtree T ′ of T if v ∈ T ′. For two vertices x, y of a tree T denote by

P (x, y) the unique path of T between x and y. For a subset Q ⊂ V denote by T (Q) the

least subtree of T containing Q. For a vertex y in a rooted tree T with root u, any vertex

x 6= y on the path P (u, y) is called an ancestor of y. If x is an ancestor of y, then y is a

descendant of x. Denote by Tx the subtree of T rooted at the vertex x and consisting of x

and all of its descendants.

Define the kth power of a tree T = (V, E) as the graph T k having V as vertex-set and

two vertices x, y are adjacent in T k if and only if dT (x, y) ≤ k. For a subset of vertices

Q, denote by T k(Q) the subgraph of T k induced by Q. It is well known [2] that the kth

power T k of a tree is a chordal graph (whence T k(Q) are chordal graphs for all Q ⊆ V).

Therefore T k and T k(Q) are perfect graphs for all k and Q (recall that a graph G is perfect

[2] if the minimum number of cliques necessary to cover G equals the size of the largest

stable set of G). Notice that Y ⊆ V is a stable set of T k if and only if dT (x, y) > k for any

x, y ∈ Y. On the other hand, a clique C of T k consists of vertices with pairwise distances

(in T) at most k. The least subtree T (C) containing the set C has diameter at most k,

thus its radius is either at most R if k = 2R or at most R + 1 if k = 2R + 1. In the first

case, T (C) can be covered by a ball of radius R. In the second case, T (C) can be covered

by an edge-ball of radius R, i.e., by two balls of radius R centered at adjacent vertices

of T (C). As a consequence, a covering of T 2R or of T 2R+1 with a minimum number of

cliques corresponds to a covering of T with a minimum number of balls of radius R or

of edge-balls of radius R, and, due to the perfectness of the graphs T 2R and T 2R+1, this

equals the size of a largest stable set of these graphs.

A polynomial time algorithm is called an α-factor approximation algorithm for a min-

imization problem Π if for each instance I of Π, it returns a solution whose value is at

most α times the optimal value OPTΠ(I) of Π on I plus a constant not depending of I;

see [16].

4

3 Mixed covering of trees

In this section, we describe a dynamic programming algorithm for solving the PARTIAL

MIXED COVERING problem on trees. Our algorithm follows the main lines of the

algorithm from [14] and works in general in the following way. Root the tree T at an

arbitrary vertex u. The algorithm proceeds the tree T in a upward manner, from leaves to

the root, by solving larger and larger subproblems of the following type. Given the current

vertex s, and the integers 0 ≤ n′
1 ≤ n1, 0 ≤ n′

2 ≤ n2, the algorithm finds the maximal

number of covered vertices of Ts in a partial covering using n′
1 balls of radius R1 and n′

2

balls of radius R2 located in Ts. However, the algorithm must take care of two things: (i)

some ball which will be located outside Ts at some later stage and whose radius and center

are yet unknown may have an impact on the covering of Ts, and (ii) we have to consider

the interaction between the subtrees rooted at the neighbors of s, because some vertices

of one or several such subtrees may be covered by a ball located in another subtree. To

overcome these difficulties, we introduce two additional parameters r and a which take

integer values in the ranges [−1, R2 − 1] and [0, R2], respectively. For fixed values of r and

a, the algorithm returns the maximal number of covered vertices of Ts in a partial covering

using n′
1 balls of radius R1 and n′

2 balls of radius R2 located in Ts (permanent balls), given

that one additional (temporary) ball of radius r is located at s and that the relative radius

of at least one of the permanent balls located in Ts is at least a. This requires the solution

of a resource allocation problem, which optimally distributes the balls of radius R1 and

the balls of radius R2 among the subtrees rooted at the neighbors of s in Ts, using for

this the optimal solutions of the previously solved subproblems at each of the sons of s.

Following [14], we introduce the following functions EXT and INT:

1. EXT(Ts; n
′
1, n

′
2; r) is equal to the maximum number of vertices of Ts which can be

covered by n′
1 balls of radius R1 and n′

2 balls of radius R2 located in Ts, given

that there is one additional ball of radius r centered at s. The algorithm computes

EXT(Ts; n
′
1, n

′
2; r) for all r ∈ {−1, 0, . . . , R2 − 1}, n′

1 ∈ {0, . . . , n1}, n′
2 ∈ {0, . . . , n2},

and all rooted subtrees Ts, s ∈ V, of T .

2. INT(Ts; n
′
1, n

′
2; a) is equal to the maximum number of vertices of Ts which can be

covered by n′
1 balls of radius R1 and n′

2 balls of radius R2 located in Ts, given

that the relative radius rr(s, B) in s of one of those balls B is at least a. The

algorithm computes INT(Ts; n
′
1, n

′
2; a) for all a ∈ {0, . . . , R2}, n′

1 ∈ {0, . . . , n1},
n′

2 ∈ {0, . . . , n2}, and all rooted subtrees Ts, s ∈ V, of T .

Let s1, ..., sl be the sons of the current vertex s. To evaluate the functions INT and EXT

on the subtree Ts, we use the values of these two functions on the subtrees Ts1
, . . . , Tsl

.

5

If a temporary ball is located at s, then the algorithm computes the optimal distribution

of remaining balls in the subtrees Ts1
, . . . , Tsl

, taking into account the ball centered at

s. If no ball is located at s, the algorithm distributes the balls to Ts1
, . . . , Tsl

so that to

maximize the number of covered vertices. In this case, certain vertices of some subtree Tsi

can be covered by a ball located outside Tsi
and, vice versa, a ball centered at a vertex

of Tsi
may cover a vertex outside this subtree. The first case is settled by the function

EXT which locates a ball of radius r at s, the second case is settled by the function INT

which forces the location in Tsi
of a ball which covers all vertices of Ts at distance at

most a from s. Finally, in order to optimally distribute the permanent balls among the

subtrees Ts1
, . . . , Tsl

, the algorithm uses the function ALLOC which solves the resource

allocation problem with two resources [10]. Namely, ALLOC(f1, . . . , fl; p, q) is the value

of the optimal solution of

Maximize
l

∑

i=1
fi(pi, qi)

subject to
l

∑

i=1
pi = p

l
∑

i=1
qi = q

pi, qi are nonnegative integers.

The optimal distribution {(p1, q1), . . . , (pl, ql)} of the resource allocation problem is com-

puted by the function BUILD-ALLOC(f1, . . . , fl; p, q).

3.1 The algorithm

Now, we present the routines for computing INT and EXT in more details. If s is a leaf,

then Ts = {s} and the valuation of INT and EXT is given by the following formulae

INT(Ts; n
′
1, n

′
2; a) =







−∞ if n′
1 = n′

2 = 0 or if n′
2 = 0 and a > R1,

1 otherwise;
(1)

EXT(Ts; n
′
1, n

′
2; r) =







0 if n′
1 = n′

2 = 0 and r = −1,

1 otherwise.
(2)

Suppose now that s has at least one descendant. To evaluate the functions INT and EXT

on the subtree Ts, the algorithm uses the values of the functions INT and EXT on the

subtrees Ts1
, . . . , Tsl

. Namely, the algorithm returns INT(Ts; n
′
1, n

′
2; a) = max{I1, I2, I3} if

a ≤ R1, INT(Ts; n
′
1, n

′
2; a) = max{I2, I3} if a > R1, and EXT(Ts; n

′
1, n

′
2; r) = max{E1, E2},

where I1, I2, I3, E1, and E2 are defined in the following way:

6

I1 = ALLOC(f1, . . . , fl; n
′
1 − 1, n′

2) + 1, where fi(p, q) = EXT(Tsi
; p, q; R1 − 1);

I2 = ALLOC(g1, . . . , gl; n
′
1, n

′
2 − 1) + 1, where gi(p, q) = EXT(Tsi

; p, q; R2 − 1);

I3 = max{ALLOC(hja′

1 , . . . , hja′

l ; n′
1, n

′
2)+1 : j ∈ {1, 2, . . . , l}, a′ ∈ {a, a+1, . . . , R2}},

where hja′

i (p, q) = EXT(Tsi
; p, q; a′−1) for i 6= j and hja′

j (p, q) = INT(Tsj
; p, q; a′+1);

E1 = INT(Ts; n
′
1, n

′
2; r + 1);

E2 = ALLOC(f ′
1, . . . , f

′
l ; n

′
1, n

′
2) + δ(r), where δ(r) = 1 if r ≥ 0 and δ(r) = 0 if r = −1,

and f ′
i(p, q) = EXT(Tsi

; p, q; max{−1, r − 1}).

If the INT entry equals I1 (and I1 > I3), then a permanent ball B′ of radius R1 is

centered at s and the remaining n′
1 − 1 R1-balls and n′

2 R-balls are optimally distributed

among the subtrees Ts1
, . . . , Tsl

. Notice that in this case a ≤ R1 and that the relative radius

in s of all permanent balls located in Ts−{s} is less than R1, otherwise the ball B′ is useless,

yielding I1 ≤ I3. Therefore, there are no interactions among subtrees, from which we infer

that the problems associated with the subtrees are independent, i.e., a covered vertex of Tsi

is either covered by B′ or by a ball located in Tsi
. This explains why in order to compute

I1 we make a call of ALLOC with parameters fi(p, q) = EXT(Tsi
; p, q; R1−1), i = 1, . . . , l.

The analysis of I2 is similar. Now suppose that the INT entry equals I3. In this case, the

partial covering of Ts is done by permanent balls located in Ts−{s}. Let Tsj
be the subtree

which hosts a permanent ball B′ maximizing rr(s, B′) =: a′. By definition of INT, we must

have a′ ≥ a. Notice that every covered vertex of some subtree Tsi
is necessarily covered

either by the ball B′ or by a permanent ball located in Tsi
. Since we do not know a priori

neither the subtree Tsj
providing the maximum nor a′, we should test all possibilities.

Now, for given a′ ∈ {a, a+1, . . . , R2 −1} and j ∈ {1, . . . , l}, since the ball B′ with relative

radius a′ is located in Tsj
, in order to distribute the permanent balls among the subtrees

Ts1
, . . . , Tsl

we make a call of ALLOC with parameters hja′

i (p, q) = EXT(Tsi
; p, q; a′ − 1)

for each i = 1, . . . , l, i 6= j, and hja′

j (p, q) = INT(Tsj
; p, q; a′ + 1).

Analogously, if the EXT entry equals E1, then there exists a permanent ball B′ located

in Ts such that rr(s, B′) > r. As a consequence, the ball of radius r centered at s is useless,

whence we can use the result for INT, thus explaining why E1 = INT(Ts; n
′
1, n

′
2; r + 1).

Finally, if E2 > E1, then we search for an optimal distribution of n′
1 + n′

2 permanent

balls in Ts such that rr(s, B) ≤ r holds for each permanent ball B. Then all covered

vertices of any subtree Tsi
are necessarily covered either by a permanent ball located

in Tsi
or by the ball of radius r centered at s. Therefore, the problems associated with

the subtrees are independent and we make a call of ALLOC with parameters f ′
i(p, q) =

7

EXT(Tsi
; p, q; max{−1, r − 1}). Notice that if r = −1, then the vertex s is not covered

neither by a permanent ball nor by the (empty) ball of radius −1 centered at s. In all other

cases, s is covered by the ball of radius r ≥ 0 centered at s. We conclude this subsection

with a formal description of the algorithm.

Algorithm PARTIAL-MIXED-COVERING
Input. A tree T = (V, E) and non negative integers R1, R2, n1, n2 (R1 < R2).

Output. A set of n1 R1-balls and n2 R2-balls maximizing the total number of covered vertices

Root T at some (non-leaf) vertex u and order the vertices of T using depth first search.

Initialize the values of INT and EXT for leaves of T using (1) and (2).

for current non-leaf vertex s

do for n′

1 ← 0 to n1

do for n′

2 ← 0 to n2

do for a← 0 to R2

do I1 ← ALLOC(f1, . . . , fl, n
′

1 − 1, n′

2)

if a ≤ R1

then I2 ← ALLOC(g1, . . . , gl, n
′

1, n
′

2 − 1)

else I2 ← −∞

I3 ← max{ALLOC(hja′

1
, . . . , h

ja′

l , n′

1, n
′

2) : a′ = a, . . . , R2, j = 1, . . . , l}

if I1 = max{I1, I2, I3}

then a∗ ← R1, j
∗ ←∞

A← BUILD-ALLOC(f1, . . . , fl, n
′

1 − 1, n′

2)

if I2 = max{I1, I2, I3}

then a∗ ← R2, j
∗ ←∞

A← BUILD-ALLOC(g1, . . . , gl, n
′

1, n
′

2 − 1)

if I3 = max{I1, I2, I3}

then Let a∗ and j∗ be the values of a′ and j yielding I3.

A← BUILD-ALLOC(hj∗a∗

1
, . . . , h

j∗a∗

l , n′

1, n
′

2)

INT(Ts; n
′

1, n
′

2; a)← max{I1, I2, I3}

S-INT(Ts; n
′

1, n
′

2; a)← (A, a∗, j∗)

for n′

1 ← 0 to n1

do for n′

2 ← 0 to n2

do for r ← −1 to R2 − 1

do E1 ← INT(Ts; n
′

1, n
′

2; r + 1)

E2 ← ALLOC(f ′

1, . . . , f
′

l , n
′

1, n
′

2)

if E1 = max{E1, E2}

then c← 1

Extract the allocation A from S-INT(Ts; n
′

1, n
′

2; r + 1).

if E2 = max{E1, E2}

then c← 2

A← BUILD-ALLOC(f ′

1, . . . , f
′

l , n
′

1, n
′

2)

EXT(Ts; n
′

1, n
′

2; r)← max{E1, E2}

S-EXT(Ts; n
′

1, n
′

2; r)← (A, c)

return BUILD-EXT(Tu, n1, n2,−1)

8

To restore an optimal partial covering, the algorithm keeps in the tables S-INT and S-

EXT the parameters of the distributions yielding the optimal value for the functions INT

and EXT, and perhaps the radius of the permanent ball centered in the current vertex

(if the optimal solution requires its location). The total space for these tables is equal to

n1n2R2O(
∑

v∈V deg(s)) = O(n1n2R2n). Using the tables S-INT and S-EXT, an optimal

location is computed by recursive functions BUILD-INT and BUILD-EXT in a downward

manner. Each of these functions takes as input a vertex s and a list of parameters iden-

tifying a respective INT- or EXT-problem for s, and, using the information stored in the

tables S-INT and S-EXT, decides if a permanent ball (and of what radius) should be

centered at s, and specifies the parameters for its recursive call at each son si of s. After

processing the root u of the tree T , the algorithm returns BUILD-EXT(Tu, n1, n2,−1).

BUILD-INT(Ts, n
′

1, n
′

2, a)

if s is a leaf

then return The set of n′

1 balls of radius R1 and n′

2 balls of radius R2 centered in s

else (A, a∗, j∗)← S-INT(Ts; n
′

1, n
′

2; a)

Let {(pi, qi) : i = 1, . . . , l} be the allocation A.

if j∗ =∞

then B ← {B(s, a∗)}

for i← 0 to l do B ← B ∪ BUILD-EXT(Tsi
, pi, qi, a

∗ − 1)

else B ← ∅

for j ← 0 to l

do if j = j∗ then B ← B ∪ BUILD-INT(Tsi
, pj , qj , a

∗ + 1)

else B ← B ∪ BUILD-EXT(Tsi
, pj , qj , a

∗ − 1)

return B

BUILD-EXT(Ts, n
′

1, n
′

2, r)

if s is a leaf

then return The set of n′

1 balls of radius R1 and n′

2 balls of radius R2 centered in s

else (A, c)← S-EXT(Ts; n
′

1, n
′

2; r)

Let {(pi, qi) : i = 1, . . . , l} be the allocation A.

if c = 1 then B ← BUILD-INT(Ts, n
′

1, n
′

2, r + 1)

else (* c = 2 *)

B ← ∅

for j ← 0 to l

do B ← B ∪ BUILD-EXT(Tsi
, pi, qi, max{−1, r − 1})

return B

3.2 Correctness and complexity

In this subsection, we establish the correctness and the complexity of the algorithm pre-

sented in Subsection 3.1.

9

Theorem 3.1 The described algorithm correctly solves the PARTIAL MIXED COVER-

ING problem in O(n3
1n

3
2R

2
2n

2) time.

Proof. To prove the correctness of the algorithm, it suffices to show that all values of

INT and EXT are correctly computed. This is shown by the following claims.

Claim 1 : If INT and EXT are correctly evaluated on each of the subtrees Ts1
, . . . , Tsl

,

then INT is correctly evaluated on Ts.

Proof. Let n′
1 ∈ {0, . . . , n1}, n′

2 ∈ {0, . . . , n2}, and a ∈ {0, . . . , R2}. Consider an optimal

partial covering C∗ of Ts with at most n′
1 balls of radius R1 and at most n′

2 balls of radius

R2 located in Ts, given that the relative radius in s of some ball of C∗ is at least a. Suppose

additionally that all balls B of C∗ are necessary, i.e., C∗ minus B is no longer an optimal

covering for the parameters n′
1, n

′
2, and a. Let B′ be a ball of C∗ with a maximal relative

radius in s and set a′ = rr(s, B′). Notice that, if C∗ contains a ball B centered at s, then

necessarily B′ = B. Indeed, since B cannot be removed from C∗ without violating the

optimality of this partial covering, the relative radius in s of any ball of C∗ different from

B is less than the radius of B. Since rr(s, B) equals the radius of B, we conclude that

B′ = B.

First suppose that B′ is centered at s. From what has been shown above, we deduce

that rr(s, B) < a′ for any ball B ∈ C∗ different from B′. Thus every vertex of Tsi
, i =

1 . . . , l, which is covered by C∗ is covered either by a ball located in Tsi
or by B′. Since EXT

is correctly evaluated on each of the subtrees Tsi
, i ∈ {1, . . . , l}, the number of vertices of

Tsi
covered by C∗ is at most EXT(Tsi

; pi, qi; a
′ − 1). Since the function ALLOC optimally

distributes the remaining n′
1 + n′

2 − 1 balls, the value of I1 (if B′ has radius R1) or of I2

(if B′ has radius R2) is at least |Ts ∩ (∪{B ∈ C∗})|.
Now suppose that no ball of C∗ is centered at s and assume that the ball B′ is located

in the subtree Tsj
. Then rr(s, B′) = a′ ≥ a by definition of INT. For any i = 1, . . . , l,

every vertex of Tsi
covered by C∗ is covered either by a ball centered at Tsi

or by B′.

Hence the number of covered by C∗ vertices of Tsi
is at most EXT(Tsi

; pi, qi; a
′ − 1) for

i 6= j (because rr(si, B
′) = a′ − 1) and the number of covered by C∗ vertices of Tsj

is at

most INT(Tsj
; pj , qj ; a

′ + 1) (because rr(sj , B
′) = a′ + 1). From the optimality of ALLOC

we infer that I3 is at least |Ts ∩ (∪{B ∈ C∗})|. �

Claim 2 : If INT and EXT are correctly evaluated on each of the subtrees Ts1
, . . . , Tsl

and

INT is correctly evaluated on Ts, then EXT is correctly evaluated on Ts.

Proof. Let n′
1 ∈ {0, . . . , n1}, n′

2 ∈ {0, . . . , n2}, and r ∈ {−1, . . . , R2 − 1}. Consider an

optimal partial cover C∗ of Ts with n′
1 balls of radius R1, n′

2 balls of radius R2 located in

10

Ts, and an additional ball B′ of radius r centered at s. Suppose additionally that all balls

of C∗ are necessary.

First suppose that there is a ball B ∈ C∗ different from B′ obeying rr(s, B) > r. Then

no covered vertex of Ts is covered solely by B′, therefore B′ is useless. As a consequence,

we conclude that the number of vertices covered by C∗ equals INT(Ts; n
′
1, n

′
2; r + 1).

So, suppose that rr(s, B) ≤ r for every ball B of C∗ different from B′. Then every

covered by C∗ vertex of each subtree Tsi
, i = 1, . . . , l, is covered either by a ball located

in Tsi
or by B′. If one denote by pi and qi the number of balls of radius R1 and R2 of

C∗ located in the subtree Tsi
, then the number of vertices of Tsi

covered by C∗ is at most

EXT(Ti; pi, qi; max{−1, r − 1}). From the optimality of ALLOC we deduce that E2 is at

least |Ts ∩ (∪{B ∈ C∗})|, establishing the result. �

To find the complexity of the algorithm, we will estimate the number of operations

necessary to evaluate the functions INT and EXT in some vertex s. One computation of

INT requires one call of ALLOC to evaluate I1 and I2 and at most R2deg(s) to evaluate

I3. Analogously, one computation of EXT requires one call of the function ALLOC. There

is a dynamic programming algorithm with complexity O(lp2q2) for solving the resource

allocation problem ALLOC(f1, . . . , fl; p, q) with two resources (see, for example, pages 207-

208 of [10]). Therefore, if INT and EXT have been evaluated on the subtrees Ts1
, . . . , Tsl

,

then the 2n1n2(R2 + 1) values of INT and EXT for Ts can be found in O(n3
1n

3
2R

2
2deg2(s))

time. Since
∑

s∈V deg(s) = 2n− 2, the total complexity of the algorithm is O(n3
1n

3
2R

2
2n

2).

�

3.3 Related problems

In this subsection, we present several further problems, related to PARTIAL MIXED

COVERING, and which can be solved by adapting the algorithm described above.

(i) A natural generalization of the PARTIAL MIXED COVERING problem is that of

maximizing the number of covered vertices by n1 balls of radius R1, n2 balls of radius

R2, . . . , nk balls of radius Rk, where R1 < R2 < . . . < Rk. We call the resulting problem

GENERALIZED PARTIAL MIXED COVERING. Our algorithm can be modified to solve

it in O(R2
kn

2Πk
i=1n

3
i) time (which is less than O(n3k+4)). For this, in the computation of

INT we distinguish k + 1 cases: one for each kind of permanent balls centered at s plus

one dealing with the case when no permanent ball is centered at s. Then the INT entry

equals to the maximum of these k + 1 values I1, . . . , Ik, Ik+1. Additionally, instead of

solving each time a resource allocation problem with two resources, we solve via dynamic

programming a resource allocation problem with k resources (requiring O(deg(s)Πk
i=1n

2
i)

time per instance).

11

(ii) The problem (i) can be further generalized in the following way: given the integers

0 ≤ R1 < . . . Rk and the positive integers n2, . . . , nk, locate ni balls of radius Ri, i =

2, . . . , k, so that the remaining part of the tree can be covered with a minimum number n1

of balls of radius R1. To solve this problem, we can solve a sequence of GENERALIZED

PARTIAL MIXED COVERING problems, one for each value of n1 varying between 0 and

n, and return the smallest value of n1 for which the whole tree is covered. However, we can

solve this problem more efficiently by modifying the algorithm presented above. For this,

we modify the definition of the functions INT and EXT, and, instead of taking maxima

and performing maximization in the resource allocation problem, we take minima and

solve a minimization resource allocation problem. For example, EXT(Ts; n
′
2, . . . , n

′
k; r) is

defined to be the minimum number of balls of radius R1 which, together with n′
2 balls

of radius R2, . . . , n′
k balls of radius Rk, and an additional ball of radius r centered at s,

cover the subtree Ts (EXT(Ts; n
′
2, . . . , n

′
k; a) is defined accordingly). The complexity of

this algorithm is O(R2
kn

2Πk
i=2n

3
i).

In the particular case k = 2, we obtain the problem of covering a tree T with n2

balls of radius R2 and a minimum number of balls of radius R1, which can be solved

in O(n3
2n

2R2
2) time. Now, if we want to solve the MIXED COVERING problem with

R2 = R ≤ 2, R1 = R − 1 > 0, and f(n1, n2) = n1 + n2(n2−1)
2 , then we may suppose that

n2 ≤ √
n. Since the dynamic programming algorithm keeps the solutions of subproblems

for all vertices (in particular for u) and all n2 ≤ √
n, it suffices to select the solution

minimizing f. The algorithm in this case has complexity O(n3.5R2
2).

(iii) Another natural generalization of partial mixed covering problem is the following

partial mixed list covering problem. Namely, additionally to the input data of (i), for

each vertex s of the tree T, a list Ls ⊆ {1, . . . , k} is given, which defines what kinds of

permanent balls are allowed to be centered at s (the vertices s with Ls = ∅ are forbid-

den for establishing permanent balls). Then each INT entry is again the maximum of

I1, . . . , Ik, Ik+1, but, in this case, Ij = −∞ for any j /∈ Ls.

(iv) Several weighted versions of the PARTIAL MIXED COVERING problem and its

variations (i)-(iii) can be solved using the same approach. For instance, the tree T = (V, E)

can be endowed with a length function l : E → R+. In this case, the balls will be defined

with respect to the distance induced by this length function. Also, we may want to consider

that covering some vertex u induces a gain πu and we wish to find a partial mixed covering

maximizing the total gain of covered vertices. In this case, each time when the current

vertex s is covered, we add πs (instead of 1) to the value of INT or EXT.

(v) The GENERALIZED PARTIAL MIXED COVERING problem in which the balls of

certain radii are replaced by edge-balls can be easily formulated in form of (iii) or (iv).

For this, we subdivide every edge e of the tree T = (V, E) by introducing a new vertex

12

se, thus obtaining a new tree T ′. Then dT ′(u, v) = 2dT (u, v) for any two vertices u, v of T.

Instead of ni balls of a radius Ri consider ni balls of radius 2Ri of T ′ and we require that

they can be centered only at the vertices of T. Instead of ni edge-balls of a radius Ri we

consider ni balls of radius 2Ri + 1 of T ′ which can be centered only at the new vertices of

T ′. Define the gain of covering any old vertex to be 1 and the gain of covering any new

vertex to be 0. Then solving the resulting partial mixed covering problem on the tree T ′

is equivalent to solving the initial problem with balls and edge-balls on the tree T.

4 The augmentation problem with odd diameter constraints

In this section, we apply MIXED COVERING to derive a factor 2+1
δ

(for any integer δ > 0)

approximation algorithm for the augmentation problem with odd diameter constraints

D = 2R + 1 on trees. For this, we compute in O(n3.5R2) time a mixed covering of T

with n′
1 balls of radius R − 1 and n′

2 balls of radius R which minimizes the function

f(n′
1, n

′
2) = n′

1 +n′
2(n

′
2−1)/2. The augmentation algorithm returns the set F of new edges

running between the centers of any pair of balls of radius R and between the center of any

ball of radius R−1 and the center of some ball of radius R. Set ALG := n′
1 +

n′

2
(n′

2
−1)

2 and

let OPT denote the number of edges of an optimal solution of the problem ADC for T.

Theorem 4.1 For any integer δ > 0, we have ALG ≤ (2 + 1
δ
)OPT + O(δ5).

Proof. First we show that the augmented graph H = (V, E ∪ F) has diameter at most

2R+1. Pick two arbitrary vertices u, v ∈ V. Suppose that in the mixed covering u belongs

to a ball centered at the vertex p and v belongs to a ball centered at the vertex q. If

both these balls have radius R, then p and q are connected by a new edge, therefore

dH(u, v) ≤ R + 1 + R = 2R + 1. If one ball has radius R and another one has radius

R − 1, then dH(p, q) ≤ 2, whence dH(u, v) ≤ (R − 1) + 2 + R = 2R + 1. Finally, if both

balls centered at p and q have radius R− 1, then dH(p, q) ≤ 3 according to the algorithm,

therefore dH(u, v) ≤ (R − 1) + 3 + (R − 1) = 2R + 1. This shows that F is a feasible

augmentation of T.

Let E′ be an optimal solution for ADC and let G′ = (V, E∪E′) be the augmented graph.

Denote by C1 the set of end-vertices of edges from E′ and by B1 the set of balls of radius

R − 1 centered at vertices of C1. Set n1 := |C1|. Let Q := V − ⋃{B : B ∈ B1}. Consider

the graph T 2R+1(Q). As we noticed in Section 2, T 2R+1(Q) is a perfect graph, therefore

the size of a maximum stable set Y ⊆ Q of T 2R+1(Q) equals the minimum number n2 of

edge-balls of radius R covering the set Q. Denote by B2 the family of edge-balls in this

covering. The cluster of a vertex x ∈ Q is the set Cx = {c ∈ C1 : dT (x, c) = R}. All

vertices of C1 \ Cx are at distance > R from x, therefore, if the cluster Cx is empty, then

13

x must be at distance ≤ 2R + 1 in T from all vertices of Q. Notice also that two clusters

Cx and Cy are disjoint provided dT (x, y) ≥ 2R + 1.

Claim 1 : If two vertices x, y ∈ Q are not adjacent in T 2R+1(Q), then there exists at least

one added edge running between the clusters Cx and Cy. In particular, OPT = |E′| ≥
n2(n2−1)

2 .

Proof. Consider a path P of length ≤ 2R + 1 connecting the vertices x and y in the

augmented graph G′. Since dT (x, y) > 2R +1, this path will necessarily use one or several

new edges. Denote by x′ and y′ the closest to x and y, respectively, vertices of P ∩ C1.

Since dT (x, x′) ≥ R, dT (y, y′) ≥ R, and Cx ∩ Cy = ∅, we conclude that x′ ∈ Cx, y′ ∈ Cy,

and x′ and y′ must be connected by an edge of E′.

Since any two vertices x, y of Y are not adjacent in T 2R+1(Q), there exists at least

one new edge connecting the clusters Cx and Cy. Since the clusters of vertices of Y are

pairwise disjoint and |Y | = n2, these new edges are pairwise distinct and therefore there

exist at least n2(n2−1)
2 such edges. �

Claim 2 : OPT ≥ n1

2 .

Proof. By definition, n1 = |C1|, where C1 is the set of end-vertices of edges of E′. Obvi-

ously |E′| ≥ |C1|
2 , the worst case occurring when E′ is a perfect matching on C1. �

Next we will refine the lower bounds for OPT provided by Claims 1 and 2. Also from

the covering B1 ∪ B2 of T with n1 balls of radius R − 1 and n2 edge-balls of radius R, we

will derive a feasible solution for the mixed covering problem, thus establishing an upper

bound on the number ALG of edges added by the algorithm. Let n0 be the minimum

number of balls of radius R of T covering the set Q and let B0 denote the set of balls from

this covering. Since every edge-ball of radius R can be covered by two balls of radius R,

we obtain the following inequality:

Claim 3 : n0 ≤ 2n2.

For a fixed integer ∆ ≥ δ + 2, we perform the following operations with the balls of

the collection B0. Initialize A := ∅, and C := B0. Test each ball B of the current collection

C, and if the set (B ∩ Q) \ ((
⋃{B′ ∈ C : B′ 6= B}) ∪ (

⋃{B′ ∈ A})) can be covered by at

most ∆ balls of radius R − 1, then add these balls to A and remove B from C. Repeat

this operation until no ball of the current collection C can be further replaced by ∆ balls

of radius R − 1. Set α := |A| and γ := |C|. Notice that B1 ∪ A and C constitute a mixed

covering of the tree T with n1 + α balls of radius R − 1 and γ balls of radius R.

14

Rvi

x1

x2

z1

z2

R

vj

y1

y2

vk

C◦

z1

C◦

z2

C◦

x1

C◦

x2

C◦

y1

C◦

y2

C◦

y∆−1

y∆−1

x∆−1

z∆−1

C◦

x∆−1

C◦

z∆−1

. . .

. . .

. . .

Figure 1.

Claim 4 : Every ball B = BR(v) of the resulting collection C contains ∆ vertices

x1, . . . , x∆ ∈ B+ := (B ∩ Q) \ ((
⋃{B′ ∈ C : B′ 6= B}) ∪ (

⋃{B′ ∈ A}))

such that dT (xi, v) = R for all i = 1, . . . ,∆ and dT (xi, xj) = 2R for all distinct i, j ∈
{1, . . . ,∆}.

Proof. Since the ball B survived the last test, the minimum number of balls of radius

R− 1 necessary to cover the set B+ is at least ∆ + 1. Due to the duality between packing

and covering with balls in trees (applied to the perfect graph T 2R−2(B+)), B+ contains

∆ + 1 vertices S = {x1, . . . , x∆, x∆+1} forming a stable set of T 2R−2(B+). Since 2R− 1 ≤
dT (xi, xj) ≤ dT (xi, v) + dT (v, xj) ≤ R + R = 2R, we conclude that at least ∆ vertices,

say x1, . . . , x∆, must be located at distance R from the center v of B, moreover, the paths

connecting v with these vertices pairwise intersect only in v, otherwise we will find two

vertices of S having distance ≤ 2R−2. Thus dT (xi, xj) = 2R for arbitrary i, j ∈ {1, . . . ,∆},
i 6= j. �

Suppose that the balls of the collection C are ordered B1, . . . , Bγ in the following way:

root the tree T (Q) at the center of an arbitrary ball of C and for two balls B, B′ ∈ C set

B = Bi, B
′ = Bj , where i < j, provided the center of the ball B is closer or at the same

distance to the root than the center of the ball B′, breaking ties arbitrarily. Denote by

15

vi the center of the ball Bi, i = 1, . . . , γ. Consider the set of ∆ vertices x1, . . . , x∆ of the

ball Bi described in Claim 4. Since the paths P (vi, x1), . . . , P (vi, x∆) pairwise intersect

solely in the vertex vi, at most one such path, say P (vi, x∆), may pass via the father of

vi. Therefore the set Fi := {x1, . . . , x∆−1} consists solely of descendants of the vertex vi.

On the other hand, if y ∈ Fj , j < i, then dT (vi, y) > R = dT (vj , y), whence y cannot be a

descendant of vi. For each vertex x ∈ Fi, set C◦
x := Cx − {vi}. For an illustration of this

and other notions introduced above, see Fig. 1.

Claim 5 : For all i, j ∈ {1, . . . , γ}, j < i, if x ∈ Fi and y ∈ Fj , then dT (x, y) ≥ 2R + 1. If

dT (x, y) = 2R + 1, then vj is the closest to vi center of a ball of C which is an ancestor of

vi.

Proof. Let z be the nearest common ancestor of vi and vj . If z /∈ {vi, vj}, then z is also the

nearest common ancestor of x and y, because x is a descendant of vi and y is a descendant

of vj . In this case, we deduce that

dT (x, y) = dT (x, vi) + dT (vi, z) + d(z, vj) + dT (vj , y) ≥ R + 1 + 1 + R > 2R + 1.

On the other hand, if z ∈ {vi, vj}, then z = vj , because j < i. Since y is not a descendant

of vi, we conclude that vi ∈ P (x, y), and

dT (x, y) = dT (x, vi) + dT (vi, y) ≥ R + (R + 1) = 2R + 1.

Hence, if dT (x, y) = 2R + 1, then vi is a descendant of vj and it remains to show that no

other center vk of a ball of C can be located on the path between vi and vj . Suppose the

contrary: then, since y is not a descendant of vk, the vertices vi and vk belong to the path

P (x, y), hence

dT (x, vi) + dT (vi, vk) + dT (vk, y) ≥ R + 1 + (R + 1) = 2R + 2,

yielding a contradiction. �

For each i = 2, . . . , γ, denote by vi′ (if it exists) the closest to vi center of a ball of C
which is an ancestor of vi. The following assertion is an immediate consequence of Claim 5.

Claim 6 : For any i = 2, . . . , γ, if j, k ∈ {1, . . . , i−1}−{i′}, j 6= k, and x ∈ Fi, y ∈ Fj , and

z ∈ Fk, then dT (x, y) > 2R + 1, dT (x, z) > 2R + 1, and dT (y, z) ≥ 2R + 1. In particular,

the clusters Cx, Cy, and Cz are pairwise disjoint.

We apply this claim to provide new lower bounds for OPT. For i = 2, . . . , γ, set

Γi =
⋃

j<i

⋃

y∈Fj
Cy. Let βi be the number of edges of the optimal solution E′ running

between the vertex vi and the clusters from Γi. For a vertex x ∈ Fi, denote by κ(x)

16

the number of edges of E′ running between the cluster Cx and the clusters from Γi. Let

κi = min{κ(x) : x ∈ Fi}. Notice that κi ≥ βi, because vi belongs to all clusters Cx, x ∈ Fi.

On the other hand, κi ≥ i − 2, because there is an added edge between Cx and every

cluster Cy such that dT (x, y) > 2R + 1 (see Fig. 1 for an illustration), and, by Claim 6,

Γi contains at least i − 2 pairwise disjoint clusters Cy, obeying dT (x, y) > 2R + 1.

Claim 7 : OPT ≥ (∆ − 1)
∑γ

i=2 κi − (∆ − 2)
∑γ

i=2 βi.

Proof. For each i = 2, ..., γ, there are βi edges of E′ between vi and vertices of Γi,

therefore, for any vertex x ∈ Fi at least κi − βi edges of E′ run between C◦
x and Γi.

Since the clusters of the ∆ − 1 vertices from Fi pairwise intersect solely in vi, at least

(∆ − 1)(κi − βi) distinct edges of E′ run between
⋃

x∈Fi
C◦

x and Γi. Moreover, since the

clusters of any two vertices y ∈ Fj and z ∈ Fk, j 6= k, are disjoint, thus we obtain

OPT ≥
γ

∑

i=2

[βi + (∆ − 1)(κi − βi)] = (∆ − 1)

γ
∑

i=2

κi − (∆ − 2)

γ
∑

i=2

βi. �

Claim 8 : OPT ≥ n1−β+
∑γ

i=2
βi

2 , where β is the number of vertices vi, i = 2, . . . , γ, such

that βi > 0.

Proof. First notice that for any vertex vi with βi > 0, the βi edges of E′ incident to vi

form a star with βi + 1 vertices. Each of the n1 −
∑γ

i=2 βi − β remaining vertices of C1 is

incident to an added edge, yielding at least
n1−

∑γ
i=2

βi−β

2 other edges of E′, the worst case

being a perfect matching. This shows that

OPT ≥
γ

∑

i=2

βi +
n1 −

∑γ
i=2 βi − β

2
=

n1 +
∑γ

i=2 βi − β

2
. �

Claim 9 : ALG ≤ n1 − β + ∆(n0 − γ) + γ(γ−1)
2 .

Proof. Notice that every vi with βi > 0 is a center of a ball of radius R of C and a center

of a ball of radius R− 1 of B1. Remove those β balls from B1. Together with A and C, the

resulting collection B1 form a mixed covering of T with γ balls of radius R and at most

n1 − β + ∆(n0 − γ) balls of radius R − 1. This covering gives rise to a feasible solution of

the augmentation problem using at most n1 − β + ∆(n0 − γ) + γ(γ−1)
2 new edges. �

First assume that γ ≥ 2. From Claims 7 and 8 we obtain

(2 +
1

δ
)OPT ≥ n1 − β +

γ
∑

i=2

βi +
∆ − 1

δ

γ
∑

i=2

κi −
∆ − 2

δ

γ
∑

i=2

βi

17

= n1 − β + (
∆ − 2

δ
− 1)

γ
∑

i=2

(κi − βi) + (1 +
1

δ
)

γ
∑

i=2

κi

≥ n1 − β + (1 +
1

δ
)

γ
∑

i=2

κi,

where the last inequality follows from κi ≥ βi for i = 2, . . . , γ and ∆ ≥ δ + 2. Since

κi ≥ i − 2 for i = 2, . . . , γ, we conclude that

(2 +
1

δ
)OPT ≥ n1 − β + (1 +

1

δ
)
(γ − 1)(γ − 2)

2
.

In order to ensure (2 + 1
δ
)OPT ≥ ALG, in view of last inequality and Claim 9 it suffices

to show that

n1 − β + (1 +
1

δ
)
(γ − 1)(γ − 2)

2
≥ n1 − β + ∆(n0 − γ) +

γ(γ − 1)

2
.

Taking ∆ = δ + 2, after some elementary transformations this inequality can be rewritten

as f(γ) = γ2 + bγ − c ≥ 0, where b = 2δ2 + 2δ − 3 and c = (2δ2 + 4δ)n0 − 2δ − 2. Since

b > 0 because δ is a positive integer, the inequality f(γ) > 0 holds if c ≤ 0. Now, if

c > 0, the inequality holds for any γ ≥ γ0, where γ0 is the largest solution of the quadratic

equation f(γ) = 0 (the exact value of γ0 will be given below). Therefore, if γ ≥ γ0, then

ALG ≤ (2 + 1
δ
)OPT.

Now, suppose that γ ≤ γ0. Using the lower bounds for OPT established in Claims 1

and 2, we obtain (2+ 1
δ
)OPT ≥ n1 +

n2

2

2δ
− n2

2δ
. On the other hand, from Claim 9 we deduce

that ALG ≤ n1 + n0∆ + γ2

2 . Since n0 ≤ 2n2 by Claim 3,, ∆ = δ + 2, and γ ≤ γ0, we have

ALG ≤ n1 + 2(δ + 2)n2 +
γ2

0

2 . Now, by definition of γ0,

γ2
0

2
=

[
√

(2δ2 + 2δ − 3)2 + 8((δ2 + 2δ)n0 − δ − 1) − (2δ2 + 2δ − 3)]2

8

<
(2δ2 + 2δ − 3)2 + 8((δ2 + 2δ)n0 − δ − 1) + (2δ2 + 2δ − 3)2

8

< δ2(δ + 1)2 + 2δ(δ + 2)n2 − δ − 1,

because (p− q)2 ≤ p2 + q2 if p, q ≥ 0, 2δ2 + 2δ − 3 < 2δ(δ + 1), and n0 ≤ 2n2. Comparing

the lower bound for (2 + 1
δ
)OPT with the upper bounds for ALG and

γ2

0

2 , the desired

inequality ALG ≤ (2 + 1
δ
)OPT holds if

n2
2 − n2 ≥ 2δ3(δ + 1)2 + 4δ2(δ + 2)n2 + 4δ(δ + 2)n2 − 2δ2 − 2δ,

i.e., provided

g(n2) = n2
2 − n2(4δ3 + 12δ2 + 8δ + 1) − (2δ5 + 4δ4 + 2δ3 − 2δ2 − 2δ) ≥ 0.

18

As a result, we conclude that ALG ≤ (2 + 1
δ
)OPT holds for all n2 larger or equal to

the largest solution n+
2 of the quadratic equation g(n2) = 0, otherwise, if n2 < n+

2 , we

have ALG − (2 + 1
δ
)OPT ≤ −g(n2)

2δ
≤ −g(2δ3+6δ2+4δ+ 1

2
)

2δ
= O(δ5). The case γ = 0 or 1

can be settled in a similar way, using the inequalities (2 + 1
δ
)OPT ≥ n1 +

n2

2

2δ
− n2

2δ
and

ALG ≤ n1 +2n2(δ+2). Therefore, in all cases we obtain that ALG ≤ (2+ 1
δ
)OPT+O(δ5),

concluding the proof of the theorem. �

Remark 1. In particular cases δ = 1, 2, and 3, we obtain the following values for the

additive error between ALG and (2 + 1
δ
)OPT: 80, 621, 2560, respectively.

Remark 2. Using the factor 2+ 1
δ

augmentation algorithm for ADC analyzed in Theorem

4.1 and the biconnectivity augmentation algorithm of Eswaran and Tarjan [8], we obtain

a factor 3 + 1
δ

approximation algorithm for the problem ADC on trees and odd diameters

D with an additional requirement that the resulting augmented graph is biconnected

(this problem is known to be NP -hard on trees [3]). A polynomial time algorithm with

performance guarantee 4 is presented in [11]; see also [3] for related results.

Remark 3. Notice that the optimal solutions of the problem ADC with D = 2R+1 may

contain cliques of arbitrary size k. For this, consider the tree T consisting of a star S in

which the center v is adjacent to its tips v1, . . . , vk, plus k other pairwise disjoint stars

S1, . . . , Sk, where the star Si consists of K � k paths of length R pairwise intersecting

only in the central vertex vi. The diameter of T is 2R + 2, and, in order to decrease it to

2R + 1, the best way is to add an edge between any pair of centers of the stars.

Remark 4. In case of D = 2R, the factor 2 approximation algorithm for the problem

ADC on trees given in [3] computes an optimal mixed covering with one ball of radius R

and a minimum number of balls of radius R− 1, and draws an edge between the center of

each (R− 1)-ball and the center of the R-ball. We conjecture that this algorithm for even

D as well as the algorithm for odd D analyzed in this paper actually are optimal up to an

additive constant error term.

Acknowledgment. This research was supported in part by the CNRS MathSTIC project

“Combinatoire et géométrie des polyèdres: convexité, géométrie discrète et intégralité”.

References

[1] N. Alon, A. Gyárfás, M. Ruszinkó, Decreasing the diameter of bounded degree graphs,

J. Graph Theory, 35 (2000), 161–172.

[2] A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes, SIAM Monographs Discr. Math.

and Appl. SIAM, Philadelphia, 1999.

19

[3] V. Chepoi, Y. Vaxès, Augmenting trees to meet biconnectivity and diameter con-

straints, Algorithmica, 33 (2002), 243–262.

[4] F. R. K. Chung, Diameters of graphs: old problems and new results, Congressus

Numerantium, 60 (1987), 295–317.

[5] F. R. K. Chung, M. R. Garey, Diameter bounds for altered graphs, J. Graph Theory,

8 (1984), 511–534.

[6] Y. Dodis, S. Khanna, Designing networks with bounded pairwise distance, Annual

ACM Symposium on the Theory of Computing, (1999), 750–759.

[7] P. Erdös, A. Gyárfás, M. Ruszinkó, How to decrease the diameter of triangle–free

graphs, Combinatorica, 18 (1998), 493–501.

[8] K.P. Eswaran, R.E. Tarjan, Augmentation problems, SIAM J. Comput., 5 (1976),

653–665.

[9] R. Gandhi, S. Khuller, A. Srinivasan, Approximation algorithms for partial covering

problems, J. Algorithms, 53 (2004), 54–84.

[10] T. Ibaraki, N. Katoh, Resource Allocation Problems. Algorithmic Approaches, MIT

Press, 1988.

[11] T. Ishii, S. Yamamoto, H. Nagamochi, Augmenting forests to meet odd diameter re-

quirements, International Symposium on Algorithms and Computation (ISAAC’03),

Lecture Notes in Computer Science, 2906 (2003), pp. 434–443.

[12] M. Kearns, The Computational Complexity of Machine Learning, MIT Press, 1990.

[13] Ch.-L. Li, S.Th. McCormick, D. Simchi–Levi, On the minimum-cardinality-bounded-

diameter and the bounded-cardinality-minimum-diameter edge addition problems,

Operations Research Letters, 11 (1992), 303–308.

[14] N. Megiddo, E. Zemel, S.L. Hakimi, The maximum coverage location problem, SIAM

J. Alg. Disc. Meth., 4 (1983), 253-261.

[15] A.A. Schoone, H.L. Bodlaender, J. van Leeuwen, Diameter increase caused by edge

deletion, J. Graph Theory 11 (1987), 409–427.

[16] V.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2001.

20

Rvi

x1

x2

z1

z2

R

vj

y1

y2

vk

C◦

z1

C◦

z2

C◦

x1

C◦

x2

C◦

y1

C◦

y2

C◦

y∆−1

y∆−1

x∆−1

z∆−1

C◦

x∆−1

C◦

z∆−1

. . .

. . .

. . .

Figure 1.

