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Introduction

The factorization forests have been introduced by Imre Simon in [Si90] to de-
scribe factorizations of words over a given alphabet. In the same paper, Simon
has prooved that every morphism from a free semigroup to a finite one S admits
a Ramseyan factorization forest of height at most 9|S|. Later, Simon has given
in [Si92] a simpler proof of the same problem but he obtained an exponential
bound instead of a linear one.

In our paper, the main result is the theorem 5 in which we found the same
result as Simon with a bound of 7|S|. To proove this result, we present an
algorithm to build factorization forests which is close from Simon’s one, but our
proof is done in a direct way.

We first give a presentation of the problem and a few basic results on finite
semigroups that will be useful later. Then we show the result in three steps: we
first work on two particular cases and then we show the result for the general
case. In the last part, we want to show that the algorithm cannot be improved
significantly. We describe different kinds of examples for which we will need a
factorization tree of linear height.

The main result can be used to proove Brown’s lemma on locally finite
semigroups in a constructive way. Simon has also used this result to proove
the limitedness problem on distance automata in [Si94] and to find a double-
exponential bound to this problem.
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1 Presentation of the problem

Given a set X, we will note Xt or F(X) the free semigroup generated by X.
A factorization forest over an alphabet A can be defined by a function d from
AT into F(AT) such that for every z € AT, d(z) = (21,22, ...2,) implies that
T =x12T2...2p: d(x) is a factorization of z.

We call this a factorization forest, because for each word z € AT, we can
associate a rooted tree T'(z) such that the nodes are labelled by words in A™.
If |d(z)| =1, T'(x) consists just of a root labelled z; if d(z) = (21, 2, ...zp) with
p > 2, then the root of T'(z) is labelled by z and has p sons who are the T'(xz;)
for 1 <i<p.

We define the degree of z to be the number of sons of the root of T'(z): if
|d(z)| = 1, the degree of z is 0 and it’s |d(z)| otherwise. We will call the height of
z the height of the tree T'(z): if |[d(z)| = 0, h(z) = 0 and if d(z) = (z1, 22, ... 2p),
h(z) = 1+ maz{h(z;);1 < i < p}). The height of a factorization forest F is
h(F) = sup{h(z);z € At}.

Let f be a morphism from a free semigroup A* to a finite one S. A fac-
torization forest F' is ramseyan mod f if for every z of degree p > 3,d(x) =
(%1, 2, ..,zp) implies that there exists an idempotent e such that e = f(z) =
f(z1) = f(z2) = --- = f(zp). We say that f admits a ramseyan factorization
forest if it admits a factorization forest F' over A, which is ramseyan mod f and
such that the only words such that d(x) = x are the elements of A.

2 A few things about semigroups

In this part, we will present a few things about the theory of semigroups that
will be useful later. All the topics discussed here can be found in the chapter 2
(Green’s relations) of the book of Gérard Lallement [La79].

Given S a finite semigroup, we define S! as follows: if S has an identity,
then S! = §; otherwise we add a new element 1 to S to obtain S* such that
this new element is an identity for S'. We define four relations R, £, D' and
H on S as follows:

aRb <+ aS!'=0bS"
alb <+ S'a=S%
aDb <<= S'aS! =SS!
aHb <= aRbAaLlb

From the definition, it is clear that the former relations are equivalences; the
class of an element a for the relation R (resp. £, D, H) is denoted by R, (resp.
L,, D,, H,). We can also note that given a,b € S, we have aRb if and only
if there exist u,v € S! such that au = b and a = bv; we have a similar result
for the relations £ and D. We say that a D-class D is regular if there is an
idempotent belonging to D.

In a semigroup S, there is a natural partial ordering of the classes of the
relation D: given a,b € S, D, <p Dy if and only if S'aS* C S'bS'. We can
consequently represent the set of D-clases by a directed graph as shown in figure

Tn the literature, the definition given here for D is called J, but it is known that in a
finite semigroup J = D



D,

Figure 1: An example of decomposition diagram for a semigroup

1. Furthermore, it is obvious to see that two elements in a same R-class (resp.
L-class) are in the same D-class. We can also see that the equivalence classes for
the relation # are included in classes for the R and £ relations. Consequently,
in each D-class, we can split the elements between the differents H-classes and
we obtain an “egg-box” whose cells are the different #-classes: the elements
whose H-classes are in the same row (resp. column) are in the same R-class
(resp. L-class).

Lemma 1 In a finite semigroup S, given a,b € S, aDab (resp. bDab) if and
only if aRab (resp. bLab).

Proof:

It is obvious to see that aDab if aRab. Suppose now that aDab: there exist
u,v € S such that a = uabv. Consequently, for all m > 1,a = u™a(bv)™ and
since S is finite, there exists mo € N such that (bv)™° is an idempotent.

mo

a = a

moa

mo

u™a(

= u (
u™a(

= ab(vh)™ v

And consequently aS' C abS! and since it is obvious to see that abS' C aS?,
we have prooved that aRab. m|

Lemma 2 (Green’s Lemma) Given a,b in a semigroup S such that aRbD, let
u,v € St such that au = b and bv = a and py, p, be the inner right translations



defined by u and v. Then p, is a bijection from L, to Ly and p, is the inverse
bijection. These two bijections preserve the H-classes: for all x,y € L, (resp.
Ly), zHy if and only if zuHyu (resp. zvHyv).

Proof:
Given x € L,, since xLa, we have that zulau = b; consequently, p, is a
function from L, to L. Furthermore, there exists ¢ € S! such that z = ta
and consequently, p,(py(x)) = zuv = tauv = thv = ta = x. A similar proof
shows that p, is a function from L; to L, and that p,p, is the identity on L.
Consequently, we can deduce that p,, and p, are inverse bijections from L, to L
and from L; to L, respectively, establishing the first statement of the lemma.
For every x € L,, we have Rxu, and consequently xHy implies zuHyu;
similarly xuHyu implies x = zuvHyuv = y. With the same idea, we can proove
the same results for two elements of L with v and therefore it establishes the
second statement of the lemma. m|

Remarks:

1. We have the same result between the R-classes of two elements in the
same L-class with inner left translations A\, and A,.

2. It is now easy to see that two L-classes (resp. R-classes and H-classes)
lying in the same D-class have the same cardinality; therefore the cells in
the egg-box have the same size.

Theorem 1 (D. D. Miller and A. H. Clifford) For any two elements a,b in a
semigroup S, ab € R, N Ly if and only if Ry N L, contains an idempotent.

Proof:

Suppose ab € R,N Ly, we have that aRab and by lemma 2, p; defines a bijection
from L, onto Ly, = Ly. There exists ¢ € L, such that py(c) = ¢b = b; moreover
we know that ¢Rcb = b and consequently ¢ € Ry N L, and there exists u € St
such that ¢ = bu. Since ¢ = cbu = bu = ¢, we have found an idempotent in
RyN L,.

Conversely, if there exist e € Ry N L, such that €2 = e then there exist
s,t € S' such that b = et and a = se and consequently eb = eet = et = b
and ae = see = se = a. Since eRb (resp. eLa), we deduce a = aeRab (resp.
b = ebLab): we have shown that ab € R, N L. O

Remark: Given an H-class H such that there exists an idempotent e € H,
for all a,b € H, ab € H. Moreover, given a € H, there exist s,t € S such
that a = se = et and consequently, ae = see = se = a and ea = eet = et = a.
Therefore, we can easily see that there is at most one idempotent in each H-class.

Theorem 2 In a finite semigroup S, given D a D-class of S, H a H-class of
D and a,b € H, the following statements are equivalents.

(i) abeH
(¢) H is a group
(i) abe D



Proof:

e (i) = (1) Since ab € H, from the theorem 1, we can find an idempotent
e € H and we know that there is only one idempotent. We also know that
for each x € H, xe = ex = x and moreover, we know that for all ¢,d € H,
cd € H: H is a monoid.

For each x € H, x™ € H and since H is finite there exists m such that a™ is
an idempotent. But there is only one idempotent in H and consequently
a™ = a™ 'a = aa™! = e: each element in H has an inverse; H is a

group.
e (i1) = (444) Since H is a group, ab € H and therefore ab € D.

e (iti) = (i) ab € D and S is finite; consequently, from lemma 1 ab €
R,NLy=H.

O

3 The group case

We consider in this section a morphism f from a free monoid At to a finite
group G. Let e be the identity of G; e is the only idempotent element of G, and
consequently the only nodes with an outdegree greater than 2 will have a label
x such that f(z) =e.

Theorem 3 Every morphism f : AT — G, where G is a finite group, admits a
Ramseyan factorization forest of height at most 3|G|.

Proof:

Given a word z, let Pref(z) = {f(u);u is a proper prefix of z}. Forall z,v € AT
and u,w € A* such that x = vvw, we have f(u)Pref(v) C Pref(z). We will
show by induction on |Pref(z)| that we can find a tree for z of height at most
3|Pref(z)]|.

If |Pref(z)| = 0, we have |z| = 1, and we can put d(z) = x; we have a tree
of height 0. Suppose now that |Pref(z)| > 1, and let b € Pref(z). We can
write £ = a1a2...ap and let 1 <4y < dép < --- <y <pbeallthel <i < p,
such that f(a1...a;) = b. Let u = a1...a4, let v = a;41...a, and let
Yj = Qj;41---a4,, foreachl < j <k—1; wewillnotey = y; ...yr_1. We know
that f(uyy...vio1) = fluyr--.yi) = f(uyr ... yi—1)f(y:); and consequently for
each y;, f(y;) = e; consequently we also know that f(y) = e. As described
in the figure 2, we will put d(z) = (uy,v), d(uy) = (u,y) and we will put
d(y) = (y1,.-.,yk—1). The only node that can have an outdegree greater than
2 is the node labelled by y but we know that f(y) = f(y1) = --- = flyx—1) = €
the construction is ramseyan.

We will now show that for all the leaves of the tree we have just built, the
size of Pref has decreased. We know that Pref(u) C Pref(z) and that b €
Pref(x)\ Pref(u) (i1 is the smallest ¢ such that f(a; ...a;) = b): consequently
|Pref(u)| < |Pref(z)|. We also know that for each y;, f(uy1 ...yj—1)Pref(y;) =
bPref(y;) C Pref(x), but we also know that b € Pref(x) \ bPref(y;) (there



Figure 2: How to build a tree for the group case

isn’t any ¢ between i; and i;j41 such that f(ai...a;) = b): since we are in a
group, we can conclude that |Pref(y;)| < |Pref(z)|. With the same argument,
we can see that |Pref(v)| < |Pref(z)|.

By the induction hypothesis, we know that we can find a tree for u, v and each
y; of height at most 3(|Pref(z)| — 1) and consequently we can build a tree of
height lower than 3|Pref(z)|.

Consequently, since the size of Pref(x) is bounded by the size of G, we have
found a way to build a factorization forest of height at most 3|G|. O

4 The general case

In this section we will describe the steps of an algorithm to build a factorization
forest in the general case. In a first time, we will suppose that through the
morphism, for each letter a of the word z, f(a) and f(x) are in the same D-
class, and we will work on the H-classes and use the precedent result that we
have found for the group case. Then, for the general case, we will work on the
D-classes and use the result found for the particular case.

4.1 In a same D-class

We will work on words that have the following property P: for each letter a of
the word z, f(a) and f(x) are in the same D-class. If a word w is a factor of
a word z that satisfies the property P, f(u) is in the same D-class than z and
u satisfies the property P. This kind of word can only appear if the D-class is



Figure 3: How to build a tree for a word which satisfies P

regular (given two elements a, b in a non regular D-class, the product ab doesn’t
belong to the D-class).

Theorem 4 Given a word x with the property P, we can find a ramseyan fac-
torization tree for x of height at most 5|Dy(y)|.

Proof:

For each word 2 = ajaz...a, , we will note Intg(z) = {(Lf(a;) Rf(airi); ]
i < p—1}. We can easily see that for each factor v of z, we have Intg(v)
Inty(x).

Let ¢ be the size of each H-class (it is known that all the H-class in a same
D-class have the same size). We will show by induction on |Inty(z)| that we
can find for each word z a factorization tree of height at most 5qIntg(z).

If Intg(xz) = 0, we know that the length of z is one and therefore we can
put d(z) = z to get a tree of height 0.

Assume now that Intg(z) > 1 and let (I,r) be an element of Intg(z).
We can write £ = a;...ap and let 1 < 4 < iy < --- < i, < p—1beall
the 1 < i < p— 1 such that (Ly(q,), Rf(a;ry)) = (7). Let u = a1...a;,
V= @i, 41-.-0p and y; = aj;41...a;,, for each 1 < j < n —1; we will note
Yy=y1...Yn—1 (if n =1, y = €). From lemma 1, we know that each y; is in
Ri(ai;41) N L(as;,,) = r N1 and y belongs also to this H-class. We will build
a tree as described in the figure 3: we put d(z) = (uy,v),d(uy) = (u,y). Since
y and all of the y; are in the same H-class, we know from theorem 2 that this
H-class is a group and therefore we can find a factorization tree of root y and
leaves y1,...,Yn—1 With a height at most 3|Hy(,)| = 3q.

Since u, v, and all the y; are factors of x, we already know that the sets
Inty(u), Inty(v) and all the Inty(y;) are included in Inty(x). Moreover,

<
<



by the definition of u, v and the y;, we know that (I,7) belongs to Inty(x)
but not to Inty(u), Inty(v) or any of the Inty(y;). We also know that u, v,
and all the y; satisfy the property P and consequently, by the induction hy-
pothesis, we can find a factorization tree for u, v and each y; of height at most
5¢(Intgy(z)—1), and consequently, there exist a factorization tree for z of height
at most 2 + 3q + 5q(Intg(x) — 1) < 5q(Intg(x)).

Therefore, for each word x which satisfies the property P, we can find a
factorization tree of height at most 5¢|Intm(x)|- But |Intg(z)| is lower than
the number of different H-classes that we can find in the D-class of f(z) and ¢
is the size of each one of these H-classes: the height of the tree is lower than 5
times the size of the D-class of f(x). O

4.2 For a general semigroup

Theorem 5 Every morphism f : AT — S, from a free semigroup to a finite
one, admits a Ramseyan factorization forest of height at most 7|S|.

Proof:
Given a word z, we will work on the position of Dy, in the partial ordering of
the D-classes. We will show by induction on this partial ordering that we can
find a tree of height at most 7 Z |D|.

D2p Dy (e)

Suppose that Dy, is one of the maximal element for the partial ordering
<p. For each letter a of z, we know that D) <p Dy(,), but since Dy, is
a maximal element, we have that D) = Dy(,), and therefore, we can apply
what we have proved before: there exist a factorization tree for x of height at
most 5|Dy(,)|, which is lower than 7 Z |D|.

D2pDy(a)

For the general case, if |z| = 1, we put d(z) =  and we have a tree of height
0 and we have nothing to prove.

Suppose now that |z| > 1, we will consider two cases: either  has a proper
prefix u such that D,y = Dy (), or it hasn’t. If z hasn’t any prefix of this
kind, let y € AT and a € A such that x = ya, f(y) is in a different D-class
than f(z) (y is a proper factor of z), and since y is a factor of z, f(y) is in a
higher D-class than f(x). Let d(z) = (y,a) as shown in the figure 4 and by the
induction hypothesis,

h@)< |7 Y DI +1< (7 > IDI|+1<7 > D

D2pDyy) D>pDj(a) D21 Dy (a)

If z has a proper prefix u such that f(u) and f(z) are in the same D-class,
let y1 be the shortest prefix of  of this kind and let z; be the factor of x such
that y121 = z. If z1 is in the same D-class as z, we can find yo and x5 with
the same method (if z1 hasn’t any proper prefix of this kind, we put y» = =1
and zy = €). By repeating this procedure, we can find a factorization of x of
this kind: # = y1y2...YnTy, such that each y; is such that f(y;) € Dy(,) and
y; hasn’t any proper factor u such that f(u) € Dy(,,) and such that f(z,) is in
a higher D-class than f(z). Let y = y1 ...y, and let factorize x as described



Figure 4: How to build a tree in the first case

Figure 5: How to build a tree in the second case

in figure 5: we put d(z) = (y,x,) and since y and yi,...y, are in the same

D-class, we know that we can find a factorization tree with a root labelled by y

such that its leaves are labelled by y1,ya,...,yn of height at most 5|Dy(z)|.
We know that we can find a factorization tree for each y; (as what has been

done in the first case) of height at most | 7 Z |D| | +1 and that for z,
D2pDjy;)

we can find a tree of height at most | 7 Z |D| |. Therefore, we can find
D2DDj(an)

a tree for = of height lower than | 7 Z |D| | 414 5|Ds(y)| + 1, which is
D>p Dy (a)

lower than 7 Z |D|.
D>pDj(a)



Consequently, for each word = we can find a factorization tree of height at

most 7 Z |D|, which is lower than 7|S]|. O
D>p D (a)

5 A lower bound for a few examples

We have shown that for each semigroup S and each morphism f from a free
monoid A* to S, we can find a way to factorize each word over A so as to get a
ramseyan factorization tree for this word of linear height. In this section, we will
present three different examples showing that the result cannot be significantly
improved: for each step of the algorithm, we will show that we can find a
semigroup and a morphism such that there exist a word which will need a
ramseyan factorization tree of linear height.

5.1 An example when the number of D-class is the size of
the semigroup

For each n, let S,, be the semigroup {a;,...a,} with the following associative
operation: a;a; = @ = Qmaz{i,j}- We can easily see that from each «a;, by
multiplying on the both sides, we can reach {a;;j > i}: Do, = {oy} and if
1<j,D; <p Dj.

Let A ={a1,...an} and let f be the morphism such that for each 1 < i <
n, f(a;) = a;. For each word z € AT, we can easily see that f(z) = a;,,
where i, = maz{i;a; is a letter of z}. Let z1 be the word aja; and let z;41 =
(wiair1)? for each 1 <4 < n — 1: consequently, z; = ((a2az2)?...a;)?.

We will need a lemma to prove that the minimal height of a factorization
tree for x, is at least n. For each word z, we will note Apin(z) the minimal
height of a factorization tree for x.

Lemma 3 For each k € N, for all z in {a1,...,ar—1}" and for all u,v € A*,
we have the three following properties

L. hmin(2) < hmin(zagv)
2. hmin(z) < hpin(uagz)
3. hmin(x) < hmin(vagzagw)

Proof:

1. We will show the first result by induction on |z|; if || = 1, then h(z) =0
and there is nothing to prove. Suppose now that |z| > 1, we will do an
induction on |v]. If [v| = 0 then there exists p € Nand z1, 2, ...,2, € AT,
such that d(zax) = (z1,...2p,ar) or d(zag) = (T1,...Tp—1,2par). In
the first case, if p > 2, then f(z1) = f(ar) = ag, but since z; is a
factor of z, we know that ay, is not a letter of z; and therefore f(z1) #
ay; consequently d(zay) = (z,ag) and hpin(z) < hpin(zag). In the
second case, if p > 3 we have exactly the same problem since f(zpar) =
ay whereas f(x1) # ag; consequently d(zar) = (x1,z2ax) and by the

10



induction hypothesis on |z|, we know that A, (22) < hmin(220ak) (since
|z2| < |z]); consequently hpin(z) < 14+ maz{hmin(T1), hmin(z2)} < 1+
max{hmin (1), bmin(T20k)} = hmin(zag). Assume now that |v| > 1; if x
is a factor of an element of d(zagv), either z is an element of d(x) and we
can easily see that hmin(2) < hmin(xagv), or the first element of d(zaxv)
is of this kind zayv’, with |[v'| < |v| and we can apply the induction
hypothesis on |v| to show that hin(2) < hmin(zagv). If © is not a factor
of any element of d(zagv), for the same reasons as before, we can show
that the only way to factorize zagv is to find z1,22 € {a1,...,ap_1}"
such that d(zarv) = (z1,z2a5v). And by the induction hypothesis on
|z|, we know that hApmin(z2) < hmin(z2a,v) and therefore hpn(z) < 1+
max{hmin (1), bmin(®2)} < Amin(zagv). Consequently we have prove the
first statement of the lemma.

2. The proof of this statement is exactly the same as before.

3. We will show the last statement by induction on |u| + |[v]. If |u| +
|v| = 0, we will wonder how can apzay be factorized. If z is a factor
of an element of d(agzay), this element is either x, arz or zag, and by
what we have seen before, we know that h(z) < h(agzay). If z isn’t

a factor of any element of d(ayzay), there exist p € N and zy,...,z,
such that d(axzar) = (ag,1,-..,Tp, ar), dlagra) = (arx1,-..,Zp, ax),
d(agzar) = (ag,z1,...,zpa) or d(ayray) = (agz1,...,zpa). For the

first three cases, if p > 2 (what is supposed since x is not supposed
to be a factor of any of the element of d(arza)), we have more than
three components and therefore we must have f(ay) = ay = f(x1) (resp.
flagz1) = o = f(zp) and f(arzp) = ar = f(z1)), but we know that
for each 1 < j < p, f(z;) # o4 for the same reasons as before. In
the fourth case, if p > 3, we have f(arz1) = ar = f(x2), but we know
that ar is not a letter of xo and consequently f(z2) # i and there-
fore p = 2 and d(agzar) = (arz1,x2ar). By the others statements
of the lemma, we know that hiin(21) < hmin(arzi) and Amin(z2) <
hmin(z2ar); consequently, hAmin(z) < 1 4+ maz{hmin(z1), bmin(z2)} <
1 + maz{hmin(arz1), hmin(z201)} = hmin(arzar). Suppose now that
lu| + |v] > 1, if z is a factor of an element of d(uapzagv), this ele-
ment is of one of this kind: z and there is nothing to prove, v'agz or
zayv' and we already know that the result is true, or uv'agpz,nv’ with
|u!| + |v'| < |u| + |v| and we know the result by the induction hypoth-
esis. If z is not a factor of an element of d(z), we show for the same
reason as before that the only way to factorize uagxagv is to find ¢, r € N,

T1,22 € At uy, ... ug,v1,...,v, € A* (we only authorize u, and v; to
be €) such that £ = 21,22, u = U1 ... ug, v = v1 ... v, and d(uagrarv) =
(U1, Ug—1,UgakT1, T2GkV1, V2, . ..,Vr). By the precedent results, we

know that hmin(21) < hmin(ugarx1) and Apmin(z2) < Aumin (z2a5v1); con-
sequently hmin(z) < 1+ maz{hmin(z1), bmin(x2)} < hmin(uagzagv).
Therefore we have proove the last statement of the lemma.

O
We want to show that for each k, h(zy) > k, and we will do it by induction

on k. For k = 1, 21 = a1a1 and it’s obvious that we need a tree of height

11



at least 1. Suppose now that kK = n > 1, x; = Tp_1arTr_10g; if there exists
U1, Us, ..., up with p > 3 such that d(zy) = (u1,...,up), there exist 1 <4,j <p
such that ay, is a letter of u; but not of u;. Consequently f(u;) = ar # f(u;)
and therefore, this factorization is not ramseyan. Consequently, the only kind
of factorization we can find is d(x) = (u1,u2). If ay is a letter of uy, then wu; is of
this kind zy_jaxu) and h(u1) > h(xg_1) > k—1: h(z) > k. If ax is not a letter
of uy, ug is of this kind wharxr_1ar and h(uz) > h(zk_1) > k —1: h(z) > k.
Therefore, for each k, h(zr) > k and consequently we can find a word in A
such that the size of the minimal ramseyan factorization tree for z is |S|.

5.2 A new kind of factorization forest

We will introduce a new kind of factorization forest, so as to show that the bound
we have for each step of the algorithm cannot be really improved. We will now
consider a fonction d' from A' to F(AT) such that d'(z) = (z1,22,...,2k)
implies that there exist an idempotent e such that for each 2 < ¢ < k —1,
f(z;) = e. As in the former definition, the only words z such that d'(z) = z
must be the elements of A. We can easily remark that if we can find an usual
ramseyan factorization tree for a word z, this tree will also be a factorization
tree for the new kind of factorization, and reversly if we have a factorization
tree of height n for a word x, we can easily find an usual ramseyan factorization
tree of height at most 3n. We will note A/ ;, (x) the minimal height of a new
kind of factorization tree for x.

With this kind of factorization, we can proove the following lemma, that will
be useful later.
Lemma 4 For all x € AT, for all u,v € A*, h!,; () < h!, ;. (uzv).
Proof:
We will do the proof by induction on |z|; if |z| = 1, hl,;,(z) = 0 and there
is nothing to proove. Suppose now that |z| > 1, we will do an induction on
|u| + |vl; if |u] + |v| = 0, uzv = x and there is nothing to prove. If |u| + |v] > 1,
either z is a factor of an element of d(x) which will be of this kind: «'zv’
with |u'| + |v'| < |u| + |v|; by induction, we know that A} . (x) < Al . (u'zv")
and consequently h! . () < h! . (uzv). Otherwise, we can find p > 2, ¢,r >
1, z1,...,xp € AT, u1,...,uq,v1,...,v, € A* (we only authorize u, and v;
to be €) such that x = z1...2p, ¥ = ur...uq, v = v1...v, and d(uzv) =
(U1, .-, Ug—1, Ug®1, T2, - - -, Tp—1, TpV1, V2, ... Up). We know that (z1,22,...,2p)
can be a correct factorization for z: f(z2) = --- = f(xp—1) is an idempotent,
since (U, ..., Ug—1,Ug®1, T2, - - -, Tp_1, LpV1,V2,...Vy) is a good factorization for
uzv. And since |z1| and |z2| are lower than |z|, by induction hypothesis, we
know that hl ;. (z1) < hl,;.(ugz1) and hl . (z2) < hl,.. (x2v1). Therefore

5.3 The group case

Given a group G of size n, we want to show that there exist a word such that
the height of all new factorization tree for this word will be at least n; and
consequently a ramseyan factorization tree for this word will also be of height
at least n.
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Given a word z, we will note z(m) the prefix of z of length m and P(z) =
{f(zx(m));1 <m < |z|}. Let ai,...,a, be the element of G such that a; = e
is the identity of G and let A = {a1,...,a,}. We define f to be the morphism
such that for each 1 < i < n, f(a;) = a-

Lemma 5 Given two words © and y satisfying the following statement
* |yl =zl
o there exists a bijection g between P(x) and P(y),

o forall1 <m < |zf, g(f(2z(m))) = fy(m)),
we have that h) ;. (x) = h, .. (v).

Proof:

We will show that bl .. (x) < hl,;,(y) by induction on z; if || =1, A} .. () =0
and there is nothing to proove. Suppose that |z| > 1,let p € N and y1,...,yp €
AT be such that d'(y) = (y1,-..,Yp); let 21,...,2, € AT such thatz =z, ...z,
and for each 1 < i < p, |z;| = |y;| (it is possible thanks to the first hypothesis).
For each 2 <i<p-—1, f(y;) = e and f(y1...yi) = f(y1); consequently, for
each2 <i<p-1, f(z1...2;) = g(f(y1)) and therefore f(z;) =e: (x1,...,2p)
is a good factorization of . Moreover for each i, let g; be the bijection such
that for each 2, gi(2) = f(y1...yi—1) tg(®1...2i_12). Forall 1 < m < |z,
9(f(z1 ... zim12:(m))) = fly1...yi—1y:(m)) and so, g;(z;(m)) = y;(m). Since
for each 1 < i < p, |z;| = |yi|, g; is a bijection (G is a group and g is a bijection)
between P(z;) and P(y;) such that for all 1 < m < |z|, g;(f(z;(m))) = f(yi(m)),
we can apply the induction hypothesis on each z; (|z;| < |z|). Therefore,
Ponin(€) < 14+ mazi<i<p{hiin (@)} < 14 mazi<i<p{hiin(¥i)} = hpin(y)-
O

For each 1 < k < n, we will construct recursively a word xj such that
P(zy) ={ai...ar} and Al ;. (zx) > k.

If k =1, let z1 = aja1; we could easily see that P(z;) = {a1} and that the
height for any new factorization tree will be at least 1.

Suppose now that £ > 1, we will construct x; from the structure of xy_1.
For each 1 < i < k, let y; be the word such that for each 1 < m < |zg_1], if
f(xr—1(m)) = a;, f(yi(m)) = ay and f(y;(m)) = f(zk—1(m)) otherwise. Since
ap ¢ P(xk-1), yr = zr—1 and consequently P(yr) = P(zy—1); moreover for
each1 < i< k-1, P(y;) = P(zg-1) \ {ai} U {ar}. We can easily see that
T 1 satisfy the previous lemma with each y;, and therefore for each 1 < i <k,

We will construct (b;)1<i<k—1 € A*~! recursively such that for each 1 <4 <
k—1, f(b;) = f(y1b1...y;)~1; which is possible since for each a € G, there
exists a € A such that f(a) = a. We are now ready to create zy: we put

Tr = y1biyaba .. . yr—1bp_1ys.

P(zy) = U {f(yabr . yiabio1) P(yi) U f(ynbr - - yibi)} = {an, ... ax}

1<i<p

Let p > 2 and (21,...,2p) € At such that d(z) = (21,...,2p) and let
B = f(z1) = --- = f(#1...24-1) € P(xr). There exists 1 < iy < k such
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that 8 ¢ P(y;,) and there exists 1 < j < p such that y;, is a factor of z;:
otherwise, there exist y; ,yi such that y;, = y; yi; and there exist 1 <1 < p
such that 21 ...2; = y1b1...b;_1yj, and therefore f(y; ) = f(y1b1...bi_1yi,) =
f(z1...21) = B, which is false. Therefore, Al ..(2;) > hj,;,(yi,) > k —1 and
therefore h! .. (xr) > k.

We have consequently built a word z such that P(zy) = {o1 ...} and

Consequently, for each group G, we can find a word which will need a ram-
seyan factorization tree of height at least |G|.

5.4 The case of rectangular bands

Given two nonempty sets I and J, we can define an associative multiplication
on the set I x J as follows:

vi,i' € I,Vj, j' € J, (i,§)(i',j') = (i, ')

A semigroup S is called a rectangular band if there exist I and J such that S
is isomorphic to I x J with the previous multiplication. We will note Ip and rp
the two functions such that V(i,5) € I x J,Ip(i,5) =i and rp(i, j) = j-

In arectangular band, it is obvious to see that each element is an idempotent.
Therefore, for each new factorization (z1,zs,...,2,) of a word z, 3 = --- =
T,_1 can take all the values possible in S and there exist (i',5') € I x J suc
that for each 2 <1 <n—2,rp(x;) =i and Ip(z;+1) = j'. We can also easily see
that all the element are in the same D-class and that each element is the only
one belonging to its H-class. Consequently, the number of H-classes is the size
of the rectangular band. Let A = {a;;;i € I,j € J} and f be the morphism
such that for each (i,5) € I x J, f(ai;) = (i,7). Given a word z = a;,j, ... ai,j,,
we will use Int(z) = {(jk,ik+1);1 <k <p—1} and foreach 1 <k < p—1,we
will define betw, (k) = (jk, tk+1)-

Given a rectangular band S defined by the sets I (of size n) and J (of
size m), we want to show that there exist a word such that the height of all
new factorization tree for this word will be at least n x m; and consequently a
ramseyan factorization tree for this word will also be of height at least |S]|.

As for the group cases, we will construct recursively a word x such that
[Int(xr)| = k and hl,;, () > k. For k = 1, let (ig,jo) € S and we can put
T1 = Qg jo Gigjo Which will need a tree of height 1 and |Int(z1)| = [{(jo,%0)}| = 1.

Suppose now that £ > 1, we will construct z; from the structure of xy_;.
Let (j1,41) ¢ Int(zy_1); for each (j,i) € Int(zy_1), we can construct a word y;;
by replacing the letters of x;_; such that for each 1 < p < |z| — 1, betw,,, (p) =
(j1,11) if betwy,_, (p) = (j,i) and betw,,, (p) = betw,,_, (p) otherwise. Conse-
quently, it is obvious to see that the minimal height of a new factorization tree
for each y;; is at least k — 1 and that V(i,7) € Int(zr—1), Int(y;;) = {(j1,%1)} U
Int(zr—1)\ {(J,7)}. Moreover, we can assume that V(j,¢) € Int(zr_1), f(yji) =
(40, jo); we will define y to be the concatenation of all the y;; that have been
defined previously and we will define zy = xx_12r—1yzr—1- We can easily see
that f(zx) = (i, jo) and that Int(xr) = Int(zr—1) U {(j1,%1)}-

We will now proove that for each new factorization tree we can have for
Ty, it will be a tree of height at least k. Let d'(zx) = (u1,-.-.,u,) be a new
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factorization for xj,. Either x;_; is a factor of u; or u, and in this case we know
that u; or u, will need a tree of height at least £ — 1 and therefore, we will have
a tree of height at least k. In the other case, we know that r > 3; if r = 3, z}_;
will be a factor of us and the height of a tree for uy will be at least £ — 1 and
consequently, the height of the tree for z; will be at least k. If » > 4, there exist
i' € I and j' € J such that for each 2 <[ < r — 2, we have a rp(u;) = j' and
rp(ui1) =4 I (¢',5") = (i1, 1), xx—1 will be a factor of us and therefore the
height of the tree for zx will be at least k. In the other case, (j',i') € Int(xk_1)
and there exist 2 <1 < r — 1 such that y;;+ is a factor of u;; consequently the
height of a tree for w; is at least £ — 1 and the height of the tree for zj, is at
least k.

We have proove that for each & < nm we can find a word z; such that
hl.in(xr) > k. Consequently, for each rectangular band S, we can find a word
which will need a ramseyan factorization tree of height at least |S|. .

5.5 About the algorithm

In the former examples, we have proove that we cannot improve significantly the
algorithm described in the previous part. Indeed for each part of the algorithm,
we have found an example which will need a ramseyan factorization tree of
linear height. When the number of D-classes is greater than one, we have
found a family of semigroup such that the number of D-classes is the size of the
semigroup and for each semigroup of this family we can find a word which will
need a ramseyan factorization tree of height greater or equal to the size of the
semigroup. When the image of all the factors of a word are in the same D-class
than the word, we have found a kind of semigroup (the rectangular bands) in
which we can always find a word which will need a ramseyan factorization tree
of height greater or equal to the size of the semigroup. For the group case,
we have prooved that for each group G, we can find a word which will need a
ramseyan factorization tree of height at least |G|.
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