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Introduction

The notion of coverings is a fundamental notion that comes from (algebraic) topol-
ogy [137]. It enables to express that two topological spaces are “locally similar”. Its
importance in algebraic topology comes from the fact that coverings are an important
tool in the study of homotopy groups and, in particular, of the fundamental group of
a space. In the case of graphs and cell complexes that we consider in this document
(but also in many other non-pathological cases such as manifolds), every space X has a

universal cover X̃, i.e., a cover X̃ that covers every space Y such that Y covers X. The

universal cover X̃ of X is the “largest” cover of X and X̃ is the unique cover of X that
is simply connected.

Local-to-global results are common and of great importance in geometry and orig-
inates with the classical Cartan-Hadamard theorem (see [42, 198]) in Riemannian ge-
ometry relating the non-positive sectional curvature of a Riemannian manifold to the
properties of its universal cover. This theorem was generalized by Gromov [128] to
all geodesic metric spaces of non-positive curvature: if a geodesic metric space is lo-
cally non-positively curved, then its universal cover is globally non-positively curved
(a CAT(0) space). This local-to-global approach enables to obtain characterizations of
metric spaces via the properties of their distance functions, and also to construct such
spaces starting from compact (or finite) spaces in which these properties are satisfied
only locally.

The main subject of metric graph theory is the investigation and structural charac-
terization of graph classes whose standard graph-metric satisfies the main metric and
convexity properties of classical metric geometries like Rn endowed with l2, l1, or l∞–
metric, hyperbolic spaces, Boolean spaces, or trees. This gives rise to many graph
classes such as Helly graphs, bridged graphs, hyperbolic graphs, median graphs, modu-
lar graphs, etc.; see [18] for a survey. It turned out that some of these graphs give rise
to important cubical and simplicial complexes that can be viewed as geometric objects
that enjoy many nice properties. Some of these complexes correspond to classical ob-
jects studied in modern geometric group theory such as CAT(0) cube complexes [128]
or systolic complexes [146]. Local-to-global characterization of these graphs/complexes
enable to construct infinite complexes in these classes by considering the universal covers
of some finite complexes.

Since the seminal work of Angluin [9], covers of graphs have been used in distributed
computing in order to express indistinguishability between processes in a network and
establish impossibility results in distributed computing. The lifting lemma technique
of Angluin has since been used in different distributed models such as message passing
systems [31–33,71,72,259,260], local computation models [49,170], and mobile agent
systems [62,68,69,75,99]. An important notion in these works is the notion of minimum
base [34] (or quotient graph). While the universal cover is the “largest” cover of a
graph/complex, the minimum base of a graph G is the “smallest” graph that is covered
by G. The minimum base of a graph can be constructed from the views of the vertices
of the graph that correspond to a rooted version of the universal cover of the graph.
This minimum base encodes all the information the nodes of the network (or an agent
evolving in a network) can gather about the network.
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4 INTRODUCTION

The work presented in this document is based on some of the research I have done
since I arrived in Marseille in 2007. It is based on the results (or part of the results)
published in the papers [39,50–54,56–61,63–68,74–76].

The first part of this document gather some results obtained in metric graph the-
ory and related fields. In the first chapter, we present local-to-global characterizations
for weakly modular graphs, basis graphs of matroids (resolving a conjecture by Mau-
rer [169]), Helly graphs (answering a question raised independently by Prisner [205],
Chepoi (unpublished), and Larrión et al. [158]), bucolic graphs, prime pre-median
graphs (answering a question of Chastand [78, 79]), and dual-polar graphs (allowing
to provide a different and simpler proof of a difficult result by Brouwer and Cohen [44]).

In the second chapter, using the nice bijections between median graphs, CAT(0)
cube complexes, and event structures, we provide counterexamples to two conjectures
of Thiagarajan on event structures [240, 241]. We also provide some positive results
about these conjectures and establish in particular a bijection between special cube
complexes (introduced by Wise and Haglund [132,133] in geometric group theory) and
trace regular event structures that correspond exactly to the unfolding of 1-safe Petri
nets [240].

In the third chapter, we study δ-hyperbolic graphs and provide a characterization
of these graphs that is based on a cop and robber game. From this characterization,
we derive an algorithm computing an approximation of the hyperbolicity of a graph in
optimal O(n2) time (when the graph is given by its distance matrix). This algorithm is
quite simple but its approximation factor is huge (1569). We also provide a O(n2) algo-
rithm that compute an 8-approximation of the hyperbolicity of a graph. This algorithm
is based on the introduction of a new graph parameter related to the hyperbolicity.

In the fourth chapter, we consider maximum and ample [19, 110] (a.k.a. lop-
sided [159] or extremal [35]) classes that have been considered by people from com-
putational machine learning [119, 155, 174, 216, 217]. Ample classes correspond to
a subclass of partial cubes and generalize median graphs. We design unlabeled sam-
ple compression scheme for maximum classes and characterize such schemes for ample
classes in a local-to-global way via representation maps and unique sink orientations.
We also construct an example of a maximum class of dimension 3 without corners. This
refutes several previous works in machine learning [108,155,216] and it implies that all
previous constructions of optimal unlabeled sample compression schemes for maximum
classes are erroneous.

In the second part of this document, we consider a very simple distributed model
where an agent is evolving in a graph and wants to gather information about the under-
lying network. In the fifth chapter, we study what graph can be explored by an agent
that terminates once it has explored all nodes. After recalling the well-known results
in a classical model, we consider a model where the agent can gather local information
at each node. Even if there are some similarity in the characterizations of explorable
graphs in the two models, the algorithmic techniques used are much more involved and
the proofs rely on some technical topological arguments. It also turns out that the com-
plexity of the problem becomes unboundable in this new model. However, we identify
a large subclass of explorable graphs (containing many of the classes considered in the
first part of this document) that can be explored in linear time.

In the sixth chapter, we assume that the agent knows an upper bound on the size
of the network. With this initial knowledge at hand, the agent can explore the network
and halt. We show that it can build the minimum base of the network (and thus gather
all information it can about it) and that the overhead in the complexity to compute it
(compared to the exploration problem) is polynomial in the size of the minimum base.

In the seventh chapter, we consider the mapping problem where the agent aims
at reconstructing a map of the underlying graph. This problem cannot be solved in
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general, but we show that if the agent is evolving in the visibility graph of a polygon,
it can always reconstruct this graph, provided the port-numbers allowing the agent to
navigate within the graph are assigned locally in a geometric way.

At the end of each chapter, a conclusion presents some related open questions and
research directions.
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Part 1

Topological and Geometrical Methods in
Metric Graph Theory and Concurrency





CHAPTER 1

Local-to-Global Characterizations of Metric Graph Classes

Local-to-global results are common and of great importance in geometry and orig-
inates with the classical Cartan-Hadamard theorem (see [42, 198]) in Riemannian ge-
ometry relating the non-positive sectional curvature of a Riemannian manifold to the
properties of its universal cover. This theorem was generalized by Gromov [128] to all
geodesic metric spaces of non-positive curvature: if a geodesic metric space is locally non-
positively curved, then its universal cover is globally non-positively curved (a CAT(0)
space). Analogously, Myers [179] characterized spheres by means of positive curvature.
This local-to-global approach enables to obtain characterizations of metric spaces via
the properties of their distance functions, and also to construct such spaces starting
from compact (or finite) spaces in which these properties are satisfied only locally. This
also allows to establish global topological conditions such as contractibility.

In the particular case of cube complexes, Gromov reformulated his general result
as a combinatorial condition on the links of the vertices [128]: a cube complex X is
CAT(0) if and only if X is simply connected and the links vertices of X are flag simplicial
complexes. Consequently, the universal cover of a cube complex where links are flag is
CAT(0). This key observation is one of the founding results in modern geometric group
theory [42,218] and lead to many deep results [4,132,133,257,258].

The main subject of metric graph theory is the investigation and structural charac-
terization of graph classes whose standard graph-metric satisfies the main metric and
convexity properties of classical metric geometries like Rn endowed with l2, l1, or l∞–
metric, hyperbolic spaces, Boolean spaces, or trees. Among such properties one can
mention convexity of balls or of neighborhoods of convex sets, Helly property for balls,
isometric and low-distortion embeddings into classical host spaces, retractions, various
four-point conditions, uniqueness or existence of medians, etc.; for a survey of this the-
ory, see [18].

Later, it turned out that some of these graphs give rise to important cubical and
simplicial complexes that can be viewed as geometric objects. In fact, it turns out that
the 1-skeletons of CAT(0) cube complexes are exactly the median graphs [82,214], one
of the main classes of graphs studied in metric graph theory [18, 136]. Similarly to
the local-to-global characterization of CAT(0) cubical complexes of [128], it was shown
in [82] that the clique complexes of bridged graphs [117, 231] are exactly the simply
connected simplicial flag complexes in which the links of vertices do not contain induced
4- and 5-cycles. These complexes have been rediscovered and investigated in depth
in the geometric group theory community by Januszkiewicz and Swiatkowski [146], by
Haglund [130], and by Wise [256], who called them “systolic complexes” and considered
them as simplicial complexes satisfying combinatorial nonpositive curvature property.
These two results of [82] are obtained using minimal disk diagrams whose existence are
ensured by the simple connectivity of the considered complexes.

In a series of papers [39,56,60], we established local-to-global characterizations for
several other classes of graphs defined by their metric properties. Among other results,
we characterized in such a way basis graphs of matroids (resolving a conjecture by
Maurer [169] from 1973), bucolic graphs (a common generalization of bridged/systolic
and median/CAT(0) graphs), Helly graphs (answering a question raised independently
by Prisner [205], Chepoi (unpublished), and Larrión et al. [158]), dual-polar graphs of
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12 1. LOCAL-TO-GLOBAL CHARACTERIZATIONS OF METRIC GRAPH CLASSES

Cameron [47] (allowing to provide a different and simpler proof of a difficult result by
Brouwer and Cohen [44]), prime pre-median graphs (providing the answer to a question
of Chastand [78, 79]). We also establish a general local-to-global characterization of
weakly modular graphs (containing the last four classes of graphs).

A major difference between these classes and median and bridged graphs is that the
2-dimensional faces of the associated complexes consist of two types of cells (triangles
and squares), while for median and bridged graphs, the associated complexes have only
one type of 2-dimensional cells (squares and triangles respectively). This makes the
techniques based on minimal disk diagrams very difficult to implement. Instead, in [39,
56,60], we developed a general approach based on the level-by-level construction of the
universal cover of the associated complex. Depending on the specific local conditions
for each case, this approach is implemented differently.

We exemplify this by formulating three main results of this chapter for Helly graphs,
basis graphs of matroids, and weakly modular graphs (we defer all formal definitions to
respective sections).

Helly graphs are the graphs where the balls satisfy the Helly property, i.e., any
collection of pairwise intersecting balls has a non-empty intersection. They are discrete
analogues of geodesic injective spaces [110,144]. Similarly to injective hulls, any graph
isometrically embeds into a unique smallest Helly graphs. Finite Helly graphs have
been characterized in several ways by Bandelt, Pesch, and Prisner [23, 24] leading to
polynomial time algorithms to recognize them. It was conjectured (Prisner [205], Chepoi
(unpublished), and Larrión et al. [158]) that Helly graphs are exacly the graphs with
simply connected clique-complexes where the maximal cliques satisfy the Helly property,
i.e., clique-Helly graphs with simply connected clique-complexes. Since being clique-
Helly is a local condition, this is a local-to-global characterization of Helly graphs. The
following theorem of [56] establishes this result.

Theorem 1.1. Let G be a clique-Helly graph and let G̃ be the 1–skeleton of the

universal cover X̃4(G) of the triangle complex X4(G) of G. Then G̃ is a Helly graph.
In particular, G is a Helly graph if and only if G is clique-Helly and its triangle complex
(and thus its clique complex) is simply connected.

Matroids constitute an important unifying structure in combinatorics, algorithmics,
and combinatorial optimization — cf. e.g. [194] and references therein. One of the
standard way to represent a matroid is via its basis graph: the vertices of this graph
are the bases of the matroids and two bases are adjacent if they differ by an elementary
exchange. Basis graphs faithfully represent their matroids [141, 169], thus studying
the basis graph amounts to studying the matroid itself. Moreover, Gelfand et al. [124]
showed that the 1–skeleton of a basis matroid polyhedron coincides with the basis graph
of the matroid.

In his seminal paper [169, Theorem 2.1], Maurer characterized the basis graphs of
matroids as connected graphs satisfying three conditions: the interval condition, the link
condition, and the positioning condition. The first two conditions are local conditions
while the positioning condition is a global metric condition (in the spirit of the triangle
and quadrangle conditions for weak modularity considered below). He conjectured that
the link condition is redundant and that the positioning condition can be replaced by the
simple connectivity of the associated triangle-square complex. In [60], we proved both
conjectures. In particular, we establish the following local-to-global characterization of
basis graphs of matroids.

Theorem 1.2. Let G be a connected graph such that for every vertex v, the ball of
radius 3 around v is isomorphic to a ball of radius 3 of the basis graph of a matroid. Then

the 1–skeleton of the universal cover X̃4�(G) of its triangle-square complex X4�(G) is
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the basis graph of a matroid. In particular, G is the basis graph of a matroid if and only
if G is simply connected and every ball of radius 3 in G is isomorphic to a ball of radius
3 in the basis graph of a matroid.

Weak modularity is defined using two global metric conditions: the triangle and the
quadrangle conditions. Weakly modular graphs have been introduced in [16, 80] as a
common far-reaching generalization of median, bridged, Helly, modular, and pseudo-
modular graphs. Similarly to basis graphs of matroids, weakly modular graphs can be
characterized by requiring that every ball of radius 3 is isomorphic to a ball of radius 3
in a weakly modular graph [56]:

Theorem 1.3. Let G be a graph where triangle and quadrangle conditions are sat-

isfied at distance at most 3, and let G̃ be the 1–skeleton of the universal cover X̃4�(G)

of the triangle-square complex X4�(G) of G. Then G̃ is weakly modular. In particular,
a graph G is a weakly modular graph if and only if G satisfies the triangle and quadran-
gle conditions at distance at most 3 and the triangle-square complex X4�(G) is simply
connected.

The results of this chapter on based on the papers [39], [56] and [60].

1. Preliminaries

In this document, unless stated otherwise, all graphs G = (V,E) are finite, undi-
rected, simple, and connected; V is the vertex-set and E is the edge-set of G. We
write u ∼ v if two vertices u and v are adjacent. The distance d(u, v) = dG(u, v)
between two vertices u and v is the length of a shortest (u, v)-path, and the interval
I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)} consists of all the vertices on shortest
(u, v)–paths. A subgraph H of G is called isometric if dH(u, v) = dG(u, v) for any two
vertices u, v of H. A subgraph H is called convex if I(u, v) ⊆ H for any two vertices
u, v of H.

All complexes we consider are CW complexes. Following [137, Chapter 0], we call
them simply cell complexes or just complexes. If all cells are simplices and the nonempty
intersections of two cells is their common face, then X is called a simplicial complex.
For a cell complex X, by X(k) we denote its k–skeleton. The cell complexes we consider
have graphs (that is, one-dimensional simplicial complexes) as their 1–skeleta. Therefore,

we use the notation G(X) := X(1). As morphisms between cell complexes we always
consider cellular maps, that is, maps sending k–skeleton into the k–skeleton. The star
St(v) of a vertex v is the set of cells containing v.

For a graph G, we define its triangle (respectively, square) complex X4 (respectively,
X�) as a two-dimensional cell complex with 1–skeleton G, and such that the two-cells
are (solid) triangles (respectively, squares) whose boundaries are identified by isomor-
phisms with (graph) triangles (respectively, squares) in G. A triangle-square complex
X4�(G) is defined analogously, as the union of X4 and X� sharing common 1–skeleton
G. A triangle-square (resp. triangle, square) complex is flag if it coincides with the
triangle-square (resp. triangle, square) complex of its 1-skeleton. Observe that the
triangle, square, and triangle-squares complexes are 2-dimensional complexes (all faces
have dimension 0, 1, or 2).

In some cases, we associate complexes of higher dimension to a graph G. The clique
complex of a graph G is the abstract simplicial complex X(G) having the cliques (i.e.,
complete subgraphs) of G as simplices. A simplicial complex X is a flag simplicial
complex if X is the clique complex of its 1–skeleton. The dimension of a clique complex
X(G) is the dimension of its largest simplex, i.e., the size of the largest clique of G
minus 1. In a simplicial complex X, the link of a vertex x ∈ X is the simplicial
complex Link(x,X) with a (d−1)-simplex for each d-simplex containing x, with simplices
attached according to the attachments of the corresponding simplices.
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An d-cube is an isometric copy of [−1, 1]d, and has the product structure, so that
each subcube of [−1, 1]d is obtained by restricting some of the coordinates to +1 and
some to −1. A cube complex is obtained from a collection of cubes of various dimensions
by isometrically identifying certain subcubes. The dimension dim(X) of a cube complex
X is the largest value of d for which X contains a d-cube. Observe that in general, in
a square complex or in a triangle-square complex, we do not ask for the intersection
of two cells to be a cell. However, in the case of cube complexes, one only consider
cube complexes where the nonempty intersection of two cells is a common face (as it
is always the case when considering simplicial complexes). In a cube complex X, the
link of a vertex x ∈ X is the simplicial complex Link(x,X) with a (d − 1)-simplex for
each d-cube containing x, with simplices attached according to the attachments of the
corresponding cubes. For every graph G that does not contain infinite hypercubes as
induced subgraphs, G gives rise to a cube complex Xcube(G). The cube complex Xcube(G)
spanned by G has Q as a cube if and only if the 1-skeleton of Q is an induced subgraph
of G which is a hypercube. A cube complex X is flag if it is the cube complex Xcube(G)

of its 1-skeleton G = X(1).
A cell complex X is called simply connected if it is connected and if every continuous

mapping of the 1-dimensional sphere S1 into X can be extended to a continuous mapping
of the disk D2 with boundary S1 into X. Let C be a cycle in the 1–skeleton of X. Then
a cell complex D is called a singular disk diagram (or Van Kampen diagram) for C if the
1–skeleton of D is a plane graph whose inner faces are exactly the 2–cells of D and there
exists a cellular map ϕ : D → X such that ϕ|∂D = C (for more details see [165, Chapter
V]). According to Van Kampen’s lemma [165, pp. 150–151], a cell complex X is simply
connected if and only if for every cycle C of X, one can construct a singular disk diagram.
A singular disk diagram with no cut vertices (i.e., its 1–skeleton is 2–connected) is called
a disk diagram. A minimal (singular) disk for C is a (singular) disk diagram D for C
with a minimum number of 2–faces. This number is called the (combinatorial) area of
C and is denoted Area(C). If X is a simply connected triangle-square complex, then for
each cycle C all inner faces in a singular disk diagram D of C are triangles or squares.

As morphisms between cell complexes we consider all cellular maps, i.e., maps send-
ing (linearly) cells to cells. An isomorphism is a bijective cellular map being a linear
isomorphism (isometry) on each cell. A covering (map) of a cell complex X is a cellular

surjection p : X̃ → X such that p|
St(ṽ,X̃)

: St(ṽ, X̃) → St(p(ṽ), X) is bijective for every

vertex ṽ in X̃; compare [137, Section 1.3]. The space X̃ is then called a covering space.

A universal cover of X is a simply connected covering space X̃. It is unique up to iso-
morphism. In particular, if X is simply connected, then its universal cover is X itself.
(Note that X is connected iff G(X) = X(1) is connected, and X is simply connected iff

X(2) is so.)
An important class of cube complexes studied in geometric group theory and com-

binatorics is the class of CAT(0) cube complexes. In this case, being CAT(0) is equiv-
alent to the unicity of geodesics in the `2 metric; see [42] for this and other properties
of CAT(0) spaces. Gromov [128] gave a beautiful combinatorial characterization of
CAT(0) cube complexes. A cube complex X satisfying is a nonpositively curved (NPC)
complex if it satisfies the following cube condition:

Cube condition: if k ≥ 2 and three k-cubes of X pairwise intersect in a (k − 1)-cube
and all three intersect in a (k− 2)-cube, then they are included in a (k+ 1)-dimensional
cube of X;

The following theorem is the characterization of CAT(0) cube complexes given by
Gromov [128], that can be also taken as their definition:
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Theorem 1.4 ([128]). A cube complex X endowed with the `2-metric is CAT(0)
if and only if X is simply connected and nonpositively curved. If Y is a nonpositively

curved cube complex, then the universal cover Ỹ of Y is a CAT(0) cube complex.

2. Weakly Modular Graphs

In this section, we present the general approach to obtain local-to-global character-
izations in more details. We exemplify it by considering the case of weakly modular
graphs and sketching the proof of Theorem 1.3. We start by recalling the definition of
weakly modular graphs.

Definition 1.5 (Weak modularity). [16,80] A graph G is weakly modular with re-
spect to a vertex u if its distance function d satisfies the following triangle and quadrangle
conditions (see Figure 1.1):

• Triangle condition TC(u): for any two vertices v, w with 1 = d(v, w) <
d(u, v) = d(u,w) there exists a common neighbor x of v and w such that
d(u, x) = d(u, v)− 1.
• Quadrangle condition QC(u): for any three vertices v, w, z with d(v, z) =
d(w, z) = 1 and 2 = d(v, w) ≤ d(u, v) = d(u,w) = d(u, z) − 1, there exists
a common neighbor x of v and w such that d(u, x) = d(u, v)− 1.

A graph G is called weakly modular if G is weakly modular with respect to any vertex
u.

z zv w

=⇒

u u

v w

x

=⇒

v w

u u

v
x

w

TC(u) QC(u)

k k kk k − 1 k − 1

Figure 1.1. Triangle and quadrangle conditions

We say that a graph G is locally weakly modular with respect to a vertex u if it
satisfies the two following conditions (See Figure 1.1):

• Local triangle condition LTC(u): for any two adjacent vertices v, w such that
d(u, v) = d(u,w) = 2 there exists a common neighbor x of u, v and w.
• Local quadrangle condition LQC(u): for any three vertices v, w, z such that
z ∼ v, w and d(v, w) = d(u, v) = d(u,w) = d(u, z) − 1 = 2, there exists a
common neighbor x of u, v and w.

A graph G is locally weakly modular if G is locally weakly modular with respect to any
vertex u.

The weak modularity of a graph G implies that any cycle of X4�(G) admits a disk
diagram, and consequently that G is simply connected. Consequently, in order to prove

Theorem 1.3, consider a locally weakly modular graph G and let G̃ be the 1–skeleton of

the universal cover X̃ := X̃4�(G) of the triangle-square complex X := X4�(G) of G. To

prove Theorem 1.3, we want to establish that G̃ is weakly modular.

To do so, we will construct the universal cover X̃ of X as an increasing union
⋃
i≥1 X̃i

of triangle-square complexes. The complexes X̃i will be in fact spanned by concentric
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combinatorial balls B̃i in X̃. The covering map f is then the union
⋃
i≥1 fi, where

fi : X̃i → X is a locally injective cellular map such that fi|X̃j = fj , for every j ≤ i. We

denote by G̃i = G(X̃i) the underlying graph of X̃i. We denote by S̃i the set of vertices

B̃i \ B̃i−1.

Pick any vertex v of X as the base-point. Define B̃0 = {ṽ} := {v}, B̃1 := B1(v,G).

Let X̃1 be the triangle-square complex of B1(v,G), and let f1 : X̃1 → X be the cellular
map induced by IdB1(v,G). Assume that, for i ≥ 1, we have constructed the vertex sets

B̃1, . . . , B̃i, and we have defined the triangle-square complexes X̃1 ⊆ · · · ⊆ X̃i (for any

1 ≤ j < k ≤ i we have an identification map X̃j → X̃k) and the corresponding cellular

maps f1, . . . , fi from X̃1, . . . , X̃i, respectively, to X so that the graph G̃i = G(X̃i) and

the complex X̃i satisfy the following conditions:

(Pi) Bj(ṽ, G̃i) = B̃j for any j ≤ i;
(Qi) G̃i satisfies the triangle and quadrangle conditions with respect to ṽ;

(Ri) for any ũ ∈ B̃i−1, fi defines a bijection between the star of ũ in X̃i and the star
of u = fi(ũ) in X;

(Si) for any ũ ∈ S̃i, fi defines an injection between the star of ũ in X̃i and the star
of u = fi(ũ) in X.

It can be easily checked that B̃1, G̃1, X̃1 and f1 satisfy the conditions (P1),(Q1),(R1)

and (S1). Now we construct the set B̃i+1, the graph G̃i+1 having B̃i+1 as the vertex-set,

the triangle-square complex X̃i+1 having G̃i+1 as its 1-skeleton, and the map fi+1 :

X̃i+1 → X. Let

Z = {(w̃, z) : w̃ ∈ S̃i and z ∈ B1(fi(w̃), G) \ fi(B1(w̃, G̃i))}.

If (w̃, z) ∈ Z, w = fi(w̃) is a neighbor of z but w̃ has no neighbor mapped to z by fi.
In order to ensure the local bijection between the star of w̃ and the star of w, one has
to add such a neighbor in the next level. However, in order to have bijections between
stars, squares and triangles in the stars must be preserved. Therefore, on Z we define a
binary relation ≡ indicating which vertices of the next level have to be merged. We set
(w̃, z) ≡ (w̃′, z′) if and only if z = z′ and one of the following two conditions is satisfied:

(Z1) w̃ and w̃′ are the same or adjacent in G̃i;

(Z2) there exists ũ ∈ B̃i−1 adjacent in G̃i to w̃ and w̃′ and such that fi(ũ)fi(w̃)zfi(w̃
′)

is a square in G.

The crux of the proof is that the relation ≡ is an equivalence relation on Z. Using

Z and ≡, we can define G̃i+1, X̃i+1 and fi+1. Let S̃i+1 denote the set of equivalence

classes of ≡, i.e., S̃i+1 = Z/≡. For an ordered pair (w̃, z) ∈ Z, we will denote by [w̃, z]

the equivalence class of ≡ containing (w̃, z). Set B̃i+1 := B̃i ∪ S̃i+1. Let G̃i+1 be the

graph having B̃i+1 as the vertex set, in which two vertices ã, b̃ are adjacent if and only
if one of the following conditions holds:

(1) ã, b̃ ∈ B̃i and ãb̃ is an edge of G̃i,

(2) ã ∈ B̃i, b̃ ∈ S̃i+1 and b̃ = [ã, z],

(3) ã, b̃ ∈ S̃i+1, ã = [w̃, z], b̃ = [w̃, z′] for a vertex w̃ ∈ B̃i, and z ∼ z′ in G.

Finally, we define the map fi+1 : B̃i+1 → V (X) in the following way: if ã ∈ B̃i, then

fi+1(ã) = fi(ã), otherwise, if ã ∈ S̃i+1 and ã = [w̃, z], then fi+1(ã) = z. Notice that fi+1

is well-defined because all ordered pairs representing ã have one and the same vertex z
in the second argument.

One can prove that our inductive properties (Pi+1), (Qi+1),(Ri+1), and (Si+1) hold

for G̃i+1 and fi+1. In particular, we show that the image of a square (respectively, a
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triangle) of G̃i+1 is a square (respectively, a triangle) of G. This allows us to define the

triangle-square complex X̃i+1.

Let X̃v denote the triangle-square complex obtained as the directed union
⋃
i≥0 X̃i,

with a vertex v of X as the base-point. Denote by G̃v the 1–skeleton of X̃v. Since each

G̃i satisfies the triangle and quadrangle conditions with respect to ṽ, the graph G̃v also
satisfies the triangle and quadrangle conditions with respect to ṽ.

Therefore, G̃v is weakly modular and the complex X̃v is simply connected. Let

f =
⋃
i≥0 fi be the map from X̃v to X. Using property (Ri), one can show that

f : X̃v → X is a covering map.

This finishes the proof, since X̃v is a simply connected, and thus it is the universal

covering space of X. It is then unique, i.e., not depending on v. Thus, G̃(= G̃v) is
weakly modular with respect to every vertex v.

3. Basis Graphs of Matroids

A matroid on a finite set of elements E is a collection B of subsets of E, called bases,
which satisfy the following exchange property: for all A,B ∈ B and a ∈ A \ B there
exists b ∈ B \A such that A \ {a}∪ {b} ∈ B (the base A \ {a}∪ {b} is obtained from the
base A by an elementary exchange). The basis graph G = G(B) of a matroid B is the
graph whose vertices are the bases of B and edges are the pairs A,B of bases differing
by an elementary exchange, i.e., |A∆B| = 2.

Equivalently, a matroid on E can be defined as a simplicial complex X on E such
that for any two simplices I1, I2 with |I1| < |I2|, there exists e ∈ I2 \I1 such that I1∪{e}
is a simplex of X. The simplices of X are called the independent sets of the matroids.
The bases of the matroid are the maximal independent sets, i.e., the facets of X. With
these definitions, it is easy to see that all bases of a matroid have the same size, and
therefore X is a pure simplicial complex, i.e., all facets of X have the same dimension d
(the rank of the matroid). By the definition of the basis graph, two basis are adjacents
if and only if the two corresponding facets of X intersect in a face of dimension d− 1.

By the exchange property, basis graphs are connected. For any two bases A and B
at distance 2 there exist at most four bases adjacent to A and B: if A \ B = {a1, a2}
and B \ A = {b1, b2}, then these bases have the form A \ {ai} ∪ {bj} = B \ {bj} ∪ {ai}
for i, j ∈ {1, 2}. On the other hand, the exchange property ensures that at least one
of the pairs A \ {a1} ∪ {b1}, A \ {a2} ∪ {b2} or A \ {a1} ∪ {b2}, A \ {a2} ∪ {b1} must
be bases. Together with A and B, this pair of bases C,C ′ induce a square in the basis
graph. Therefore, A and B, together with their common neighbors induce a square, a
pyramid, or an octahedron, i.e., basis graphs satisfy what we call the interval condition:

• Interval condition IC: for every pair of vertices u, v at distance 2, the interval
I(u, v) induces a square, a pyramid, or an octahedron.

The exchange property of bases also shows that if A,C,B,C ′ induce a square in
the basis graph, then for any other base D ∈ D, the equality d(D,A) + d(D,B) =
d(D,C) + d(D,C ′) holds (i.e., the total number of elementary exchanges to transform
D to A and B equals to the total number of exchanges to transform D to C and C ′).
Following [169], we call this property of basis graphs the positioning condition.

A graph G satisfies the positioning condition with respect to a vertex v if the following
holds:

• Positioning condition PC(v): for each square u1u2u3u4 of G, we have d(v, u1)+
d(v, u3) = d(v, u2) + d(v, u4).

A graph G satisfies the positioning condition (PC) if G satisfies PC(v) for every vertex
v of G.

Finally, by Lemma 1.8 of [169], the subgraph induced by all bases adjacent to a
given base is the line graph of a bipartite graph; we will call it the link condition.
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In [169, Theorem 2.1] Maurer showed the basis graphs of matroids as connected
graphs satisfying the three conditions above:

Theorem 1.6 ([169, Theorems 2.1&3.1]). A graph G = (V,E) is the basis graph
of a matroid if and only if G is a connected graph satisfying the interval condition, the
positioning condition, and some vertex of G of finite degree satisfies the link condition.

The fact that these three conditions are satisfied by any basis graph is quite straight-
forward. On the other hand, the proof that these three conditions are sufficient is quite
involved. Maurer conjectured that the link condition is redundant. In [60], we showed
that this is indeed the case:

Theorem 1.7. A graph G = (V,E) is the basis graph of a matroid if and only if G
is a connected graph satisfying the interval condition, the positioning condition, and has
at least one vertex with finitely many neighbors.

Maurer observed that the triangle-square complex of any basis graph is simply con-
nected and he conjectured that this topological condition can replace the positioning
condition. In the original formulation of Maurer, the conjecture is false [109]. How-
ever, by slightly strengthening the local conditions, our Theorem 1.2 answers positively
to Maurer’s conjecture and consequently provides a local-to-global characterization of
basis graphs of matroids.

A graph G satisfies the local positioning condition (LPC) if for each square u1u2u3u4

and each vertex v such that d(v, u1) = d(v, u3) = 2, we have d(v, u2) + d(v, u4) = 4.
Theorem 1.2 is then a consequence of the following theorem:

Theorem 1.8. Let G be a connected graph satisfying the interval and the local po-
sitioning conditions, and having at least one vertex with finitely many neighbors. Then

the 1–skeleton G̃ of the universal cover X̃(G) of its triangle-square complex X(G) is the

basis graph of a matroid (and thus X̃(G) is finite).

Observe that given a connected graph G satisfying the local conditions of Theo-
rem 1.8, if the triangle-square complex is not simply connected, then its universal cover
is finite. Not that this property is usually not true for the other classes of graphs we
consider.

Basis graphs of matroids are not weakly modular but they enjoy metric conditions
as well. The interval and positioning conditions imply the triangle condition, but the
quadrangle condition is not always satisfied. However, basis graphs of matroids enjoy
the weaker square-pyramid condition.

A graph G satisfies the square-pyramid condition with respect to a vertex v if the
following holds:

• Square-pyramid condition SPC(v): for any three vertices u,w,w′ of G with
u ∼ w,w′ and 2 = d(w,w′) ≤ d(v, u) = d(v, w′)+1 = d(v, w)+1 = k+1, either
there exists x ∼ w,w′ such that d(v, x) = k − 1, or there exists x ∼ u,w,w′

and x′ ∼ u,w,w′ such that x � x′, and d(x, v) = d(x′, v) = k.

A graph G satisfies the square-pyramid condition if G satisfies SPC(v) for every vertex
v of G.

As in the case of weakly modular graphs, one direction in the proof of Theorem 1.8
is easy. To prove the converse, consider a connected graph G satisfying the interval
and the local positioning conditions, and having at least one vertex with finitely many
neighbors. In view of Maurer’s theorem 1.6 and Theorem 1.7, it is enough to show that

G̃ satisfies the positioning condition.
To prove this result, we use a scheme similar to the one used in the proof of The-

orem 1.3 presented in Section 2. The main differences between the two proofs are the
following:
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• The induction hypothesis (Qi) that G̃i satisfies TC(v) and QC(v) is replaced
by the following induction hypothesis:

(Qi) G̃i satisfies TC(v), SPC(v), and PC(v).
• In the definition of the equivalence relation ≡ on the set Z, we add the following

condition:
(Z3) there exists a square in S̃i containing w̃ and w̃′ such that its image under

fi together with z induces a pyramid in G.

The proof of the inductive steps follows the same ideas as the proof of Theorem 1.3.
However, the proof is different since the local conditions at hand are different. In
particular, establishing that ≡ is an equivalence relation on Z is much more difficult in
this case.

In [60], we established a characterization of the basis graphs of even ∆-matroid that
is analogous to Theorem 1.8.

4. Helly Graphs

In this section, we consider Helly graphs and sketch the proof of Theorem 1.1. We
start by recalling the definitions of Helly graphs.

Recall that a family of subsets F of a set X satisfies the Helly property if for any
subfamily F ′ of F , the intersection

⋂
F ′ =

⋂
{F : F ∈ F ′} is nonempty if and only if

F ∩ F ′ 6= ∅ for any pair F, F ′ ∈ F ′.
A graph G is a Helly graph if the family of balls of G satisfies the Helly property,

i.e., every collection of pairwise intersecting balls of G has a nonempty intersection. A
graph G is a 1–Helly graph if the family of unit balls (i.e., balls of radius 1) of G has
the Helly property. A clique-Helly graph is a graph in which the collection of maximal
cliques has the Helly property. Observe that a Helly graph is 1-Helly and that a 1-Helly
graph is clique-Helly, but the converses do not hold. Indeed, any cycle of length at least
7 is 1-Helly but not Helly, cycles of lengths 4 to 6 are clique-Helly but not 1-Helly.

Helly graphs are the discrete analogues of hyperconvex spaces: namely, the require-
ment that radii of balls are from the nonnegative reals is modified by replacing the reals
by the integers. In perfect analogy with hyperconvexity, there is a close relationship be-
tween Helly graphs and absolute retracts. A graph is an absolute retract exactly when
it is a retract of any larger graph into which it embeds isometrically. Then absolute
retracts and Helly graphs are the same [23,138]. In particular, for any graph G there
exists a smallest Helly graph comprising G as an isometric subgraph.

A vertex x of a graph G is dominated by another vertex y if the unit ball B1(x)
is included in B1(x). A graph G is dismantlable if there exists a well order ≺ on its
vertices such that every vertex v is dominated by a vertex w ≺ v in the subgraph of G
induced by the vertices u � v. Such a well-order ≺ is called a dismantling order.

The following theorem summarizes some known characterizations of finite Helly
graphs:

Theorem 1.9. For a finite graph G, the following statements are equivalent:

(i) G is a Helly graph;
(ii) [138] G is a retract of a strong product of paths;

(iii) [24] G is a dismantlable clique-Helly graph;
(iv) [23] G is a weakly modular 1–Helly graph.

We established the following equivalences in [56]. Observe that the equivalence
(i)⇔ (iv) corresponds to Theorem 1.1.

Theorem 1.10. For a graph G, the following conditions are equivalent:

(i) G is Helly;
(ii) G is 1–Helly and weakly modular;
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(iii) G is clique-Helly and dismantlable;
(iv) G is clique-Helly with a simply connected triangle complex.

Moreover, if the clique complex X(G) of G is finite-dimensional, then the conditions
(i)–(iv) are equivalent to

(v) G is clique-Helly with a contractible clique complex.

Note that this theorem holds for arbitrary graphs (including infinite and not locally
finite graphs). In order to establish these results in full generality, one has to use
transfinite inductions. To prove Theorem 1.10, we establish the equivalence (i) ⇔ (ii)
and the sequence of implications (ii)⇒ (iii)⇒ (iv)⇒ (ii).

The proof of (i) ⇒ (ii) is trivial. The proof of the reverse implication uses a
different approach than in the finite case considered by Bandelt and Pesch [23]. We use
in particular the notion of Helly-critical sets introduced by Polat [204]. The proof of
(ii)⇒ (iii) relies on the following property of 1-Helly weakly modular graphs that is a
generalisation of a result of Bandelt and Pesch [23] to arbitrary graphs.

Proposition 1.11. Let G be a 1-Helly weakly modular graph. Then for any two
vertices u, v of G with d(u, v) = k + 1 ≥ 1 there exists a vertex y ∈ B1(v) ∩ Bk(u) that
is adjacent to all vertices of B1(v) ∩Bk(u).

This proposition implies that any Breadth-First-Search order is a dismantling order.
Since dismantlability of G implies the simple connectivity of the triangle complex X4(G)
(and the contractibility of the clique complex X(G) when G has no infinite cliques), we
have (iii) ⇒ (iv) and (iii) ⇒ (v). Since (v) ⇒ (iv) is trivial, it remains to show that
(iv)⇒ (ii), i.e., to prove Theorem 1.1.

A first step towards the proof of Theorem 1.1 is the following proposition. We say
that a graph G satisfies the (C4,W4)-condition if every square of G “lives” in a 4-wheel
W4, i.e., for every square abcd of G, there exists a vertex x ∼ a, b, c, d.

Proposition 1.12. A weakly modular graph G is 1–Helly if and only if G is clique-
Helly and satisfies the (C4,W4)-condition.

With the previous proposition at hand, the next proposition enables to conclude the
proof of Theorem 1.1.

Proposition 1.13. Let G be a clique-Helly graph and let G̃ be the 1–skeleton of

the universal cover X̃ := X̃4(G) of the triangle complex X := X4(G) of G. Then G̃ is
weakly modular, clique-Helly, and satisfies the (C4,W4)-condition.

To prove this result, we use a scheme similar to the one used in the proof of The-
orem 1.3 presented in Section 2. The main differences between the two proofs are the
following:

• instead of considering the triangle-square X4�(G) complex X4�(G) of G, we
consider the triangle complex X4(G) of G
• We add the following induction hypothesis:

(Q′i) for every 4-cycle w̃1, w̃2, w̃3, w̃4 of G̃i with d(ṽ, w̃1) < d(ṽ, w̃2) = d(ṽ, w̃4) <

d(ṽ, w̃3), there exists a vertex ũ ∈ G̃i such that ũ ∼ w̃1, w̃2, w̃3, w̃4. In other

words, we ask for every “vertical” 4-cycle of G̃i to live in a W4.
• In the definition of the equivalence relation ≡ on the set Z, we replace the

condition (Z2) by the following condition:

(Z2) there exist ũ ∈ B̃i−1 and ũ′ ∈ B̃i such that ũ ∼ w̃, w̃′, that ũ′ ∼ ũ, w̃, w̃′,
and that fi(ũ

′), fi(w̃), fi(ũ), fi(w̃
′), z induce a W4 in G.

The proof of the inductive steps follows the same ideas as the proof of Theorem 1.3.
However, the proof is different since the local conditions at hand are different (local
weak-modularity vs. clique-Hellyness).
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There are many examples of Helly graphs. For example, replacing each cube of
a CAT(0) cube complex by a clique (this operation is called thickening) leads to a
Helly graph. Therefore studying Helly groups (i.e. groups acting geometrically on
Helly graphs/complexes) is more general than studying groups acting on CAT(0) cube
complexes. Similarly, using the result of Lang [156], one can show that any hyperbolic
group (i.e. a group acting geometrically on a Gromov-hyperbolic graph) is Helly. In a
recent work [55], we studied Helly groups, providing other examples of Helly groups,
as well as establishing their group-theoretical properties. In particular, we proved that
Helly groups are biautomatic, generalizing similar results for hyperbolic groups [48,116]
and CAT(0) cubical groups [182] (see also [42]). Recently, Huang and Osajda [143]
established that Garside groups of finite type and FC-Artin groups are Helly. Their
proof uses our local-to-global characterization of Helly graphs and using our result [55],
it establishes that these groups are biautomatic.

5. Bucolic Graphs

In a graph G, a vertex m is a median of three vertices u, v, w if m ∈ I(u, v)∩I(v, w)∩
I(w, v), i.e., if m lies simultaneously on (u, v), (u,w) and (v, w)-shortest paths. A graph
G is median if every triplet of vertices has a unique median, i.e., if |I(u, v) ∩ I(v, w) ∩
I(w, v)| = 1 for every triplet u, v, w of vertices.

Median graphs are bipartite and therefore they satisfy the triangle condition. In fact
the median graphs are exactly the bipartite graphs satisfying the quadrangle condition
without induced K2,3.

Median graphs contain plenty of cubes and isometrically embed into hypercubes (in
fact, they are exactly the retracts of hypercubes [15]).

As mentioned above, median graphs are exactly the 1-skeletons of CAT(0) cube
complexes [82,214]. In fact, their square complexes can be characterized in the following
way.

Theorem 1.14 ([82]). A graph G is a median graph if and only if its square-complex
X�(G) is simply connected and satisfies the 3-cube condition.

• 3-cube condition: any three squares of X(G), pairwise intersecting in an edge
of G, and all three intersecting in a vertex of G, are included in the 2-skeleton
of a 3-dimensional cube (see Figure 1.2);

Figure 1.2. The 3-cube condition

This theorem shows that weak local and topological conditions can ensure strong
global metric conditions. In fact, convex sets in median graphs are gated and satisfy
the Helly property. Moreover, finite median graphs can be obtained by successive gated
amalgams of their cubes [145,244].

An induced subgraph H of a graph G is gated [111] if for every vertex x outside
H there exists a vertex x′ in H (the gate of x) such that x′ ∈ I(x, y) for any y of H.
Since the intersection of gated sets is gated, for any set S of vertices of a graph G, the
gated hull 〈〈S〉〉 is the smallest gated set of G containing S (〈〈S〉〉 is the intersection of
all gated sets containing S). A graph G is a gated amalgam of two graphs G1 and G2
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if G1 and G2 are (isomorphic to) two intersecting gated subgraphs of G whose union is
all of G. Any gated subset S of a graph G gives rise to a partition Fa (a ∈ S) of the
vertex-set of G; viz., the fiber Fa of a relative to S consists of all vertices x (including
a itself) having a as their gate in S.

Rephrasing the previous result of [145,244], median graphs are exactly the graphs
that can be obtained by gated amalgams of Cartesian products of K2. In [15], Ban-
delt showed that median graphs are exactly the retracts of hypercubes (i.e., Cartesian
products of edges).

The structure theory of graphs based on Cartesian multiplication and gated amalga-
mation was further elaborated for more general classes of graphs. A graph with at least
two vertices is said to be prime [17,78] if it is neither a Cartesian product nor a gated
amalgam of smaller graphs. A graph G is said to be elementary [78] if the only proper
gated subgraphs of G are singletons. Observe that by the results of [145, 244], K2 is
the only prime (or elementary) median graph. Observe that a graph G is elementary if
and only if the gated hull of any of its edges is the whole vertex set.

In a similar spirit, it was shown in [22] that quasi-median graphs (the weakly modu-
lar graphs not containing induced K2,3 and K4−e [177]) are exactly the graphs obtained
by gated amalgams of Hamming graphs (Cartesian products of complete graphs) and
that they are the retracts of Hamming graphs: the prime (or elementary) quasi-median
graphs are the complete graphs. Bandelt and Chepoi [17] presented a similar decom-
position scheme of weakly median graphs (the weakly modular graphs in which the
vertex x in the triangle and quadrangle conditions is unique) in which the prime (or
elementary) graphs are the hyperoctahedra and their subgraphs, the 5-wheel W5, and
the 2-connected plane bridged graphs. Generalizing the proof of the decomposition the-
orem of [17], Chastand [78, 79] presented a general framework of fiber-complemented
graphs (graphs where fibers are gated) allowing to establish many general properties,
previously proved only for particular classes of graphs. An important subclass of fiber-
complemented graphs is the class of pre-median graphs [78, 79], i.e., weakly modular
graphs without induced K2,3 and W−4 . Chastand showed that in the class of pre-median
graphs, elementary and prime graphs coincide and asked for a characterization of these
graphs (see [78, p. 121]). We provide such a characterization of prime (or elementary)
pre-median graphs in Section6.

In this section, we investigate graphs that can be obtained by gated amalgams of
Cartesian products of bridged (and weakly-bridged) graphs.

A graph is bridged if any isometric cycle has length 3. Alternatively, a graph G is
bridged if and only if the balls Br(A,G) around convex sets A of G are convex [117,231].
Equivalently, a graph is bridged if and only if it is weakly modular and does not contain
induced 4- and 5-cycles [80].

Similarly to bridged graphs, graphs with convex balls have been characterized
in [117, 231] via conditions on isometric cycles. These graphs are not weakly mod-
ular in general (consider for example, the cycle of length 5 or the Petersen graph). A
graph G is weakly bridged if G is a weakly modular graph and has convex balls. Alter-
natively, a graph G is weakly bridged if and only if G is weakly modular and does not
contain induced C4 [89,191].

Analogously to the local-to-global characterization of median graphs, the clique com-
plexes of bridged graphs have been characterized in the following way:

Theorem 1.15 ([82]). A graph G is bridged if and only if its clique complex X(G)
is simply connected and the links of vertices do not contain induced 4- and 5-cycles.

The flag simplicial complexes satisfying the conditions of Theorem 1.15 have been
rediscovered by Januszkiewicz and Swiatkowski [146], by Haglund [130], and by
Wise [256] who called them “systolic complexes”. Systolic complexes and groups turned
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Figure 1.3. The Ŵ5-wheel condition.

out to be good combinatorial analogs of CAT(0) (nonpositively curved) metric spaces
and groups [130,146,190–193,206,207].

For an integer k ≥ 4, a flag simplicial complex X is locally k-large if every cycle
consisting of less than k edges in any of its links of simplices has some two consecutive
edges contained in a 2-simplex of this link, i.e., the links do not contain induced cycles of
length < k. A flag simplicial complex is k-systolic if it is locally k-large, connected and
simply connected. A flag simplicial complex is systolic if it is 6-systolic [130,146,256].

Simplicial complexes corresponding to weakly bridged graphs have been introduced
in [89,191] under the name of weakly systolic complexes. A flag simplicial complex X is
weakly systolic [89,191] if connected and simply connected, locally 5-large, and satisfies
the following local condition:

Ŵ5-wheel condition: for each extended 5-wheel of X, there exists a vertex v adjacent to
all vertices of this extended 5-wheel (see Figure 1.3).

Theorem 1.16 ([89]). A graph G is weakly bridged if and only if its clique complex
X(G) is weakly systolic.

When considering cell complexes defined by weakly modular graphs where prime
graphs are (weakly-)bridged graphs, one has to consider cells which are Cartesian prod-
ucts of cliques, i.e., prisms.

A prism is a convex polytope which is a Cartesian product of a finite number of finite-
dimensional simplices. Faces of a prism are prisms of smaller dimensions. Particular
instances of prisms are simplices and cubes (products of intervals). A prism complex is
a cell complex X in which all cells are prisms so that the intersection of two prisms is
empty or a common face of each of them. Cube complexes are prism complexes in which
all cells are cubes and simplicial complexes are prism complexes in which all cells are
simplices. The 1-skeleton of a prism of X is a Hamming graph without infinite cubes
and cliques. Every graph G that does not contain infinite cliques or infinite hypercubes
as induced subgraphs, G gives rise to a prism complex Xprism(G). The prism complex
Xprism(G) spanned by G has P as a prism if and only if the 1-skeleton of P is an induced
subgraph of G which is a Hamming graph. A prism complex X is flag if it is the prism
complex Xprism(G) of its 1-skeleton G = X(1).

We now define bucolic1 graphs and bucolic complexes, a common generalization
of bridged graphs/systolic simplicial complexes and median graphs/CAT(0) cube com-
plexes.

Definition 1.17. A graph G is bucolic if it is weakly modular, does not contain
infinite cliques and does not contain induced subgraphs of the form K2,3, W4, and W−4 .
A bucolic graph is strongly bucolic if it does not contain induced W5.

1The term bucolic is inspired by systolic, where b stands for bridged and c for cubical.
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Definition 1.18 (Bucolic complexes). A prism complex X is bucolic if it is flag,
connected and simply connected, and satisfies the following three local conditions:

Wheel condition: the 1-skeleton X(1) of X does not contain induced W4 and satisfies
the Ŵ5-wheel condition;

Cube condition: if k ≥ 2 and three k-cubes of X pairwise intersect in a (k − 1)-cube
and all three intersect in a (k− 2)-cube, then they are included in a (k+ 1)-dimensional
cube of X;

Prism condition: if a cube and a simplex of X intersect in a 1-simplex, then they are
included in a prism of X.

A bucolic complex X is strongly bucolic if G(X) does not contain induced W5, i.e.,
a prism complex X is strongly bucolic if it is flag, connected, simply connected, and
satisfies the cube and prism conditions, as well as the following local condition:

Strong-wheel condition: the 1-skeleton X(1) of X does not contain induced W4 and W5.

Gromov’s characterization of CAT(0) cube complexes can be rephrased as follows:
A cube complex is CAT(0) if and only if it is simply connected and satisfies the cube
condition. Observe that if X is a flag cube complex, the 3-cube condition implies the
cube condition.

Our main result on bucolic complexes is the following characterization via their 1-
and 2-skeleta.

Theorem 1.19. For a prism complex X, the following conditions are equivalent:

(i) X is a (strongly) bucolic complex;

(ii) the 2-skeleton X(2) of X is a connected and simply connected triangle-square flag
complex satisfying the (strong-)wheel, the 3-cube, and the 3-prism conditions;

(iii) the 1-skeleton G(X) = X(1) of X is a (strongly) bucolic graph not containing
infinite hypercubes.

Moreover, if X is a connected flag prism complex satisfying the (strong-)wheel, the cube,

and the prism conditions, then the universal cover X̃ of X is (strongly) bucolic.

Observe that Condition (ii) provides a local-to-global characterization of bucolic
complexes, while Condition (iii) provides a global metric characterization via their 1-
skeleta (bucolic graphs). The next result shows that bucolic graphs are pre-median
graphs in which all primes are weakly-bridged and that they are the retracts of the
Cartesian products of their primes.

Theorem 1.20. For a graph G = (V,E) not containing infinite cliques, the following
conditions are equivalent:

(i) G is a bucolic (respectively, strongly bucolic) graph;
(ii) G is a retract of the (weak) Cartesian product of weakly bridged (respectively,

bridged) graphs;
(iii) G is a pre-median graph in which all elementary (or prime) gated subgraphs are

edges or 2-connected weakly bridged (respectively, bridged) graphs.

Moreover, if G is finite, then the conditions (i)–(iii) are equivalent to the following
condition:

(iv) G can be obtained by successive applications of gated amalgamations from Carte-
sian products of 2-connected weakly bridged (respectively, bridged) graphs.

Theorem 1.20 allows us to show further non-positive-curvature-like properties of
bucolic complexes. The following corollary (whose proof uses Whitehead’s theorem)
completes the analogy with the Cartan-Hadamard theorem.

Corollary 1.21. Locally-finite bucolic complexes are contractible.
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Chronologically, Theorem 1.19 is the first local-to-global result we obtained. The
proof of (i) ⇒ (ii) is trivial. The proof of (ii) ⇒ (iii) uses the same “universal cover”
technique as in the proof of Theorem 1.3 for weakly modular graphs. The inductive
properties (Pi)–(Si) we establish as well as the definition of the equivalence relation
≡ on Z (via Conditions (Z1) and (Z2)) are the same as in the proof of Theorem 1.3.
However, the local properties at hand to establish them are weaker than in the case
of general weakly modular graphs. Using weak modularity, one can establish the 3-
cube and 3-prism conditions as well as the simple connectivity of the triangle-square
complex, thus proving (iii)⇒ (ii). To prove that (ii)&(iii)⇒ (i), one has to establish
the Cube and Prism conditions for all dimensions k. The proof uses induction on k and
is relatively technical.

The most difficult part of the proof of Theorem 1.20 are the implications (i)⇒ (iii)
and (iii)⇒ (ii). Since bucolic graphs are pre-median, prime bucolic graphs are exactly
elementary bucolic graphs [78, Lemma 4.8], to establish (i) ⇒ (iii), it suffices to show
that all prime bucolic graphs are the 2-connected weakly bridged graphs or K2. Chas-
tand [79, Theorem 3.2.1] proved that any fiber-complemented graph G whose primes
are moorable is a retract of the Cartesian product of its primes. Therefore, to establish
(i)⇒ (iii), we prove that weakly bridged graphs are moorable. The proof that (ii)⇒ (i)
and (iv) ⇒ (i) follows from the fact that weakly bridged graphs are bucolic and that
the class of bucolic graphs is closed by taking products, gated amalgams, and retracts.
The proof of (i)⇒ (iv) follows from the characterization of prime bucolic graphs and a
result of Chastand [78, Theorem 5.4].

To show that prime bucolic graphs are the 2-connected weakly bridged graphs or
K2, we prove that the gated hull of each edge is a weakly bridged graph. The proof
of this result was subsequently generalized to characterize all prime pre-median graphs
(Theorem 1.24) and the outline of this proof will be presented in the next section.

A map f : V (G) → V (G) is a mooring of G onto a vertex u if f(u) = u, for every
v 6= u, f(v) ∈ I(v, u) ∩ B1(v), and for every edge vw, f(v) and f(w) coincide or are
adjacent. A graph is moorable if for every vertex u of G, there exists a mooring of G
onto u. Mooring can be viewed as a combing property of graphs — the notion coming
from geometric group theory [116]. In [81], it was proved that the father map of any
breadth-first-search (BFS) order of a locally-finite graph is a mooring (and a disman-
tling order). However, for weakly bridged graphs, BFS orders do not always provide
moorings. Chepoi and Osajda [89] proved that locally-finite weakly bridged graphs are
moorable (and dismantlable) using lexicographic-breadth-first-search (LexBFS) orders
(instead of BFS orders). Polat [203] showed that all graphs admit a BFS order and,
extending the result of [81], he showed that this BFS order provides a mooring (and a
dismantling order) of non-locally-finite bridged graphs. Unfortunately, not every non-
locally-finite graph admits a LexBFS order. In order to circumvent this problem, we
refined Polat’s definition of BFS and defined a well-ordering of the vertices of a graph,
which is intermediate between BFS and LexBFS, that we called SimpLexBFS [39, Sec-
tion 7]. We show that any (non-locally-finite) graph without infinite cliques admits a
SimpLexBFS and that for weakly bridged graphs SimpLexBFS provides a mooring (and
a dismantling order).

Further we established some CAT(0)-like property of groups acting on bucolic com-
plexes [39].

Theorem 1.22. If X is a locally-finite bucolic complex and F is a finite group acting
by cell automorphisms on X, then there exists a prism π of X which is invariant under
the action of F . The center of the prism π is a point fixed by F .

Replacing each prism by a regular Euclidean prism, each bucolic complex gives rise
to a geometric prism complex. Since geometric systolic complexes in which cells are
regular Euclidean simplices are not CAT(0) [82,146], the geometric bucolic complexes
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are neither. However in [40], we showed that if the primes of a bucolic graph are chordal,
then the associated geometric bucolic complex is CAT(0).

6. Prime Pre-median Graphs

Recall that a weakly modular graph is pre-median if it does not contain K2,3 and
W−4 as an induced subgraph [78,79]. The following result is a corollary of Theorem 1.3.

Theorem 1.23. A graph G is pre-median if and only if G is locally weakly modu-
lar, does not contain induced K2,3 and W−4 , and its triangle-square complex is simply
connected.

Pre-median graphs are fiber-complemented and in the class of pre-median graphs,
prime and elementary graphs coincide. Moreover, finite pre-median graphs (as finite
fiber-complemented graphs) can be obtained as gated amalgams of Cartesian products
of their primes [78, Theorem 5.4]. This leads Chastand [78, p. 121] to ask for a
characterization of prime pre-median graphs.

By M4 we denote the graph consisting of an induced 4–cycle (x1, x2, x3, x4) and
four pairwise adjacent vertices a1, a2, a3, a4 such that a1 ∼ x1, x2; a2 ∼ x2, x3; a3 ∼
x3, x4; a4 ∼ x4, x1 and a1 � x3, x4; a2 � x1, x4; a3 � x1, x2; a4 � x2, x3 (see Figure 1.4,
right).

x1

x2

x3

x4 y

x1

x2

x3

x4

a4 a1

a2a3

Figure 1.4. A W4 (left) and a M4 (right)

The following result answers Chastand’s question:

Theorem 1.24. For a graph G, the following conditions are equivalent:

(i) G is a prime pre-median graph;
(ii) G is a 2-connected pre-median graph and each square of G is included in an induced

W4 or M4;
(iii) G is a 2-connected pre-median graph and its triangle complex X4(G) (and hence

its clique complex X(G)) is simply connected;
(iv) G is a 2-connected locally weakly modular graph not containing induced K2,3,W

−
4 ,

and its triangle complex X4(G) is simply connected.

Note that any prime graph has to be 2-connected. Under this assumption, Condition
(ii) shows that some local conditions characterize prime pre-median graphs in the class
of 2-connected pre-median graphs. Observe that the triangle-square complex X4�(G)
of any weakly modular graph is simply connected. Condition (ii) shows that in fact
its triangle complex X4(G) is simply connected. Condition (iii) shows that the simple
connectivity of X4(G) identifies the prime pre-median graphs. Condition (iv) is a typical
local-to-global characterization of prime pre-median graphs.

In [56, Proposition 4.4], we show that some classical graphs are prime pre-median
graphs: hyperoctahedra, half-cubes, Johnson graphs, the Schläfli graph, and the Gosset
graph.
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The equivalence (iii) ⇔ (iv) follows from Theorem 1.3. The proof of (ii) ⇒ (iii)
follows from the fact that the triangle-square complex of a weakly modular graph is
simply connected. To prove (iii) ⇒ (i), i.e., that a 2–connected pre-median graph G
with a simply connected triangle complex is prime, we use the fact that a pre-median
graph is prime if and only if it is elementary [78, p. 121]. The implication (iii) ⇒ (i)
is then an immediate consequence of the following more general result (the proof uses
minimal disk diagrams):

Lemma 1.25. If G is a 2–connected graph whose triangle complex is simply connected,
then G is elementary.

The most difficult part of the proof is to establish (i)⇒ (ii), i.e., to show that each
square of a prime pre-median graph is included in a W4 or M4. Let H be an induced
subgraph of a graph G. A 2-path P = (a, v, b) (i.e., a path of length 2) of G is H–
fanned [39] if a, v, b ∈ V (H) and if there exists an (a, b)–path P ′ in H avoiding v and
such that v is adjacent to all vertices of P ′, i.e., v ∼ P ′. Notice that P ′ can be chosen to
be an induced path of G. A path P = (x0, x1, . . . , xk−1, xk) of G with k > 2 is H–fanned
if every three consecutive vertices (xi, xi+1, xi+2) of P form an H–fanned 2-path. When
H is clear from the context (typically when H = G), we say that P is fanned.

The following lemma gives sufficient conditions for a square to be extended to a W4

or M4 and will be used to show that all squares admit such extensions.

Lemma 1.26. If C = (v1, v2, v3, v4) is an induced 4–cycle of a pre-median graph G
such that the 2–path (v1, v2, v3) if fanned, then C is included in an induced W4 or M4.
In particular, C is null-homotopic and all 2-paths of C are fanned.

In order to apply the previous lemma to each 4-cycle, we prove that any 2-path is
fanned.

Lemma 1.27. Let a, b, and v be vertices of a pre-median graph G such that a and
b can be connected by a fanned path avoiding v. If v ∼ a, b, then there exists a fanned
(a, b)–path P such that v ∼ P ; in particular, the 2-path (a, v, b) is fanned. If v ∼ a and
d(v, b) = 2, then there exists a fanned (a, b)–path P such that v ∼ P \ {b}.

In weakly modular graphs, gatedness can be characterized locally [80]: A subgraph
H of a weakly modular graph G is gated if and only if for any two distinct vertices u, v
of H, any common neighbor of u, v in G belongs to H. Using this property, the gated
hull 〈〈S〉〉 of any set S inducing a connected subgraph of a finite weakly modular graph
G can be constructed by the following procedure:

Algorithm 1.1: Gated-Hull(S)

U ← S;

while there exists u, v ∈ U and w /∈ U such that w ∼ u, v do
U ← U ∪ {w};

return (U);

We can extend the procedure GATED-HULL to arbitrary weakly modular graphs
G in the following way. Let / be a well-order on V (G) and let S be any subset of
vertices inducing a connected subgraph of G. We define a subgraph K of G by (possibly
transfinite) induction as follows. Set H0 := G(S). Given an ordinal α, assume that for
every β < α, we have defined Hβ, and let H<α be the subgraph induced by

⋃
β<α V (Hβ).

Let

X = {v ∈ V (G) \ V (H<α) : there exist x, y ∈ V (H<α) such that v ∼ x, y}.
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If X is nonempty, then let v be the least element of (X, /) and define Hα to be the
subgraph of G induced by V (H<α ∪ {v}). If X is empty, then set K := H<α. In this
case, one can show that K is the gated hull of S in G.

Let T = a0b0c0 be a triangle in G and let H0, H1, H2 be the subgraphs respectively
induced by {a0}, {a0, b0} and {a0, b0, c0}. Then for any ordinal α we define the subgraphs
H<α and Hα as in the transfinite version of the algorithm GATED-HULL. Let K be the
gated hull of {a0, b0, c0} computed by the algorithm.

Using transfinite induction, we show that any 2-path of K is K-fanned.

Lemma 1.28. For any ordinal α, Hα is 2-connected and any 2-path of Hα is K–
fanned. In particular, K is 2-connected and any 2-path of K is K–fanned.

Combining Lemmas 1.26 and 1.28, we obtain that each induced 4-cycle C of K is
included in an induced W4 or M4, establishing (i) ⇒ (ii) and concluding the proof of
Theorem 1.24.

7. Dual-Polar Graphs

As mentioned in Section 3, the basis graph of a matroid can be seen as the incidence
graph of the facets of its independent set complex that is a pure simplicial complex.
Other interesting classes of graphs arise in a similar way from incidence geometries.

A point-line geometry is a triple Π = (P,L;R) of sets P,L and a relation R ⊆ P ×L
between P and L [229, 243]. Elements of P are called points, and elements of L are
called lines. If (p, `) ∈ R, then we say that the point p lies on the line ` or that the line
` contains the point p. If two points p, q lie on a common line `, then we say that p and
q are collinear. The collinearity graph G := G(Π) of Π is the graph whose vertex set is
the set P of points so that p, q ∈ P define an edge if and only if p and q are collinear. A
set S ⊆ P of points is called a subspace of Π if for every line ` either |`∩S| ≤ 1 or ` ⊆ S.
The intersection of any collection of subspaces is a subspace, thus for any subset X of
P there exists the smallest subspace containing X. A subspace S is called a singular
subspace if any two points of S are collinear , i.e., the subgraph of G(Π) induced by S is
a clique. A point y of a subspace S (in particular, of a line `) of a point-line geometry
Π is a nearest point to a point x, if y is a closest to x point of S with respect to the
graph-metric of G, i.e., dG(x, y) = min{dG(x, y′) : y′ ∈ S}.

For a point-line geometry Π = (P,L;R), consider the following conditions:

(Q1) For a point p and a line ` not containing p, either exactly one point on ` is
collinear with p, or all points on ` are collinear with p.

(Q2) Every line contains at least three points.
(Q3) For every point p there exists a point q such that p and q are not collinear.

A polar space is a point-line geometry Π = (P,L;R) satisfying (Q1) and (Q2) (respec-
tively, (Q2′)). In addition, if (Q3) is satisfied, then Π is said to be nondegenerate. The
rank of a polar space Π is the length n of maximal chains of subspaces (ordered by
inclusion). Similarly to matroids, polar spaces define pure simplicial complexes on the
point-set: any maximal proper subspace U has rank n− 1 (moreover, together with its
subspaces, it is a projective space). Moreover, for a maximal subspace U and a point
p ∈ P \ U there exists a unique maximal subspace W such that W contains p and the
rank of U ∩W is n− 2. When considering non-degenerate point-line geometries where
subspaces are closed by intersection, these two conditions characterize the subspaces
of polar spaces [242] (this was in fact the original definition of polar spaces given by
Tits [242]). Polar spaces represent one of the fundamental types of incidence geometries.

A polar space Π = (P,L;R) of rank n gives rise to another point-line geometry
Π∗ = (P ∗, L∗;R∗). The point set P ∗ is the set of all (n − 1)–dimensional subspaces of
Π, and the line set L∗ is the set of all (n − 2)–dimensional subspaces of Π, where the
relation R∗ ⊆ P ∗ × L∗ is defined as (W,U) ∈ R∗ if W ⊇ U . A dual polar space is a
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point-line geometry Π∗ obtained from some (generalized) polar space Π in this way. A
dual polar graph G is the collinearity graph of a dual polar space Π∗. A dual polar graph
can be completely recovered from the original polar space and its subspace poset. A
characterization of dual polar graphs was given by Cameron [47]:

Theorem 1.29. [47] A graph G is the collinearity graph of a dual polar space Γ of
rank n if and only if the following axioms are satisfied:

(A1) for any point p and any line ` of Γ (i.e., maximal clique of G), there is a unique
point of ` nearest to p in G;

(A2) G has diameter n;
(A3&4) the gated hull 〈〈u, v〉〉 of two vertices u, v at distance 2 has diameter 2;

(A5) for every pair of nonadjacent vertices u, v and every neighbor x of u in I(u, v)
there exists a neighbor y of v in I(u, v) such that d(u, v) = d(x, y) = d(u, y)+1 =
d(x, v) + 1.

As noticed in [18], from this characterization immediately follows that dual polar
graphs are weakly modular. We show that dual polar graphs can be characterized as
a natural subclass of weakly modular graphs. Generalizing the interval condition for
basis graphs of matroids, we say that a graph G is thick if every pair of vertices u, v at
distance 2 in G are contained in an induced square of G. The graphs K−4 and K−3,3 are
represented in Figure 1.5.

Theorem 1.30. A graph G = (V,E) is a dual polar graph if and only if G is a thick
weakly modular graph not containing induced K−4 and isometric K−3,3.

Figure 1.5. A K−4 (left) and a K−3,3 (right)

We call a graph locally dual polar if it is thick, locally weakly modular, and does not
contain induced K−4 and isometric K−3,3.

Theorem 1.31. Let G be a locally dual polar graph. Then the 1–skeleton G̃ :=

X̃4�(G)(1) of the universal cover X̃4�(G) of the triangle-square complex X4�(G) of G is

a dual polar graph. If, moreover, G is locally finite, then G̃ is a finite dual polar graph.

The proof of the first assertion of this theorem is an immediate consequence of
Theorem 1.3 and Theorem 1.30. The proof of the second assertion is quite technical
and is in the spirit of the proof of Maurer’s theorem 1.6 (even if the proofs are very
different).

As an analogue of [44, Main Theorem (i)] we derive the following form of the local-
to-global result.

Theorem 1.32. Every locally finite locally dual polar graph G is a quotient of a dual
polar graph by a group action with the minimal displacement at least 7.

We showed in [56] that the conditions of Theorems 1.30, 1.31 and 1.32 are implied by
those of [44, Main Theorem (i)], i.e., Theorems 1.30, 1.31 can be viewed as a sharpening
of Main Theorem (i) of [44].
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In [56, Chapter 6], we also investigated weakly modular graph not containing induced
K−4 and isometric K−3,3 that we named sweakly modular graphs (or swm-graphs). Since
these graphs are not thick, they are not dual polar graphs in general, but we showed that
they can be build from cells that are dual-polar gated subgraphs and that they enjoy
nice geometric and topological properties (for example, they are contractible). Similar
constructions exist for complexes of oriented matroids (COMs) [20]. An interesting
question is whether one can find analogous constructions for complexes where cells are
basis polytopes of matroids.

8. Conclusion

Bridged graphs are the graphs where the balls around convex sets are convex [117,
231]. When considering geodesic convexity in normed spaces (such as Euclidean spaces),
balls around convex sets are convex if and only if balls are convex [230]. For geodesic
convexity in general metric spaces, these two properties are no longer equivalent. In [117,
231], characterizations of graphs that have convex balls have been given: they are
exactly the graphs in which all isometric cycles have length 3 or 5 and for any two vertices
u, v, any two neighbors x, y of u that lie on shortest paths from u to v are adjacent.
While graphs with convex balls around convex sets (i.e., bridged or systolic graphs) have
been thoroughly investigated, the structure and the properties of graphs with convex
balls is less clear. It would be interesting to investigate their convexity and metric
properties. In particular, one would like to provide a a local-to-global characterization
of such graphs.

Conjecture 1.33. A graph G has convex balls if and only if its triangle-pentagon
complex is simply connected and the balls of radius ≤ 3 are convex.

Bridged graphs are exactly the weakly modular graphs without W4 and W5 [82].
This characterization of bridged graphs was essential in establishing their local-to-global
characterization [82]. Graphs with convex balls are not weakly modular: they do not
satisfy the triangle condition. A first step would be to characterize them using metric
properties in the spirit of weak modularity.

Weakly bridged graphs are the weakly modular graphs with convex balls. The
triangle complex of any weakly-bridged graph is simply connected and one can ask
whether the convexity of balls and the simple connectivity of the triangle complex are
sufficient conditions to characterize weakly bridged graphs.

Question 1.34. Are weakly bridged graphs exactly the graphs with convex balls that
have a simply connected triangle complex.

When considering weakly modular graphs, one associate a 2-dimensional cell com-
plex X4�(G) to each weakly modular graph G. When we consider Helly graphs, bridged
graphs, median graphs, or bucolic graphs, one can consider cell complexes of higher
dimensions (clique complexes for Helly and bridged graphs, cube complexes for me-
dian graphs, and prism complexes for bucolic graphs). These cell complexes have very
interesting properties: for example, when we consider locally finite graphs, we obtain
contractible cell complexes.

In [56], we associated complexes of higher dimension to L1-embeddable weakly mod-
ular graphs (that form a subclass of pre-median graphs) and swm-graphs and study their
property. A natural objective would be to find a natural way to associate a cell complex
of higher dimension to any weakly modular graph in such a way that the obtained cell
complexes inherit some nice properties. In [56], we proposed the definition of such a
complex, but we were not able to establish any nice property satisfied by these com-
plexes.
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In a recent work [55], we studied groups acting geometrically on Helly graphs. In
particular, we proved that Helly groups are biautomatic, generalizing similar results for
hyperbolic groups [48,116] and CAT(0) cubical groups [182]. In fact, we showed that
hyperbolic groups and CAT(0) cubical groups are particular Helly groups. It would be
interesting to see if we can identify other classes of groups acting on some subclasses of
weakly modular graphs that are also Helly groups.

Systolic and bucolic groups (i.e. groups acting geometrically on bridged/systolic
complexes and bucolic complexes respectively) are not Helly [140]. However, systolic
groups are biautomatic. Since bucolic groups are a common generalization of systolic
groups and CAT(0) cubical groups, one can wonder whether bucolic groups are biauto-
matic.

Question 1.35. Are bucolic groups biautomatic?

We can also show that groups acting geometrically on weakly bridged graphs (i.e.,
groups acting geometrically on weakly systolic complexes) are biautomatic, and one can
wonder whether it is still true when considering groups acting geometrically on graphs
with convex balls.





CHAPTER 2

On Thiagarajan’s Conjectures

Event structures, introduced by Nielsen, Plotkin, and Winskel [183, 253, 254], are
a widely recognized abstract model of concurrent computation. An event structure (or
more precisely, a prime event structure or an event structure with binary conflict) is a
partially ordered set of the occurrences of actions, called events, together with a conflict
relation. The partial order captures the causal dependency of events. The conflict
relation models incompatibility of events so that two events that are in conflict cannot
simultaneously occur in any state of the computation. Consequently, two events that are
neither ordered nor in conflict may occur concurrently. More formally, an event structure
is a triple E = (E,≤,#), consisting of a set E of events, and two binary relations ≤ and
#, the causal dependency ≤ and the conflict relation # with the requirement that the
conflict is inherited by the partial order ≤. The pairs of events not in ≤ ∪ ≥ ∪ # define
the concurrency relation ‖. The domain of an event structure consists of all computation
states, called configurations. Each computation state is a subset of events subject to the
constraints that no two conflicting events can occur together in the same computation
and if an event occurred in a computation then all events on which it causally depends
have occurred too. Therefore, the domain of an event structure E is the set D(E) of
all finite configurations ordered by inclusion. An event e is said to be enabled by a
configuration c if e /∈ c and c ∪ {e} is a configuration. The degree of an event structure
E is the maximum number of events enabled by a configuration of E . The future (or the
principal filter, or the residual) of a configuration c is the set of all finite configurations
c′ containing c.

Among other things, the importance of event structures stems from the fact that
several fundamental models of concurrent computation lead to event structures. Nielsen,
Plotkin, and Winskel [183] proved that every 1-safe Petri net N unfolds into an event
structure EN . Later results of [184] and [254] show in fact that 1-safe Petri nets and
event structures represent each other in a strong sense. In the same vein, Stark [233]
established that the domains of configurations of trace automata are exactly the con-
flict event domains; a presentation of domains of event structures as trace monoids
(Mazurkiewicz traces) or as asynchronous transition systems was given in [215] and [26],
respectively. In both cases, the events of the resulting event structure are labeled (in the
case of trace monoids and trace automata by the letters of a possibly infinite trace alpha-
bet M = (Σ, I)) in a such a way that any two events enabled by the same configuration
are labeled differently (such a labeling is usually called a nice labeling).

The Nice Labeling Conjecture. The nice labeling conjecture was formulated by
Rozoy and Thiagarajan in [215] and asserts that

Conjecture 2.1 ( [215]). Every event structure with finite degree admits a nice
labeling with a finite number of labels.

A nice labeling is a labeling of events with the letters from some finite alphabet
such that any two co-initial events (i.e., any two events which are concurrent or in
minimal conflict) have different labels. The nice labelings of event structures arise when
studying the equivalence of three different models of distributed computation: labeled
event structures, net systems, and distributed monoids. The nice labeling conjecture
can be viewed as a question about a local-to-global finite behavior of such models.

33
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Assous, Bouchitté, Charretton, and Rozoy [12] proved that the event structures of
degree 2 admit nice labelings with 2 labels and noticed that Dilworth’s theorem implies
that the conflict-free event structures of degree n have nice labelings with n labels. They
also showed that finding the least number of labels in a nice labeling of a finite event
structure is NP-hard. Santocanale [221] proved that all event structures of degree 3
with tree-like partial orders have nice labelings with 3 labels. Chepoi and Hagen [88]
proved that the nice labeling conjecture holds for event structures with 2-dimensional
domains, i.e., for event structures not containing three pairwise concurrent events.

The Conjecture on Regular Event Structures. To deal with finite 1-safe Petri
nets, Thiagarajan [239,240] introduced the notions of regular event structure and trace-
regular event structure. A regular event structure E is an event structure with a finite
number of isomorphism types of futures of configurations and finite degree. A trace-
regular event structure is an event structure E whose events can be nicely labeled by
the letters of a finite trace alphabet M = (Σ, I) in a such a way that the labels of
any two concurrent events define a pair of I and there exists only a finite number of
isomorphism types of labeled futures of configurations. These definitions were motivated
by the fact that the event structures EN arising from finite 1-safe Petri nets N are
regular: Thiagarajan [239,240] proved that event structures of finite 1-safe Petri nets
correspond to trace-regular event structures:

Theorem 2.2 ([240, Theorem 1]). E is a trace-regular event structure if and only
if there exists a finite 1-safe Petri net N such that E and EN are isomorphic.

This lead Thiagarajan to conjecture in [239,240] that

Conjecture 2.3 ( [239, 240]). Regular event structures and trace-regular event
structures are the same.

Equivalently, this can be reformulated in the following way: an event structure E is
isomorphic to the event structure unfolding of a net system if and only if E is regular.

Badouel, Darondeau, and Raoult [14] formulated two similar conjectures about con-
flict event domain that are recognizable by finite trace automata. The first one is
equivalent to Conjecture 2.3, while the second one is formulated in a more general set-
ting with an extra condition. In the particular case of event structures, their second
conjecture can be reformulated as follows using a result of Schmitt [223]:

Conjecture 2.4 ([14]). An event structure E is trace-regular if and only E is regular
and has bounded \-cliques.

Nielsen and Thiagarajan [185] established this conjecture for all regular conflict-free
event structures and Badouel, Darondeau, and Raoult [14] proved it for context-free
event domains, i.e., for domains whose underlying graph is a context-free graph sensu
Müller and Schupp [178]. Morin [176] showed that any event structure admitting a
regular nice labeling is trace-regular.

The Conjecture on the Decidability of the MSO Logic of Trace-Regular
Event Structures. Thiagarajan and Yang [241] defined the monadic second order
(MSO) theory MSO(EN ) of an event structure unfolding EN = (E,≤,#, λ) of a net
system N = (S,Σ, F,m0) as the MSO theory of the relational structure (E, (Ra)a∈Σ,≤).
This immediately leads to the following fundamental question:

Question 2.5. When MSO(EN ) is decidable?

It turns out that the MSO theory of trace event structures is not always decid-
able: [241] presented such an example suggested by I. Walukiewicz. To circumvent this
example, Thiagarajan and Yang formulated the notion of a grid event structure and
they showed that the MSO theory of event structures containing grids is undecidable.
This leads Thiagarajan to conjecture in [241] that:
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Conjecture 2.6 ([241]). The MSO theory of a trace-regular event structure EN is
decidable if and only if EN is grid-free.

Notice also that preceding [241], Madhusudan [166] proved that the MSO theory
of a trace event structure is decidable provided quantifications over sets are restricted
to conflict-free subsets of events. In particular, this shows that the MSO theory of
conflict-free trace-regular event structures is decidable.

With the event structure EN one can associate two other MSO logics: the MSO logic
MSO(

#–

G(EN )) of the directed graph
#–

G(EN ) of the domain D(EN ) of EN and the MSO
logic MSO(G(EN )) of the undirected graph G(EN ) of the domain. This leads to the next
question:

Question 2.7. When MSO(
#–

G(EN )) (respectively, MSO(G(EN ))) is decidable?

Counterexamples. Unfortunately, it turned out that all previously formulated
conjectures are false. The counterexamples are based on a more geometric and combi-
natorial view on event structures. We use the striking bijections between the domains of
event structures, median graphs, and CAT(0) cube complexes. As mentioned in Chap-
ter 1, it was proven in [82, 214] that 1-skeleta of CAT(0) cube complexes are exactly
the median graphs. Barthélemy and Constantin [25] proved that the Hasse diagrams
of domains of event structures are median graphs and every pointed median graph is
the domain of an event structure. The bijection between pointed median graphs and
event domains established in [25] can be viewed as the classical characterization of prime
event domains as prime algebraic coherent partial orders provided by Nielsen, Plotkin,
and Winskel [183]. More recently, this result was rediscovered in [11] in the language of
CAT(0) cube complexes. In fact, the authors of [11,25] were not aware of event struc-
tures: in [25], event structures are called sites and in [11], they are called posets with
inconsistent pairs. Via these bijections, the events of an event structure E correspond
to the parallelism classes of edges of the domain D(E) viewed as a median graph.

A counterexample to the nice labeling conjecture was constructed by Chepoi in [83].
It is based on the bijections mentioned above and on the Burling’s construction [46]
of 3-dimensional box hypergraphs with clique number 2 and arbitrarily large chromatic
numbers. The intersection graph of Burling was rediscovered by [201] that constructed
triangle-free graphs that are intersection graph of segments in the plane with arbitrarily
large chromatic numbers, disproving a famous Erdös conjecture and a more general con-
jecture of Scott [224]. Pawlik et al. also showed that Burling’s graph is the intersection
graph of frames in the plane. In [70], we study in details the restricted frame graphs of
Pawlik et al. to extract more counterexamples to Scott’s conjecture.

For CAT(0) cube complexes a question related to the nice labeling conjecture was
independently formulated by V. Chepoi, F. Haglund, G. Niblo, M. Sageev: is it true
that the 1-skeleton of any CAT(0) cube complex of finite degree can be isometrically em-
bedded into the Cartesian product of a finite number of trees? A negative answer to this
question was obtained in [88], based on a modification of the counterexample from [83].
However, in [88] it was shown that the answer is positive for 2-dimensional CAT(0)
cube complexes. The nice labeling conjecture is also true in this case, i.e., for event
structures with no three pairwise concurrent events [88]. Haglund [131] proved that
this embedding question has a positive answer for hyperbolic CAT(0) cube complexes.
Modifying the argument of [131], we can also show that the nice labeling conjecture is
true for event structures with hyperbolic domains.

To deal with regular event structures, we show how to construct regular event do-
mains from CAT(0) cube complexes. By a result of Gromov [128], CAT(0) cube com-
plexes are exactly the universal covers of non-positively curved cube (NPC) complexes.
Of particular importance for us are the CAT(0) cube complexes arising as universal
covers of finite NPC complexes. We adapt the universal cover construction to directed
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NPC complexes (Y, o) and show that every principal filter of the directed universal cover

(Ỹ , õ) is the domain of an event structure. Furthermore, if the NPC complex Y is finite,
then this event structure is regular. Motivated by this result, we call an event struc-
ture strongly regular if its domain is the principal filter of the directed universal cover

Ỹ = (Ỹ , õ) of a finite directed NPC complex Y = (Y, o). Using these techniques, we
prove the following theorem:

Theorem 2.8. There exists a regular event structure with bounded \-cliques that are
not trace-regular event structure. Consequently, Conjectures 2.3 and 2.4 are false.

Our counterexample to Conjectures 2.3 and 2.4 is a strongly regular event structure
derived from Wise’s [255, 257] nonpositively curved square complex X obtained from
a tile set with six tiles. We also prove that other counterexamples to Thiagarajan’s
conjecture arise in a similar way from any aperiodic 4-deterministic tile set, such as the
ones constructed by Kari and Papasoglu [147] and Lukkarila [164].

To address Conjecture 2.6, we use the same techniques as in the proof of Theorem 2.8.
We construct an NPC square complex Z with one vertex, four edges, and three squares.
We show that any principal filter of the universal cover of Z is the domain of a trace-
regular event structure EZ . Then, we consider the event structure ĖZ obtained from EZ
by adding an event ec for each configuration c of the domain in a such a way that ec
is in conflict with all events except those from c (those events precede ec); ĖZ is called

the hairing of EZ . The hairing ĖZ of EZ is still trace-regular. We show that the graphs
G(EZ) and G(ĖZ) have infinite treewidth and bounded hyperbolicity. The first result

implies that MSO(ĖZ) is undecidable while the second result shows that ĖZ is grid-free,
leading us to the following theorem.

Theorem 2.9. There exists a trace-regular event structure EZ such that its hairing
ĖZ is grid-free but the median graph G(EZ) of EZ has unbounded treewidth. Consequently,

MSO(ĖZ) is undecidable and thus Thiagarajan’s Conjecture 2.6 is false.

Positive Results. Even if the three conjectures turned out to be false, the work
on them raised many important open questions and enables to establish a surprising
bijection between 1-safe Petri nets (trace-regular event structures) and finite special
cube complexes.

Haglund and Wise [132, 133] detected pathologies which may occur in NPC com-
plexes: self-intersecting hyperplanes, one-sided hyperplanes, directly self-osculating hy-
perplanes, and pairs of hyperplanes, which both intersect and osculate. They called
the NPC complexes without such pathologies special. The main motivation for intro-
ducing and studying special cube complexes was the profound idea of Wise that the
famous virtual Haken conjecture for hyperbolic 3-manifolds can be reduced to solving
problems about special cube complexes. In a breakthrough result, Agol [4,5] completed
this program and solved the virtual Haken conjecture using the deep theory of special
cube complexes developed by Haglund and Wise [132,133]. The main ingredient in this
proof is Agol’s theorem that finite NPC complexes whose universal covers are hyperbolic
are virtually special (i.e., they admit finite covers which are special cube complexes).

Refining the notion of strongly regular event structure, we call an event structure
E = (E,≤,#) and its domain D(E) cover-special if D(E) is isomorphic to a principal
filter of the universal cover of some finite (virtually) special complex.

As mentioned above, Thiagarajan [239] proved that event structures of finite 1-safe
Petri nets correspond to trace-regular event structures.

We show that any cover-special event structure is trace-regular and is therefore the
unfolding of a 1-safe Petri net:

Theorem 2.10. Any cover-special event structure E admits a trace-regular labeling,
i.e., Thiagarajan’s Conjecture 2.3 is true for cover-special event structures.
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Conversely, we show that to any finite 1-safe Petri net N one can associate a finite
special cube complex XN such that the domain of the event structure EN (obtained as

the unfolding of N) is a principal filter of the universal cover X̃N of XN .

Theorem 2.11. For any finite 1-safe Petri net N , there exists a finite directed
special cube complex XN such that the event structure unfolding of N is isomorphic to
a cover-special event structure obtained from XN .

This establishes a correspondence between 1-safe Petri nets and finite special cube
complexes and provides a combinatorial characterization of trace-regular event struc-
tures.

Using Agol’s breakthrough result [4, 5], another interesting consequence of Theo-
rem 2.10 is that Thiagarajan’s conjecture is true for strongly regular event structure
arising from finite non-positively curved complexes that have a hyperbolic universal
cover.

Concerning the decidability of the MSO theories of trace-regular event structures,
we show that the decidability of each of MSO(G(EN ))) and MSO(

#–

G(EN )) is equivalent

to the fact that G(EN ) has finite treewidth and to the fact that
#–

G(EN ) is a context-free
graph. This completely answers Question 2.7.

Theorem 2.12. For a trace-regular event structure E = (E,≤,#, λ), the following
conditions are equivalent:

(1) MSO(
#–

G(E)) is decidable;
(2) MSO1(G(E)) is decidable;
(3) MSO2(G(E)) is decidable:
(4) G(E) has finite treewidth;
(5) the clusters of G(E) have bounded diameter;

(6)
#–

G(E) is context-free.

We also prove that if MSO(
#–

G(EN )) is decidable, then MSO(EN ) is decidable (the

converse is not true). We prove that MSO(ĖN ) is decidable if and only if MSO(
#–

G(EN ))
is decidable, i.e., if and only if G(E) has finite treewidth. All these results provide partial
answers to Question 2.5.

Theorem 2.13. For a trace-regular event structure E = (E,≤,#, λ), MSO(Ė) is

decidable if and only if MSO(
#–

G(E)) is decidable. In particular, MSO(Ė) is decidable if
and only if G(E) has finite treewidth.

Since MSO(E) is a fragment of MSO(Ė), we obtain the following corollary of Theo-
rem 2.13:

Corollary 2.14. For any trace-regular event structure E = (E,≤,#, λ), if G(E)
has finite treewidth, then MSO(E) is decidable.

The results of this chapter are based on the papers [50,51] and [52].

1. Event Structures and Net Systems

1.1. Event Structures and their Domains. An event structure is a triple E =
(E,≤,#), where

• E is a set of events,
• ≤⊆ E × E is a partial order of causal dependency,
• # ⊆ E × E is a binary, irreflexive, symmetric relation of conflict,
• ↓e := {e′ ∈ E : e′ ≤ e} is finite for any e ∈ E,
• e#e′ and e′ ≤ e′′ imply e#e′′.
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Figure 2.1. Two examples where e1\(3)e2: e1‖e3 and e2#µe3

Two events e′, e′′ are concurrent (notation e′‖e′′) if they are order-incomparable and
they are not in conflict. The conflict e′#e′′ between two elements e′ and e′′ is said to
be minimal (notation e′#µe

′′) if there is no event e 6= e′, e′′ such that either e ≤ e′ and
e#e′′ or e ≤ e′′ and e#e′. We say that e is an immediate predecessor of e′ (notation
el e′) if and only if e ≤ e′, e 6= e′, and for every e′′ if e ≤ e′′ ≤ e′, then e′′ = e or e′′ = e′.

Given two event structures E1 = (E1,≤1,#1) and E2 = (E2,≤2,#2), a map f :
E1 → E2 is an isomorphism if f is a bijection such that e ≤1 e

′ iff f(e) ≤2 f(e′) and
e#1e

′ iff f(e)#2f(e′) for every e, e′ ∈ E1. If such an isomorphism exists, then E1 and E2

are said to be isomorphic; notation E1 ≡ E2.
A configuration of an event structure E = (E,≤,#) is any finite subset c ⊂ E of

events which is conflict-free (e, e′ ∈ c implies that e, e′ are not in conflict) and downward-
closed (e ∈ c and e′ ≤ e implies that e′ ∈ c) [254]. Notice that ∅ is always a configuration
and that ↓ e and ↓ e \ {e} are configurations for any e ∈ E. The domain of an event
structure is the set D := D(E) of all configurations of E ordered by inclusion; (c′, c) is a
(directed) edge of the Hasse diagram of the poset (D(E),⊆) if and only if c = c′∪{e} for
an event e ∈ E\c. An event e is said to be enabled by a configuration c if e /∈ c and c∪{e}
is a configuration. Denote by en(c) the set of all events enabled at the configuration c.
Two events are called co-initial if they are both enabled at some configuration c. Note
that if e and e′ are co-initial, then either e#µe

′ or e‖e′. It is easy to see that two events
e and e′ are in minimal conflict e#µe

′ if and only if e#e′ and e and e′ are co-initial. The
degree deg(E) of an event structure E is the least positive integer d such that |en(c)| ≤ d
for any configuration c of E . We say that E has finite degree if deg(E) is finite. The
future (or the principal filter) F(c) of a configuration c is the set of all configurations c′

containing c: F(c) = ↑ c := {c′ ∈ D(E) : c ⊆ c′}, i.e., F(c) is the principal filter of c in
the ordered set (D(E),⊆).

For an event structure E = (E,≤,#), let \ be the least irreflexive and symmetric
relation on the set of events E such that e1\e2 if one of the following holds:

(1) e1‖e2, or
(2) e1#µe2, or
(3) there exists an event e3 that is co-initial with e1 and e2 at two different configurations

such that e1‖e3 and e2#µe3 (see Figure 2.1 for examples).

If e1\e2 and this comes from condition (3), then we write e1\(3)e2. A \-clique is any
complete subgraph of the graph whose vertices are the events and whose edges are the
pairs of events e1e2 such that e1\e2.

A labeled event structure Eλ = (E , λ) is defined by an underlying event structure
E = (E,≤,#) and a labeling λ that is a map from E to some alphabet Σ. Two labeled

event structures Eλ11 = (E1, λ1) and Eλ12 = (E2, λ2) are isomorphic (notation Eλ11 ≡ E
λ2
2 )
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if there exists an isomorphism f between the underlying event structures E1 and E2 such
that λ2(f(e1)) = λ1(e1) for every e1 ∈ E1.

A labeling λ : E → Σ of an event structure E defines naturally a labeling of the
directed edges of the Hasse diagram of its domain D(E) that we also denote by λ. A
labeling λ : E → Σ of an event structure E is called a nice labeling if any two events
that are co-initial have different labels [215]. A nice labeling of E can be reformulated
as a labeling of the directed edges of the Hasse diagram of its domain D(E)) subject to
the following local conditions:

Determinism: the edges outgoing from the same vertex of D(E) have different labels;
Concurrency: the opposite edges of each square of D(E) are labeled with the same
labels.

In the following, we use interchangeably the labeling of an event structure and the
labeling of the edges of its domain.

1.2. Mazurkiewicz Traces. A (Mazurkiewicz) trace alphabet is a pair M = (Σ, I),
where Σ is a finite non-empty alphabet set and I ⊂ Σ×Σ is an irreflexive and symmetric
relation called the independence relation. The relation D := (Σ × Σ) \ I is called the
dependence relation. As usual, Σ∗ is the set of finite words with letters in Σ. For σ ∈ Σ∗,
last(σ) denotes the last letter of σ. The independence relation I induces the equivalence
relation ∼I , which is the reflexive and transitive closure of the binary relation ↔I : if
σ, σ′ ∈ Σ∗ and (a, b) ∈ I, then σabσ′ ↔I σbaσ

′. The ∼I -equivalence class containing
σ ∈ Σ∗ is called a (Mazurkiewicz) trace and will be denoted by 〈σ〉. The trace 〈σ〉 is
prime if σ is non-null and for every σ′ ∈ 〈σ〉, last(σ) = last(σ′). The partial ordering
relation v between traces is defined by 〈σ〉 v 〈τ〉 (and 〈σ〉 is said to be a prefix of 〈τ〉)
if there exist σ′ ∈ 〈σ〉 and τ ′ ∈ 〈τ〉 such that σ′ is a prefix of τ ′.

1.3. Trace-Regular Event Structures. In this subsection, we recall the defini-
tions of regular event structures, trace-regular event structures, and regular nice label-
ings of event structures. We closely follow the definitions and notations of [185, 239,
240]. Let E = (E,≤,#) be an event structure. Let c be a configuration of E . Set
#(c) = {e′ : ∃e ∈ c, e#e′}. The event structure rooted at c is defined to be the triple
E\c = (E′,≤′,#′), where E′ = E \ (c∪#(c)), ≤′ is ≤ restricted to E′×E′, and #′ is #
restricted to E′×E′. It can be easily seen that the domain D(E\c) of the event structure
E\c is isomorphic to the principal filter F(c) of c in D(E) such that any configuration c′

of D(E) corresponds to the configuration c′ \ c of D(E\c).
For an event structure E = (E,≤,#), define the equivalence relation RE on its

configurations in the following way: for two configurations c and c′ set cREc
′ if and only

if E\c ≡ E\c′. The index of an event structure E is the number of equivalence classes of
RE , i.e., the number of isomorphism types of futures of configurations of E . The event
structure E is regular [185,239,240] if E has finite index and finite degree.

Now, let Eλ = (E , λ) be a labeled event structure. For any configuration c of E , if
we restrict λ to E\c, then we obtain a labeled event structure (E\c, λ) denoted by Eλ\c.
Analogously, define the equivalence relation REλ on its configurations by setting cREλc

′

if and only if Eλ\c ≡ Eλ\c′. The index of Eλ is the number of equivalence classes of
REλ . We say that an event structure E admits a regular nice labeling if there exists a
nice labeling λ of E with a finite alphabet Σ such that Eλ has finite index.

We continue by recalling the definition of trace-regular event structures from [239,
240]. For a trace alphabet M = (Σ, I), an M -labeled event structure is a labeled event
structure Eφ = (E , λ), where E = (E,≤,#) is an event structure and λ : E → Σ is a
labeling function which satisfies the following conditions:

(LES1) e#µe
′ implies λ(e) 6= λ(e′),

(LES2) if el e′ or e#µe
′, then (λ(e), λ(e′)) ∈ D,

(LES3) if (λ(e), λ(e′)) ∈ D, then e ≤ e′ or e′ ≤ e or e#e′.
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We call λ a trace labeling of E with the trace alphabet M = (Σ, I). The conditions
(LES2) and (LES3) on the labeling function ensures that the concurrency relation ‖ of
E respects the independence relation I of M . In particular, since I is irreflexive, from
(LES3) it follows that any two concurrent events are labeled differently. Since by (LES1)
two events in minimal conflict are also labeled differently, this implies that λ is a finite
nice labeling of E .

An M -labeled event structure Eλ = (E , λ) is regular if Eλ has finite index. Finally,
an event structure E is called a trace-regular event structure [239, 240] if there exists
a trace alphabet M = (Σ, I) and a regular M -labeled event structure Eλ such that E
is isomorphic to the underlying event structure of Eλ. From the definition immediately
follows that every trace-regular event structure is also a regular event structure.

1.4. Net Systems and their Event Structure Unfoldings. In the following
presentation of finite 1-safe Petri nets and their unfoldings to event structures, we closely
follow the paper by Thiagarajan and Yang [241]. A net system (or, equivalently, a finite
1-safe Petri net) is a quadruplet N = (S,Σ, F,m0) where S and Σ are disjoint finite sets
of places and transitions (called also actions or events), F ⊆ (S×Σ)∪(Σ×S) is the flow
relation, and m0 ⊆ S is the initial marking. For v ∈ S ∪Σ, set •v = {u : (u, v) ∈ F} and
v• = {u : (v, u) ∈ F}. A marking of N is a subset of S. The transition relation (or the

firing rule) −→⊆ 2S ×Σ× 2S is defined by m
a−−→ m′ if •a ⊆ m, (a•− •a)∩m = ∅, and

m′ = (m− •a) ∪ a•. The transition relation −→ is extended to sequences of transitions

as follows (this new relation is also denoted by −→): (1) m
ε−−→ m for any marking m

and (2) if m
σ−−→ m′ for σ ∈ Σ∗ and m′

a−−→ m′′ for a ∈ Σ, then m
σa−−→ m′′. σ ∈ Σ∗ is

called a firing sequence at m if there exists a marking m′ such that m
σ−−→ m′. Denote

by FS the set of firing sequences at m0. A marking m is reachable if there exists a firing

sequence σ such that m0
σ−−→ m.

Given a net system N = (S,Σ, F,m0), there is a canonical way to associate a Σ-
labeled event structure EN with N . The trace alphabet associated with N is the pair
(Σ, I), where (a, b) ∈ I iff (a• ∪ •a) ∩ (b• ∪ •b) = ∅. Observe that the trace alphabet
(Σ, I) is independent of the initial marking of N . Given the trace alphabet (Σ, I), we
call the traces of the form 〈σ〉, σ ∈ FS firing traces of N . Denote by FT (N) the set of
all firing traces of N and by PFT (N) the subset of FT (N) consisting of prime firing
traces.

Example 2.15. In Figure 2.2, we present a net system N∗

with 12 transitions h1, h
′
1, h2, h

′
2, h3, h

′
3, h4, h

′
4, v1, v

′
1, v2, v

′
2 and 10 places

H1, H2, H3, H4, V1, V2, C1, C2, C3, C4. The initial marking is given by the places
containing tokens in the figure.

The trace alphabet (Σ, I) associated with the net system N∗ has 12 letters
h1, h

′
1, h2, h

′
2, h3, h

′
3, h4, h

′
4, v1, v

′
1, v2, v

′
2. The letter v1 is dependent from the letters

v′1, v2, v
′
2 (because of the place V1 and/or V2), h′2, and h4 (because of C1). The let-

ter h1 is dependent from the letters h′1, h4, h
′
4 (because of the place H1), h′2, h2 (because

of H2), h′3, and v′2 (because of C2). For the remaining letters, the dependency relation
is defined in a similar way.

Observe that the letters h1 and h3 are independent, but there is no firing trace
containing h1 and h3 as consecutive letters.

Following [183], the event structure unfolding of N is the event structure EN =
(E,≤,#, λ), where

• E is the set of prime firing traces PFT (N),
• ≤ is v, restricted to E × E,
• Let e, e′ ∈ E. Then e#e′ iff there does not exist a firing trace 〈σ〉 such that
e v 〈σ〉 and e′ v 〈σ〉,
• λ : E → Σ is given by λ(〈σ〉) = last(σ).
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Figure 2.2. The net system N∗ has 12 transitions (represented by rect-
angles) and 10 places (represented by circles).

The following result establishes the equivalence between unfoldings of net systems
and trace-regular event structures:

Theorem 2.16 ([240, Theorem 1]). An event structure E is a trace-regular event
structure if and only if there exists a net system N such that E and EN are isomorphic.

1.5. The MSO Theory of Trace Event Structures. We start with the def-
inition of monadic second-order logic (MSO-logic). Let A be a universe and A =
(A, (Ri)i∈I), where Ri ⊆ Ani for i ∈ I be a relational structure. The MSO logic of
A has two types of variables: individual (or first-order) variables and set (or second-
order) variables. The individual variables range over the elements of A and are denoted
by x, y, z, etc. The set variables range over subsets of A and are denoted X,Y, Z,
etc. MSO-formulas over the signature of A are constructed from the atomic formulas
Ri(x1, . . . , xni), x = y, and x ∈ X (where i ∈ I, x1, . . . , xni , x, y are individual vari-
ables and X is a set variable) using the Boolean connectives ¬,∨,∧, and quantifications
over first order and second order variables. The notions of free variables and bound
variables are defined as usual. A formula without free occurrences of variables is called
an MSO-sentence. If ϕ(x1, . . . , xn, X1, . . . , Xm) is an MSO-formula such that at most
the individual variables among x1, . . . , xn and the set variables among X1, . . . , Xm occur
freely in ϕ, and a1, . . . , an ∈ A and A1, . . . , Am ⊆ A, then A |= ϕ(a1, . . . , an, A1, . . . , Am)
means that ϕ evaluates to true in A when xi evaluates to ai and Xj evaluates to Aj .
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The MSO theory of A, denoted by MSO(A), is the set of all MSO-sentences ϕ such
that A |= ϕ. The MSO theory of A is said to be decidable if there exists an algorithm
deciding for each MSO-sentence ϕ in MSO(A), whether A |= ϕ.

Let EN = (E,≤,#, λ) be a trace-regular event structure, which is the event structure
unfolding of a net system N = (S,Σ, F,m0) (by Theorem 2.16, any trace-regular event
structure admits such a representation). Thiagarajan and Yang [241] defined the MSO
theory MSO(EN ) of EN as the MSO theory of the relational structure (E, (Ra)a∈Σ,≤),
where E is the set of events, Ra ⊂ E is the set of a-labeled events for a ∈ Σ, and
≤⊆ E × E is the precedence relation. The MSO theory of a net system N is the MSO
theory of its event structure unfolding [241].

As shown in [241], the conflict relation #, the concurrency relation ‖, and the
notion of a configuration of E , as well as other connectives of propositional logic such as
∧,⇒ (implies) and ≡ (if and only if), universal quantification over individual and set
variables (∀x(ϕ), ∀X(ϕ)), the set inclusion relation ⊆ (X ⊆ Y ), can be defined as well.
The conflict and concurrency relations # and ‖ of E are defined in [241] in the following
way:

• x#̂y := ¬(x ≤ y) ∧ ¬(y ≤ x) ∧
∨

(a,b)∈D(Ra(x) ∧Rb(y)).

• x#y := ∃x′∃y′(x′ ≤ x ∧ y′ ≤ y ∧ x′#̂y′).
• x ‖ y := ¬(x ≤ y) ∧ ¬(y ≤ x) ∧ ¬(x#y).

An interpretation I assigns to every individual variable an event in E and every
set variable, a subset of E. Then EN satisfies a formula ϕ under an interpretation I,
denoted by EN |=I ϕ, if the following holds [241]:

• EN |=I Ra(x) iff λ(I(x)) = a.
• EN |=I x ≤ y iff I(x) ≤ I(y).
• EN |=I x ∈ X iff I(x) ∈ I(X).
• EN |=I ∃x(ϕ) iff there exists e ∈ E and an interpretation I ′ such that E |=I ϕ

where I ′ satisfies the conditions: I ′(x) = e, I ′(y) = I(y) for every individual
variable y other than x, and I ′(X) = I(X) for every set variable X.
• EN |=I ∃X(ϕ) iff there exists E′ ⊆ E and an interpretation I ′ such that E |=I′ ϕ

where I ′ satisfies: I ′(X) = E′, I ′(x) = I(x) for every individual variable x,
and I ′(Y ) = I(Y ) for every set variable Y other than X.
• EN |=I ¬ϕ and E |=I ϕ1 ∨ ϕ2 are defined in the standard way.

E |= ϕ will denote that E is a model of the sentence ϕ.
It turns out that the MSO theory of trace event structures is not always decid-

able: Figure 1 of [241] presented an example of such an event structure suggested by
Igor Walukiewicz. To circumvent this example, Thiagarajan and Yang formulated the
following notion.

The event structure E = (E,≤,#) is grid-free [241] if there does not exist three
pairwise disjoint sets X,Y, Z of E satisfying the following conditions:

• X = {x0, x1, x2, . . .} is an infinite set of events with x0 < x1 < x2 < · · · .
• Y = {y0, y1, y2, . . .} is an infinite set of events with y0 < y1 < y2 < · · · .
• X × Y ⊆‖.
• There exists an injective mapping g : X × Y → Z satisfying: if g(xi, yj) = z

then xi < z and yj < z. Furthermore, if i′ > i then xi′ ≮ z and of j′ > j then
yj′ ≮ z.

The Σ-labelled event structure (E,≤,#, λ) is said to be grid-free if the unlabeled
event structure (E,≤,#) is grid-free. The net system N is grid-free if the event struc-
ture EN is grid-free. As noticed in [241], Walukiewicz’s net system is not grid-free.
Thiagarajan and Yang [241] proved that if a net system N is not grid-free, then the
MSO theory MSO(EN ) is not decidable.
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2. Domains, Median Graphs, and CAT(0) Cube Complexes

In this section, we recall the bijection between domains of event structures and me-
dian graphs/CAT(0) cube complexes established in [25]. We also introduce the special
cube complexes of Haglund and Wise [132,133].

2.1. Bijection between Domains and Median Graphs/CAT(0) Cube Com-
plexes. We start by providing some additional properties of median graphs. With any
vertex v of a median graph G = (V,E) is associated a canonical partial order ≤v defined
by setting x ≤v y if and only if x ∈ I(v, y); v is called the basepoint of ≤v. Since G is
bipartite, the Hasse diagram Gv of the partial order (V,≤v) is the graph G in which any
edge xy is directed from x to y if and only if the inequality dG(x, v) < dG(y, v) holds. We
call Gv a pointed median graph. There is a close relationship between pointed median
graphs and median semilattices. A median semilattice is a meet semilattice (P,≤) such
that (i) for every x, the principal ideal ↓ x = {p ∈ P : p ≤ x} is a distributive lattice,
and (ii) any three elements have a least upper bound in P whenever each pair of them
does. The Hasse diagram of any median semilattice is a median graph, and conversely,
every median graph defines a median semilattice with respect to any canonical order
≤v [13].

The canonical isometric embedding of a median graph G into a (smallest) hypercube
can be determined by the so called Djoković-Winkler (“parallelism”) relation Θ on the
edges of G [107,252]. For median graphs, the equivalence relation Θ can be defined as
follows. First say that two edges uv and xy are in relation Θ′ if they are opposite edges
of a 4-cycle uvxy in G. Then let Θ be the reflexive and transitive closure of Θ′. Any
equivalence class of Θ constitutes a cutset of the median graph G, which determines one
factor of the canonical hypercube [177]. The cutset (equivalence class) Θ(xy) containing
an edge xy defines a convex split {W (x, y),W (y, x)} of G [177], where W (x, y) = {z ∈
V : dG(z, x) < dG(z, y)} and W (y, x) = V \W (x, y) (we call the complementary convex
sets W (x, y) and W (y, x) halfspaces). Conversely, for every convex split of a median
graph G there exists at least one edge xy such that {W (x, y),W (y, x)} is the given split.
We denote by {Θi : i ∈ I} the equivalence classes of the relation Θ (in [25], they were
called parallelism classes). For an equivalence class Θi, i ∈ I, we denote by {Ai, Bi} the
associated convex split. We say that Θi separates the vertices x and y if x ∈ Ai, y ∈ Bi
or x ∈ Bi, y ∈ Ai. The isometric embedding ϕ of G into a hypercube is obtained by
taking a basepoint v, setting ϕ(v) = ∅ and for any other vertex u, letting ϕ(u) be all
parallelism classes of Θ which separate u from v.

We continue with some additional notions for non-positively curved and CAT(0)
cube complexes. A midcube of the d-cube c, with d ≥ 1, is the isometric subspace
obtained by restricting exactly one of the coordinates of d to 0. Note that a midcube is
a (d− 1)-cube. The midcubes a and b of a cube complex X are adjacent if they have a
common face, and a hyperplane H of X is a subspace that is a maximal connected union
of midcubes such that, if a, b ⊂ H are midcubes, either a and b are disjoint or they are
adjacent. Equivalently, a hyperplane H is a maximal connected union of midcubes such
that, for each cube c, either H ∩ c = ∅ or H ∩ c is a single midcube of c. The carrier
N(X) of a hyperplane H of X is the union of all cubes intersecting H.

Theorem 2.17 ( [218]). Each hyperplane H of a CAT(0) cube complex X is a
CAT(0) cube complex of dimension at most dim(X) − 1 and X \H consists of exactly
two components, called halfspaces.

A 1-cube e (an edge) is dual to the hyperplane H if the 0-cubes of e lie in distinct
halfspaces of X \ H, i.e., if the midpoint of e is in a midcube contained in H. The
relation “dual to the same hyperplane” is an equivalence relation on the set of edges of
X; denote this relation by Θ and denote by Θ(H) the equivalence class consisting of
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1-cubes dual to the hyperplane H (Θ is precisely the parallelism relation on the edges

of the median graph X(1)).
Theorems 2.2 and 2.3 of Barthélemy and Constantin [25] establish the following

bijection between event structures and pointed median graphs:

Theorem 2.18 ([25]). The (undirected) Hasse diagram of the domain (D(E),⊆) of
any event structure E = (E,≤,#) is a median graph. Conversely, for any median graph
G and any basepoint v of G, the pointed median graph Gv is isomorphic to the Hasse
diagram of the domain of an event structure.

Using the bijection between median graphs and CAT(0) cube complexes of [82],
we provided a new proof of the first part of Theorem 2.18 in [51]. Now, we recall
briefly the canonical construction of an event structure from a pointed median graph
(or a pointed CAT(0) cube complex) presented in [25]. Suppose that v is an arbitrary
but fixed basepoint of a median graph G. The events of the event structure Ev are the
hyperplanes of X. Two hyperplanes H and H ′ define concurrent events if and only if
they cross. The hyperplanes H and H ′ are in precedence relation H ≤ H ′ if and only
if H = H ′ or H separates H ′ from v. Finally, the events defined by H and H ′ are in
conflict if and only if H and H ′ do not cross and neither separates the other from v.

2.2. Special Cube Complexes. Consider a cube complex Y . Analogously to
CAT(0) cube complexes, one can define the parallelism relation Θ′ on the set of edges
E(Y ) of Y by setting that two edges of Y are in relation Θ′ if they are opposite edges
of a common 2-cube of Y . Let Θ be the reflexive and transitive closure of Θ′ and let
{Θi : i ∈ I} denote the equivalence classes of Θ. For an equivalence class Θi, the
hyperplane Hi associated to Θi is the cube complex consisting of the midcubes of all
cubes of Y containing one edge of Θi. The edges of Θi are dual to the hyperplane Hi.
Let H(Y ) be the set of hyperplanes of Y . The carrier N(H) of a hyperplane H of Y is

the union of all cubes intersecting H. The open carrier N̊(H) is the union of all open
cubes intersecting H.

The hyperplanes of a cube complex Y do not longer satisfy the nice properties of the
hyperplanes of CAT(0) cube complexes: they do not partition the complex in exactly
two parts, they may self-intersect, self-osculate, two hyperplanes may at the same time
cross and osculate, etc. Haglund and Wise [132] detected five types of pathologies which
may occur in a cube complex (see Figure 2.3):

(a) self-intersecting hyperplane;
(b) one-sided hyperplane;
(c) directly self-osculating hyperplane;
(d) indirectly self-osculating hyperplane;
(e) a pair of hyperplanes, which both intersect and osculate.

A hyperplane H is two-sided if N̊(H) is homeomorphic to the product H × (−1, 1),
and there is a combinatorial map H × [−1, 1] → X mapping H × {0} identically to
H. As noticed in [132, p.1562], requiring that the hyperplanes of Y are two-sided is
equivalent to defining an orientation on the dual edges of H such that all sources of such
edges belong to one of the sets H×{−1}, H×{1} and all sinks belong to the other one.
This orientation is obtained by taking the equivalence relation generated by elementary
parallelism relation: declare two oriented edges e1 and e2 of Y elementary parallel if
there is a square of Y containing e1 and e2 as opposite sides and oriented in the same
direction. Such an orientation o of the edges of Y is called an admissible orientation
of Y . Observe that Y admits an admissible orientation if and only if every hyperplane
H of Y is two-sided (one can choose an admissible orientation for each hyperplane
independently). Given a cube complex Y and an admissible orientation o of Y , (Y, o) is
called a directed cube complex.
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(a) (b) (c) (d) (e)

Figure 2.3. A self-intersecting hyperplane (a), a one-sided hyperplane
(b), a directly self-osculating hyperplane (c), an indirectly self-osculating
hyperplane (d), and a pair of hyperplanes that inter-osculate (e).

We continue with the definition of each of the pathologies (in which we closely
follow [132, Section 3]). The hyperplane is one-sided if it is not two-sided (see Fig-
ure 2.3(b)).

Two hyperplanes H1 and H2 intersect if there exists a cube Q and two distinct
midcubes Q1 and Q2 of Q such that Q1 ⊆ H1 and Q2 ⊆ H2, i.e., there exists a square
with two consecutive edges e1, e2 such that e1 is dual to H1 and e2 is dual to H2.

A hyperplane H of Y self-intersects if it contains more than one midcube from the
same cube, i.e., there exist two edges e1, e2 dual to H that are consecutive in some
square of Y (see Figure 2.3(a)).

Let v be a vertex of Y and let e1, e2 be two distinct edges incident to v but such that
e1 and e2 are not consecutive edges in some square containing v. The hyperplanes H1

and H2 osculate at (v, e1, e2) if e1 is dual to H1 and e2 is dual to H2. The hyperplane H
self-osculate at (v, e1, e2) if e1 and e2 are dual to H. Consider a two-sided hyperplane
H and an admissible orientation o of its dual edges. Suppose that H self-osculate at
(v, e1, e2). If v is the source of both e1 and e2 or the sink of both e1 and e2, then we
say that H directly self-osculate at (v, e1, e2) (see Figure 2.3(c)). If v is the source of
one of e1, e2, and the sink of the other, then we say that H indirectly self-osculate at
(v, e1, e2) (see Figure 2.3(d)). Note that a self-osculation of a hyperplane H is either
direct or indirect, and this is independent of the orientation of the edges dual to H.

Two hyperplanes H1 and H2 inter-osculate if they both intersect and osculate (see
Figure 2.3(e)).

Haglund and Wise [132, Definition 3.2] called a cube complex Y special if its hy-
perplanes are two-sided, do not self-intersect, do not directly self-osculate, and no two
hyperplanes inter-osculate. A finite NPC complex X is called virtually special [132,133]
if X admits a finite special cover, i.e., there exists a finite special NPC complex Y and
a covering map ϕ : Y → X. The definition of a special cube complex Y depends only
of the 2-skeleton Y (2) [132, Remark 3.4]. Since no hyperplane of Y self-osculate, any
special cube complex and its 2-skeleton satisfy the 3-cube condition. In fact, Haglund
and Wise proved that special cube complexes can be seen as nonpositively curved com-
plexes [132, Lemma 3.13]. More precisely, they show that if X is a special cube complex,
then X is contained in a unique smallest nonpositively curved cube complex with the
same 2-skeleton as X. In the following, we consider only 2-dimensional special cube
complexes, since they can always be canonically completed to NPC complexes that are
also special.

A particular class of 2-dimensional cube complexes are the V H-complexes. A square
complex X is a V H-complex (vertical-horizontal complex) if the 1-cells (edges) of X are
partitioned into two sets V and H called vertical and horizontal edges respectively, and
the edges in each square alternate between edges in V and H. Notice that if X is a
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V H-complex, no three squares may pairwise intersect on three edges with a common
vertex, and thus V H-complexes are particular NPC square complexes. A V H-complex
X is a complete square complex (CSC) [257] if any vertical edge and any horizontal
edge incident to a common vertex belong to a common square of X. By [257, Theorem

3.8], if X is a complete square complex, then the universal cover X̃ of X is isomorphic
to the Cartesian product of two trees.

3. Directed NPC Complexes

Since we can define event structures from their domains, universal covers of NPC
complexes represent a rich source of event structures. To obtain regular event structures,
it is natural to consider universal covers of finite NPC complexes. Moreover, since
domains of event structures are directed, it is natural to consider universal covers of NPC
complexes whose edges are directed. However, the resulting directed universal covers
are not in general domains of event structures. In particular, the domains corresponding
to pointed median graphs given by Theorem 2.18 cannot be obtained in this way. In
order to overcome this difficulty, we introduce directed median graphs and directed
NPC complexes. Using these notions, one can naturally define regular event structures
starting from finite directed NPC complexes.

3.1. Directed Median Graphs. A directed median graph is a pair
#–

G = (G, o),
where G is a median graph and o is an orientation of the edges of G in a such a way
that opposite edges of squares of G have the same direction. By transitivity of Θ, all
edges from the same parallelism class Θi of G have the same direction. Since each Θi

partitions G into two parts, o defines a partial order ≺o on the vertex-set of G. For a
vertex v of G, let Fo(v,G) = {x ∈ V : v ≺o x} be the principal filter of v in the partial
order (V (G),≺o). For any canonical basepoint order ≤v of G, (G,≤v) is a directed
median graph. The converse is obviously not true: the 4-regular tree F4 directed so that
each vertex has two incoming and two outgoing arcs is a directed median graph which
is not induced by a basepoint order.

Lemma 2.19. For any vertex v of a directed median graph
#–

G = (G, o), the following
holds:

(1) Fo(v,G) together with ≺o is the domain of an event structure;
(2) for any vertex u ∈ Fo(v,G), the principal filter Fo(u,G) is included in Fo(v,G)

and Fo(u,G) coincides with the principal filter of u with respect to the canonical
basepoint order ≤v on Fo(v,G).

A directed (x, y)-path of a directed median graph
#–

G = (G, o) is a (x, y)-path π(x, y) =

(x = x1, x2, . . . , xk−1, xk = y) of G in which any edge xixi+1 is directed in
#–

G from xi to

xi+1. One can show that any directed path of a directed median graph
#–

G is a shortest
path of the median graph G.

3.2. Directed NPC Cube Complexes. A directed NPC complex is a directed
cube complex (Y, o), where Y is a nonpositively curved cube complex and o is an ad-
missible orientation of Y . Recall that this means that o is an orientation of the edges
of Y in a such a way that the opposite edges of the same square of Y have the same
direction. For an edge xy, we will denote o(xy) by # –xy if x is the source and y is the
sink of o(xy) and by # –yx otherwise. Note that there exists an admissible orientation for
Y if and only if the hyperplanes of Y are two-sided. An admissible orientation o of Y

induces in a natural way an orientation õ of the edges of its universal cover Ỹ , so that

(Ỹ , õ) is a directed CAT(0) cube complex and (Ỹ (1), õ) is a directed median graph.
In the following, we need to consider directed colored NPC complexes and directed

colored median graphs. A coloring ν of a directed NPC complex (Y, o) is an arbitrary
map ν : E(Y ) → Σ where Σ is a set of colors. Note that a labeling is a coloring, but
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not the converse: labelings are precisely the colorings in which opposite edges of any
square have the same color. In the following, we will denote a directed colored NPC
complexes by bold letters like Y = (Y, o, ν). Sometimes, we need to forget the colors
and the orientations of the edges of these complexes. For a complex Y, we denote by Y
the complex obtained by forgetting the colors and the orientations of the edges of Y (Y
is called the support of Y), and we denote by (Y, o) the directed complex obtained by
forgetting the colors of Y. We also consider directed colored median graphs that will be
the 1-skeletons of directed colored CAT(0) cube complexes. Again we will denote such
directed colored median graphs by bold letters like G = (G, o, ν). Note that (uncolored)
directed NPC complexes can be viewed as directed colored NPC complexes where all
edges have the same color.

When dealing with directed colored NPC complexes, we consider only homomor-
phisms that preserve the colors and the directions of edges. Since any coloring ν of a

directed colored NPC complex Y leads to a coloring of its universal cover Ỹ , one can

consider the colored universal cover Ỹ = (Ỹ , õ, ν̃) of Y.
Similarly, when we consider principal filters in directed colored median graphs G =

(G, o, ν), we say that two filters are isomorphic if there is an isomorphism between them
that preserves the directions and the colors of the edges.

We now formulate the crucial regularity property of directed colored median graphs

(Ỹ (1), õ, ν̃) when (Y, o, ν) is finite.

Lemma 2.20 ([51]). If Y = (Y, o, ν) is a finite directed colored NPC complex, then

Ỹ(1) = (Ỹ (1), õ, ν̃) is a directed median graph with at most |V (Y )| isomorphism types of
colored principal filters.

Proposition 2.21 ([51]). Consider a finite (uncolored) directed NPC complex (Y, o).

Then for any vertex ṽ of the universal cover Ỹ of Y , the principal filter Fõ(ṽ, Ỹ (1)) with
the partial order ≺õ is the domain of a regular event structure with at most |V (Y )|
different isomorphism types of principal filters.

We will call an event structure E = (E,≤,#) and its domain D(E) strongly regular if
D(E) is isomorphic to a principal filter of the universal cover of some finite directed NPC
complex. In view of Proposition 2.21, any strongly regular event structure is regular.

4. Directed Special Cube Complexes

4.1. Trace Labelings of Directed Special Cube Complexes. Consider a finite
NPC complex Y and letH = H(Y ) be the set of hyperplanes of Y . We define a canonical
labeling λH : E(Y ) → H by setting λH(e) = H if the edge e is dual to H. For any

covering map ϕ : Ỹ → Y , λH is naturally extended to a labeling λ̃H of E(Ỹ ) by setting

λ̃H(e) = λH(ϕ(e)).
We call a strongly regular event structure E = (E,≤,#) and its domain D(E) cover-

special if D(E) is isomorphic to a principal filter of the universal cover of some virtually
special complex with an admissible orientation.

Let Y be a finite cube complex with two-sided hyperplanes and let o be an admissible
orientation of Y . Since the hyperplanes of Y are two-sided, there exists a bijection
between the labelings of the edges of Y (i.e., colorings in which opposite edges of each
square have equal colors) and the labelings of the hyperplanes of Y . Let M = (Σ, I)
be a trace alphabet. Extending the definition of trace labelings of domains of event
structures (pointed CAT(0) cube complexes), we call a labeling λ : E(Y )→ Σ of (Y, o)
a trace labeling if the following conditions hold:

(TL1) if there exists a square of Y in which two opposite edges are labeled a and two
other opposite edges are labeled b, then (a, b) ∈ I;
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(TL2) for any vertex v of Y , any two distinct outgoing edges # –vx, # –vy have different labels
and (λ( # –vx), λ( # –vy)) ∈ I iff # –vx and # –vy belong to a common square of Y ;

(TL3) (λ( # –xv), λ( # –vy)) ∈ I iff # –xv and # –vy belong to a common square of Y ;
(TL4) for any vertex v of Y , any two distinct incoming edges # –xv, # –yv have different labels

and (λ( # –xv), λ( # –yv)) ∈ I iff # –xv and # –yv belong to a common square of Y .

Since for a trace labeling λ all edges dual to a hyperplane of Y have the same label,
λ defines in a canonical way a labeling λ : H → Σ of the hyperplanes H of Y : for a
hyperplane H, λ(H) = λ(e) for any edge e dual to H. Notationally, for an edge xy of
Y directed from x to y and its dual hyperplane H, we will write λ(xy) = λ( # –xy) = λ(H)
to denote the (same) label of xy, # –xy, and H.

Remark 2.22. Notice that (TL1) is a consequence of the three other axioms (TL2)–
(TL4). Observe that (TL2)–(TL4) are equivalent to the condition that for any two
incident edges e1, e2 ∈ Y , (λ(e1), λ(e2)) ∈ I iff e1 and e2 belong to a common square
of Y . Consequently, for any two letters a, b ∈ Σ such that there are no hyperplanes
Ha, Hb ∈ H labeled respectively a and b and intersecting or osculating, the axioms
(TL1)–(TL4) hold for a and b, no matter whether (a, b) is in I or in D.

The existence of trace labelings characterizes the special cube complexes among
finite cube complexes:

Theorem 2.23. For a finite cube complex Y with two-sided hyperplanes the following
conditions are equivalent:

(1) Y is special;
(2) for any admissible orientation o of Y there exists a trace labeling λ of (Y, o);
(3) there exists an admissible orientation o of Y such that (Y, o) admits a trace labeling.

To prove that (3) ⇒ (1), we assume that there is a self-intersecting hyperplane, or
a directly self-osculating hyperplane, or two inter-osculating hyperplanes in Y , and we
show that in any of these cases, one of the conditions (TL2)–(TL4) is not satisfied at
the osculating (or intersecting) vertex. The implication (2) ⇒ (3) is trivial and the
implication (1)⇒ (2) follows from the following proposition:

Proposition 2.24. Let Y be a special cube complex, M = (Σ, I) be a trace alphabet,
and λ : E(Y ) → Σ be a trace labeling of Y . Then for any admissible orientation o

of Y and any principal filter D = (Fõ(ṽ, Ỹ (1)),≺õ) of Ỹ = (Ỹ , õ), the labeling λ̃ is a
trace-regular labeling of D with the trace alphabet (Σ, I).

Since Conditions (TL1)–(TL4) are local conditions that are preserved by covering

maps, if λ is a trace labeling of a directed special cube complex (Y, o), then the labeling λ̃

of the universal cover (Ỹ , õ) lifted from λ is a trace labeling. The proposition follows then
from the fact that Conditions (LES1)–(LES3) are consequences of Conditions (TL1)–
(TL4).

As a corollary of Proposition 2.24, we obtain the following result:

Corollary 2.25. Any cover-special event structure E admits a trace-regular label-
ing, i.e., Thiagarajan’s Conjecture 2.3 is true for cover-special event structures.

As a corollary of Theorem 2.23 and Thiagarajan’s Theorem 2.2, we obtain the fol-
lowing result:

Corollary 2.26. For any (virtually) special cube complex Y , any admissible ori-

entation o of Y , and any vertex ṽ in the universal cover of (Ỹ , õ), there exists a finite

1-safe Petri net N such that the principal filter (Fõ(ṽ, Ỹ (1)),≺õ) is the domain of the
event structure unfolding EN
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4.2. Strongly Hyperbolic Regular Event Structures. In this subsection, we
show that Thiagarajan’s conjecture holds for a large and natural class of strongly regular
event structures, namely those arising from hyperbolic CAT(0) cube complexes. It
turns out that strongly hyperbolic regular event structures are cover-special. This is a
consequence of the solution by Agol [4] of the virtual Haken conjecture for hyperbolic
3-manifolds. This breakthrough result of Agol is based on the theory of special cube
complexes developed by Haglund and Wise [132,133].

Similarly to nonpositive curvature, Gromov hyperbolicity is defined in metric terms
(see Chapter 3). However, as for the CAT(0) property, the hyperbolicity of a CAT(0)
cube complex can be expressed in a purely combinatorial way. In case of median graphs,
i.e., of 1-skeletons of CAT(0) cube complexes, the hyperbolicity can be characterized in
the following way:

Lemma 2.27 ( [84, 129]). Let X be a CAT(0) cube complex. Then its 1-skeleton

X(1) is δ-hyperbolic if and only if all isometrically embedded square grids are uniformly
bounded.

We call an event structure E = (E,≤,#) and its domain D(E) hyperbolic if D(E)
is isomorphic to a principal filter of a directed CAT(0) cube complex, whose 1-skeleton
is hyperbolic. We call an event structure E = (E,≤,#) and its domain D(E) strongly

hyperbolic regular if there exists a finite directed NPC complex (X, o) such that X̃

is hyperbolic and D is a principal filter of (X̃(1), õ). Note that an event structure
can be strongly regular and hyperbolic without being strongly regular hyperbolic (see
Remark 2.68).

The main result of this subsection is based on the following very deep and important
result of Agol [4], following much work of Haglund and Wise [132,133]. Agol’s original
result is formulated in group-theoretical terms. Its following reformulation (see, for
example, [41, Theorem 6.7]) in the particular case of finite NPC complexes is particularly
appropriate for our purposes:

Theorem 2.28 ([4]). Let X be a finite nonpositively curved cube complex. If the
fundamental group π1(X) of X is hyperbolic, then X is virtually special.

The condition that π1(X) is hyperbolic is equivalent to the fact that the universal

cover X̃ of X is hyperbolic. Therefore, any finite NPC complex X that has a hyperbolic
universal cover is virtually special. Consequently, any strongly hyperbolic regular event
structure is cover-special, and thus the following theorem is a corollary of Theorems 2.25
and 2.28.

Theorem 2.29. Any strongly hyperbolic regular event structure admits a trace-
regular labeling, i.e., Thiagarajan’s Conjecture 2.3 is true for strongly hyperbolic regular
event structures.

5. 1-Safe Petri Nets and Special Cube Complexes

5.1. The Results. Corollary 2.26 enables to associate a finite 1-safe Petri net
to any finite directed special cube complex. In this subsection, we show a converse
construction: namely, to any net system N = (S,Σ, F,m0), we associate a finite directed
special cube complex XN = (XN , o) with a trace labeling λN : E(XN ) → Σ such that
the domain D(EN ) of the event structure unfolding EN of N is a principal filter of the

universal cover X̃N of XN .
Let N = (S,Σ, F,m0) be a net system. The transition relation −→⊆ 2S × Σ × 2S

defines a directed graph whose vertices are all markings of N and there is an arc from a

marking m to a marking m′ iff there exists a transition a ∈ Σ such that m
a−−→ m′ (i.e.,

•a ⊆ m, (a• − •a) ∩m = ∅, and m′ = (m − •a) ∪ a•). Denote by GN the connected
component of the support of this graph that contains the initial marking m0 and call



50 2. ON THIAGARAJAN’S CONJECTURES

2

2

2

24

4 4

4

h′
1

h1

v ′
1 v ′

2

v1 v2 v1 v2 v1 v2 v1 v2 v1 v2

(1,1) (1,1)

(1,1)(2,1) (3,1) (4,1)

(1,2) (2,2)

(1,1)

(2,1)

(1,2)(3,2)

(3,1) (4,1)

(4,2)

h′
2

h2

h′
3

h3

h′
4

h4

v ′
1 v ′

2 v ′
1 v ′

2 v ′
1 v ′

2 v ′
1 v ′

2

h′
1

h1

h′
2

h2

h′
3

h3

h′
4

h4

h′
1

h1

h′
2

h2

h′
3

h3

h′
4

h4

Figure 2.4. The special cube complex of the net system N∗. A vertex
labeled (i, j) corresponds to the marking {Hi, Vj , C1, C2, C3, C4} of N .

the undirected graph GN the marking graph of N . Let
#–

GN = (GN , o) denote GN whose
edges are oriented according to −→ (for notational conveniences we use o instead of

−→) and call
#–

GN the directed marking graph. The marking graph GN contains all
markings reachable from m0 but also it may contain other markings. Notice also that
the directed marking graph

#–

GN is deterministic and codeterministic, i.e., for any vertex

m and any transition a ∈ Σ there exists at most one arc m
a−−→ m′ and at most one

arc m′′
a−−→ m. We will say that two distinct transitions a, b ∈ Σ are independent if

(•a∪ a•)∩ (•b∪ b•) = ∅. Consider the trace alphabet (Σ, I) where (a, b) ∈ I if and only
if the transitions a and b are independent.

Definition 2.30. The 2-dimensional cube complex XN of N is defined in the fol-
lowing way. The 0-cubes and the 1-cubes of XN are the vertices and the edges of
the marking graph GN . A 4-cycle (m,m1,m

′,m2) of GN defines a square of XN

iff there exist two (necessarily distinct) independent transitions a, b ∈ Σ such that

m
a−−→ m1,m

b−−→ m2,m1
b−−→ m′, and m2

a−−→ m′.

The cube complex XN can be transformed into a directed and colored cube complex
XN = (XN , o, λN ): an edge mm′ of GN is oriented from m to m′ and λN (mm′) = a iff

m
a−−→ m′ holds (clearly, Σ is the set of colors).

Theorem 2.31. (XN , o) is a finite directed special cube complex with two-sided hy-
perplanes and λN is a trace labeling of XN with the trace alphabet (Σ, I).

To prove this theorem, we show that the hyperplanes of XN are two-sided and that
λN is a trace labeling of (XN , o) by verifying the Conditions (TL1)–(TL4). Theorem 2.31
then follows from Theorem 2.23.

Example 2.32. The special cube complex XN∗ of the net system N∗ from Exam-
ple 2.15 is representend in Figure 2.4. In the figure, the leftmost vertices (respectively,
edges) should be identified with the rightmost vertices (respectively, edges) that have
the same label. Similarly, the lower vertices and edges should be identified with the
uppper vertices and edges. The complex XN∗ has 8 vertices, 32 edges, and 24 squares.
A 4-cycle in the figure is a square of XN∗ if opposite edges have the same label and if
the labels appearing on the edges of the square correspond to independent transitions
of N∗. For example, on the right bottom corner, the directed 4-cycle labeled by h4 and
v1 is not a square of XN∗ because the transitions h4 and v1 are not independent (as
explained in Example 2.15). The number (2 or 4) in the middle of each 4-cycle represent
the number of squares of XN∗ on the vertices of this 4-cycle.

Let X̃N denotes the universal cover of the special cube complexXN and let ϕ : X̃N →
XN denotes the covering map. Let X̃N = (X̃N , õ, λ̃N ) be the directed colored CAT(0)
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cube complex, in which the orientation and the coloring are defined as in Section 4. For

any lift m̃0 of m0, denote by EXN = (E′,≤′,#′, λ̃N ) the Σ-labeled event structure whose

domain is the principal filter Fõ(m̃0, X̃
(1)
N ). Finally, let EN = (E,≤,#, λ) be the event

structure unfolding of N as defined in Subsection 1.4 and denote by D(EN ) the domain
of EN . The main result of this section is the following theorem:

Theorem 2.33. The event structures EN = (E,≤,#, λ) and EXN = (E′,≤′,#′, λ̃N )
are isomorphic.

By Theorem 2.31 and Corollary 2.26, we obtain a correspondence between trace-
regular event structures and special cube complexes, leading to the following corollary:

Corollary 2.34. Any trace-regular event structure is cover-special, and thus
strongly regular.

5.2. Geodesic Traces and Prime Traces. Let M = (Σ, I) be a trace alphabet
and let E = (E,≤,#) be an M -labeled event structure. Let D(E) denote the domain of
E and let G(E) and X(E) denote the associated median graph and CAT(0) cube complex
pointed at vertex v0. Recall that any vertex v of the median graph G(E) corresponds
to a configuration c(v) of D(E); in particular, c(v0) = ∅.

Any shortest path π = (v0, v1, . . . , vk−1, vk = v) from v0 to a vertex v of G(E) gives
rise to an word σ(π) of Σ∗: the ith letter of σ(π) is the label λ(vi−1vi) of the edge vi−1vi.
We will say that a word σ ∈ Σ∗ is geodesic if σ = σ(π) for a shortest path π between v0

and a vertex v of G(E). The trace 〈σ〉 of a geodesic word σ is called a geodesic trace.
Two shortest (v0, v)-paths π and π′ of G(E) are called homotopic if they can be

transformed one into another by a sequence of elementary homotopies, i.e., there exists
a finite sequence π =: π1, π2, . . . , πk−1, πk := π′ of shortest (v0, v)-paths such that for
any i = 1, . . . , k−1 the paths πi and πi+1 differ only in a square Qi = (vj−1, vj , vj+1, v

′
j)

of X(E). Note that since X(E) is simply connected, any two shortest (v0, v)-paths are
homotopic. Moreover, for any shortest (v0, v)-path π, the geodesic trace 〈σ(π)〉 is exactly
{σ(π′) : π′ is a (v0, v)-shortest path}, that we denote by 〈σv〉. This gives a natural
bijection between the set of geodesic traces of E and the vertices of G(E). Precedence
and conflict relations between geodesic traces can be characterized geometrically in the
following way:

Lemma 2.35. For two geodesic traces 〈σu〉 and 〈σv〉, we have

• 〈σu〉 v 〈σv〉 iff u ∈ I(v0, v),
• 〈σu〉 and 〈σv〉 are in conflict iff there does not exists a vertex w such that
u, v ∈ I(v0, w)

Recall that a trace 〈σ〉 is prime if σ is non-null and for every σ′ ∈ 〈σ〉, last(σ) =
last(σ′). We call an interval I(v0, v) prime if the vertex v has degree 1 in the subgraph
induced by I(v0, v). One can show that a geodesic trace 〈σv〉 is prime iff the interval
I(v0, v) is prime. Denote by PGT (E) the set of prime geodesic traces of E . There exists
a bijection between the hyperplanes of X(E) and the prime geodesic traces of E :

Lemma 2.36. Each hyperplane H of X(E) (i.e., each event of E) gives a unique
prime geodesic trace 〈σH〉 := 〈σv〉 defined by the prime interval I(v0, v), where v′ is the
gate of v0 in the carrier N(H) of the hyperplane H and v is the neighbor of v′ such that
the edge v′v is dual to H. Conversely, for each prime geodesic trace 〈σu〉 there exists a
unique hyperplane H such that 〈σu〉 = 〈σH〉.

This bijection enables to characterize geometrically the precedence relation among
prime geodesic traces:

Lemma 2.37. For two hyperplanes H1, H2 of X(E) with prime geodesic traces 〈σv1〉
and 〈σv2〉, respectively, H1 ≤ H2 holds iff 〈σv1〉 v 〈σv2〉.
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5.3. Sketch of the Proof of Theorem 2.33. Consider a net system N =
(S,Σ, F,m0), the trace alphabet M = (Σ, I) associated to N , its set of firing traces
FT (N), and its set of prime firing traces PFT (N). Let EN = (E,≤,#, λ) be the M -
labeled event structure unfolding of a net system N (recall that E = PFT (N) and that
λ(〈σ〉) = last(σ) for every 〈σ〉 ∈ E).

Let also EXN = (E′,≤′,#′, λ̃N ) be the Σ-labeled event structure whose domain is the

principal filter Fõ(m̃0, X̃
(1)
N ) of the universal cover X̃N = (X̃N , õ, λ̃N ) of the special cube

complex (XN , o, λN ) of N . Let ϕ : X̃N 7→ XN denote the covering map. Let G(EXN )
denotes the median graph of EXN . From Theorem 2.31 and Proposition 2.24 it follows

that λ̃N is a trace labeling of the event structure EXN . As explained in Subsection 5.2,
there is a bijection between the configurations EXN and the geodesic traces of EXN and
a bijection between the hyperplanes (events) of EXN and the prime geodesic traces of
EXN .

The following lemma establishes a bijection between the geodesic traces of EXN and
the firing traces of N .

Lemma 2.38. Any geodesic trace 〈σm̃〉 of EXN is a firing trace of N . Conversely,
for any firing trace 〈σ〉 there exists a geodesic trace 〈σm̃〉 such that 〈σ〉 = 〈σm̃〉.

In particular, there is a bijection between prime geodesic traces of EXN and the prime
firing traces of N .

Consequently, there is a label-preserving bijection between the hyperplanes (events)
of EXN and the hyperplanes (events) of EN . Therefore, to establish that the event
structures EN and EXN are isomorphic it remains to show that this bijection preserves
the precedence and the conflict relations.

Consider two hyperplanes H1, H2 of EXN with respective prime geodesic traces 〈σṽ1〉
and 〈σṽ2〉. By Lemma 2.37, we have H1 ≤ H2 iff 〈σũ〉 v 〈σṽ〉. This shows that the
precedence relation is preserved, since the prefix relation v is the precedence relation
for EN . By definition of ṽ1 and ṽ2 (see Lemma 2.36) , H1 and H2 are in conflict if there
is no w̃ such that ṽ1, ṽ2 ∈ I(m̃0, w̃). By Lemma 2.35, this holds if and only if there is
no w̃ such that 〈σũ〉 v 〈σw̃〉 and 〈σṽ〉 v 〈σw̃〉. This shows that the conflict relation is
preserved, since this is the definition of the conflict relation for EN . This proves that
the bijection between geodesic traces and firing traces preserves the conflict relations in
EXN and EN and finishes the proof of Theorem 2.33.

6. Counterexamples to Thiagarajan’s Conjecture on Regular Event
Structures

In this section, we construct the domain (W̃ṽ,≺õ∗) of a regular event structure
(with bounded \-cliques) that does not admit a regular nice labeling, providing a coun-
terexample to Conjectures 2.3 and 2.4. We also show that other counterexamples to
Conjecture 2.3 arise from 4-way deterministic aperiodic tile sets.

6.1. Wise’s Square Complex X and its Universal Cover X̃. We start with
a directed colored CSC (complete square complex) X introduced by Wise [257]. Recall
that in such complexes, the edges are classified vertical or horizontal, each edge has an
orientation and a color, and any two incident edges belong to a square. The complex X
consists of six squares as indicated in Figure 2.5 (reproducing Figure 3 of [257]). Each
square has two vertical and two horizontal edges. The horizontal edges are oriented from
left to right and vertical edges from bottom to top. Denote this orientation of edges by o.
The vertical edges of squares are colored white, grey, and black and denoted a, b, and c,
respectively. The horizontal edges of squares are colored by single or double arrow, and
denoted x and y, respectively. The six squares are glued together by identifying edges
of the same color and respecting the directions to obtain the square complex X. Note
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Figure 2.5. The 6 squares defining the complex X

that X has a unique vertex, five edges, and six squares. It can be directly checked that
X is a complete square complex, and consequently (X, o) is a directed NPC complex.
Let HX denote the subcomplex of X consisting of the 2 horizontal edges and let VX
denote the subcomplex of X consisting of the 3 vertical edges.

The universal cover H̃X of HX is the 4-regular infinite tree F4. Its edges inherit

the orientations from their images in HX : each vertex of H̃X has two incoming and

two outgoing arcs. Analogously, the universal cover ṼX of VX is the 6-regular infinite
tree F6 where each vertex has three incoming and three outgoing arcs. Let ṽ1 be any

vertex of H̃X . Then the principal filter of ṽ1 is the infinite binary tree T2 rooted at ṽ1:
all its vertices except ṽ1 have one incoming and two outgoing arcs, while ṽ1 has two
outgoing arcs and no incoming arc. Analogously, the principal filter of any vertex ṽ2 in

the ordered set ṼX is the infinite ternary tree T3 rooted at ṽ2.

Let X̃ be the universal cover of X and let ϕ : X̃ → X be a covering map. Let X̃

denote the support of X̃. Since X is a CSC, by [257, Theorem 3.8], X̃ is the Cartesian

product F4 × F6 of the trees F4 and F6. The edges of X̃ are colored and oriented as
their images in X, and are also classified as horizontal or vertical edges. The squares of

X̃ are oriented as their images in X, thus two opposite edges of the same square of X̃

have the same direction. This implies that all classes of parallel edges of X̃ are oriented

in the same direction. Denote this orientation of the edges of X̃ by õ. The 1-skeleton

X̃(1) of X̃ together with õ is a directed median graph. Let ṽ = (ṽ1, ṽ2) be any vertex of

X̃, where ṽ1 and ṽ2 are the coordinates of ṽ in the trees F4 and F6. Then the principal

filter Fõ(ṽ, X̃(1)) of ṽ is the Cartesian product of the principal filters of ṽ1 in F4 and of
ṽ2 in F6, i.e., is isomorphic to T2 × T3.

By Lemma 2.19, the orientation of the edges of Fõ(ṽ, X̃(1)) corresponds to the canon-

ical basepoint orientation of Fõ(ṽ, X̃(1)) with ṽ as the basepoint. Moreover, by Proposi-

tion 2.21, Fõ(ṽ, X̃(1)) is the domain of a regular event structure with one isomorphism
type of principal filters. We summarize this in the following result:

Lemma 2.39. For any vertex ṽ of X̃, Fõ(ṽ, X̃(1)) is the domain of a regular event
structure with one isomorphism class of futures.

6.2. Aperiodicity of X̃. We recall here the main properties of X̃ established

in [257, Section 5]. Let ṽ = (ṽ1, ṽ2) be an arbitrary vertex of X̃, where ṽ1 and ṽ2

are defined as before. From the definition of the covering map, the loop of X colored y

gives rise to a bi-infinite horizontal path Py of X̃(1) passing via ṽ and whose all edges
are colored y and are directed from left to right. Analogously, there exists a bi-infinite

vertical path Pc of X̃(1) passing via ṽ and whose all edges are colored c and are directed
from bottom to top.

The projection of Py on the horizontal factor F4 is a bi-infinite path P h of F4 passing
via ṽ1. Analogously, the projection of Pc on the vertical factor F6 is a bi-infinite path
P v of F6 passing via ṽ2. Consequently, the convex hull conv(Py ∪ Pc) of Py ∪ Pc in

the graph X̃(1) is isomorphic to the Cartesian product of P h × P v of the paths P h and

P v. Therefore the subcomplex of X̃ spanned by conv(Py ∪ Pc) is a directed plane Πyc
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Figure 2.6. Part of the plane Π++
yc appearing in X̃

tiled into squares (recall that each square is of one of 6 types and its sides are colored
by the letters a, b, c, x, y), see Figure 2.6. Wise showed that the plane Πyc is not tiled
periodically by the preimages of the squares of X.

Theorem 2.40 ([257, Theorem 5.3]). The plane Πyc tiled into squares is not doubly
periodic.

In our counterexample we will use the following result of [257] that was used to
show that the plane Πyc is not tiled periodically by the preimages of the squares of X.
Denote by P+

y the (directed) subpath of Py having ṽ as a source (this is a one-infinite

horizontal path). Analogously, let P+
c be the (directed) subpath of Pc having ṽ as a

source. The convex hull of P+
y ∪ P+

c is a quarter of the plane Πyc, which we denote by

Π++
yc . Any shortest path in X̃(1) from ṽ to a vertex ũ ∈ Π++

yc can be viewed as a word
in the alphabet A = {a, b, c, x, y}. For an integer n ≥ 0, denote by yn the horizontal
subpath of P+

y beginning at ṽ and having length n. Analogously, for an integer m ≥ 0,

denote by cm the vertical subpath of P+
c beginning at ṽ and having length m. Let

Mn(m) denote the horizontal path of Π++
yc of length n beginning at the endpoint of the

vertical path cm. Mn(m) determines a word which is the label of the side opposite to
yn in the rectangle which is the convex hull of yn and cm (see Figure 2.6). Let Mn(m)
also denote this corresponding word.

Proposition 2.41 ([257, Proposition 5.9]). For each n, the words {Mn(m) : 0 ≤
m ≤ 2n − 1} are all distinct, and thus, every positive word in x and y of length n is
Mn(m) for some m.

This proposition is called in [257] “period doubling”. It immediately establishes
Theorem 2.40 because it shows that the period of the infinite vertical strip of Π++

yc of

width n and bounded on the left by the path P+
c has period 2n. Alternatively, every

positive word in x and y appears in Π++
yc , and thus Πyc cannot be periodic.

6.3. The Square Complex W and its Universal Cover W̃ . Let βX denote the
first barycentric subdivision of X: each square C of X is subdivided into four squares
C1, C2, C3, C4 by adding a middle vertex to each edge of C and connecting it to the
center of C by an edge. This way each edge e of C is subdivided into two edges e1, e2,
which inherit the orientation and the color of e. The four edges connecting the middle
vertices of the edges of C to the center of C are oriented from left to right and from
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Figure 2.7. A square of X and the corresponding subcomplexes in
(βX, o′) and (W, o∗)

bottom to top (see the middle figure of Figure 2.7). Denote the resulting orientation by
o′. This way, (βX, o′) is a directed and colored square complex. Again, denote by βX

the support of βX. The universal cover β̃X of βX is the Cartesian product βF4 × βF6

of the trees βF4 and βF6, where βF4 is the first barycentric subdivision of F4 and βF6

is the first barycentric subdivision of F6. Additionally, (β̃X, õ′) is a directed CAT(0)

square complex. We assign a type to each vertex of β̃X: the preimage of the unique
vertex of X is of type 0 and is called a 0-vertex, the preimages of the middles of edges
of X are of type 1 and are called 1-vertices, and the preimages of centers of squares of
X are of type 2 and are called 2-vertices.

To encode the colors of the edges of X, we introduce our central object, the square
complex W (whose edges are no longer colored). Let A = {a, b, c, x, y} and let r : A→
{1, 2, 3, 4, 5} be a bijective map. The complex W is obtained from βX by adding to each
1-vertex z of βX a path Rz of length r(α) if z is the middle of an edge colored α ∈ A in
X. The path Rz has one end at z (called the root of Rz) and z is the unique common
vertex of Rz and βX (we call such added paths Rz tips).

The square complex W has 27 vertices: the unique vertex of X, the 6 vertices which
are the barycenters of the original squares, 5 vertices which are the barycenters of the
original edges of X, and 15 vertices which are new vertices lying on tips. The complex
W has 49 edges: 10 corresponding to the 5 original edges that have been subdivided,
24 connecting the barycenters of the original squares to the barycenters of the original
edges and 15 forming the tips. The complex W has 24 squares: 4 for each original
square.

Denote by o∗ the orientation of the edges of W defined as follows: the edges of βX
are oriented as in (βX, o′) and the edges of tips are oriented away from their roots (see
the rightmost figure of Figure 2.7 for the encoding of the last square of Figure 2.5). As
a result, we obtain a finite directed NPC square complex (W, o∗).

Consider the universal cover W̃ of W . It can be viewed as the complex β̃X with

a path of length r(α) added to each 1-vertex which encodes an edge of X̃ of color

α ∈ A. We say that the vertices of W̃ lying only on tips are of type 3 and they

are called 3-vertices. Let õ∗ denote the orientation of the edges of W̃ induced by the

orientation o∗ of W . Then (W̃ , õ∗) is a directed CAT(0) square complex. Since W is

finite, by Proposition 2.21, the directed median graph (W̃ (1), õ∗) has a finite number of

isomorphisms types of principal filters Fõ∗(z̃, W̃ (1)).

Let ṽ be any 0-vertex of W̃ . Denote by W̃ṽ the principal filter Fõ∗(ṽ, W̃ (1)) of ṽ in

(W̃ (1),≺õ∗). By Proposition 2.21, W̃ṽ together with the partial order ≺õ∗ is the domain
of a regular event structure, which we call Wise’s event domain. Since vertices of differ-

ent types of W̃ are incident to a different number of outgoing squares, any isomorphism

between two filters of (W̃ṽ,≺õ∗) preserves the types of vertices. We summarize all this
in the following:
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Proposition 2.42. (W̃ṽ,≺õ∗) is the domain of a regular event structure. Any iso-

morphism between any two filters of (W̃ṽ,≺õ∗) preserves the types of vertices.

6.4. (W̃ṽ,≺õ∗) does not have a Regular Nice Labeling. In this subsection
we prove that the event structure associated with Wise’s regular event domain is a
counterexample to Thiagarajan’s Conjecture 2.3.

Theorem 2.43. (W̃ṽ,≺õ∗) does not admit a regular nice labeling. Consequently,
Conjecture 2.3 is false.

Proof. Since W̃ṽ is the principal filter of a 0-vertex ṽ, W̃ṽ contains all vertices

of X̃ located in the quarter of plane Π++
yc of X̃, in particular it contains the vertices

of the paths P+
c and P+

y . Notice also that W̃ṽ contains the barycenters and the tips

corresponding to the edges of Π++
yc .

Suppose by way of contradiction that W̃ṽ has a regular nice labeling λ. Since W̃ṽ

has only a finite number of isomorphism types of labeled filters, the vertical path P+
c

contains two 0-vertices, z̃′ and z̃′′, which have isomorphic labeled principal filters. Let z̃′

be the end of the vertical subpath ck of P+
c and z̃′′ be the end of the vertical subpath cm

of P+
c , and suppose without loss of generality that k < m. Let n > 0 be a positive integer

such that m ≤ 2n− 1. Consider the horizontal convex paths Mn(k) and Mn(m) of Π++
yc

of length n beginning at the vertices z̃′ and z̃′′, respectively. For any 0 ≤ i ≤ n, denote
by z̃k,i the ith vertex of Mn(k) (in particular, z̃k,0 = z̃′). Analogously, denote by z̃m,i
the ith vertex of Mn(m) (in particular, z̃m,0 = z̃′′). In W̃ṽ, the paths Mn(k) and Mn(m)
give rise to two convex horizontal paths M∗n(k) and M∗n(m) obtained from Mn(k) and
Mn(m) by subdividing their edges. Denote by ũk,i the unique common neighbor of z̃k,i
and z̃k,i+1, 0 ≤ i < n, in M∗n(k) (and in W̃ (1)). Analogously, denote by ũm,i the unique
common neighbor of z̃m,i and z̃m,i+1, 0 ≤ i < n (see Figure 2.8). The paths M∗n(k) and

M∗n(m) belong to the principal filters Fõ∗(z̃′, W̃ (1)) and Fõ∗(z̃′′, W̃ (1)), respectively.
By Proposition 2.41, the words Mn(k) and Mn(m) are different. Let f be an isomor-

phism between the filters Fõ∗(z̃k,0, W̃ (1)) and Fõ∗(z̃m,0, W̃ (1)). Since the words Mn(k)
and Mn(m) are different, from the choice of the lengths of tips in the complexes W

and W̃ it follows that f cannot map the path M∗n(k) to the path M∗n(m) by a vertical
translation, i.e., there exists an index 0 ≤ j < n such that f(z̃k,j+1) 6= z̃m,j+1; let i be
the smallest such index. Set z̃ := f(z̃k,i+1) and ũ := f(ũk,i). Since f preserves the types
of vertices, z̃ is a 0-vertex and ũ is a 1-vertex. Since f maps a convex path M∗n(k) to
a convex path, ũ is the unique common neighbor of z̃m,i and z̃. Since each 1-vertex is

the barycenter of a unique edge of X̃ and z̃ 6= z̃m,i+1, we deduce that ũ 6= ũm,i. The
edge z̃k,iũk,i is directed from z̃k,i to ũk,i. Analogously the edges z̃m,iũm,i and z̃m,iũ are
directed from z̃m,i to ũm,i and ũ, respectively. Since z̃k,iũk,i and z̃m,iũm,i are parallel
edges, they define the same event and therefore λ(z̃k,iũk,i) = λ(z̃m,iũm,i). On the other
hand, since f maps the edge z̃k,iũk,i to the edge z̃m,iũ and since the map f preserves the
labels, we have λ(z̃k,iũk,i) = λ(z̃m,iũ). As a result, z̃m,i has two outgoing edges, z̃m,iũm,i
and z̃m,iũ, having the same label, contrary to the assumption that λ is a nice labeling.

This contradiction shows that (W̃ṽ,≺õ∗) does not admit a regular nice labeling. By

Proposition 2.21, (W̃ṽ,≺õ∗) is the domain of a regular event structure, establishing that
Conjecture 2.3 is false. This concludes the proof of the theorem. �

We can show that our counterexample has \-cliques of size at most 11 and thus it
disproves Conjecture 2.4 of Badouel et al.

Proposition 2.44. Wise’s event domain (W̃ṽ,≺õ∗) has bounded \-cliques. Conse-

quently, (W̃ṽ,≺õ∗) is a counterexample to Conjectures 2.4.
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z̃k,0

z̃m,0
ũm,0 z̃m,1 ũm,iz̃m,i z̃m,nz̃m,i+1

ũk,0 z̃k,1 ũk,iz̃k,i z̃k,nz̃k,i+1

ũ

z̃

ṽ

Figure 2.8. To the proof of Theorem 2.43

6.5. Other Counterexamples Arising from Aperiodic Tilings. Our coun-

terexample (W̃ṽ,≺õ∗) of a regular 2-dimensional event domain without a regular labeling

heavily uses the fact that the universal cover X̃ of Wise’s complex X [257] contains a
particular aperiodic tiled plane (that is called antitorus by Wise). In this subsection,
we show that the relationship between the existence of aperiodic planes and nonexis-
tence of regular labelings is more general. Namely, we explain how to obtain other
counterexamples from 4-way deterministic aperiodic tile sets.

Tiles (or Wang-tiles) are unit squares with colored edges. The edges of a Wang tile
are called top (or North), right (or East), bottom (or South) and left (or West) edges in
a natural way. A tile set T is a finite collection of Wang-tiles, placed with their edges
horizontal and vertical. A tiling is a mapping f : Z2 → T that assigns a tile to each
integer lattice point of the plane. A tiling f is valid if every two adjacent tiles have
the same color on their common edge. Note that a tile may not be rotated or flipped,
i.e., each tile has a bottom-top and left-right orientation. A tiling f is periodic with
period (a, b) ∈ Z2 \ {(0, 0)} if for every (x, y) ∈ Z2, f(x, y) = f(x + a, y + b). If there
exists a valid periodic tiling with tiles of T , then there exists a valid doubly periodic
tiling with tiles of T [213], i.e., a valid tiling f and two integers a, b > 0 such that
f(x, y) = f(x+ a, y) = f(x, y + b) for every (x, y) ∈ Z2. A tile set T is called aperiodic
if there exists a valid tiling with tiles of T , and there does not exist any periodic valid
tiling with tiles of T .

Let T = {t1, . . . , tn} be a tile set. We consider each tile ti as a unit square whose
edges are directed and colored. Suppose that each square ti has two vertical and two
horizontal edges and suppose that the horizontal and the vertical edges of all squares
are colored differently, i.e., the set of colors can be partitioned into horizontal colors
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and vertical colors. The horizontal edges are directed from left to right and the vertical
edges are directed from bottom to top.

A Wang tile set is said to be NW-deterministic [147], if within the tile set there
does not exist two different tiles that have the same colors on their top and left edges.
NE-deterministic, SW-deterministic, and SE-deterministic tile sets are defined anal-
ogously. A Wang tile set is 4-way deterministic [147] if it is NW-, NE-, SW-, and
SE-deterministic. Kari and Papasoglu [147] presented a 4-way deterministic aperiodic
tile set TKP .

Given a 4-way deterministic set of tiles T , let X(T ) = (X(T ), o, ν) be the finite
square complex obtained by identifying all the vertices and gluing together the squares
of T along the sides which have the same color respecting their orientation. Then X(T )

is a V H-complex that has a unique vertex. Consequently, the universal cover X̃(T )
of X(T ) is a CAT(0) V H-complex. Denote by W (T ) the finite directed NPC complex
derived from X(T ) in the same way as the complex W was derived from Wise’s complex
X in Subsection 6.3 (taking the first barycentric subdivision and adding tips of different

lengths to encode the different colors). Let (W̃ (T )ṽ,≺õ∗) denote the 2-dimensional event

domain derived from X̃(T ) in the same way as (W̃ṽ,≺õ∗) was derived from X̃. Since

(W̃ (T )ṽ,≺õ∗) comes from the universal cover of the finite directed NPC complex W (T ),

(W̃ (T )ṽ,≺õ∗) is a strongly regular event structure. The following lemma establishes a
connection between the existence of valid tilings for 4-way deterministic tile sets and
the existence of directed planes in the universal covers of the derived V H-complexes.

Lemma 2.45. For a 4-way deterministic tile set T , the following conditions are
equivalent:

(i) there exists a valid tiling with the tiles of T ;

(ii) the universal cover X̃(T ) of the square complex X(T ) contains directed planes;

(iii) the strongly regular domain (W̃ (T )ṽ,≺õ∗) is not hyperbolic.

Note that if T is a 4-way deterministic aperiodic tile set, all the directed planes

of X̃(T ) are tiled in an aperiodic way. In the case of the tile set of Wise [257] from

Figure 2.5, the CAT(0) square complex X̃ contains aperiodic directed planes but it also
contains some periodic directed planes.

We now explain how to derive a counterexample to Thiagarajan’s conjectures from
any 4-way deterministic aperiodic tile set.

We show that if the 2-dimensional event domain (W̃ (T )ṽ,≺õ∗) associated to a 4-way
deterministic tile set T admits a regular nice labeling, then there exists a periodic tiling
of the plane with tiles of T , establishing the following theorem.

Theorem 2.46. For any 4-way deterministic aperiodic tile set T , the NPC square

complex W (T ) is not virtually special and the 2-dimensional event domain (W̃ (T )ṽ,≺õ∗)
does not admit a regular nice labeling.

Consequently, (W̃ (T )ṽ,≺õ∗) is a counterexample to Thiagarajan’s Conjecture 2.3.

Using the tile set TKP of [147], Lukkarila [164] proved that for 4-way deterministic
tile sets the tiling problem is undecidable. An immediate consequence of this result
and of Theorem 2.46 is that there exists an infinite number of counterexamples to
Conjecture 2.3.

Remark 2.47. Note that the V H-complex W (T ) derived from a 4-way deterministic
tile set T is not necessarily a CSC complex. The proof of Proposition 2.44 can be
extended to all CSC complexes, but we do not know if it holds for all V H-complexes.
Consequently, we cannot directly generalize the proof of Proposition 2.44 to show that

if T is aperiodic, then (W̃ (T )ṽ,≺õ∗) is a counterexample to Conjecture 2.4.
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7. On the Decidability of the MSO Theory of Net Systems and of their
Domains

7.1. The Results. Let E = (E,≤,#, λ) be a trace-regular event structure and let
D(E) denote the domain of E . Let G(E) denote the undirected covering median graph

of D(E) and
#–

G(E) = (G(E), o) denote the directed graph of D(E). We restate the main
theorem of this section that characterize the trace event structures E for which the MSO
theories of their graphs G(E) and

#–

G(E) are decidable.

Theorem 2.12. For a trace-regular event structure E = (E,≤,#, λ), the following
conditions are equivalent:

(1) MSO(
#–

G(E)) is decidable;
(2) MSO1(G(E)) is decidable;
(3) MSO2(G(E)) is decidable:
(4) G(E) has finite treewidth;
(5) the clusters of G(E) have bounded diameter;

(6)
#–

G(E) is context-free.

Similarly to a question about the decidability of the MSO theory of graphs of domains
of trace-regular event structures (i.e., of domains of event structure unfoldings of net
systems), one can ask a similar question about the decidability of the MSO theory for
the graphs (1-skeletons) of the universal covers of the special cube complexes XN of net
systems N . In this case, the following result holds:

Proposition 2.48. Let N = (S,Σ, F,m0) be a net system, XN be the special cube

complex of N , and let
#–

G(X̃N ) be the 1-skeleton of the directed labeled universal cover of
XN . Then the following conditions are equivalent:

(1) MSO(
#–

G(X̃N )) is decidable;

(2) MSO2(G(X̃N )) is decidable:

(3) G(X̃N ) has finite treewidth;

(4)
#–

G(X̃N ) is context-free.

The proof of this result essentially follows from the result by Kuske and Lohrey [154]

that the decidability of the MSO theory of a directed graph
#–

G of bounded degree whose
automorphism group Aut(

#–

G) has only finitely many orbits on
#–

G is equivalent to the fact

that
#–

G is context-free and to the fact that its undirected support has finite treewidth.
This result cannot be applied to prove Theorem 2.12 because Aut(

#–

G(E)) may have an
infinite number of orbits.

To relate the MSO theory of the graph of the domain of a trace event structure
with the MSO theory of the event structure, we introduce the notion of the hairing
Ė = (Ė, ≤̇, #̇) of an event structure E = (E,≤,#). To obtain Ė , we add a hair event

ec for each configuration c of E , i.e., Ė = E ∪ EC where EC = {ec : c ∈ D(E)}. For

any hair event ec and any event e ∈ Ė, we set e ≤̇ ec if e ∈ c and e#̇ec otherwise.
Suppose additionally that E is trace-regular and let λ be a trace labeling of E with a
trace alphabet M = (Σ, I). Let h be a letter that does not belong to Σ and consider the

trace alphabet Ṁ = (Σ ∪ {h}, I) (note that since I is not modified, (h, a) /∈ I for every

a ∈ Σ). Let λ̇ be the labeling of Ė extending λ by setting λ̇(ec) = h for any ec ∈ EC .
The labeled event structure obtained in this way is trace-regular:

Proposition 2.49. For a trace-regular event structure E = (E,≤,#, λ), the hairing

Ė = (Ė, ≤̇, #̇, λ̇) is also a trace-regular event structure.

By the definition of Ė , the directed graph
#–

G(Ė) of its domain D(Ė) is obtained from

the directed graph
#–

G(E) of the domain D(E) of E by adding an outgoing arc #     –vwv to



60 2. ON THIAGARAJAN’S CONJECTURES

each vertex v of
#–

G(E). In a similar way, we can define the hairing Ġ (respectively Ẋ) of
any directed graph G (respectively, any directed NPC complex X) by adding for each

vertex v, a new vertex v′ and an arc
#  –

vv′. Observe that each new vertex v′ has in-degree

1 and out-degree 0. With this definition, the hairing
#̇–

G(E) of the directed graph
#–

G(Ė)

of the domain D(Ė) of E coincides with the directed graph
#–

G(Ė) of the domain D(Ė) of

the hairing Ė of E . Given a poset D = (D,≺), we define the hairing of D as the poset

Ḋ = (Ḋ, ≺̇) such that the Hasse diagram of Ḋ is the hairing of the Hasse diagram of

D. With this definition, the domain D(Ė) of E coincides with the domain D(Ė) of the

hairing Ė of E .

Note that the hairing
˙̃
X of the universal cover X̃ of a directed NPC complex X

coincides with the universal cover ˜̇X of the hairing Ẋ of X. When an event structure
E is strongly regular, there exists a finite directed NPC complex X such that D(E) =

Fõ(ṽ, X̃(1)). In this case, we have:

(2.1) D(Ė) = Ḋ(E) = Ḋõ(ṽ, X̃(1)) = Fõ(ṽ,
˙̃
X(1)) = Fõ(ṽ, ˜̇X(1)).

We can also define the hairing Ṅ = (Ṡ, Σ̇, Ḟ , ṁ0) of a net system N = (S,Σ, F,m0)
as follows. First, for each transition a ∈ Σ, we add a place pa such that •pa = p•a = {a}
and such that pa contains a token in the initial configuration. Then, we add a transition
h such that •h = {pa : a ∈ Σ} and h• = ∅. In other words, Ṡ = S ∪ {pa : a ∈ Σ},
Σ̇ = Σ ∪ {h}, Ḟ = F ∪ {(pa, a), (a, pa), (pa, h) : a ∈ Σ}, and ṁ0 = m0 ∪ {pa : a ∈ Σ}.

Proposition 2.50. For a net system N , there is an isomorphism between the spe-
cial cube complex XṄ of the hairing Ṅ of N and the hairing ẊN of the special cube
complex XN of N that maps the initial marking m0 of N to the initial marking ṁ0 of
Ṅ . Consequently, the event structure unfolding EṄ of the hairing Ṅ of N is isomorphic

to the hairing ĖN of the event structure unfolding EN of N .

Note that Proposition 2.49 follows from Proposition 2.50 and Thiagarajan’s The-
orem 2.16. However, there is a simpler proof of this result that does not rely on the
involved construction of a net system from a trace-regular event structure used in the
proof of Theorem 2.16.

Notice that the hair events of Ė introduce a lot of conflicting events in Ė , and we
use them to encode vertex variables as event variables in order to prove the following
result:

Theorem 2.51. For a trace-regular event structure E = (E,≤,#, λ), MSO(Ė) is

decidable if and only if MSO(
#–

G(E)) is decidable. In particular, MSO(Ė) is decidable if
and only if G(E) has finite treewidth.

Since MSO(E) is a fragment of MSO(Ė), we obtain the following corollary of Theo-
rem 2.51:

Corollary 2.52. For any trace-regular event structure E = (E,≤,#, λ), if G(E)
has finite treewidth, then MSO(E) is decidable.

7.2. Treewidth and Context-free Graphs. Let G = (V,E) be a simple graph,
not necessarily finite. A tree decomposition [211] of G is a pair (T, f), where T =
(V (T ), E(T )) is a tree and f : V (T ) → 2V \ {∅} is a function such that the following
holds:

(i)
⋃
t∈V (T ) f(t) = V ,

(ii) for every edge uv ∈ E of G there exists t ∈ V (T ) such that u, v ∈ f(t),
(iii) if t′, t′′ ∈ V (T ) and t lies on the unique path of T from t′ to t′′, then f(t′)∩f(t′′) ⊆

f(t).
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The supremum in N ∪ {∞} of the cardinalities |f(t)|, t ∈ V (T ), is called the width of
the tree decomposition (T, f). The graph G has treewidth ≤ b if there exists a tree
decomposition of G of width ≤ b. A graph G has bounded (or finite) treewidth if it has
treewidth ≤ b for some b ∈ N. The treewidth represents how close a graph is to a tree
from a combinatorial point of view.

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from
a subgraph G′ of G by contracting edges. Equivalently, H is a minor of a connected
graph G if G contains a subgraph G′ such that there exists a partition of vertices of G′

into connected subgraphs P = {P1, . . . , Pt} and a bijection f : V (H) → P such that if
uv ∈ E(H) then there exists an edge of G′ running between the subgraphs f(u) and f(v)
of P (i.e., after contracting each subgraph Pi ∈ P into a single vertex we will obtain a
graph containing H as a spanning subgraph). Treewidth does not increase when taking
a minor.

Since the treewidth of an n×n square grid is n, the treewidth of a graph G is always
greater than or equal to the size of the largest square grid minor of G. In the other
direction, the grid minor theorem by Robertson and Seymour [212] shows that there
exists a function f such that the treewidth is at most f(r) where r is the size of the
largest square grid minor of G:

Theorem 2.53 ([212]). A graph G has bounded treewidth if and only if the square
grid minors of G have bounded size.

Let G be an edge-labeled graph of uniformly bounded degree and v0 be an arbitrary
root (basepoint) of G. Let S(v0, k) = {x ∈ V : dG(v0, x) = k} denote the sphere of
radius k centered at v0. A connected component Υ of the subgraph of G induced by
V \ S(v0, k) is called an end of G. The vertices of Υ ∩ S(v0, k + 1) are called frontier
points and this set is denoted by C(Υ) [178] and called a cluster. There exists a bijection
between the ends and the clusters: each end contains a unique cluster and conversely,
for a cluster C, the unique end Υ(C) containing C consists of the union of all principal
filters of the vertices v ∈ C (with respect to the basepoint order).

Let Φ(G) and C(G) denote the set of all ends and all clusters of G, respectively.
An end-isomorphism between two ends Υ and Υ′ of G is a label-preserving mapping f
between Υ and Υ′ such that f is a graph isomorphism and f maps C(Υ) to C(Υ′). Then
G is called a context-free graph [178] if Φ(G) has only finitely many isomorphism classes
under end-isomorphisms. Since G has uniformly bounded degree, each cluster C(Υ)
is finite. Moreover, from the definition of context-free graphs follows that a context-
free graph G has only finitely many isomorphism classes of clusters, thus there exists a
constant δ < ∞ such that the diameter of any cluster of G is bounded by δ. By [84,
Proposition 12] any graph G whose diameters of clusters is uniformly bounded by δ is
δ-hyperbolic (in fact, G is quasi-isometric to a tree). Note that the converse is not true

(see the 1-skeleton of the square complex Z̃ described in Section 8).

7.3. Some Results from MSO Theory. In this subsection, we recall some results
from MSO theory of undirected graphs, directed labeled graphs, latices and posets, and
event structures. These results either will be used below or are related to our work.

Among the MSO theories of various discrete structures, the MSO theory of undi-
rected graphs is probably the most complete, with various and deep applications. For
a comprehensive account of this theory, see the book by Courcelle and Engelfriet [97].
Let G = (V,E) be an undirected and unlabeled graph. The MSO logic as introduced
in Subsection 1.5 only allow quantifications over subsets of vertices of G. This theory
is usually denoted by MSO1(G). In order to allow also quantifications over subsets of
edges, an extended representation of a graph is used. This is the relational structure
Ge = (V ∪ E, inc), where

inc = {(e, v) ∈ E × V : ∃u ∈ V such that e ∈ {uv, vu}}.
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The MSO theory of this relational structure Ge is usually denoted by MSO2(G).
Seese [225] proved the following fundamental result about MSO2 decidability:

Theorem 2.54 ([225]). If MSO2(G) is decidable, then G has finite treewidth.

The converse of Seese’s theorem is not true: one can construct trees with undecidable
MSO2 theory. On the other, Courcelle [95] proved that for any natural integer k the
class of all graphs of treewidth at most k has a decidable MSO2 theory.

If MSO2(G) is decidable, then MSO1(G) is also decidable. Again, the reverse impli-
cation is not true. However, Courcelle [96] proved that the converse holds for graphs
with bounded degrees:

Theorem 2.55 ([96]). If G is a graph with uniformly bounded degrees and MSO1(G)
is decidable, then MSO2(G) is also decidable.

Now, consider labeled directed graphs. Let Σ be a finite alphabet. A Σ-labeled
directed graph is a relational structure

#–

G = (V, (Ea)a∈Σ), where V is the set of ver-

tices and Ea ⊆ V × V is the set of a-labeled directed edges. Denote by MSO(
#–

G)

the MSO theory of this relational structure. We associate to
#–

G the unlabeled graph
G = (V,

⋃
a∈Σ{uv : u 6= v, (u, v) ∈ Ea or (v, u) ∈ Ea}).

Müller and Schupp [178] proved the following fundamental theorem about Σ-labeled
pointed context-free graphs of bounded degree (and directed according to the basepoint
order):

Theorem 2.56 ([178]). If
#–

G is a context-free graph, then MSO(
#–

G) is decidable.

7.4. Grids. In this section we need to consider several types of square grids, which
characterize different properties of event structures and their graphs. In this subsection,
we will introduce some notational order between these notions and relate some of them.
Recall that the infinite square grid Γ is the graph whose vertices correspond to the
points in the plane with nonnegative integer coordinates and two vertices are connected
by an edge whenever the corresponding points are at distance 1. The n× n square grid
Γn is the subgraph of Γ whose vertices are all vertices of Γ with x- and y-coordinates
in the range 0, . . . , n. Γ and Γn can be viewed as directed graphs with respect to the
basepoint order with respect to the corner (0, 0). As we noticed above, Γ is the domain
of the event structure consisting of two pairwise disjoint sets X = {x0, x1, x2, . . .}, Y =
{y0, y1, y2, . . .} of events, such that x0 < x1 < x2 < · · · and y0 < y1 < y2 < · · · , and
all events of X are concurrent with all events of Y . This event structure is conflict-free
and trace-regular. Below, if not specified, by Λ we denote either of the grids Γ or Γn. A
directed grid

#–

Λ is a grid Λ with basepoint orientation with respect to the origin (0, 0).
By Theorem 2.53, the treewidth of a graph is characterized by square grid minors.

We will say that a square grid Λ is a grid minor of a graph G if Λ is a minor of G.
By Lemma 2.27, the hyperbolicity of a median graph (event domain or 1-skeleton

of a CAT(0) cube complex) is characterized by isometrically embedded square grids.
We will say that a square grid Λ is an isometric grid of a median graph G = (V,E)
if there exists an isometric embedding of Λ in G, i.e., a map f : V (Λ) → V such that
dΛ(x, y) = dG(x, y) for any two vertices x, y ∈ V (Λ). An event structure characterization
of isometric grids is provided below.

A stronger version of isometric grid is the notion of a flat grid. We will say that an
isometric grid Λ is a flat grid of a median graph G if for any two vertices x, y of Λ at
distance 2, any common neighbor z of x and y in G belongs to the grid Λ. Since any
locally-convex connected subgraph of G is convex, any flat grid is a convex (and thus
gated) subgraph of G. If G is the 1-skeleton of a 2-dimensional cube complex, then any
isometric grid is flat. If Λ is a flat grid of the graph G(E) of an event domain D(E),
then there are two disjoint subsets X = {x0, x1, x2, . . .}, Y = {y0, y1, y2, . . .} of events of
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E such that x0lx1lx2l · · · and y0l y1l y2l · · · , and all events of X are concurrent
with all events of Y .

The minor of a graph is defined by contracting edges. Minors are also implicitly
used in the theory of event structures, namely, when the event structure E\c rooted at
a configuration c was defined (this notion was essential in the definition of regularity).
The domain of E\c is the principal filter F(c) of c. F(c) is a convex subgraph of G(E),
thus F(c) is the intersection of all halfspaces containing F(c). Therefore, F(c) can
be obtained from the median graph G(E) of the event structure E by contracting all
hyperplanes which do not intersect F(c).

Given a median graph G and a hyperplane H of its CAT(0) cube complex, the graph
G′ is obtained by hyperplane-contraction of G with respect to H if G′ is obtained from
G by simultaneously contracting all edges of G dual to H. Clearly, G′ is also a median
graph. We will say that a median graph G′ is a strong-minor of a median graph G if G′

can be obtained from G by hyperplane-contraction of a set of hyperplanes of G.
Finally recall the event structure ETY = (E,≤,#) occurring in the definition of

grid-free event structures. Recall that E consists of three pairwise disjoint sets X,Y, Z
satisfying the following conditions:

• X = {x0, x1, x2, . . .} is an infinite set of events with x0 < x1 < x2 < · · · .
• Y = {y0, y1, y2, . . .} is an infinite set of events with y0 < y1 < y2 < · · · .
• X × Y ⊆‖.
• There exists an injective mapping g : X × Y → Z satisfying: if g(xi, yj) = z

then xi < z and yj < z. Furthermore, if i′ > i then xi′ ≮ z and of j′ > j then
yj′ ≮ z.

The domain of ETY contains the infinite square grid Λ as a strong-minor. This grid
corresponds to the events defined by the sets X and Y and is obtained by contracting
all hyperplanes corresponding to the events in E \ (X ∪ Y ∪Z). On the other hand, the
events from Z correspond to the hairs attached to the grid Λ in the definition of the
hairing of an event structure. However, the relationship between the events of Z or the
events of Z and a part of events of X ∪ Y is not specified, thus one cannot say more
about the structure of the domain of ETY .

We continue with relationships between different types of grids. We start with
isometric grids and hyperbolicity.

Lemma 2.57. Let E = (E,≤,#) be an event structure of bounded degree. The

directed median graph
#–

G(E) contains arbitrarily large isometric square grids if and only if
E contains two infinite disjoint conflict-free sets of events X = {x0, x1, . . . , xn, . . .}, Y =
{y0, y1, . . . , yn, . . .} such that xi ‖ yj for any two events xi ∈ X, yj ∈ Y .

An immediate consequence of the previous lemma is the following:

Proposition 2.58. If the graph G(E) of an event structure E of bounded degree is
hyperbolic, then E is grid-free.

7.5. Proof of Theorem 2.12. Since for a Σ-labeled directed graph
#–

G, the decid-
ability of MSO(

#–

G) implies the decidability of MSO1(G), (1)⇒ (2). Since the degrees of
vertices of G(E) are uniformly bounded, the implication (2) ⇒ (3) follows from Cour-
celle’s Theorem 2.55 [96]. The implication (3) ⇒ (4) is a particular case of Seese’s
Theorem 2.54 [225]. Finally, the implication (6) ⇒ (1) follows from the Müller and
Schupp Theorem 2.56 [178] that the MSO theory of context-free graphs is decidable.
The implication (5) ⇒ (6) follows from [14, Proposition 4.4] and the fact that trace
event structures are recognizable by trace automata (In [52], we presented an alterna-
tive proof based on the geometric properties of median graphs). It remains to establish
the implication (4)⇒ (5).

To establish (4)⇒ (5), we show that if G(E) has clusters of arbitrarily large diame-
ters, then for any n, one can construct in G(E) an n × n square grid as a minor. This
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construction uses the properties of clusters and proceeds level-by-level starting from v0.
Namely, we construct larger and larger half square grids containing v0.

7.6. Proof of Theorem 2.51. The proof of Theorem 2.51 is based on Theo-
rem 2.12 and Propositions 2.59 and 2.60.

Proposition 2.59. For a trace-regular event structure E = (E,≤,#, λ), if MSO(Ė)

is decidable, then MSO(
#–

G(E)) is decidable.

Sketch of the proof. The idea is to transform inductively any formula in
MSO(

#–

G(E)) into a formula in MSO(Ė) where the variables representing the vertices of
#–

G(E) will be replaced by variables representing the corresponding hair events of Ė . �

Proposition 2.60. For a trace-regular event structure E = (E,≤,#, λ), if

MSO(
#–

G(E)) is decidable, then MSO(E) is decidable.

Sketch of the proof. Given a formula in MSO(E), we first transform it into
another formula of MSO(E) where the atomic formulas are of the type e ∈ X, e1 = e2,
Ra(e) for a ∈ Σ, and e1 l e2. Then, we transform the formula into another formula
of MSO(E) in which each event variable (respectively, each set variable) has a label
a ∈ Σ, i.e., it can be interpreted only by an event labeled by a (respectively, by a subset
of events labeled by a). We can then transform inductively the latter formula into a

formula in MSO(
#–

G(E)) where each event variable e is replaced by a second order variable
representing a set of vertices S. The idea of this transformation is that an event variable
e can be interpreted in E by an event f if and only if the set S can be interpreted in
#–

G(E) by the set of sources of precisely those edges which are dual to the hyperplane Hf .
Similarly, a set of events will be represented by the set of sources of the edges dual to
the corresponding hyperplanes. �

The “if” implication of Theorem 2.51 is the content of Proposition 2.59. To prove the
converse implication, consider a trace-regular event structure E = (E,≤,#, λ), such that

MSO(
#–

G(E)) is decidable. By Theorem 2.12, G(E) has finite treewidth. Obviously, this

implies that G(Ė) has also finite treewidth. By Theorem 2.12, MSO(
#–

G(Ė)) is decidable,

and thus, by Proposition 2.60, MSO(Ė) is decidable.

Remark 2.61. Notice that the converse of Proposition 2.60 is not true: the MSO
theory of trace conflict-free event structures is decidable [166], however the graphs of
their domains may have infinite treewidth and thus an undecidable MSO theory. For
example, the event structure E = (E,≤,#) consisting of two pairwise disjoint sets
X = {x0, x1, x2, . . .}, Y = {y0, y1, y2, . . .} of events, such that x0 < x1 < x2 < · · · and
y0 < y1 < y2 < · · · , and all events of X are concurrent with all events of Y, is conflict-free
and trace-regular, but its domain D(E) is the infinite square grid.

8. Counterexamples to Thiagarajan’s Conjecture on the decidability of the
MSO logic of trace-regular event structures

In this section, we use the general results obtained in Section 7 to construct a
counterexample to Thiagarajan’s Conjecture 2.6, establishing Theorem 2.9. In view of
Theorem 2.51, it suffices to find a trace-regular event structure E whose graph G(E) has
unbounded treewidth (i.e., it contains arbitrarily large square grid minors) and whose

hairing Ė is grid-free (as an event structure). To build such an example, as in Section 6,
we start by constructing a finite NPC square complex. Namely, we consider an NPC
square complex Z with one vertex, four edges, and three squares, and we show that Z

is virtually special. This implies that the principal filter of the universal cover Z̃ of Z
is the domain D(EZ) of a trace-regular event structure (i.e., EZ is the event structure
unfolding of a net system NZ). We prove that the median graph G(EZ) of the domain
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Figure 2.9. The three squares defining the VH-complex Z

has unbounded treewidth. On the other hand, to prove that ĖZ is grid-free we show that
the graph G(EZ) of the domain has bounded hyperbolicity (this correspond to bounded
isometric square grids).

Badouel et al. [14, pp. 144–146] described a trace-regular event structure that has a
domain that is not context-free. Using the results of Section 7, we show that the hairing
of this event structure is also a counterexample to Conjecture 2.6.

8.1. The First Counterexample. The square complex Z consists of three squares
Q1, Q2, Q3, one vertex v0, and four edges, colored and directed as in Figure 2.9. The
four edges of Z are colored orange (color a), black (color b), blue (color x), and red
(color y) as indicated in the figure. Since Z is a VH-complex, Z is nonpositively curved.

Let Z̃ = (Z̃, õ, c̃) denote the directed and colored universal cover of Z. Pick any vertex

ṽ0 of Z̃ (ṽ0 is a lift of v0) and let EZ denote the event structure whose domain is the

principal filter DZ = (Fõ(ṽ0, Z̃
(1)),≺õ) of (Z̃, õ). Let also

#–

G(EZ) and G(EZ) denote the

directed and the undirected 1-skeletons of DZ . Finally, denote by ĖZ the hairing of EZ .

First we investigate the properties of the complexes Z and Z̃, of the graphs
#–

GZ and
GZ , and of the event structure EZ . First, even if Z is not special, we show that it is
virtually special:

Lemma 2.62. The NPC square complex Z is virtually special. Consequently, the
event structures EZ and ĖZ are trace-regular.

Proof. Let Z ′ be the square complex represented in Figure 2.10. As in Figure 2.4,
one has to merge the left and right sides, as well as the lower and the upper sides.
Consider the map ϕ sending all vertices of Z ′ to the unique vertex of Z, and each edge
of Z ′ to the unique edge of Z with the same color.

The complex Z ′ has 8 vertices, 32 edges, and 24 squares. In Z ′, a 4-cycle is the
boundary of a square if opposite edges have the same label (and direction) and if the
colors of the boundary of this square correspond to the colors of the boundary of one of
the three squares of Z. In the figure, the number (2 or 4) in the middle of each 4-cycle
represent the number of squares of Z ′ on the vertices of this 4-cycle. This implies that
ϕ is a covering map from Z ′ to Z.

Observe that two edges are dual to the same hyperplane of Z ′ if and only if they
have the same label. Using this, it is easy to check that Z ′ is special. Consequently,

Z is virtually special. By Theorem 2.23 and Proposition 2.24, for any vertex ṽ ∈ Z̃ ′,
F(ṽ, Z̃ ′) is the domain of a trace-regular event structure EZ′ (one can show that EZ′ is

independent of the choice of the basepoint ṽ). The fact that ĖZ is trace regular follows
from Proposition 2.49. �

Remark 2.63. Observe that Z ′ coincides with the special cube complex XN∗ of the
net system N∗ from Examples 2.15 and 2.32. Consequently, EZ coincides with the event
structure unfolding EN∗ of N∗. To obtain a net system Ṅ∗ corresponding to ĖZ , one
can use Proposition 2.50. However in this case, it is enough to add a single transition h
to N∗ such that •h = {C1, C2, C3, C4} and h• = ∅. In the resulting Ṅ∗, for any firing
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Figure 2.10. A finite special cover Z ′ of the complex Z.

sequence σ of N∗, σh is a firing sequence of Ṅ∗ and no transition can be fired once h has
been fired. Using this property, with a proof similar to the proof of Proposition 2.50,
one can show that ĖZ and EṄ∗ are isomorphic.

The next lemma follows from the fact that with the tile set defining Z one cannot
tile a 3× 3-square, implying that G(EZ) is hyperbolic by Lemma 2.27, and thus that EZ
and ĖZ are grid-free by Proposition 2.58.

Lemma 2.64. The graph G(EZ) is hyperbolic. Consequently, the event structures EZ
and ĖZ are grid-free.

Remark 2.65. Since ĖZ = EṄ∗ , we can also establish that ĖZ is grid-free by consid-

ering the net system Ṅ∗ (as suggested by one of the referees of this paper). Using the

symmetries of Ṅ∗ and some case analysis, one can show that there exist no reachable

marking m of Ṅ∗ and firing sequences σ, σ′ such that m
σ−−→ m, m

σ′−−→ m, and (a, a′) ∈ I
for any transition a and a′ appearing respectively in σ and σ′. By [241, Corollary 5],

we conclude that the net system Ṅ∗ is grid-free.

The most technical part of the proof is the following lemma:

Lemma 2.66. The graph G(EZ) has infinite treewidth, i.e., the directed graph
#–

G(EZ) is not context-free. Consequently, the theories MSO(
#–

G(EZ)), MSO2(G(EZ)), and

MSO(ĖZ) are undecidable.

Similarly to the proof of implication (4)⇒(5) of Theorem 2.12, we construct arbi-
trarily large half-grids minors rooted at the origin of the domain.

Proof. We will denote by zi,j , i, j ≥ 0, the vertices of the half-grid and by Zi,j , i, j ≥
0, the connected subgraph of G(EZ) which will be mapped (contracted) to zi,j . The
subgraphs Zi,j are also paths laying in two consecutive spheres S(ṽ0, k − 1) ∪ S(ṽ0, k).

For this we use the fact that
#–

G(EZ) is the graph of the principal filter DZ =

(Fõ(ṽ0, Z̃
(1)),≺õ) of the universal cover (Z̃, õ) of Z (here ṽ0 is an arbitrary but fixed lift

of v0). Since Z has one vertex v0, all vertices ṽ of
#–

G(EZ) are lifts of v0. Analogously to
v0, each such vertex ṽ is incident to four outgoing and to four incoming colored edges in

Z̃. However, in the graph
#–

G(EZ) of the domain, each vertex ṽ has at most two incoming
edges (otherwise, there exists a 3-cube in the interval I(ṽ0, ṽ), but this is impossible since

Z̃ is 2-dimensional). The four outgoing edges define three squares Q1, Q2, Q3 having ṽ
as the source (for an illustration, see the first row in Figure 2.11). One can see that
there exists an infinite directed path Pa with ṽ0 as the origin and in which all edges have
color orange (color a). Analogously, there exists an infinite directed path Py with ṽ0 as
the origin and in which all edges have color red (color y). Let Pa = (ũ0 = ṽ0, ũ1, ũ2, . . .)
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Figure 2.11. To the proof of Lemma 2.66
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Zi,j+1 Zi+1,j

ũl ũr

ṽri,j+1 ṽli+1,j

ṽli,j ṽri,j

Figure 2.12. Construction of the path Zi+1,j+1.

and Py = (ṽ0, ṽ1, ṽ2 . . .) and observe that Pa (respectively, Py) is a shortest path from
ũ0 = ṽ0 to ũi (respectively, ṽi) for every i.

One can show that for any vertex ṽ, any two outgoing edges of ṽ can be connected
by a path of finite length in the next levels, as indicated in Figure 2.11.

For each k, we construct iteratively a simple path Pk = P (ũk, ṽk) = (ũk =

p̃k,1, q̃k,1, . . . , p̃k,`−1, q̃k,`−1, p̃k,` = ṽk) such that
#             –

q̃k,1p̃k,1 is colored orange (color a),
#                  –

q̃k,`−1p̃k,` is colored red (color y), and for each i, p̃k,i ∈ S(ṽ0, k) and q̃k,i ∈ S(ṽ0, k − 1).
Let P1 = (ũ1, ṽ0, ṽ1) and suppose that the simple path Pk = P (ũk, ṽk) has been

defined. We define the path Pk+1 = P (ũk+1, ṽk+1) in two steps. First, let P ′k+1 be the
path obtained by concatenating the paths obtained by applying the rules of Figure 2.11
to each vertex qk,i of Pk ∩ S(ṽ0, k) and its two outgoing edges in Pk. Note that the first

edges of Pk and P ′k+1 are consecutive edges in a square Q of
#–

G(EZ). Since the first edge
of Pk is orange (color a), necessarily Q = Q1 and the first edge of P ′k+1 is red (color
y). Analogously, the last edges of Pk and P ′k+1 are consecutive edges in a square Q′ of
#–

G(EZ). Since the last edge of Pk is red (color y), then necessarily Q′ = Q3 and the last
edge of P ′k+1 is orange (color a).

Lemma 2.67. P ′k+1 is a simple path.

The path Pk+1 = P (ũk+1, ṽk+1) is obtained from P ′k+1 by concatenating the orange

(color a) edge
#             –

ũkũk+1 at the beginning of P ′k+1 and the red (color y) edge
#            –

ṽkṽk+1 at the
end of P ′k+1. We show that Pk+1 is also a simple path.
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Figure 2.13. Part of the half-grid resulting from the contraction of the
paths Zi,j .

Now, for each k, we construct iteratively the paths Zi,j with i + j = k by selecting
subpaths of P (ũk, ṽk). We require that the paths Zi,j satisfy the following properties
(See Figures 2.12 and 2.13):

(1) Z0,j = {ũj} and Zi,0 = {ṽi} for each i, j ∈ {0, . . . , n};
(2) for each k, if i+ j = k, then Zi,j is a subpath of Pk;
(3) for each i, j with i + j = k − 1, the last vertex ṽri,j+1 of the path Zi,j+1 appears in

Pk before the first vertex ṽli+1,j of Zi+1,j ;

(4) each Zi,j with i, j ≥ 1 has its two end-vertices in S(ṽ0, k) and its first edge is orange
(color a) and its last edge is blue (color x);

(5) for each pair (i, j) with i+j = k, the leftmost vertex ṽli,j of the path Zi,j is adjacent to

the rightmost vertex ṽri,j+1 of the path Zi,j+1 by an orange (color a) edge belonging

to Pk+1 and the rightmost vertex ṽri,j of Zi,j is adjacent to the leftmost vertex ṽli+1,j

of the path Zi+1,j by a red (color y) edge belonging to Pk+1;
(6) any two distinct paths Zi,j and Zi′,j′ are disjoint.

The half grid minor of G(EZ) then appears when we contract each path Zi,j to a
vertex zi,j , concluding the proof of the lemma. �

Consequently, by Lemma 2.64, the event structure ĖZ is grid-free and by Lemma 2.66,
MSO(ĖZ) is undecidable. This concludes the proof of Theorem 2.9.

Remark 2.68. By construction, the event structure ĖZ is strongly regular, and ĖZ
is hyperbolic by Lemma 2.64. However, ĖZ is not strongly regular hyperbolic because Z̃

(and thus
˙̃
Z) is not hyperbolic. Indeed, in Z̃, it is possible to build an infinite grid by

repeating the pattern described in Figure 2.14. Due to the orientation of the edges of

this grid, it is easy to see that this grid cannot appear in any principal filter of (Z̃, õ).

Consequently, Z̃ is not hyperbolic, but any principal filter of Z̃ is hyperbolic.

8.2. Another Counterexample to Conjecture 2.6. Another counterexample to
Conjecture 2.6 can be derived from the hairing ĖBDR of the trace-regular event structure
EBDR described by Badouel et al. [14, pp. 144–146 and Figures 5–9]. The domain of
EBDR is a plane graph defined recursively as a tiling of the quarterplane with origin v0

by tiles consisting of two squares sharing an edge (see Figure 2.15, left). Namely, we
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Figure 2.14. Part of a infinite grid in Z̃

v0

Figure 2.15. The tile that we recursively insert to build the domain of
EBDR and the first four steps of the construction.

Figure 2.16. The hyperplanes obtained during the first four steps of
the construction of the domain of EBDR.

start with two infinite directed paths with common origin v0, and at each step, we insert
the tile in each free angle (see Figure 2.15, right for the tiling obtained after the first
four steps). As observed in [14], the hyperplanes of G(EBDR) can be represented by an
arrangement of axis-parallel pseudolines in the plane (see Figure 2.16).

Badouel et al. [14] showed that the directed graph
#–

G(EBDR) is not context-free.
Indeed, for each k, there is a unique level k cluster coinciding with the sphere S(v0, k)
of radius k and the diameters of spheres increase together with their radius. By Theo-
rem 2.12, this shows that the graph G(EBDR) has infinite treewidth. On the other hand
one can easily show that the planar graph G(EBDR) has bounded hyperbolicity.

Finally, the fact that EBDR admits a regular nice labeling was established in [14].
Badouel et al. showed that the domain of EBDR is the domain of a finite trace automaton.
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Figure 2.17. The trace labeling of the events (hyperplanes) of EBDR
obtained during the first five steps of the construction.

Using the result of Schmitt [223] (or the more general one of Morin [176]), this implies
that EBDR is a trace-regular event structure.

The labeling of the events (hyperplanes) of EBDR is given in Figure 2.17 for the
events obtained during first five steps of the construction. The idea is that the events
constructed at step 4i+1 are labeled consecutively from left to right 1, 5, 4, 3, 2, 1, . . . , 1, 5,
those constructed at step 4i + 2 are labeled 6, 10, 9, 8, 7, 6, . . . , 10, 9, those constructed
at step 4i + 3 are labeled 1, 2, 3, 4, 5, . . . , 4, 5, and those constructed at step 4i + 4 are
labeled 6, 7, 8, 9, 10, . . . , 8, 9. A tedious check of the construction shows that this labeling
gives 40 types of labeled principal filters1.

Consequently, EBDR is a grid-free trace-regular event structure whose graph
G(EBDR) has infinite treewidth. By Theorem 2.51, the MSO theory MSO(ĖBDR) of
the hairing of EBDR is undecidable.

Remark 2.69. By Corollary 2.34, the domain of EBDR is the principal filter of the
universal cover of some finite (virtually) special cube complex. However, we do not
even have an explicit construction of a small NPC square complex XBDR such that the
domain of EBDR is a principal filter of the universal cover of XBDR. To produce such a
NPC square complex XBDR, one can use the result of Schmitt [223] (or Morin [176])
to find a trace-regular labeling of EBDR, then the result of Thiagarajan [239, 240] to
construct a net system NBDR such that its event structure unfolding ENBDR is EBDR,
and finally Theorem 2.31 to construct a finite special cube complex XBDR from NBDR.
The first two steps of this approach significantly increase the number of labels used to
label the events of EBDR and it is not clear how to avoid this combinatorial explosion.

9. Conclusion

9.1. Regular versus Strongly Regular Event Structures. In view of Propo-
sition 2.21, any strongly regular event structure is regular. One can ask if the converse
holds :

Question 2.70. Is any regular event structure strongly regular?

Remark 2.71. In view of Corollary 2.34, if the answer to Question 2.70 is negative,
this would provide automatically counterexamples to Thiagarajan’s Conjecture 2.3. The
counterexamples provided above are of a different kind since they are strongly regular
event structures that are not trace-regular.

1In [14], only 20 types of labeled principal filters are mentioned
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Figure 2.18. If we factorize the domain on the left over the equivalence
classes of futures, we obtain the square complex on the right that is not
an NPC square complex

A natural way to derive a finite directed NPC complex from the domain D of a
regular event structure E is to factorize D over all equivalence classes of futures (i.e.,
to identify in a single vertex all configurations having the same principal filter up to
isomorphism). Unfortunately, this construction does not preserve the non-positive cur-
vature of D. For example, consider a domain D as described on the left of Figure 2.18.
In the figure, only a part of the domain is described: one has to imagine that the dashed
arrows lead to the remaining part of the domain with the assumption that two nodes
that have the same label have isomorphic principal filters. When we factorize the do-
main D over the equivalence classes of futures, we obtain the square complex on the
left of Figure 2.18. Note that this square complex is not an NPC square complex as
it contains three squares that intersect in a vertex and that pairwise intersect on edges
and these three squares do not belong to a 3-cube.

This phenomenon does not arise if we consider V H-complexes and isomorphisms
that preserve vertical and horizontal edges. More formally, the domain D = D(E) of
an event structure E is a V H-domain if D is a V H-complex. In this case, E is called
a V H-event structure and the events of E are partitioned into vertical and horizontal
events. A V H-event structure E is V H-regular if E has finite degree and has a finite
number of principal filters up to isomorphism preserving vertical and horizontal events.
In this case, the domain D(E) is called a regular V H-domain.

Even in this case, we do not know how to define formally a directed NPC square
complex according to the factorization mentioned above such that the original domain
is a principal filter of the universal cover of this complex.

Question 2.72. Does any regular V H-domain occur as a principal filter of the
universal cover of some finite directed V H-complex?

9.2. Hyperbolic Event Domains. There are several natural reasons to investi-
gate hyperbolic event domains. Similarly to CAT(0) and NPC spaces, Gromov hyper-
bolicity is defined by a metric condition. However, similarly to the CAT(0) property, the
hyperbolicity of a CAT(0) cube complex can be expressed in purely combinatorial way,
by requiring that all isometric square grids have bounded size. Theorem 2.29 establishes
that Thiagarajan’s conjecture is true for strongly hyperbolic regular event structures.
We conjecture that this result can be generalized in the following way:

Conjecture 2.73. Any strongly regular event structure with a hyperbolic domain
admits a trace-regular labeling.
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Conjecture 2.4 was positively solved by Badouel et al. [14] for context-free domains,
which are particular hyperbolic domains. The following conjecture generalizes Theo-
rem 2.29, the results of [14] in the case of event structures considered in this paper, and
Conjecture 2.73.

Conjecture 2.74. Any regular event structure with a hyperbolic domain admits a
trace-regular labeling.

9.3. Recognizing Trace-Regular Event Structures and Related Undecid-
ability Questions. We think that the relationship between the existence of aperiodic
tile sets and the nonexistence of regular nice labelings of the associated event structures
may help to prove some undecidability results. We conjecture that one cannot decide if
a regular event structure satisfies Thiagarajan’s conjecture:

Conjecture 2.75. There does not exist an algorithm that, given a strongly regular
event domain D, can determine whether or not D admits a regular nice labeling.

The intuition behind is that one can use Lukkarilla’s construction [164] to prove this
conjecture. As in the proof of undecidability of the classical tiling problem [27,213], the
undecidability proof of Lukkarila is based on a reduction from the Turing machine halting
problem. More precisely, for any Turing machine M, Lukkarila constructs a 4-way
deterministic tile set TM such that either TM is an aperiodic tile set (this corresponds
to the case when the Turing machine M does not halt), or TM does not tile the plane
(this corresponds to the case when the Turing machine M halts). In the first case, by

Theorem 2.46, the domain (W̃ (TM)ṽ,≺õ∗) does not admit a regular nice labeling. In

the second case, by Lemma 2.45, (W̃ (TM)ṽ,≺õ∗) is a strongly regular domain that is

hyperbolic. Consequently, if Conjecture 2.73 was true, (W̃ (TM)ṽ,≺õ∗) would admit a
regular nice labeling. This would prove Conjecture 2.75.

Another possible way to prove Conjecture 2.75 would be to anwser the following
question in a positive way and use Theorem 2.10.

Question 2.76. Given a 4-way deterministic tile set T such that there is no valid
tiling with the tiles of T , is it true that the V H-complex W (T ) is virtually special?

Note that if there was a positive answer to this question, this would answer a question
of Agol [5, Question 3] and confirm the following conjecture of Bridson and Wilton [43]:

Conjecture 2.77 ([43, Conjecture 1.2]). There does not exist an algorithm that,
given a finite NPC square complex Y , can determine whether or not Y is virtually
special.

Indeed, in Lukkarila’s construction, if the Turing machineM does not halt, then by
Theorem 2.46 W (TM) is not virtually special. On the other hand, if the Turing machine
M halts, then if the answer to Question 2.76 was positive, W (TM) would be virtually
special.

9.4. Trace-Regular Event Structures with a Decidable MSO Theory. Even
if Theorem 2.13 and Corollary 2.14 give partial answers, the initial fundamental question
(Question 2.5) about the characterization of trace-regular event structures that have a
decidable MSO theory remains open in general, and even in some very specific cases.

For example, we do not know if the hairing operation is necessary in order to obtain
grid-free trace-regular event structures with undecidable MSO theories. In particular,
we wonder whether MSO(EZ) and MSO(EBDR) are decidable. If this is not the case,
this would provide counterexamples to Conjecture 2.6 that are not based on encoding
MSO formulas over the domain by MSO formulas over the hair events.

We have shown that there exists domains that are hyperbolic and not context free.

However, as mentioned in Remark 2.68, even if the domain of ĖZ is hyperbolic, Z̃ itself
is not hyperbolic. This leads to the following open question:
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Question 2.78. Can one construct a finite directed special complex X such that X̃

is hyperbolic and some principal filter of X̃ is not context-free?

In particular, if one consider the trace-regular event structure EBDR of Badouel et
al., we do not have an explicit construction of a finite (virtually) special complex XBDR

such that the domain of EBDR is the domain is a principal filter of the universal cover

X̃BDR of XBDR (see Remark 2.69). One can ask whether there exists such an XBDR

that has a hyperbolic universal cover X̃BDR.





CHAPTER 3

Hyperbolicity

There exist three classical models of geometries: the usual Euclidean geometry, the
hyperbolic geometry, and the elliptic geometry. In these different geometries, the curva-
ture behaves differently (it is 0 in Euclidean geometry, negative in hyperbolic geometry,
and positive in elliptic geometry) and this leads to different global geometric and topo-
logical properties. In his visionary paper [128], Gromov defined CAT(κ) geodesic spaces
using a simple 4-point axiom that generalize the three classical geometries. For example,
the CAT(0) spaces represent a far reaching common generalization of Euclidean and hy-
perbolic geometries. In this case, the 4-point axiom just states that the geodesic triangles
in the space are thinner than in the Euclidean plane. Another revolutionary concept of
Gromov [128] is the notion of δ-hyperbolic space. Again defined by a 4-point condition,
δ-hyperbolic spaces generalize hyperbolic geometry. CAT(0) and δ-hyperbolicity had a
huge impact on the development of geometric group theory [7,28,42,90,112,116].

The notion of Gromov-hyperbolicity (i.e., δ-hyperbolicity for a finite δ) plays an
important roles in the geometry of metric spaces, geometric group theory, and more
recently in graph theory and networks theory. Hyperbolicity can be defined in sev-
eral completely different ways: via the 4-point conditions, via slim triangles, via thin
triangles, via linear isoperimetric inequality, via exponential divergence of geodesics,
etc. Hyperbolic geodesic spaces, infinite hyperbolic graphs as well as hyperbolic groups
(i.e., groups acting geometrically on a hyperbolic graph/space) have deep and interest-
ing asymptotic and structural properties. For example, in hyperbolic groups, the word
problem can be solved in linear time [7, 128] while it is undecidable in general [187].
This is due to the fact that hyperbolic groups and hyperbolic graphs can be character-
ized by a linear isoperimetric inequality [42,128], and thus the classical Dehn method
can be applied efficiently [42]. In fact, hyperbolic groups are biautomatic [48].

Many classes of important groups and/or graphs/complexes occuring in geometric
group theory are known to be hyperbolic: free groups, fundamental groups of compact
Riemannian manifolds with negative curvature, some small cancellation groups, curve
complexes [167], etc. For example, 7-systolic complexes and CAT(0) cube complexes
without 2×2 grids are 1-hyperbolic. In fact, systolic or CAT(0) cube complexes without
infinite isometric triangular or square grids respectively are hyperbolic.

When considering finite graphs, any graph is hyperbolic for some δ. Therefore, one
can define the hyperbolicity of a graph G as the smallest δ such that G is δ-hyperbolic. It
can be viewed as a local measure of how close G is to a tree: the smaller the hyperbolicity
is, the closer the metrics of its 4-point subspaces are close to tree-metrics. It turns out
that many real-world graphs are tree-like from a metric point of view [1,2,36] or have
small hyperbolicity [149, 180, 227]. This is due to the fact that many of these graphs
(including Internet application networks, web networks, collaboration networks, social
networks, biological networks, and others) possess certain geometric and topological
characteristics. Hence, for many applications, including the design of efficient algorithms
(cf., e.g., [36,61,84–87,100,115,246]), it is important to design efficient algorithms to
compute or approximate the hyperbolicity of a graph, as well as to solve optimization
problems on δ-hyperbolic graphs.

I discovered the world of hyperbolic graphs (and then groups) in a unexpected way
by considering cop and robber games on graphs. The classical cop and robber game is

75
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a pursuit-evasion game played on finite undirected graphs G where the cop attempts to
capture the robber. The two players move alternatively, starting with the cop where
a move is to slide along an edge of G or to stay at the same vertex. Nowakowski and
Winkler [188], and Quilliot [208] show that the graphs in which the cop always win
(the cop-win graphs) are exactly the dismantlable graphs (that were already considered
in Section 4 of Chapter 1). In [59], we considered a generalization of this classical cop
and robber game where the players have speeds: at its turm, a player with speed s can
traverse at most s edges. Generalizing the results of [188,208], we prove that a cop with
speed s′ always captures a robber with speed s in a graph G (i.e., G is (s, s′)-cop-win) if
and only if G is (s, s′)-dismantlable. Rephrasing a result of [87], any δ-hyperbolic graph
is (2r, r+2δ)-dismantlable, i.e., δ-hyperbolic graphs are (2r, r+2δ)-cop-win. In [59], we
conjectured that graphs where a cop with speed s′ can always capture a faster robber
with speed s > s′ are always δ-hyperbolic with δ depending only on s. In [59], we proved
that this conjecture is true for bridged graphs and Helly graphs.

In [61], we prove this conjecture. Namely, we showed that:

Theorem 3.1. If a finite graph G is (s, s′)-cop-win with 0 < s′ < s, then G is
δ-hyperbolic with δ = 64s2.

Surprisingly, the proof of this theorem uses the characterization of hyperbolic graphs
via the linear isoperimetric inequality [7,42,128]. As a nice byproduct of this new char-
acterization of hyperbolic graphs via cop and robber games, we designed an algorithm
approximation the hyperbolicity of a graph with n vertices in optimal O(n2) time (as-
suming the graph is given by its distance matrix). Its approximation factor is 1569.
This large value is the theoretical guarantee we established and it is mainly due to the
sequential use of several definitions of hyperbolicity. Nevertheless, the algorithm is sim-
ple to implement and once a breadth-first-search tree has been computed, only local
operations are executed.

Finding an approximation algorithm with the same time complexity and a better
approximation factor was a natural question, and a small approximation factor can lead
to interesting applications. In [53,54], we designed such an algorithm:

Theorem 3.2. Given a graph G with n vertices described by its distance matrix, one
can compute an 8-approximation (with an additive constant 1) of the hyperbolicity δ(G)
of G in O(n2) time.

The algorithm construct a BFS-tree T from a root r and computes an approximation
of the thinness of G by considering only geodesic triangles between r and any pair of
vertices x, y where the considered geodesics between r and x and r and y are the path
of T .

The results of this chapter are based on the papers [53, 54], [56, Section 9], [59],
and [61].

1. Gromov-hyperbolicity and its Relatives

1.1. δ-hyperbolic Metric Spaces. Let (X, d) be a metric space and w ∈ X. The
Gromov product1 of y, z ∈ X with respect to w is (y|z)w = 1

2(d(y, w)+d(z, w)−d(y, z)).
A metric space (X, d) is δ-hyperbolic [128] for δ ≥ 0 if (x|y)w ≥ min{(x|z)w, (y|z)w}− δ
for all w, x, y, z ∈ X. Equivalently, (X, d) is δ-hyperbolic if for any u, v, x, y ∈ X, the
two largest of the sums d(u, v) + d(x, y), d(u, x) + d(v, y), d(u, y) + d(v, x) differ by at
most 2δ ≥ 0. A metric space (X, d) is said to be δ-hyperbolic with respect to a basepoint
w if (x|y)w ≥ min{(x|z)w, (y|z)w} − δ for all x, y, z ∈ X.

1Informally, (y|z)w can be viewed as half the detour you make, when going over w to get from y to
z.



1. GROMOV-HYPERBOLICITY AND ITS RELATIVES 77

x z

y

mz

my

mx
≤ δ

≤ δ ≤ δ

m

y

x z

αx αz

αyϕ

x z

y

xz zx
≤ δ

yz yx

xyzy

≤ δ ≤ δ

ϕ

Figure 3.1. Insize and thinness in geodesic spaces and graphs.

Let (X, d) be a metric space. An (x, y)-geodesic is a (continuous) map γ :
[0, d(x, y)]→ X from the segment [0, d(x, y)] of R1 to X such that γ(0) = x, γ(d(x, y)) =
y, and d(γ(s), γ(t)) = |s−t| for all s, t ∈ [0, d(x, y)]. A geodesic segment with endpoints x
and y is the image of the map γ (when it is clear from the context, by a geodesic we mean
a geodesic segment and we denote it by [x, y]). A metric space (X, d) is geodesic if every
pair of points in X can be joined by a geodesic. A real tree (or an R-tree) [42, p.186] is
a geodesic metric space (T, d) such that

(1) there is a unique geodesic [x, y] joining each pair of points x, y ∈ T ;
(2) if [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z].

Let (X, d) be a geodesic metric space. A geodesic triangle ∆(x, y, z) with x, y, z ∈ X
is the union [x, y] ∪ [x, z] ∪ [y, z] of three geodesics connecting these points. A geodesic
triangle ∆(x, y, z) is called δ-slim if for any point u on the side [x, y] the distance from u
to [x, z]∪ [z, y] is at most δ. Let mx be the point of [y, z] located at distance αy := (x|z)y
from y. Then, mx is located at distance αz := (y|x)z from z because αy + αz = d(y, z).
Analogously, define the points my ∈ [x, z] and mz ∈ [x, y] both located at distance
αx := (y|z)x from x; see Figure 3.1 for an illustration. We define a tripod T (x, y, z)
consisting of three solid segments [x,m], [y,m], and [z,m] of lengths αx, αy, and αz,
respectively. The function mapping the vertices x, y, z of ∆(x, y, z) to the respective
leaves of T (x, y, z) extends uniquely to a function ϕ : ∆(x, y, z) → T (x, y, z) such that
the restriction of ϕ on each side of ∆(x, y, z) is an isometry. This function maps the
points mx,my, and mz to the center m of T (x, y, z). Any other point of T (x, y, z) is the
image of exactly two points of ∆(x, y, z). A geodesic triangle ∆(x, y, z) is called δ-thin if
for all points u, v ∈ ∆(x, y, z), ϕ(u) = ϕ(v) implies d(u, v) ≤ δ. The insize of ∆(x, y, z)
is the diameter of the preimage {mx,my,mz} of the center m of the tripod T (x, y, z).
Below, we remind that the hyperbolicity of a geodesic space can be approximated by
the maximum thinness and slimness of its geodesic triangles.

For a geodesic metric space (X, d), one can define the following parameters:

• hyperbolicity δ(X) = min{δ : X is δ-hyperbolic},
• pointed hyperbolicity δw(X) = min{δ : X is δ-hyperbolic with respect to a

basepoint w},
• slimness ς(X) = min{δ : any geodesic triangle of X is δ-slim},
• thinness τ(X) = min{δ : any geodesic triangle of X is δ-thin},
• insize ι(X) = min{δ : the insize of any geodesic triangle of X is at most δ}.

Proposition 3.3 ([7, 42, 125, 128, 232]). For a geodesic metric space (X, d) and
any point w ∈ X,

• δ(X) ≤ 2δw(X),
• δ(X) ≤ ι(X) = τ(X) ≤ 4δ(X),
• ς(X) ≤ τ(X) ≤ 4ς(X),
• δ(X) ≤ 2ς(X) ≤ 6δ(X).
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Due to Proposition 3.3, a geodesic metric space (X, d) is called hyperbolic if one of
the numbers δ(X), δw(X), ς(X), τ(X), ι(X) (and thus all) is finite. Notice also that a
geodesic metric space (X, d) is 0-hyperbolic if and only if (X, d) is a real tree [42, p.399]
(and in this case, ς(X) = τ(X) = ι(X) = δ(X) = 0).

1.2. Hyperbolicity of Graphs. Let [x, y] denote a shortest path connecting
vertices x and y in G; we call [x, y] a geodesic between x and y. The interval
I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)} consists of all vertices on (u, v)-geodesics.
There is a strong analogy between the metric properties of graphs and geodesic metric
spaces, due to their uniform local structure. Any graph G = (V,E) gives rise to a
geodesic space (XG, d) (into which G isometrically embeds) obtained by replacing each
edge xy of G by a segment isometric to [0, 1] with ends at x and y. XG is called a
metric graph. Conversely, by [42, Proposition 8.45], any geodesic metric space (X, d)
is (3,1)-quasi-isometric to a graph G = (V,E). This graph G is constructed in the
following way: let V be an open maximal 1

3 -packing of X, i.e., d(x, y) > 1
3 for any

x, y ∈ V (that exists by Zorn’s lemma). Then two points x, y ∈ V are adjacent in G
if and only if d(x, y) ≤ 1. Since hyperbolicity is preserved (up to a constant factor) by
quasi-isometries, this reduces the computation of hyperbolicity for geodesic spaces to
the case of graphs.

The notions of geodesic triangles, insize, δ-slim and δ-thin triangles can also be
defined in case of graphs with the single difference that for graphs, the center of the
tripod is not necessarily the image of any vertex on the sides of ∆(x, y, z). For graphs,
we “discretize” the notion of δ-thin triangles in the following way. We say that a geodesic
triangle ∆(x, y, z) of a graph G is δ-thin if for any v ∈ {x, y, z} and vertices a ∈ [v, u] and
b ∈ [v, w] (u,w ∈ {x, y, z}, and u, v, w are pairwise distinct), d(v, a) = d(v, b) ≤ (u|w)v
implies d(a, b) ≤ δ. A graph G is δ-thin, if all geodesic triangles in G are δ-thin. Given
a geodesic triangle ∆(x, y, z) := [x, y]∪ [x, z]∪ [y, z] in G, let xy and yx be the vertices of
[z, x] and [z, y], respectively, both at distance b(x|y)zc from z. Similarly, one can define
vertices xz, zx and vertices yz, zy; see Figure 3.1. The insize of ∆(x, y, z) is defined as
max{d(yz, zy), d(xy, yx), d(xz, zx)}. An interval I(x, y) is said to be κ-thin if d(a, b) ≤ κ
for all a, b ∈ I(x, y) with d(x, a) = d(x, b). The smallest κ for which all intervals of G are
κ-thin is called the interval thinness of G and denoted by κ(G). Denote also by δ(G),
δw(G), ς(G), τ(G), and ι(G) respectively the hyperbolicity, the pointed hyperbolicity
with respect to a basepoint w, the slimness, the thinness, and the insize of a graph G.

We will need the following inequalities between ς(G), τ(G), ι(G), and δ(G). This
proposition is the counterpart Proposition 3.3 for graphs.

Proposition 3.4. For any graph G and any vertex w of G,

• δ(G) ≤ 2δw(G),
• δ(G)− 1

2 ≤ ι(G) = τ(G) ≤ 4δ(G),
• ς(G) ≤ τ(G) ≤ 4ς(G),
• δ(G)− 1

2 ≤ 2ς(G) ≤ 6δ(G) + 1,
• κ(G) ≤ min{τ(G), 2δ(G), 2ς(G)}.

Remark 3.5. In general, the converse of the inequality κ(G) ≤ 2δ(G) from Propo-
sition 3.4 does not hold: for odd cycles C2k+1, κ(C2k+1) = 0 while δ(C2k+1) increases
with k. However, the following result holds. If G is a graph, denote by G′ the graph ob-
tained by subdividing all edges of G once. Papasoglu [199] showed that if G′ has κ-thin
intervals, then G is f(κ)-hyperbolic for some function f (which may be exponential).

2. Characterizing Hyperbolic Graphs via the Cop and Robber Game

In this section, we outline the proof of Theorem 3.1.
A (non-necessarily finite) graph G = (V,E) is called (s, s′)-dismantlable if the vertex

set of G admits a well-order � such that for each vertex v of G there exists another vertex
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u with u � v such that Bs(v,G)∩Xv ⊆ Bs′(u,G), where Xv := {w ∈ V : w � v}. In the
following, if Bs(v,G)∩Xv ⊆ Bs′(u,G), then we will say that v is eliminated by u or that
u eliminates v. From the definition immediately follows that if G is (s, s′)-dismantlable,
then G is also (s, s′′)-dismantlable for any s′′ > s′ (with the same dismantling order).
In the case of finite graphs, the following result holds (if s = s′ = 1, this is the classical
characterization of cop-win graphs by Nowakowski, Winkler [188] and Quilliot [208]).
Its proof follows the lines of the proof of the classical case, however, it is technically
more involved.

Theorem 3.6. For any s, s′ ∈ N∪ {∞}, s′ ≤ s, a finite graph G is (s, s′)-cop-win if
and only if G is (s, s′)-dismantlable.

In fact, one can define two kinds of cop and robber games with speed depending
on whether the robber is allowed to go through the position of the cope when it moves
or not. This leads to two different characterizations of (s, s′)-cop-win graphs. In the
statement of the theorem, we consider the game where the robber can traverse the
position of the cop. In [59], we considered the other variant of the game, but the proofs
of both cases are similar.

Rephrasing a result of [87], δ-hyperbolic graphs are (2r, r + 2δ)-dismantlable.

Proposition 3.7. For a δ-hyperbolic graph G and any integer r ≥ δ, any breadth-
first search order � is a (2r, r + 2δ)-dismantling order of G.

Since any (s, s′)-dismantlable graph is (s, s − 1)-dismantlable when s′ < s, setting
s′ = s − 1 in the following Theorem 3.8, and combining it with Theorem 3.6, we get
Theorem 3.1.

Theorem 3.8. If a graph G is (s, s′)-dismantlable with 0 < s′ < s, then G is δ-

hyperbolic with δ = 16(s+ s′)
⌈
s+s′

s−s′
⌉

+ 1
2 ≤ 32 s(s+s

′)
s−s′ + 1

2 .

Even if Theorem 3.6 holds only for finite graphs, (s, s′)-dismantlability is defined for
arbitrary graphs Theorem 3.8 hold for arbitrary graphs. The proof of Theorem 3.8 uses
an improved characterization of hyperbolicity via linear isoperimetric inequality and the
fact that all (s, s′)-dismantlable graphs satisfy such an inequality.

2.1. Linear Isoperimetric Inequality. Now, we recall the definition of hyper-
bolicity via the linear isoperimetric inequality. Although this (combinatorial) definition
of hyperbolicity is given for geodesic metric spaces, it is quite common to approximate
the metric space by a graph via a quasi-isometric embedding and to define N -fillings
for the resulting graph (see for example, [42, pp. 414–417]). Here, we directly give the
definitions in the setting of graphs.

In a graph G = (V,E), a loop c is a sequence of vertices (v0, v1, v2, . . . , vn−2, vn−1,
v0) such that for each 0 ≤ i ≤ n − 1, either vi = vi+1, or vivi+1 ∈ E; n is called the
length `(c) of c. A simple cycle c = (v0, v1, v2, . . . , vn−2, vn−1, v0) is a loop such that for
all 0 ≤ i < j ≤ n− 1, vi 6= vj .

A non-expansive map Φ from a graph G = (V,E) to a graph G′ = (V ′, E′) is a
function Φ: V → V ′ such that for all v, w ∈ V , if vw ∈ E then either Φ(v) = Φ(w) or
Φ(v)Φ(w) ∈ E′. Note that a map Φ from G to G′ is non-expansive if and only if for all
vertices v, w of G, dG′(Φ(v),Φ(w)) ≤ dG(v, w).

For an integer N > 0 and a loop c = (v0, v1, v2, . . . , vn−2, vn−1, v0) in a graph G, an
N -filling (D,Φ) of c consists of a 2-connected planar graph D and a non-expansive map
Φ from D to G such that the following conditions hold for an example):

(1) the external face of D is a simple cycle (v′0, v
′
1, . . . , v

′
n−1, v

′
0) such that Φ(v′i) = vi for

all 0 ≤ i ≤ n− 1,
(2) every internal face of D has at most 2N edges.
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The N -area AreaN (c) of c is the minimum number of faces in an N -filling of c. A
graph G satisfies a linear isoperimetric inequality if there exists an N > 0 such that any
loop c of G has an N -filling and AreaN (c) is linear in the length of c (i.e., there exists a
positive integer K such that AreaN (c) ≤ K · `(c)). The following result of Gromov [128]
proven in [7,38,42,189] is the basic ingredient of our proof:

Theorem 3.9 (Gromov). If a graph G is δ-hyperbolic, then any edge-loop of G
admits a 16δ-filling of linear area. Conversely, if a graph G satisfies the linear isoperi-
metric inequality AreaN (c) ≤ K ·`(c) for some integers N and K, then G is δ-hyperbolic,
where δ ≤ 108K2N3 + 9KN2.

All proofs of Theorem 3.9 available in the litterature do not care about the depen-
dencies of the hyperbolicity on the constants K and N . For our purposes, we need the
best possible dependencies on these parameters. Therefore, we revisited Theorem 3.9.
Namely, we extended this result to the case of rational K and improved its statement
by showing that the hyperbolicity of G is quadratic (and not cubic) in N .

Proposition 3.10. For a graph G and constants K ∈ Q and N ∈ N such that 2KN
is a positive integer, if for every cycle c of G, AreaN (c) ≤ dKl(c)e, then the geodesic
triangles of G are 16KN2-slim and G is (32KN2 + 1

2)-hyperbolic.

2.2. Proof of Theorem 3.8. We start by establishing a property satisfied by loops
in (s, s′)-dismantlable graphs.

Lemma 3.11. If a graph G is (s, s′)-dismantlable with s′ < s and c = (v0, v1, . . . ,
vn−1, v0) is a loop of G of length n > 2(s+s′), then c contains two vertices x = vp, y = vq
with q − p = 2s mod n such that d(x, y) ≤ 2s′.

The proof considers the vertex v of c that is the largest for a (s, s′)-dismantling order
�. Then the vertices x and y that are at distance s from v on the loop c are both at
distance at most s′ from u where u is a vertex of G that eliminates v in �.

The following proposition shows that loops of G satisfy a linear isoperimetric in-
equality.

Proposition 3.12. If a graph G is (s, s′)-dismantlable with s′ < s and c is a loop

of G, then Areas+s′(c) ≤
⌈

`(c)
2(s−s′)

⌉
.

Proof. Let c = (v0, v1, . . . , vn−1, v0) be a loop of G. To prove that Areas+s′(c) ≤⌈
`(c)

2(s−s′)

⌉
, it suffices to show that there exists a 2-connected planar graph D and a

non-expansive map Φ from D to G such that

(F1) D has at most
⌈

`(c)
2(s−s′)

⌉
faces,

(F2) all internal faces of D have length at most 2(s+ s′),
(F3) the external face of D is a simple cycle (v′0, v

′
1, . . . , v

′
n−1, v

′
0) such that Φ(v′i) = vi

for all 0 ≤ i ≤ n− 1.

The image of each face of D will be a loop of G of length at most 2(s+ s′).
We proceed by induction on the length n := `(c) of c. If n ≤ 2(s+ s′), let D consists

of a single face bounded by a simple cycle (v′0, v
′
1, . . . , v

′
n−1, v

′
0) of length n and for each

i, let Φ(v′i) = vi. This shows that Areas+s′(c) = 1.
Now, suppose that n > 2(s + s′). By Lemma 3.11 there exist two vertices x =

vp, y = vq of c with q − p = 2s mod n and d(x, y) ≤ 2s′. Suppose without loss of
generality that q = p + 2s. Let P ′ = (x = vp, vp+1, . . . , vq−1, vq = y) and P ′′ = (x =
vp, vp−1, . . . , v0, vn−1, . . . , vq+1, vq = y) be the two (x, y)-paths constituting c. If x = y,
let P = (x, y); if x 6= y, let P = (x = w0, w1, . . . , wk = y) be any shortest path in G
between x and y. Note that `(P ) ≤ 2s′ < 2s = `(P ′).

Let c0 be the loop obtained as the concatenation of the paths P from x to y and
P ′ from y to x. Since `(P ′) = 2s and `(P ) ≤ 2s′, we have `(c0) ≤ 2s + 2s′. Let c1 be
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a b

cd

Figure 3.2. The graph described in Remark 3.13 when N = 4.

the loop obtained as the concatenation of the paths P ′′ from y to x and P from x to y.
Note that `(c1) = `(P ) + `(P ′′) ≤ `(P ) + `(c)− `(P ′) ≤ `(c)− (2s− 2s′) < `(c).

By induction assumption, c1 admits an (s + s′)-filling (D1,Φ1) satisfying the con-
ditions (F1),(F2), and (F3). Note that the external face of D1 is bounded by a cy-
cle (v′p = x′ = w′0, w

′
1, . . . , w

′
k = y′ = v′q, v

′
q+1, . . . , vn−1, v0, . . . , v

′
p−1, v

′
p) such that

Φ1(v′i) = vi for all i ∈ [0, p] ∪ [q, n− 1] and Φ1(w′i) = wi for all 0 ≤ i ≤ k.
Consider the planar graph D obtained from D1 by adding q − p − 1 new vertices

forming a path (x′ = v′p, v
′
p+1, . . . , v

′
q = y′) from x′ to y′ on the external face of D1

such that the external face of D is bounded by the cycle (v′0, v
′
1, . . . , v

′
n−1, v

′
0). Let Φ be

the non-expansive map defined by Φ(v′) = Φ1(v′) for every v ∈ V (D1) and Φ(v′i) = vi
for every p + 1 ≤ i ≤ q − 1. Clearly, D1 is a 2-connected planar graph and for each
0 ≤ i ≤ n− 1 we have Φ(v′i) = vi. The planar graph D has one more internal face than
D1 that is bounded by the cycle (x′ = v′p, v

′
p+1, . . . , v

′
q = y′ = w′k, w

′
k−1, . . . , w

′
1, w

′
0 = x′).

This cycle has the same length as c0 and is thus bounded by 2(s + s′). Consequently,
(D,Φ) satisfies the conditions (F2) and (F3).

It remains to show that the (s + s′)-filling (D,Φ) of c satisfies (F1). Since `(c1) ≤
`(c)− 2(s− s′), by induction assumption, we obtain

Areas+s′(c) ≤ Areas+s′(c1) + 1 ≤
⌈

`(c1)

2(s− s′)

⌉
+ 1 ≤

⌈
`(c)− 2(s− s′)

2(s− s′)

⌉
+ 1 =

⌈
`(c)

2(s− s′)

⌉
,

yielding the desired inequality. �

The assertion of Theorem 3.8 follows from Propositions 3.10 and 3.12 by setting

N := s+ s′ and K := 1
2N ·

⌈
N

(s−s′)

⌉
≥ 1

2(s−s′) .

Remark 3.13. The dependence of δ,N in Proposition 3.10 is the “best possible”
in the following sense. There are graphs GN (N ∈ N) which satisfy AreaN (c) ≤ dl(c)e
and which are not δ-hyperbolic for δ = o(N2) (so δ in general grows quadratically in
N). Indeed, take GN to be a planar square N ×N grid subdivided into squares of side-
length N (see Figure 3.2 for an example with N = 4). Then clearly for every cycle c,

Area4N (c) ≤ 1

4
dl(c)e. Consider now the four corners a, b, c, d of the grid (see Figure 3.2);

we have d(a, c) + d(b, d) = 4N2 > 2N2 = d(a, b) + d(c, d) = d(a, d) + d(b, c) and thus
δ ≥ N2.

2.3. An Algorithmic Consequence of Theorem 3.8. We now describe a fast
O(n2) time algorithm for constant-factor approximation of the hyperbolicity δ(G) of a
graph G with n vertices and m edges, assuming that its distance-matrix has already
been computed. Our algorithm is very simple and can be used as a practical heuristic
to approximate the hyperbolicity of graphs.
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The hyperbolicity δ(G) of a graph G is an integer or a half-integer belonging to
the list {0, 1

2 , 1,
3
2 , 2, . . . n − 1, 2n−1

2 , n}. Since 0-hyperbolic spaces are tree-metrics, 0-

hyperbolic graphs can be recognized in O(n2) time (in fact, they are exactly the block
graphs [21]). Consequently, we assume in the following that δ(G) ≥ 1

2 .
Before presenting the general algorithm (Algorithm 3.2), we describe an auxiliary

algorithm (Algorithm 3.1) that for a parameter α either ensures that G is (784α + 1
2)-

hyperbolic or that G is not α
2 -hyperbolic. Algorithm 3.1 is based on Theorem 3.8 and

Proposition 3.7.

Algorithm 3.1: Approximated-Hyperbolicity(G,α)

Construct a BFS-order � starting from an arbitrary vertex v0;
For each v ∈ V , let fα(v) be the vertex at distance min{2α, d(v, v0)} from v on
the path of the BFS-tree from v to v0;

for each v ∈ V do
if B4α(v) ∩Xv 6⊆ B3α(fα(v)) then return No;

return Yes

First, suppose that Algorithm 3.1 returns Yes. This means that the BFS-order �
is a (4α, 3α)-dismantling order of the vertices of G. Consequently, from Theorem 3.8,
G is (784α + 1

2)-hyperbolic. Now, suppose that the algorithm returns No. This means
that there exists a vertex v such that B4α(v) ∩Xv 6⊆ B3α(fα(v)). From Proposition 3.7
with r = 2α, this implies that G is not α

2 -hyperbolic and thus δ(G) > α
2 .

Algorithm 3.2 efficiently computes the smallest integer α for which the Algorithm 3.1
returns the answer Yes, i.e, the smallest integer α for which the inclusion B4α(v)∩Xv ⊆
B3α(fα(v)) holds for all vertices v of G. Similarly to Algorithm 3.1, we assume that we
have constructed a BFS-order � of the vertices of G starting from an arbitrary but fixed
vertex v0. Suppose that for each vertex v, p(v) denotes the parent of v in the BFS-tree
corresponding to � (with the convention that p(v0) = v0). As in Algorithm 3.1, for each
vertex v and for each value of α, let fα(v) be the vertex at distance min{2α, d(v, v0)} from
v located on the path of the BFS-tree from v to v0. Note that fα+1(v) = p(p(fα(v))).

We start with a lemma ensuring that during the execution of the algorithm, we do
not have to completely recompute the balls B3α(fα(v)) each time we modify α.

Lemma 3.14. If α′ ≤ α, then B3α′(fα′(v)) ⊆ B3α(fα(v)) for any vertex v of G.

Algorithm 3.2 can be viewed as a “sieve of n stacks” and works as follows. In the
preprocessing step, for each vertex v of G, we sort the vertices of G according to their
distances to v and successively insert them in a stack L(v) (so that v is the head of
L(v)). Starting with α = 1, for each vertex v of G, we compute fα(v) and as long as
the current head u of L(v) is in B4α(v) and is such that v � u or d(u, fα(v)) ≤ 3α,
we pop u from L(v). The idea is that none of those popped elements can be a witness
for B4α(v) ∩ Xv 6⊆ B3α(fα(v)). If there exists a vertex v which is at distance at most
4α from the head u of its stack L(v), then we have found a witness showing that
B4α(v) ∩ Xv 6⊆ B3α(fα(v)). In this case, by Proposition 3.7, we know that G is not
α
2 -hyperbolic. Thus, we increment α by 1 and start a new iteration. By Lemma 3.14,
the vertices removed from the stacks do not have to be reconsidered. Otherwise, if each
v is at distance > 4α from the current head of L(v), then Algorithm 3.2 returns the
current α as the least value for which the Algorithm 3.1 returns the answer Yes.

Proposition 3.15. There exists a constant-factor approximation algorithm to ap-
proximate the hyperbolicity δ(G) of a graph G with n vertices running in O(n2) time if
G is given by its distance-matrix. The algorithm returns a 1569-approximation of δ(G).

Proof. By the previous discussion, Algorithm 3.2 returns the smallest α such that
Algorithm 3.1 returns the answer Yes. Consequently, G is (784α + 1

2)-hyperbolic and
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Algorithm 3.2: Approximated-Hyperbolicity-via-Dismantling(G)

Construct a BFS-order � starting from an arbitrary vertex v0;

For each v ∈ V , let p(v) be the parent of v in the BFS-tree;
For each v ∈ V , let L(v) be a stack containing all vertices of G sorted
(increasingly) by their distance to v;

done← false;

α← 0;

for each v ∈ V do fα(v)← v;

while not done do
done← true;

α← α+ 1;

for each v ∈ V do
fα(v)← p(p(fα(v)));

repeat
u← pop(L(v))

until d(u, v) > 4α or (u � v and d(u, fα(v)) > 3α);

if d(u, v) ≤ 4α then done← false;

push(u, L(v));

return α

not α−1
2 -hyperbolic, i.e., δ(G) ≤ 784α + 1

2 ≤ 1568δ(G) + 1
2 ≤ 1569δ(G). This gives a

1569-approximation of the hyperbolicity δ(G) of G.
As to the complexity, first note that computing the BFS-order � and the value of

p(v) for each v ∈ V can be done in time O(n2) from the distance-matrix of G (this can
be done in time linear in the number of edges of G if we are also given the adjacency
list of G). Since |V | = n and all the pairwise distances are integers between 0 and n,
one can construct each stack L(v) in time O(n) using a counting sort algorithm. Thus,
the preprocessing step requires total O(n2) time. Since during the execution of the
algorithm we always have α ≤ 2δ(G) ≤ 2n, α is incremented at most 2n times. Since
for each v ∈ V , once a vertex w is popped from L(v), w is no longer used for v at
subsequent iterations, there are at most O(n2) pop operations. Therefore Algorithm 3.2
terminates in time O(n2). �

Observe that once the BFS-tree has been computed, around each vertex, one consider
only a ball of radius O(δ(G)): this is because of the “locality” of the characterization of
δ-hyperbolicity via (s, s′)-dismantlability.

This locality phenomenon is not so surprising since a local-to-global characterization
of hyperbolicity is also available for geodesic spaces:

Theorem 3.16 ([101,128]). Given δ > 0, let R = 105δ and δ′ = 200δ. Let (X, d)
be a simply connected geodesic metric space in which each loop of length < 100δ is null-
homotopic inside a ball of diameter < 200δ. If every ball BR(x0) of X is δ-hyperbolic,
then X is δ′-hyperbolic.

Gromov [128] and Papasoglu [200] gave an algorithm to recognize Cayley graphs
of hyperbolic groups and estimate the hyperbolicity constant δ. The algorithm is based
on the theorem that hyperbolicity “propagates”, i.e. if balls of an appropriate fixed
radius are hyperbolic for a given δ then the whole space is δ′-hyperbolic for some δ′ > δ
(see [128], 6.6.F).
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3. Hyperbolicity of Weakly Modular Graphs

Weakly modular graphs do not have bounded hyperbolicity in general. However, we
are able to show that they satisfy a quadratic isoperimetric inequality. Moreover, we
characterize δ-hyperbolic weakly modular graphs by forbidding large isometric square
grids and large metric triangles. We also prove that (s, s − 1)-dismantlable weakly
modular graphs are O(s)-hyperbolic, improving the quadratic bound we have in the
general case.

Since general weakly modular graphs are not δ-hyperbolic, they do not satisfy a
linear isoperimetric inequality (for any value of N and K). However, we can show that
they satisfy a quadratic isoperimetric inequality. In this case, when considering an N -
filling (D,Φ) of a loop c of G, we can assume that the faces of D are either triangles
or squares. The following theorem is a refinement of the fact that the triangle-square
complex of a weakly modular graph is simply connected and the proof uses the same
ideas.

Theorem 3.17. In a weakly modular graph G, for any loop c, we have Area2(c) =
Area4�(c) ≤ 2`(c)2.

Three vertices u, v, w of a graph G form a metric triangle uvw if the intervals
I(u, v), I(u,w), and I(v, w) pairwise intersect only in the common end-vertices, i.e.,
I(u, v) ∩ I(u,w) = {u}, I(u, v) ∩ I(v, w) = {v}, and I(u,w) ∩ I(v, w) = {w}. If
d(v1, v2) = d(v2, v3) = d(v3, v1) = k, then this metric triangle is called equilateral of
size k. In a weakly modular graph, every metric triangle is equilateral [80]. Observe
that in a median graph G, all metric triangles of G are reduced to a point and that in
a Helly graph G, all metric triangles have sides of length at most 1.

Generalizing Lemma 2.27, we showed that in weakly modular graphs, hyperbolicity
can be characterized by the sizes of the isometric square grids and of the metric triangles:

Theorem 3.18. For a weakly modular graph G the following are equivalent:

(i) there exists δ such that G is δ–hyperbolic;
(ii) there exist µ, ν such that the metric triangles of G have sides of length at most

µ and G does not contain isometric square grids of side ν.

More precisely, in a weakly modular graph G, every isometric square grid of G is of
side at most δ(G) and every metric triangle of G is of side at most 4δ(G). Conversely, if
the metric triangles of G have sides of length at most µ and isometric square grids of G
have sides of length at most ν, then we showed that κ(G) ≤ 2ν + µ, and the following
result of [84] implies that δ(G) ≤ 32ν + 20µ.

Proposition 3.19 ([84]). If G is a graph in which all the metric triangles of G have
sides of length at most µ, then δ(G) ≤ (16κ(G) + 4µ).

When considering (s, s − 1)-dismantlable graphs that are weakly modular, we are
able to obtain stronger results than in the general case: namely, we show that for any
s′ < s, if a weakly modular graph G is (s, s′)-dismantlable, then G is O(s)-hyperbolic.

Theorem 3.20. If G is an (s, s′)-dismantlable weakly modular graph with s′ < s,
then G is 184s-hyperbolic.

To prove Theorem 3.20, we say that a cycle c of G is s-geodesically covered if there
exists a set P = {P0, P1, . . . , Pn−1} of geodesics of G such that:

(i) each Pi is a subpath of c,
(ii) each edge of c is contained in a geodesic of P,

(iii) if Pi and Pj are not consecutive (modulo n), then Pi and Pj are edge-disjoint, and
(iv) if Pi and Pj are consecutive (i.e., j = i+1 mod n), then Pi∩Pj is a path of length

≥ 2s.
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We prove that if a graph G is (s, s − 1)-dismantlable, then G does not contain s-
geodesically covered cycles by considering the last vertex in a potential s-geodesically
covered cycle. Using this, we can show that in a (s, s− 1)-dismantlable weakly modular
graph G, the sides of the metric triangles of G are of length at most 6s and that
κ(G) ≤ 10s. Theorem 3.20 follows then from Proposition 3.19.

As a corollary of Theorem 3.20, reusing the same ideas as in Section 2.3, for any
weakly modular graph with n vertices given by its distance-matrix, one can compute in
O(n2) time a value δ′ such that δ(G) ≤ δ′ ≤ 736δ(G) + 368.

Using the more precise characterization of δ-hyperbolic weakly modular graph given
in Theorem 3.18, we can also obtain a local-to-global condition for hyperbolicity for
weakly modular graphs, analogous to Theorem 3.16.

Proposition 3.21. If G is a weakly modular graph such that every ball B4δ′+1(v)
of G is δ′-hyperbolic, then δ(G) ≤ 112δ′.

Proof. Let ν and µ be respectively the largest sizes of the sides of an isometric
square grid Γ and of a metric triangle T of G. Pick a vertex v in of Γ and note that if
δ′ + 1 ≤ ν, then there exists a (δ′ + 1)× (δ′ + 1)-isometric square grid in B4δ′+1(v) and
thus B4δ′+1(v) is not δ′-hyperbolic, a contradiction.

If T is the metric triangle uvw, then all vertices of I(u, v) ∪ I(u,w) ∪ I(v, w) are at
distance at most ν from v [80]. If 4δ′+ 1 ≤ µ, then B4δ′+1(v) contains a metric triangle
with sides of length (4δ′ + 1) and thus B4δ′+1(v) is not δ′-hyperbolic, a contradiction.

Consequently, ν ≤ δ′ and µ ≤ 4δ′ and therefore, δ(G) ≤ 32ν + 20µ ≤ 112δ′ . �

4. A Fast Factor 8 Approximation Algorithm for Hyperbolicity

As mentioned earlier, computing exactly or approximatively the hyperbolicity of a
finite graph is important in the analysis of many real-world networks. For an n-vertex
graph G, the definition of hyperbolicity directly implies a simple brute-force O(n4) algo-
rithm to compute δ(G). This running time is too slow for computing the hyperbolicity
of large graphs that occur in applications [1, 36, 37, 122]. On the theoretical side, it
was shown that relying on matrix multiplication results, one can improve the upper
bound on time-complexity to O(n3.69) [122]. Moreover, roughly quadratic lower bounds
are known [37, 93, 122]. In practice, however, the best known algorithm still has an
O(n4)-time worst-case bound but uses several clever tricks when compared to the brute-
force algorithm [36]. Based on empirical studies, an O(mn) running time is claimed,
where m is the number of edges in the graph. Furthermore, there are heuristics for
computing the hyperbolicity of a given graph [91], and there are investigations whether
one can compute hyperbolicity in linear time when some graph parameters take small
values [94,120].

Perhaps, it is interesting to notice that the first algorithms for testing graph hyper-
bolicity were designed for Cayley graphs of finitely generated groups (see Theorem 3.16
above). For other algorithms deciding if the Cayley graph of a finitely generated group
is hyperbolic, see [38, 200]. However, similar methods do not help when dealing with
arbitrary graphs.

By Proposition 3.4, if the four-point condition in the definition of hyperbolicity holds
for a fixed basepoint w and any triplet x, y, v of X, then the metric space (X, d) is 2δ-
hyperbolic. This provides a factor 2 approximation of hyperbolicity of a metric space on
n points running in cubic O(n3) time. Using fast algorithms for computing (max,min)-
matrix products, it was noticed in [122] that this 2-approximation of hyperbolicity can
be implemented in O(n2.69) time. In the same paper, it was shown that any algorithm
computing the hyperbolicity for a fixed basepoint in time O(n2.05) would provide an
algorithm for (max,min)-matrix multiplication faster than the existing ones. In [113],
approximation algorithms are given to compute a (1 + ε)-approximation in O(ε−1n3.38)
time and a (2 + ε)-approximation in O(ε−1n2.38) time.
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The algorithm presented in the previous section and in [61] was the first constant-
factor approximation algorithm for hyperbolicity of G running in optimal O(n2) time
(when the graph is given by its distance matrix). However, since its approximatio ratio
is huge, its practical interest is rather limited. Therefore, the question of designing fast
and (theoretically certified) accurate algorithms for approximating graph hyperbolicity
is still an important and open question.

In this section, we tackle this open question and propose a very simple (and thus
practical) factor 8 algorithm for approximating the hyperbolicity δ(G) of an n-vertex
graph G running in optimal O(n2) time, establishing Theorem 3.2. As in several previous
algorithms, we assume that the input is the distance matrix D of the graph G.

4.1. The Approximation Algorithm. In order to design our algorithm, we in-
troduce a new parameter of a graph G. This parameter depends on an arbitrary fixed
BFS-tree of G. It can be computed efficiently and it provides constant-factor approxi-
mations for δ(G), ς(G), and τ(G).

Consider a graph G = (V,E) and an arbitrary BFS-tree T rooted at some vertex
or point w. Denote by xy the vertex of [w, x]T at distance b(x|y)wcfrom w and by
yx the vertex of [w, y]T at distance b(x|y)wc from w. Let ρw,T (G) := max{d(xy, yx) :
x, y ∈ X}. In some sense, ρw,T (G) can be seen as the insize of G with respect to
w and T . For this reason, we call ρw,T (G) the rooted insize of G with respect to w
and T . The differences between ρw,T (G) and ι(G) are that we consider only geodesic
triangles ∆(w, x, y) containing w where the geodesics [w, x] and [w, y] belong to T , and
we consider only d(xy, yx), instead of max{d(xy, yx), d(xw, wx), d(yw, wy)}. Using T , we
can also define the thinness of G with respect to w and T : let µw,T (G) = sup

{
d(x′, y′) :

∃x, y such that x′ ∈ [w, x]T , y
′ ∈ [w, y]T and d(w, x′) = d(w, y′) ≤ (x|y)w

}
. Similarly to

Proposition 3.4 establishing that ι(G) = τ(G), we can show that these two definitions
give rise to the same value.

Proposition 3.22. For any graph G and any BFS-tree T rooted at a vertex w,
ρw,T (G) = µw,T (G).

The next theorem is the crucial metric property that we use in our algorithm. It
establishes that 2ρw,T (G) provides an 8-approximation of the hyperbolicity of δ(G) (it
holds also for infinite graphs).

Theorem 3.23. Given a graph G and a BFS-tree T rooted at w, δ(G) ≤ 2ρw,T (G)+
1 ≤ 8δ(G) + 1.

Proof. Let ρ := ρw,T (G), δ := δ(G), and δw := δw(G). By Gromov’s Proposi-
tion 3.4, δ ≤ 2δw. We proceed in two steps. In the first step, we show that ρ ≤ 4δ.
In the second step, we prove that δw ≤ ρ + 1

2 . Hence, combining both steps we obtain
δ ≤ 2δw ≤ 2ρ+ 1 ≤ 8δ + 1.

The first step follows from Proposition 3.4 and from the inequality ρ ≤ ι(G) = τ(G).
To prove that δw ≤ ρ + 1/2, for any quadruplet x, y, z, w containing w, we show the
four-point condition d(x, z)+d(y, w) ≤ max{d(x, y)+d(z, w), d(y, z)+d(x,w)}+(2ρ+1).
Assume without loss of generality that d(x, z)+d(y, w) ≥ max{d(x, y)+d(z, w), d(y, z)+
d(x,w)} and that d(w, xy) = d(w, yx) ≤ d(w, yz) = d(w, zy). Since yx, yz belong to
the shortest path [w, y] of T (that is also a shortest path of G), we have d(yx, yz) =
d(y, yx)−d(y, yz). From the definition of ρ, we also have d(xy, yx) ≤ ρ and d(yz, zy) ≤ ρ.
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Consequently, by the definition of xy, yx, yz, zy and by the triangle inequality, we get

d(y, w) + d(x, z) ≤ d(y, w) + d(x, xy) + d(xy, yx) + d(yx, yz) + d(yz, zy) + d(zy, z)

≤ (d(y, yz) + d(yz, w)) + d(x, xy) + ρ+ d(yx, yz) + ρ+ d(zy, z)

= d(y, yz) + d(w, zy) + d(x, xy) + d(yx, yz) + d(zy, z) + 2ρ

= d(y, yz) + d(x, xy) + (d(y, yx)− d(y, yz)) + (d(w, zy) + d(zy, z)) + 2ρ

= d(y, yz) + d(x, xy) + d(y, yx)− d(y, yz) + d(w, z) + 2ρ

≤ d(x, y) + 1 + d(w, z) + 2ρ,

the last inequality following from the definition of xy and yx in graphs (in the case
of geodesic metric spaces, we have d(x, xy) + d(y, yx) = d(x, y)). This establishes the
four-point condition for w, x, y, z and proves that δw ≤ ρ+ 1/2. �

We present now a simple self-contained algorithm for computing the rooted insize
ρw,T (G) in O(n2) time when G = (V,E) is a graph with n vertices, establishing Theo-
rem 3.2.

For any non-negative integer r, let x(r) be the unique vertex of [w, x]T at distance
r from w if r < d(w, x) and the vertex x if r ≥ d(w, x). First, we compute in O(n2)
time a table M with rows indexed by V , columns indexed by {1, . . . , n}, and such that
M(x, r) is the identifier of the vertex x(r) of [w, x]T located at distance r from w. To
compute this table, we explore the tree T starting from w. Let x be the current vertex
and r its distance to the root w. For every vertex y in the subtree of T rooted at x, we
set M(y, r) := x. Assuming that the table M and the distance matrix D := (d(u, v) :
u, v ∈ X) between the vertices of G are available, we can compute xy = M(x, b(x|y)wc),
yx = M(y, b(x|y)wc) and d(xy, yx) in constant time for each pair of vertices x, y, and
thus ρw,T (G) = max{d(xy, yx) : x, y ∈ V } can be computed in O(n2) time.

When the graph G is given by its adjacency list, one can compute its distance-matrix
in O(min(mn, n2.38)) time and then use the algorithm described above. However, we
explain in the next proposition how to obtain an 8-approximation of δ(G) in O(mn)
time using only linear space.

Proposition 3.24. For any graph G with n vertices and m edges that is given by
its adjacency list, one can compute an 8-approximation (with an additive constant 1) of
the hyperbolicity δ(G) of G in O(mn) time and in linear O(n+m) space.

Proof. Fix a vertex w and compute a BFS-tree T of G rooted at w. Note that at
the same time, we can compute the value d(w, x) for each x ∈ V .

For each vertex x, consider the map Px : {0, . . . , d(w, x)} → V such that for each
0 ≤ i ≤ d(w, x), Px(i) is the unique vertex on the path from w to x in T at distance i
from w. For every vertex x, consider the map Qx : V → N ∪ {∞} such that for each
y ∈ V , Qx(y) = d(y, Px(i)) if i = d(w, y) ≤ d(w, x) and Qx(y) =∞ otherwise.

We perform a depth first traversal of T starting at w and consider every vertex x in
this order. Initially, Px = Pw can be trivially computed in constant time and Qx = Qw
can be initialized in O(n) time. During the depth first traversal of T , each time we go
up or down, Px can be updated in constant time. Assume now that a vertex x is fixed.
In O(n+m) time and space, we compute d(x, y) for every y ∈ V by performing a BFS
of G from x. Moreover, each time we modify x, for each y, we can update Qx(y) in
constant time by setting Qx(y) := ∞ if d(w, y) > d(w, x), setting Qx(y) := d(x, y) if
d(w, y) = d(w, x), and keeping the previous value if d(w, u) < d(w, x).

We perform a depth first traversal of T from w and consider every vertex y in this
order. As for Px, we can update Py in constant time at each step. Since d(w, x), d(w, y),
and d(x, y) are available, one can compute (x|y)w in constant time. Therefore, in con-
stant time, we can find yx = Py(b(x|y)wc) using Py and compute d(xy, yx) = Qx(yx)
using Qx.
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Figure 3.3. In Hk, ρw,T (Hk) = d(xy, yx) = 4k = 4δ(Hk), showing that
the inequality ρw,T (G) ≤ 4δ is tight in the proof of Theorem 3.23.

Consequently, for each x, we compute max{d(xy, yx) : y ∈ V } in O(m) time and
therefore, we compute ρw,T (G) in O(mn) time. At each step, we only need to store the
distances from all vertices to w and to the current vertex x, as well as arrays representing
the maps Px, Qx, and Py. This can be done in linear space. �

Remark 3.25. If we are given the distance-matrix D of G, we can use the algorithm
described in the proof of Proposition 3.24 to avoid using the O(n2) space occupied by
table M in the first algorithm. In this case, since the distance-matrix D of G is available,
we do not need to perform a BFS for each vertex x and the algorithm computes ρw,T (G)
in O(n2) time.

The following result shows that the bounds in Theorem 3.23 are optimal.

Proposition 3.26. For any positive integer k, there exists a graph Hk, a vertex w,
and a BFS-tree T rooted at w such that δ(Hk) = k and ρw,T (Hk) = 4k.

For any positive integer k, there exists a graph Gk, a vertex w, and a BFS-tree T
rooted at w such that ρw,T (Gk) ≤ 2k and δ(Gk) = 4k.

Proof. The graph Hk is the 2k×2k square grid from which we removed the vertices
of the rightmost and downmost (k−1)× (k−1) square (see Figure 3.3, left). The graph
Hk is a median graph and therefore its hyperbolicity is the size of a largest isometrically
embedded square subgrid ( [84,129]). The largest square subgrid of Hk has size k, thus
δ(Hk) = k.

Let w be the leftmost upmost vertex of Hk. Let x be the downmost rightmost
vertex of Hk and y be the rightmost downmost vertex of Hk. Then d(x, y) = 2k
and d(x,w) = d(y, w) = 3k. Let P ′ and P ′′ be the shortest paths between w and x
and w and y, respectively, running on the boundary of Hk. Let T be any BFS-tree
rooted at w and containing the shortest paths P ′ and P ′′. The vertices xy ∈ P ′ and
yx ∈ P ′′ are located at distance (x|y)w = 1

2(d(w, x) + d(w, y) − d(x, y)) = 2k from
w. Thus xy is the leftmost downmost vertex and yx is the rightmost upmost vertex.
Hence ρw,T (Hk) ≥ d(xy, yx) = 4k. Since the diameter of Hk is 4k, we conclude that
ρw,T (Hk) = 4k = 4δ(Hk).

Let Gk be the 4k× 4k square grid and note that δ(Gk) = 4k. Let w be the center of
Gk. We suppose that Gk is isometrically embedded in the `1-plane in such a way that
w is mapped to the origin of coordinates (0, 0) and the four corners of Gk are mapped
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Figure 3.4. In Gk, ρw,T (Gk) ≤ 2k = 1
2δ(Gk), showing that (up to an

additive factor of 1) the inequality δ ≤ 2ρw,T (G) + 1 is tight in the proof
of Theorem 3.23.

to the points with coordinates (2k, 2k), (−2k, 2k), (−2k,−2k), (2k,−2k), We build the
BFS-tree T of Gk as follows. First we connect w to each of the corners of Gk by a
shortest zigzagging path (see Figure 3.4). For each i ≤ i ≤ k, we add a vertical path
from (i, i) to (i, 2k), from (i,−i) to (i,−2k), from (−i, i) to (−i, 2k), and from (−i,−i)
to (−i,−2k). Similarly, for each i ≤ i ≤ k, we add a horizontal path from (i, i) to (2k, i),
from (i,−i) to (2k,−i), from (−i, i) to (−2k, i), and from (−i,−i) to (−2k,−i). For
any vertex v = (i, j), the shortest path of Gk connecting w to v in T has the following
structure: it consists of a subpath of one of the zigzagging paths until this path arrives
to the vertical or horizontal line containing v and then it continues along this line until
v. By case analysis, we can show that ρw,T (Gk) ≤ 2k = 1

2δ(Gk).
�

If instead of knowing the distance-matrix D, we only know the distances between
the vertices of G up to an additive error k, then we can define a parameter ρ̂w,T (G) in a
similar way as ρw,T (G) is defined and show that 2ρ̂w,T (G) +k+ 1 is an 8-approximation
of δ(G) with an additive error of 3k + 1.

Proposition 3.27. Given a graph G with n vertices, a BFS-tree T rooted at a vertex

w, and a matrix D̂ such that d(x, y) ≤ D̂(x, y) ≤ d(x, y) + k, we can compute in time
O(n2) a value ρ̂w,T (G) such that δ(G) ≤ 2ρ̂w,T (G) + k + 1 ≤ 8δ(G) + 3k + 1.

4.2. Fast Approximation and Exact Computation of Thinness, Slimness,
and Insize. Using Proposition 3.4, Theorem 3.23, and Proposition 3.24, we get the
following corollary.

Corollary 3.28. For a graph G with n vertices and a BFS-tree T rooted at a
vertex w, τ(G) ≤ 8ρw,T (G) + 4 ≤ 8τ(G) + 4 and ς(G) ≤ 6ρw,T (G) + 3 ≤ 24ς(G) + 3.
Consequently, an 8-approximation (with additive surplus 4) of the thinness τ(G) and a
24-approximation (with additive surplus 3) of the slimness ς(G) can be found in O(n2)
time for any graph G given by its distance matrix.
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In fact, ρw,T (G) gives us a 7-approximation of the thinness τ(G) of G.

Theorem 3.29. Given a graph G and a BFS-tree T rooted at w, τ(G) ≤ 7ρw,T (G)+
4 ≤ 7τ(G) + 4. Consequently, a 7-approximation (with an additive constant 4) of the
thinness τ(G) of G can be computed in O(n2) time for any graph G given by its distance
matrix.

The fact that ρw,T (G) gives a better approximation for τ(G) than for δ(G) is not
surprising since ρw,T (G) can be viewed as the pointed thinness of G. However, the proof
of Theorem 3.29 is much more involved than the proof of Theorem 3.23 and several
cases have to be considered.

In [54], we also provide exact algorithms for computing the slimness ς(G), the thin-
ness τ(G), and the insize ι(G) of a given graph G.

Theorem 3.30. For a graph G = (V,E) with n vertices and m edges, the following
holds:

(1) the thinness τ(G) and the insize ι(G) of G can be computed in O(n2m) time;

(2) the slimness ς(G) of G can be computed in Ô(n2m+n4/ log3 n) time combinatorially
and in O(n3.273) time using matrix multiplication.

Both algorithms use O(n2) space.

When the graph is dense (i.e., m = Ω(n2)), the time complexity of our algorithms
is of the same order of magnitude as the best-known algorithms for computing δ(G) in
practice (see [36]), but when the graph is not so dense (i.e., m = o(n2)), our algorithms
run in o(n4) time. In contrast to this result, the existing algorithms for computing δ(G)
exactly are not sensitive to the density of the input.

4.3. Geodesic Spanning Trees. A geodesic spanning tree rooted at a point w (a
GS-tree for short) of a geodesic space (X, d) is a union of geodesics Γw :=

⋃
x∈X γw,x

with one end at w such that y ∈ γw,x implies that γw,y ⊆ γw,x. When a GS-tree Γw of
geodesic metric space (X, d) is given, one can define the parameter ρw,Γw(X) as in the
case of graphs (without ceilings and taking a sup instead of a max). Then, the analogue
of Theorem 3.23 also holds in this case.

Theorem 3.31. Given a geodesic metric space X and a GS-tree Γw rooted at w,
δ(G) ≤ 2ρw,Γw(X) ≤ 8δ(G).

Therefore, the question of the existence of geodesic spanning trees naturally arise.
We show that they exist in all complete geodesic metric spaces (recall that a metric
space (X, d) is called complete if every Cauchy sequence of X has a limit in X):

Theorem 3.32. For any complete geodesic metric space (X, d) and for any basepoint
w, one can define a geodesic spanning tree Γw =

⋃
x∈X γw,x rooted at w.

For finite graphs this is well-known and simple, and such trees can be constructed
in various ways, for example via Breadth-First-Search. The existence of BFS-trees in
infinite graphs has been established by Polat [203, Lemma 3.6]. However for geodesic
spaces this result seems to be new (and not completely trivial).

Given a point w ∈ X, the next proposition defines a geodesic γw,x for each point
x ∈ X such that Γw =

⋃
x∈X γw,x is a geodesic spanning tree of (X, d) rooted at w.

Proposition 3.33. For any complete geodesic metric space (X, d), for any pair of
points x, y ∈ X one can define an (x, y)-geodesic γx,y such that for all x, y ∈ X and for
all u, v ∈ γx,y, we have γu,v ⊆ γx,y.
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Proof. Let � be a well-order on X. For any x, y ∈ X we define inductively two
sets P≺vx,y and P vx,y for any v ∈ X:

P≺vx,y = {x, y} ∪
⋃
u≺v

P ux,y,

P vx,y =

{
P≺vx,y ∪ {v} if there is an (x, y)-geodesic γ with P≺vx,y ∪ {v} ⊆ γ,
P≺vx,y otherwise.

We set Px,y =
⋃
u∈X P

u
x,y.

Claim 3.34. For all x, y ∈ X and for any v ∈ X,

(1) there exists an (x, y)-geodesic γ≺vx,y such that P≺vx,y ⊆ γ≺vx,y,
(2) there exists an (x, y)-geodesic γvx,y such that P vx,y ⊆ γvx,y,
(3) there exists an (x, y)-geodesic γx,y such that Px,y ⊆ γx,y.

Using this claim, we can show that Px,y is an (x, y)-geodesic and that for each
u, v ∈ Px,y, the geodesic Pu,v is included in Px,y, establishing the proposition. �

If Γw is a geodesic spanning tree of X, then X is the union of the images [w, x] of
the geodesics of γw,x ∈ Γw and one can show that there exists a real tree T = (X, dT )
such that any γw,x ∈ Γw is the (w, x)-geodesic of T .

Remark 3.35. The proof of Theorem 3.32 of the existence of GS-trees is completely
different from the proof of Polat [203] of the existence of BFS-trees in arbitrary graphs.
The proof of [203], as the usual BFS-tree construction in finite graphs, constructs an
increasing sequence of trees that span vertices at larger and larger distances from the
root. In other words, from an arbitrary well-ordering of the set V of vertices of G,
Polat [203] constructs a well-ordering of V that is consistent with the distances to the
root.

When considering arbitrary geodesic metric spaces, a well-ordering consistent with
the distances to the basepoint w does not always exist; consider for example the segment
[0, 1] with w = 0.

5. Conclusion

Our characterization of hyperbolicity via cop and robber games allows to derive an
O(n2)-time algorithm to compute an approximation of the hyperbolicity δ(G) of a graph
G with n vertices. Unfortunately, the approximation factor of this algorithm is huge
and even if the algorithm is very simple, it would be of little use in practice. However,
the bound on the approximation factor is obtained via successive approximations since
we use different definitions of the hyperbolicity in the proof. In particular, the core of
our characterization of hyperbolicity via cops and robber games is based on the linear
isoperimetric inequality that is satisfied by δ-hyperbolic graph. It would be interesting to
find an alternative proof of Theorem 3.8 that do not rely on the isoperimetric inequality
and that would lead to a better bound on the hyperbolicity.

One interesting property of the algorithm based on the cop and robber game is
that once the BFS-tree has been computed, one only need to consider a ball of radius
O(δ(G)) around each vertex to compute an approximation of δ(G). In fact, given a
graph endowed with a BFS-tree and a parameter α, there exists a local algorithm in
the sense of Peleg [202] that can check whether G is 1569α-hyperbolic, or G is not α-
hyperbolic. Note that the algorithm described in Section 4 does not have this property
since we consider all pairs x, y of vertices. Observe that since locally a cycle and a tree
look similar, one cannot hope for a really local algorithm (that does not use the BFS-
tree, or some other initial labeling of the network). Note also that from our algorithm,
we cannot directly get a local algorithm that computes an approximation of δ(G) even if
we are given a graph G endowed with a BFS-tree. Indeed in our algorithm, we check the
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balls of radius 4α around all vertices for increasing values of α until all of them satisfy
some criteria. But if only one of the ball does not satisfy this criteria, we have to check
again all the balls for larger value of α. It would be interesting to know whether there
exists a local algorithm where the complexity depends only on the hyperbolicity δ(G)
that starting from a graph G endowed with a BFS-tree can compute an approximation
of the hyperbolicity δ(G) of G. One can imagine that each node computes a value and
that the maximum value computed gives an approximation of δ(G).



CHAPTER 4

Representation Maps for Maximum and Ample classes

One of the oldest open question in computational machine learning is the important
compression conjecture by Littlestone and Warmuth [163]/Floyd and Warmuth [119].
It asserts that any concept class C of VC-dimension d admits a sample compression
scheme of size O(d).

Combinatorially, a concept class is just a set family. Graph theoretically, a concept
class C can be viewed as a subgraph G(C) of the hypercube induced by the {0, 1}-vectors
encoding the concepts of C. Geometrically and topologically, a concept class C can be
viewed as the cube complex X(C) of G(C). This graph-theoretical and geometrico-
topological point of view on concept classes enable to use results from geometry in
machine learning.

In this chapter, we design unlabeled sample compression scheme for maximum classes
and characterize such schemes for ample classes (a.k.a. lopsided or extremal) via rep-
resentation maps and unique sink orientations. We also construct an example of a
maximum class of dimension 3 without corners. This refutes several previous works
in machine learning from the past 11 years. In particular, it implies that all previous
constructions of optimal unlabeled sample compression schemes for maximum classes
are erroneous.

The Sauer-Shelah-Perles Lemma [222, 228, 245] is arguably the most basic fact
in VC theory; it asserts that any class C ⊆ {0, 1}n satisfies |C| ≤

(
n
≤d
)
, where d =

VC-dim(C). A beautiful generalization of Sauer-Shelah-Perles’s inequality asserts that
|C| ≤ |X(C)|, where X(C) is the family of subsets that are shattered by C.1 The latter
inequality is a part of the Sandwich Lemma [10, 35, 110, 195], which also provides a
lower bound for |C| (and thus “sandwiches” |C|) in terms of the number of its strongly
shattered subsets (see Section 1). A class C is called maximum/ample if the Sauer-
Shelah-Perles/Sandwich upper bounds are tight (respectively). Every maximum class is
ample, but not vice versa.

Maximum classes were studied mostly in discrete geometry and machine learn-
ing, e.g. [118, 119, 123, 155, 249]. The history of ample classes is more inter-
esting as they were discovered independently by several works in disparate con-
texts [10, 19, 35, 110, 159, 173, 250]. Consequently, they received different names
such as lopsided classes [159], extremal classes [35, 173], and ample classes [19, 110].
Lawrence [159] was the first to define them for the investigation of the possible sign
patterns realized by points of a convex set of Rd. Interestingly, Lawrence’s definition of
these classes does not use the notion of shattering nor the Sandwich Lemma. In this
context, these classes were discovered by Bollobás and Radcliffe [35] and Bandelt et
al. [19], and the equivalence between the two definitions appears in [19]. Ample classes
admit a multitude of combinatorial and geometric characterizations [19, 35, 159] and
comprise many natural examples arising from discrete geometry, combinatorics, graph
theory, and geometry of groups [19,159].

Main Results. A corner in an ample class C is any concept c ∈ C that belongs
to a unique maximal cube of C (equivalently, c is a corner if C \ {c} is also ample). A
sequence of corner removals leading to a single concept is called a corner peeling ; corner

1Note that this inequality indeed implies the Sauer-Shelah-Perles Lemma, since |X(C)| ≤
(
n
≤d

)
.

93
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peeling is a strong version of collapsibility. Wiedemann [250] and independently Chepoi
(unpublished, 1996) asked whether every ample class has a corner. The machine learning
community studied this question independently in the context of sample compression
schemes for maximum classes: Rubinstein and Rubinstein [216] showed that corner
peelings lead to optimal unlabeled sample compression schemes (USCS).

The following result refutes this conjecture.

Theorem 4.1. There exists a maximum class CH of VC-dimension 3 without any
corner.

The crux of the proof is an equivalence between corner peelings and partial shellings
of the cross-polytope. This equivalence translates the question whether corners always
exist to the question whether partial shellings can always be extended. The latter was an
open question in Ziegler’s book on polytopes [261], and was resolved in Hall’s PhD thesis
where he presented an interesting counterexample [135]. The ample class resulting from
Hall’s construction yields a maximum class without corners.

Sample compression is a powerful technique to derive generalization bounds in sta-
tistical learning. Littlestone and Warmuth [163] introduced it and asked if every class
of VC-dimension d <∞ has a sample compression scheme of a finite size (see Section 1
for a definition). This question was later precised by Floyd and Warmuth [119, 247]
to whether a sample compression scheme of size O(d) exists. The first question was
recently resolved by [175] who exhibited an exp(d) sample compression. The second
question however remains one of the oldest open problems in machine learning (for
more background we refer the reader to [174] and the books [226,251]).

Rubinstein and Rubinstein [216, Theorem 16] showed that the existence of a corner
peeling for a maximum class C implies a representation map for C (see Section 2 for a
definition), which is known to yield an optimal unlabeled sample compression scheme
of size VC-dim(C) [155].2 They claim, using an interesting topological approach, that
maximum classes admit corner peelings. Unfortunately, Theorem 4.1 shows that this
does not hold.

While our Theorem 4.1 rules out the program of deriving representation maps from
corner peelings, we provide an alternative derivation of representation maps for maxi-
mum classes and therefore also of an optimal unlabeled sample compression scheme for
them.

Theorem 4.2. Any maximum class C ⊆ 2U of VC-dimension d admits a represen-
tation map, and consequently, an unlabeled compression scheme of size d.

We next turn to construction of representation maps for ample classes. We present
a local-to-global characterization of such maps via unique sink orientations.

Theorem 4.3. For an ample class C, map r : C → 2U is a representation map if
and only if r is the out-map of a unique sink orientation

An orientation of the edges of a cube B is a unique sink orientation (USO) if any
subcube B′ ⊆ B has a unique sink. Szabó and Welzl [236] showed that any USO of B
leads to a representation map for B. We extend this bijection to ample classes C by
proving that representation maps are equivalent to orientations o of C such that (i) o
is a USO on each subcube B ⊆ C, and (ii) for each c ∈ C the edges outgoing from c
belong to a subcube B ⊆ C. We further show that any ample class admits orientations
satisfying each one of those conditions. However, the question whether all ample classes
admit representation maps remains open.

The results of this chapter are based on the paper [57,58].

2Pálvölgyi and Tardos [196] recently exhibited a (non-ample) class C with no USCS of size
VC-dim(C).
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Figure 4.1. A 2-dimensional maximum class C ⊆ 2{1,2,3,4,5} on the
left and the restriction Cx for x = 5 on the right. The reduction Cx

corresponds to the restriction of the carrier Nx(C).

1. Concept Classes and (Unlabeled) Sample Compression Schemes

A concept class C is a set of subsets (concepts) of a finite ground set U which is
called the domain of C and denoted dom(C). We sometimes treat the concepts as
characteristic functions rather than subsets. The support (or dimension set) supp(C)
of C is the set {x ∈ U : x ∈ c′ \ c′′ for some c′, c′′ ∈ C}. C∗ := 2U \C is the complement
of C. The restriction of C on Y ⊆ U is the class C|Y = {c ∩ Y : c ∈ C} whose domain
is Y . We use CY as shorthand for C|(U \ Y ); in particular, we write Cx for C{x} (see
Figure 4.1 for an example), and cx for c|(U \{x}) for c ∈ C (note that cx ∈ Cx). A class
B ⊆ 2U is a cube if there exists Y ⊆ U such that B|Y = 2Y and BY contains a single
concept (denoted by tag(B)). Note that supp(B) = Y and therefore we say that B is
a Y -cube; |Y | is called the dimension dim(B) of B. Two cubes B,B′ with the same
support are called parallel cubes. A cube B is maximal if there is no cube B′ such that
B ( B′.

Let Qn denote the n-dimensional cube where n = |U |; c, c′ ∈ Qn are called adjacent
if the symmetric difference c∆c′ is of size 1. The 1-inclusion graph of C is the subgraph
G(C) of Qn induced by the vertex-set C when the concepts of C are identified with
the corresponding vertices of Qn. Any cube B ⊆ C is called a cube of C. The cube
complex of C is the set Q(C) = {B : B is a cube of C}. The dimension of Q(C)
is dim(Q(C)) := maxB∈Q(C) dim(B). A concept c ∈ C is called a corner of C if c

belongs to a unique maximal cube of C. The reduction CY of C to Y ⊆ U is the class
CY := {tag(B) : B ∈ Q(C) and supp(B) = Y } whose domain is U \ Y . When x ∈ U
we denote C{x} by Cx and call it the x-hyperplane of C (see Figure 4.1 for an example).
Note that a concept c belongs to Cx if and only if c and c ∪ {x} both belong to C.
The union of all cubes of C having x in their support is called the carrier of Cx and is
denoted by Nx(C). If c ∈ Nx(C), we also denote c|U \ {x} by cx (note that cx ∈ Cx).

A class C is connected if the graph G(C) is connected. Let dG(C)(c, c
′) denote the

distance between c and c′ in G(C). Note that dQn(c, c′) =: d(c, c′) coincides with the
Hamming distance |c∆c′|. Let B(c, c′) = {t ⊆ U : d(c, t) + d(t, c′) = d(c, c′)} be the
interval between c and c′ in Qn. A class C is called isometric if d(c, c′) = dG(C)(c, c

′)
for any c, c′ ∈ C and weakly isometric if d(c, c′) = dG(C)(c, c

′) if d(c, c′) ≤ 2. Any path
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connecting two concepts tag(B) and tag(B′) of CY inside CY can be lifted to a path of
Y -cubes connecting B and B′ in C; such a path of cubes is called a gallery.

A class C shatters Y ⊆ U if C|Y = 2Y . C strongly shatters Y if C contains a
Y -cube. Let X(C), X(C) denote the simplicial complexes X(C) = {Y : C shatters Y },
X(C) = {Y : C strongly shatters Y }. Note that X(C) ⊆ X(C). The VC-dimension
VC-dim(C) of C is the size of a largest set C shatters. The Sandwich Lemma asserts
that |X(C)| ≤ |C| ≤ |X(C)|.

A labeled sample is a set s = {(x1, y1), . . . , (xm, ym)}, where xi ∈ U and yi ∈ {0, 1}.
An unlabeled sample is a set {x1, . . . , xm}, where xi ∈ U . Given a labeled sample
s = {(x1, y1), . . . , (xm, ym)}, the unlabeled sample {x1, . . . , xm} is the domain of s and
is denoted by dom(s). A sample s is realizable by a concept c : U → {0, 1} if c(xi) = yi
for every i, and s is realizable by a concept class C if it is realizable by some c ∈ C.

A sample compression scheme for a concept class C is best viewed as a protocol
between a compressor and a reconstructor. The compressor gets a realizable sample s
from which it picks a small subsample s′. The compressor sends s′ to the reconstructor.
Based on s′, the reconstructor outputs a concept c that needs to be consistent with the
entire input sample s. A sample compression scheme has size k if for every realizable
input sample s the size of the compressed subsample s′ is at most k. An unlabeled
(sample) compression scheme (USCS) is a sample compression scheme in which the
compressed subsample s′ is unlabeled. So, the compressor removes the labels before
sending the subsample to the reconstructor.

2. Ample and Maximum Classes

We briefly review the main characterizations and basic geometric examples of ample
and maximum classes. The next theorem summarizes the main characterizations of
ample classes:

Theorem 4.4 ([19,35,159]). The following are equivalent for a class C:

(1) C is ample;
(2) C∗ is ample;
(3) X(C) = X(C);
(4) |X(C)| = |C|;
(5) |X(C)| = |C|;
(6) C ∩B is ample for any cube B;
(7) (CY )Z = (CZ)Y for all partitions U = Y ·∪ Z;
(8) for all partitions U = Y ·∪ Z, either Y ∈ X(C) or Z ∈ X(C∗).

Condition (3) leads to a simple definition of ampleness: C is ample if whenever Y ⊆
U is shattered by C, then there is a Y -subcube of C. Thus, if C is ample we will write
X(C) instead of X(C) = X(C). A representation map for an ample class C is a bijection
r : C → X(C) satisfying the non-clashing condition: c|(r(c) ∪ r(c′)) 6= c′|(r(c) ∪ r(c′)),
for all c, c′ ∈ C, c 6= c′. We continue with metric and recursive characterizations of ample
classes:

Theorem 4.5 ([19]). The following are equivalent for a class C:

(1) C is ample;
(2) CY is connected for all Y ⊆ U ;
(3) CY is isometric for all Y ⊆ U ;
(4) C is isometric, and both Cx and Cx are ample for all x ∈ U ;
(5) C is connected and all hyperplanes Cx are ample.

Corollary 4.6. Two maximal cubes of an ample class C have different supports.
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Indeed, if B and B′ are two d-cubes with the same support, by Theorem 4.5(2) B
and B′ can be connected in C by a gallery, and thus B is contained in a d + 1-cube.
Therefore, B and B′ cannot be maximal.

The Sandwich Lemma and Theorem 4.4(5) imply that maximum classes are am-
ple. Basic examples of maximum classes are concept classes derived from hyperplane
arrangements in Rn, ball arrangements in Rn, and unions of n intervals in R. The
following theorem summarizes some characterizations of maximum classes provided
in [118,119,123,249]:

Theorem 4.7. The following are equivalent for a class C:

(1) C is maximum;
(2) CY is maximum for all Y ⊆ U ;
(3) Cx and Cx are maximum for all x ∈ U ;
(4) C∗ is maximum.

We continue with some important geometric examples of ample classes.

1. Simplicial complexes. Every simplicial complex S (viewed as a set system closed
under taking subsets) is ample since X(S) = X(S).

2. Realizable ample classes. Let K ⊆ Rn be a convex set. Let C(K) := {sign(v) : v ∈
K, vi 6= 0,∀i ≤ n}, where sign(v) ∈ {±1}n is the sign pattern of v. Lawrence [159]
showed that C(K) is ample, and called ample classes representable in this manner
realizable.

3. Median classes. A class C is called median if for every three concepts c1, c2, c3 of C
their median m(c1, c2, c3) := (c1 ∩ c2) ∪ (c1 ∩ c3) ∪ (c2 ∩ c3) also belongs to C. Observe
that a class C is median if and only if its 1-inclusion graph G(C) is a median graph.
Median classes are ample by [19, Proposition 2]. Due to their relationships with other
discrete structures, median classes are one of the most important examples of ample
classes. Median classes are equivalent to finite median graphs (a well-studied class in
metric graph theory, see [18]), to CAT(0) cube complexes, i.e., cube complexes of global
nonpositive curvature (central objects in geometric group theory, see [128, 219]), and
to the domains of event structures (a basic model in concurrency theory [183,253]).

4. Convex geometries and conditional antimatroids. Let C be a class such that (i)
∅ ∈ C and (ii) c, c′ ∈ C implies that c ∩ c′ ∈ C. Call x ∈ c ∈ C extremal if c \ {x} ∈ C.
We say that c ∈ C is generated by s ⊆ c if c is the smallest member of C containing s.
A class C satisfying (i) and (ii) with the additional property that every member c of C
is generated by its extremal points is called a conditional antimatroid [19, Section 3].
If U ∈ C, then we obtain the well-known structure of a convex geometry (called also an
antimatroid) [114]. By [19, Proposition 1], conditional antimatroids C are ample since
X(C) coincides with the sets of extremal points and X(C) coincides with the set of all
minimal generating sets of sets from C. Convex geometries comprise many examples
from geometry, ordered sets, and graphs; see the foundational paper [114]. For example,
a realizable convex geometry is a convex geometry C ⊆ U such that U can be realized
as a set of Rn and c ∈ C if and only if c is the intersection of a convex set of Rn with U .

We continue with two examples of conditional antimatroids.

Example 4.8. Closer to usual examples from machine learning, let U be a finite set
of points in Rn, no two points sharing the same coordinate, and let the concept class
CΠ consist of all intersections of axis-parallel boxes of Rn with U . Then CΠ is a convex
geometry: for each c ∈ CΠ, ex(c) consists of all points of c minimizing or maximizing
one of the n coordinates. Clearly, for any p ∈ ex(c), there exists a box Π such that
Π ∩ U = c \ {p}.

Example 4.9. A partial linear space is a pair (P,L) consisting of a finite set P
whose elements are called points and a family L of subsets of P , whose elements are
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called lines, such that any line contains at least two points and any two points belong to
at most one line. The projective plane (any pair of points belong to a common line and
any two lines intersect in exactly one point) is a standard example, but partial linear
spaces comprise many more examples. The concept class L ⊆ 2P has VC-dimension at
most 2 because any two points belong to at most one line. Now, for each line ` ∈ L
fix an arbitrary total order π` of its points. Let L∗ consist of all subsets of points that
belong to a common line ` and define an interval of π`. Then L∗ is still a concept class
of VC-dimension 2. Moreover, L∗ is a conditional antimatroid: if c ∈ L∗ and c is an
interval of the line `, then ex(c) consists of the two end-points of c on `.

5. Ample Classes from Graph Orientations. Kozma and Moran [153] used the sandwich
lemma to derive several properties of graph orientations. They also presented two ex-
amples of ample classes related to distances and flows in networks (see also [159, p.157]
for another example of a similar nature). Let G = (V,E) be an undirected simple graph
and let o∗ be a fixed reference orientation of E. To an arbitrary orientation o of E
associate a concept co ⊆ E consisting of all edges which are oriented in the same way by
o and by o∗. It is proven in [153, Theorem 26] that if each edge of G has a non-negative
capacity, a source s and a sink t are fixed, then for any flow-value w ∈ R+, the set
Cflow
w of all orientations of G for which there exists an (s, t)-flow of value at least w is

an ample class. An analogous result was obtained if instead of the flow between s and
t one consider the distance between those two nodes.

3. Corner Peelings and Partial Shellings

In this section, we prove that corner peelings of ample classes are equivalent to
isometric orderings of C as well as to partial shellings of the cross-polytope. This
equivalence, combined with a result by Hall [135] yields a maximum class with VC
dimension 3 without corners (Theorem 4.1). Let C< := (c1, . . . , cm) be an ordering of
the concepts in C. For any 1 ≤ i ≤ m, let Ci := {c1, . . . , ci} denote the i’th level set.
The ordering C< is called:

(1) an ample ordering if every level set Ci is ample;
(2) a corner peeling if every ci is a corner of Ci;
(3) an isometric ordering if every level set Ci is isometric;
(4) a weakly isometric ordering if every level set Ci is weakly isometric.

Proposition 4.10. The following are equivalent for an ordering C< of an isometric
class C:

(1) C< is ample;
(2) C< is a corner peeling;
(3) C< is isometric;
(4) C< is weakly isometric.

A concept class C is dismantlable if it admits an ordering satisfying any of the
equivalent conditions (1)–(4) in Proposition 4.10. Isometric orderings of Qn are closely
related to shellings of its dual, the cross-polytope On (which we define next). De-
fine ±U := {±x1, . . . ,±xn}; so, |±U | = 2n, and we call −xi,+xi antipodal. The n-
dimensional cross-polytope is the pure simplicial complex of dimension n whose facets
are all σ ⊆ ±U that contain exactly one element in each antipodal pair. Thus, On has
2n facets and each facet σ of On corresponds to a vertex c of Qn (+xi ∈ σ if and only if
xi ∈ c). Observe that xi ∈ c′∆c′′ if and only if {+xi,−xi} ⊆ σ′∆σ′′ where σ′ correspond
to c′ and σ′′ corresponds to c′′.

Let X be a pure simplicial complex (PSC) of dimension d, i.e., a simplicial complex
in which all facets have size d. Two facets σ, σ′ are adjacent if |σ∆σ′| = 2. A shelling
of X is an ordering σ1, . . . , σp of all of its facets such that 2σj

⋂
(
⋃
i<j 2σi) is a PSC of
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dimension d − 1 for every j ≤ p [261, Lecture 8]. A partial shelling is an ordering of
some facets that satisfies the above condition. Note that σ1, . . . , σm is a partial shelling
if and only if for every i < j there exists k < j such that σi ∩ σj ⊆ σk ∩ σj , and σk ∩ σj
is a facet of both σj and σk. X is extendably shellable if every partial shelling can be
extended to a shelling. We next establish a relationship between partial shellings and
isometric orderings.

Proposition 4.11. Every partial shelling of the cross-polytope On defines an iso-
metric ordering of the corresponding vertices of the cube Qn. Conversely, if C is an
isometric class of Qn, then any isometric ordering of C defines a partial shelling of On.

Consequently, if all ample classes are dismantlable, then On is extendably shellable.

It was asked in [261] if any cross-polytope On is extendably shellable. In the PhD
thesis of H. Tracy Hall from 2004, a nice counterexample to this question is given [135].
Hall’s counterexample arises from the 299 regions of an arrangement of 12 pseudo-
hyperplanes. These regions are encoded as facets of the cross-polytope O12 and it is
shown in [135] that the subcomplex of O12 consisting of all other facets admits a shelling
which cannot be extended. By Proposition 4.11, the ample concept class CH defined
by those 299 simplices does not have any corner (see Figure 4.2 for a picture of CH).3

A counting shows that CH is a maximum class of VC-dimension 3. This completes the
proof Theorem 4.1.

Implications on Previous Works. Theorem 4.1 proves that several previous re-
sults in machine learning are erroneous:

• Rubinstein and Rubinstein [216, Theorem 32] showed that any maximum class
can be represented by a simple arrangement of piecewise-linear hyperplanes.
In [216, Theorem 39], they claim that sweeping such an arrangement leads to
a corner peeling of the corresponding maximum class. This is unfortunately
false, as witnessed by Theorem 4.1.
• Kuzmin and Warmuth [155] constructed unlabeled sample compression

schemes for maximum classes based on the presumed uniqueness of a certain
matching (their Theorem 10). This theorem is wrong as it implies the existence
of corners. However their conclusion is correct: in Theorem 4.2 we show that
such unlabeled compression schemes exist.
• Theorem 3 by Samei, Yang, and Zilles [220] is built on a generalization of

Theorem 10 from [155] to the multiclass case which is also incorrect.
• Theorem 26 by Doliwa et al. [108] uses the result by [216] to show that the

Recursive Teaching Dimension (RTD) of maximum classes equals to their VC
dimension. However the VC dimension 3 maximum class from Theorem 4.1
has RTD at least 4. It remains open whether the RTD of every maximum class
C is bounded by O(VC-dim(C)).

Positive Results. On the positive side, some particular ample classes are disman-
tlable. For example, median classes are dismantlable. More generally, we show that
conditional antimatroids are dismantlable.

Proposition 4.12. Conditional antimatroids are dismantlable.

When considering 2-dimensional classes, it was proved in [216, Theorem 34] that
2-dimensional maximum classes are dismantlable. This was later generalized to 2-
dimensional ample classes in [171]. In [57], we provide a different proof based on a
local characterization of convex sets of general ample classes.

3For the interested reader, a file containing the 299 concepts of CH represented as elements of
{0, 1}12 is available at https://arxiv.org/src/1812.02099/anc/CH.txt

https://arxiv.org/src/1812.02099/anc/CH.txt
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Figure 4.2. The maximum class CH ⊂ 212 without corners of VC-
dimension 3 with

(
12
≤3

)
= 299 concepts. A different edge color is used for

each of the 12 dimensions. Best viewed in color.

A free face of a cube complex Q(C) is a face Q of Q(C) strictly contained in only
one other face Q′ of Q(C). An elementary collapse is the deletion of a free face Q (thus
also of Q′) from Q(C). A cube complex Q(C) is collapsible if C can be reduced to a
single vertex by a sequence of elementary collapses. Collapsibility is a stronger version
of contractibility. The sequences of elementary collapses of a collapsible cube complex
Q(C) can be viewed as discrete Morse functions [121] without critical cells, i.e., acyclic
perfect matchings of the face poset of Q(C). From the definition it follows that if C has
a corner peeling, then the cube complex Q(C) is collapsible: the sequence of elementary
collapses follows the corner peeling order (in general, detecting if a finite complex is
collapsible is NP-complete [237]). Theorem 4.5(5) implies that the cube complexes of
ample classes are contractible (see also [20] for a more general result). In fact, the cube
complexes of ample classes are collapsible:

Proposition 4.13. If C ⊆ 2U is an ample class, then the cube complex Q(C) is
collapsible.

4. Representation Maps for Maximum Classes

In this section, we prove Theorem 4.2, i.e., that maximum classes admit representa-
tion maps, and therefore, by a result of [155], they admit optimal unlabeled compression
schemes.
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The crux of the proof of Theorem 4.2 is the following proposition. Let C be a d-
dimensional maximum class and let D ⊆ C be a (d−1)-dimensional maximum subclass.
A missed simplex for the pair (C,D) is a simplex σ ∈ X(C) \ X(D). Note that any
missed simplex has size d. An incomplete cube Q for (C,D) is a cube of C such that
supp(Q) is a missed simplex. For any incomplete cube Q with σ = supp(Q), C|σ and
D|σ are maximum classes of dimensions d and d − 1, respectively. Since |σ| = d, we

have |C|σ| =
(
d
≤d
)

=
(

d
≤d−1

)
+ 1 = |D|σ| + 1. Since Q|σ = C|σ, there exists a unique

concept c ∈ Q such that c|σ /∈ D|σ. We denote c by s(Q), and call c the source of Q.
In fact, the source map is a bijection between missed simplices for (C,D) and concepts
of C \D:

Proposition 4.14. Each c ∈ C \ D is the source of a unique incomplete cube.
Moreover, if r′ : D → X(D) is a representation map for D and r : C → X(C) extends
r′ by setting r(c) = supp(s−1(c)) for each c ∈ C \D, then r is a representation map for
C.
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Figure 4.3. Illustrating the proof of Theorem 4.2 (when x = 5): to
construct a representation map for C, we inductively construct a repre-
sentation map rx for Cx, extend it to a representation map rx for Cx
using Proposition 4.14 with D = Cx, and finally extend it to a represen-
tation map r for C. The representation maps rx, rx, and r are defined
by the orientation as in Theorem 4.20 and by the coordinates of the
underlined bits.
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Proof of Theorem 4.2. Following the general idea of [155], we derive a repre-
sentation map for C by induction on |U |. For the induction step (see Figure 4.3), pick
x ∈ U and consider the maximum classes Cx and Cx ⊂ Cx with domain U \ {x}. By
induction, Cx has a representation map rx. Use Proposition 4.14 to extend rx to a
representation map rx of Cx. Define a map r on C as follows:

• r(c) = rx(cx) if cx /∈ Cx or x /∈ c,
• r(c) = rx(cx) ∪ {x} if cx ∈ Cx and x ∈ c.

It is easy to verify that r is non-clashing: indeed, if c′ 6= c′′ ∈ C satisfy c′x 6= c′′x then
c′x|rx(c′x) ∪ rx(c′′x) 6= c′′x|rx(c′x) ∪ rx(c′′x). Since rx(c′x) ⊆ r(c′), rx(c′′x) ⊆ r(c′′), it follows
that also c′, c′′ disagree on r(c′) ∪ r(c′′). Else, c′x = c′′x ∈ Cx and c′(x) 6= c′′(x). In this
case, x ∈ r(c′) ∪ r(c′′) and therefore c′, c′′ disagree on r(c′) ∪ r(c′′).

It remains to show that r is a bijection between C and X(C) =
(
U
≤d
)
. It is easy

to verify that r is injective. So, it remains to show that |r(c)| ≤ d, for every c ∈ C.
This is clear when cx /∈ Cx or x /∈ c. If cx ∈ Cx and x ∈ c, then r(c) = rx(cx) ∪ {x}
and |rx(cx)| ≤ d − 1 (since Cx is (d − 1)-dimensional). Hence, |r(c)| ≤ d as required,
concluding the proof. �

Proof of Proposition 4.14. Call a maximal cube of C a chamber and a facet of
a chamber a panel (a σ′-panel if its support is σ′). Any σ′-panel in C satisfies |σ′| = d−1
and σ′ ∈ X(D). Recall that a gallery between two parallel cubes Q′, Q′′ (say, two σ′-
cubes) is any simple path of σ′-cubes (Q0 := Q′, Q1, . . . , Qk := Q′′), where Qi ∪Qi+1 is
a d-cube. By Theorem 4.5(3), any two parallel cubes of C are connected by a gallery in
C. Since D is a maximum class, any panel of C is parallel to a panel that is a maximal
cube of D. Also for any maximal simplex σ′ ∈ X(D), the class Cσ

′
is a maximum class

of dimension 1 and Dσ′ is a maximum class of dimension 0 (single concept). Thus Cσ
′

is a tree (e.g. [123, Lemma 7]) which contains the unique concept c ∈ Dσ′ . We call c

the root of Cσ
′

and denote the σ′-panel P such that P σ
′

= c by P (σ′).

Lemma 4.15. Let Q be an incomplete cube for (C,D) with source s and support σ,
and let x, y ∈ U such that x /∈ σ and y ∈ σ. Then, the following holds:

(i) Qx is an incomplete cube for (Cx, Dx) whose source is sx.
(ii) Qy is an incomplete cube for (Cy, Dy) whose source is sy.

Next we prove that each concept of C \ D is the source of a unique incomplete
cube. Assume the contrary and let (C,D) be a counterexample minimizing the size of
U . First, if a concept c ∈ C \ D is the source of two incomplete cubes Q1, Q2, then
dom(C) = supp(Q1) ·∪ supp(Q2). Indeed, let σ1 = supp(Q1) and σ2 = supp(Q2). By
Lemma 4.15(i) and minimality of (C,D), dom(C) = σ1 ∪ σ2. By Lemma 4.15(ii) and
minimality of (C,D), σ1 ∩ σ2 = ∅. Indeed, if there exists x in σ1 ∩ σ2, cx is the source
of the incomplete cubes Qx1 and Qx2 for (Cx, Dx), contrary to minimality of (C,D).

Next we assert that any c ∈ C\D is the source of at most 2 incomplete cubes. Indeed,
let c be the source of incomplete cubesQ1, Q2, Q3. Then dom(C) = supp(Q1) ·∪supp(Q2),
i.e., supp(Q2) = dom(C) \ supp(Q1). For similar reasons, supp(Q3) = dom(C) \
supp(Q1) = supp(Q2). Thus, by Corollary 4.6, Q2 = Q3.

Lemma 4.16. Let c′, c′′ ∈ C \ D be neighbors and let c′∆c′′ = {x}. Then, c′ is
the source of 2 incomplete cubes if and only if c′′ is the source of 0 incomplete cubes.
Consequently, every connected component in G(C \ D) either contains only concepts c
with |s−1(c)| ∈ {0, 2}, or only concepts c with |s−1(c)| = 1.

Pick c ∈ C\D that is the source of two incomplete cubes for (C,D) and an incomplete
cube Q such that c = s(Q). Let σ = supp(Q), x ∈ σ, and σ′ = σ \ {x}. The concept
c belongs to a unique σ′-panel P . Let L = (P0 = P (σ′), P1, . . . , Pm−1, Pm = P ) be the
unique gallery between the root P (σ′) of the tree Cσ and P . For i = 1, . . . ,m, denote
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the chamber Pi−1 ∪ Pi by Qi. Since Pi ∩D and Qi ∩D are ample for i ≥ 0, and Pi is
not contained in D for i > 0, it follows that the complements Pi \ D and Qi \ D are
nonempty ample classes. Hence Pi\D and Qi\D induce nonempty connected subgraphs
of G(C \D). Therefore, it follows that c and each concept c′ ∈ Qi \D are connected in
G(C \D) by a path for i > 0, and by Lemma 4.16 it follows that
(4.1)

For every i > 0, each c′ ∈ Qi \D is the source of either 0 or 2 incomplete cubes.

Consider the chamber Q1 = P0 ∪ P1 and its source s = s(Q1). By the definition
of the source, necessarily s ∈ P1 and s /∈ D. Therefore, Equation (4.1) implies that
there must exist another cube Q′ such that s = s(Q′). Let s′ be the neighbor of s
in P0 = P (σ′); note that s′ ∈ D. Since supp(Q1) ∩ supp(Q′) = ∅, it follows that
s| supp(Q′) = s′| supp(Q′) ∈ D| supp(Q′), contradicting that s = s(Q′). This establishes
the first assertion of Proposition 4.14.

We prove now that the map r defined in Proposition 4.14 is a representation map
for C. It is easy to verify that it is a bijection between C and X(C), so it remain to
establish the non-clashing property: c|(r(c) ∪ r(c′)) 6= c′|(r(c) ∪ r(c′)) for all distinct
pairs c, c′ ∈ C. This holds when c, c′ ∈ D because r′ is a representation map. Next, if
c ∈ C \D and c′ ∈ D, this holds because c|r(c) /∈ D|r(c) by the properties of s. Thus,
it remains to show that every distinct c, c′ ∈ C \ D satisfy c|(supp(Q) ∪ supp(Q′)) 6=
c′|(supp(Q)∪ supp(Q′)), where Q = s−1(c), Q′ = s−1(c′). Assume towards contradiction
that this does not hold and consider a counterexample with minimal domain size |U |. By
minimality, supp(Q′)∪ supp(Q) = U (or else (Cx, Dx), for some x /∈ supp(Q′)∪ supp(Q)
would be a smaller counterexample). Therefore, since c, c′ are distinct, there must be
x ∈ U = supp(Q′)∪ supp(Q) such that c(x) 6= c′(x), which is a contradiction. This ends
the proof of Proposition 4.14. �

5. Representation Maps for Ample Classes

In this section, we provide combinatorial and geometric characterizations of repre-
sentation maps of ample classes (which lead to optimal unlabeled compression schemes).

Theorem 4.17. Let C ⊆ 2U be an ample class and let r : C → X(C) be a bijection.
The following conditions are equivalent:

(R1) ∪-non-clashing: For all distinct concepts c′, c′′ ∈ C, c′|r(c′)∪r(c′′) 6= c′′|r(c′)∪r(c′′).
(R2) Reconstruction: For every realizable sample s of C, there is a unique c ∈ C that is

consistent with s and r(c) ⊆ dom(s).
(R3) Cube injective: For every cube B of 2U , the mapping c 7→ r(c) ∩ supp(B) from

C ∩B to X(C ∩B) is injective.
(R4) ∆-non-clashing: For all distinct concepts c′, c′′ ∈ C, c′|r(c′)∆r(c′′) 6=

c′′|r(c′)∆r(c′′).
Moreover, any ∆-non-clashing map r : C → X(C) is bijective and is therefore a

representation map. Furthermore, if r is a representation map for C, then there exists
an unlabeled sample compression scheme for C of size VC-dim(C).

Proof. Fix Y ⊆ U and partition C into equivalence classes where two concepts
c, c′ are equivalent if c|Y = c′|Y . Thus, each equivalence class corresponds to a sample
of C with domain Y , i.e., a concept in C|Y . We first show that the number of such
equivalence classes equals the number of concepts whose representation set is contained
in Y :

|C|Y | = |X(C|Y )| (Since C|Y is ample)

= |X(C) ∩ 2Y |
= |{c : r(c) ⊆ Y }| (Since r : C → X(C) = X(C) is a bijection)
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Condition (R2) asserts that in each equivalence class there is exactly one concept c such
that r(c) ⊆ Y .

(R1) ⇒ (R2): Assume ¬(R2) and consider a sample s for which the property does not
hold. This implies that there exists an equivalence class with two distinct concepts
c′, c′′ ∈ C for which r(c′), r(c′′) ⊆ Y . Therefore, there exist two equivalent concepts
c, c′ ∈ C such that r(c), r(c′) ⊆ Y . Since c|Y = c′|Y , we have c|r(c)∪r(c′) = c′|r(c)∪r(c′),
contradicting (R1).

(R2) ⇒ (R1): Assume ¬(R1), i.e. for two distinct concepts c′, c′′ ∈ C, we have c′|r(c′)∪
r(c′′) = c′′|r(c′)∪r(c′′). Now for the sample s = c′|r(c′)∪r(c′′), we have dom(s) = r(c′)∪
r(c′′). Furthermore, c′|dom(s) = c′′|dom(s) and r(c′), r(c′′) ⊆ dom(s), contradicting
(R2).

(R1)&(R2)⇒ (R3): Since C∩B is ample, it suffices to show that for every Y ∈ X(C∩B)
there is some c ∈ C ∩ B with r(c) ∩ supp(B) = Y . This is established by the following
fundamental claim that is proved by induction on |Y |.

Claim 4.18. Conditions (R1) and (R2) together imply that for any Y ∈ X(C ∩B),
there exists a unique concept cY ∈ C ∩B such that r(cY ) ∩ supp(B) = Y .

(R3) ⇒ (R4): For any distinct concepts c′, c′′ ∈ C, consider the minimal cube B :=
B(c′, c′′) which contains both c′, c′′. This means that c′(x) 6= c′′(x) for every x ∈ supp(B),
and that c′(x) = c′′(x) for every x /∈ supp(B). Condition (R3) guarantees that the
mapping r(c) 7→ r(c) ∩ supp(B) is an injection from C ∩ B to X(C ∩ B). Therefore
r(c′)∩ supp(B) 6= r(c′′)∩ supp(B). It follows that there must be some x ∈ supp(B) such
that x ∈ (r(c′) ∩ supp(B))∆(r(c′′) ∩ supp(B)). Since x ∈ supp(B), c′(x) 6= c′′(x) and
therefore c′|r(c′)∆r(c′′) 6= c′′|r(c′)∆r(c′′) and condition (R4) holds for c′ and c′′.

(R4) ⇒ (R1): This is immediate because if two concepts clash on their symmetric
difference, then they also clash on their union.

Moreover, observe that for any map r : C → X(C), if r(c) = r(c′) for c 6= c′, then
r(c)∆r(c′) = ∅ and r is not ∆-non-clashing. Consequently, any ∆-non-clashing map
r : C → X(C) is injective and thus bijective since |C| = |X(C)|.

We now show that if r : C → X(C) is a representation map for C then there exists
an unlabeled sample compression scheme for C. Let RS(C) be the set of all samples
realizable by C. Formally, an unlabeled sample compression scheme for C of size k is
defined by a (compressor) function α : RS(C) →

(
U
≤k
)

and a (reconstructor) function

β : Im(α) := α(RS(C)) → C such that for any realizable sample s of C, the following
conditions hold: α(s) ⊆ dom(s) and β(α(s))| dom(s) = s.

By (R2), for each realizable sample s ∈ RS(C), let γ(s) be the unique concept
c ∈ C such that r(c) ⊆ dom(s) and c|dom(s) = s. Then consider the compressor
α : RS(C)→ X(C) such that for any s ∈ RS(C), α(s) = r(γ(s)) and the reconstructor
β : X(C) → C such that for any Z ∈ X(C), β(Z) = r−1(Z). Observe that by the
definition of γ(s), α(s) ⊆ dom(s) and β(α(s)) = γ(s) coincides with s on dom(s).
Consequently, α and β defines an unlabeled sample compression scheme for C of size
dim(X(C)) = VC-dim(C). This concludes the proof of the theorem. �

Theorem 4.17 implies that for any representation map r : C → X(C) and any x-
edge cc′, r(c)∆r(c′) = {x}. Hence, r defines an orientation or of G(C): an x-edge cc′ is
oriented from c to c′ iff x ∈ r(c) \ r(c′). Moreover, or has the following properties (the
proof relies on Claim 4.18):

Corollary 4.19. If r : C → X(C) is a representation map for an ample class
C ⊆ 2U , then or satisfy the following two conditions:

(C1) for any c ∈ C, all outgoing neighbors of c belong to a cube of C;
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(C2) or is a USO on each cube of C.

An orientation o of the edges of G(C) is a unique sink orientation (USO) if o satisfies
(C1) and (C2). The out-map ro of an orientation o associates to each c ∈ C the
coordinate set of the edges outgoing from c. We continue with a characterization of
representation maps of ample classes as out-maps of USOs, extending a similar result of
Szabó and Welzl [236] for cubes. This characterization is “local-to-global”, since (C1)
and (C2) are conditions on the stars St(c) of all concepts c ∈ C (St(c) is the set of all
faces of the cubes containing c).

Theorem 4.20. For an ample class C and a map r : C → 2U , (i)-(iii) are equivalent:

(i) r is a representation map;
(ii) r is the out-map of a USO;

(iii) r(c) ∈ X(C) for any c ∈ C and or satisfies (C2).

Proof. The implication (i)⇒(ii) is established in Corollary 4.19. Now, we prove
(ii)⇒(i). Clearly, property (C1) implies that r(c) ∈ X(C) for any c ∈ C, whence r is
a map from C to X(C). Let C be an ample class of smallest size admitting a non-
representation map r : C → X(C) satisfying (C1) and (C2). Hence there exist u0, v0 ∈
C such that u0|(r(u0)∆r(v0)) = v0|(r(u0)∆r(v0)), i.e., (u0∆v0) ∩ (r(u0)∆r(v0)) = ∅;
(u0, v0) is called a clashing pair. To establish the following claim, we use the minimality
of C.

Claim 4.21. If (u0, v0) is a clashing pair, then C = C ∩ B(u0, v0) and r(u0) =
r(v0) = ∅.

Using Claim 4.21, one can show that C has the following structure:

Claim 4.22. C is a cube minus a vertex.

By Claim 4.21, r(u0) = r(v0) = ∅. By condition (C1), r(c) 6= U for any c ∈ C.
Thus there exists a set s ∈ X(C) = 2U \ {U,∅} such that s 6= r(c) for any c ∈ C. Every
s-cube B of C contains a source p(B) for orB (i.e., s ⊆ r(p(B))). For each s-cube B
of C, let t(B) = r(p(B)) \ s. Notice that ∅ ( t(B) ( U \ s since s ( r(p(B)) ( U .

Consequently, there are 2|U |−|s| − 2 choices for t(B) and since C is a cube minus one

vertex by Claim 4.22, there are 2|U |−|s|−1 s-cubes in C. Consequently, there exist two s-
cubes B,B′ such that t(B) = t(B′). Thus ∅ ( s ( r(p(B)) = r(p(B′)) and (p(B), p(B′))
is a clashing pair for C and r, contradicting Claim 4.21. The implication (ii)⇒(iii) is
trivial. To prove (iii)⇒(ii), we show by induction on |U | that a map r : C → X(C)
satisfying (C2) also satisfies (C1). �

We continue with some remarks regarding Theorems 4.17 and 4.20. First, corner
peelings correspond exactly to acyclic USOs.

Proposition 4.23. An ample class C admits a corner peeling if and only if there
exists an acyclic orientation o of the edges of G(C) that is a unique sink orientation.

We also show that given a representation map for C one can derive representations
maps for intersections of C with cubes, reductions CY , and restrictions CY .

Furthermore, there exist a bijection r′ : C → X(C) satisfying (C1) and an injection
r′′ : C → 2U satisfying (C2). Nevertheless, we were not able to find a map satisfying

(C1) and (C2). It is surprising that, while each d-cube has at least dΩ(2d) USOs [168],
it is so difficult to find a single USO for ample classes. One can try to find such maps by
extending the approach for maximum classes: given ample classes C and D with D ⊂ C,
a representation map r for C is called D-entering if all edges cd with c ∈ C \ D and
d ∈ D are directed by or from c to d. The representation map defined in Proposition 4.14
is D-entering. Given x ∈ dom(C), suppose that rx is a Cx-entering representation map
for Cx. We can extend the orientation orx to an orientation o of G(C) as follows. Each
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x-edge cc′ of G(C) is directed arbitrarily, while each other edge cc′ is directed as the
edge cxc

′
x is directed by orx . Since orx satisfies (C1), (C2) and rx is Cx-entering, o also

satisfies (C1), (C2), thus the map ro is a representation map for C. So, ample classes
would admit representation maps, if for any ample classes D ⊆ C, any representation
map r′ of D extends to a D-entering representation map r of C.

6. Conclusion

Even if all maximum classes do not have a corner, we have shown that they always
admit representation maps and thus unlabeled sample compression schemes of optimal
size. The main open problem is now to extend this result to ample classes.

Conjecture 4.24. Any ample class C admits a representation map.

We believe that the local-to-global results established in Theorem 4.20 can be useful
to establish such a result. Since ample classes of VC-dimension 2 always have corners,
they also have representation maps. A first step would be to consider ample classes of
VC-dimension 3. Note that the counterexample presented in Section 3 has VC-dimension
3, has no corner but admits a representation map.

One structural/combinatorial approach to the general sample compression conjec-
ture is to cover any concept class C of VC-dimension d by one or a few maximum or
ample classes of VC-dimension O(d). Namely, Rubinstein et al. [217] asked if any con-
cept class of VC-dimension d can be extended to a maximum class of VC-dimension
O(d). Moran and Warmuth [174] asked if any concept class of VC-dimension d can be
covered by O(2d) ample sets of VC-dimension d. However both questions are already
open for classes of VC-dimension 2.

For ample classes the VC-dimension coincides with the usual topological dimension.
Other set systems for which the VC-dimension is a well-defined parameter are the set
families defined by the topes of oriented matroids (OMs) [30], and more generally, the
topes of Complexes of Oriented Matroids (COMs) [20] (that generalize ample classes).
In this case, the VC-dimension equals the rank. Other structured set systems are bases
of (non-oriented) matroids. It will be interesting to know if these structures admit rep-
resentation maps or unique sink orientations, and to investigate the sample compression
conjecture for these set systems.



Part 2

Using Coverings for Distributed
Algorithms





CHAPTER 5

Graph Exploration with Binoculars

Since the seminal work of Angluin [9], covers of graphs have been used in distributed
computing in order to express indistinguishability between processes in a network and
establish impossibility results in distributed computing. When considering a network
of processes communicating by exchanging messages, if the network is anonymous (i.e.,
processes do not have unique identifiers), one cannot always break the initial symme-
try. For example, in a synchronous ring of identical processes, for any deterministic
algorithm, all processes will always remain in the same state and leader election is
impossible in this case. If the processes are not provided any initial information on
the network, the processes will not even be able to compute the size of the network
(or a bound of its size). Describing what distributed tasks are computable in anony-
mous networks in the message passing model has attracted the attention of many au-
thors [31–34,49,73,77,126,127,170,259,260].

One important tool to study computability in anonymous networks is the notion of
views [34,259]. The view of a vertex v in a graph G is a rooteed tree where each vertex
corresponds to a path of G starting at v (see Section 3.1). As observed by Yamashita
and Kameda [259] two nodes that have the same view will behave similarly during the
synchronous execution of any deterministic message passing algorithm. This leads to
two kinds of impossibility results. First, if two vertices in a network G have the same
view, then it is impossible to deterministically distinguish them and thus there is no
deterministic election algorithm for G. Second, if a vertex v in a network G and a
vertex v′ in a network G′ have the same view, then the nodes cannot decide whether
the underlying graph is G or G′ if they are not given any initial information about the
network they are in. The first result is in the same vein as the impossibility result of
Angluin stating that one cannot elect in a graph G if G is a cover of a smaller graph
H [9]. In fact, when we forget the root of the view of a vertex v in a graph G, we get
exactly the universal cover of G. The second result can be used to establish impossibility
results for family of graphs in the same vein as the following result of Angluin [9]: there
is no universal election algorithm for any family of graphs that contain strictly the family
of trees.

In this document, we focus on what can be computed by a unique agent evolving in
a network (see Section 1 for more details). Mobile agents are computational units that
can progress autonomously from place to place within an environment, interacting with
the environment at each node that it is located on. Such software robots (sometimes
called bots, or agents) are already prevalent in the Internet, and are used for performing
a variety of tasks such as collecting information or negotiating a business deal. More
generally, when the data is physically dispersed, it can be sometimes beneficial to move
the computation to the data, instead of moving all the data to the entity performing
the computation. The paradigm of mobile agent computing / distributed robotics is
based on this idea. As underlined in [98], the use of mobile agents has been advocated
for numerous reasons such as robustness against network disruptions, improving the
latency and reducing network load, providing more autonomy and reducing the design
complexity, and so on (see e.g. [157]). Autonomous mobile robots (or agents) are used
for various tasks like cleaning, guarding, data retrieval, etc. in unknown environments.

109
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Many tasks require coordination of the agents [3,161,162,235] and exploration of the
environment [99,148,197,234].

For many distributed problems with mobile agents, exploring, that is visiting every
location of the whole environment, is an important prerequisite. In its thorough exposi-
tion about Exploration by mobile agents [98], Das presents numerous variations of the
problem. In particular, it can be noted that, given some global information about the
environment (like its size or a bound on the diameter), it is always possible to explore,
even in environments where there is no local information that enables to know, arriving
on a node, whether it has already been visited (e.g. anonymous networks). If no global
information is given to the agent, then the only way to perform a network traversal
is to use a unlimited traversal (e.g. with a classical BFS or Universal Exploration Se-
quences [6, 152, 210] with increasing parameters). This infinite process is sometimes
called Perpetual Exploration when the agent visits infinitely many times every node.
Perpetual Exploration has application mainly to security and safety when the mobile
agents are a way to regularly check that the environment is safe. But it is important to
note that in the case where no global information is available, it is impossible to always
detect when the Exploration has been completed. This is problematic when one would
like to use the Exploration algorithm composed with another distributed algorithm.

In this chapter, we focus on Exploration with termination when the agent has no
initial information about the network. We say that an algorithm A is an Exploration
algorithm (see Section 2) if for any network and any starting position, either the agent
visits every vertex or the agent never halts. A network G is explorable if there is an
Exploration algorithm A that halts on G (after it has visited every vertex).

One can think that this model is not a distributed model since there is only one agent
and we do not have to handle the cooperation between different computing entities.
However, since the agent cannot a priori recognize whether it has already visited a node
when it reaches it, there is some spatial uncertainty to handle. It turns out that the
tools introduced to study anonymous message-passing systems are the right tools to
study what can be computed in this model.

Main Results. We first recall that in the classical mobile agent model (see Sec-
tion 1), the only networks that can be explored without any initial information are the
trees. One can also express trees in terms of graphs that are “maximum” for covers of
graphs (see Section 3 for the definitions).

Theorem 5.1 (Folklore). For a finite simple graph G, the following are equivalent:

(1) G is explorable,

(2) G has no non-trivial cover, i.e., the universal cover G̃ of G is isomorphic to G,
(3) G has no infinite cover,
(4) G is a tree.

We then introduce our model where the agent is given binoculars of range 1: when
on a vertex v, it can see the graph induced by BG(v, 1). The counterpart of Theorem 5.1
is the following theorem.

Theorem 5.2 ([75]). A finite simple graph G is explorable with binoculars if and
only if the clique complex X(G) has no infinite cover.

In order to prove that if X(G) has an infinite cover (i.e., its universal cover is
infinite) then G is not explorable, we use an adaptation of the classical Lifting lemma of
Angluin [9]. However, the methods to show the other implication are very different from
the classical ones. When dealing with trees, a simple Depth-First-Search strategy leads
to an optimal algorithm. In our case, the class is much larger and the algorithm is much
more involved. We present a universal Exploration algorithm that explores all explorable
graphs (and never stop on any other graph), but the complexity of our algorithm is
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unbounded. In fact, we show that there is no universal Exploration algorithm such that
one can bound its complexity by a computable function.

Theorem 5.3 ([75]). Consider any algorithm A using binoculars that explores every
explorable graph G. For any computable function t : N → N, there exists an explorable
graph G such that when executed on G, A executes strictly more than t(|V (G)|) steps.

We then consider a subclass of explorable graphs, that we call the Weetman graphs
(see Section 7). This class of graphs is rather large as it contains chordal graphs,
(weakly-)bridged graphs, Helly graphs, Johnson graphs, and prime pre-median graphs.
We present an Exploration algorithm that explores all Weetman graphs in a linear
number of moves (even if Weetman graphs can contain a quadratic number of edges).

Theorem 5.4 ([74,76]). There is a universal Exploration algorithm using binoculars
that explores any Weetman graph G using O(|V (G)|) moves.

The results of this chapter are based on the papers [74–76] and have appeared in
the PhD thesis of Antoine Naudin [181].

1. Model

We consider a standard model of mobile agents. The environment is represented
by a simple undirected connected graph G = (V (G), E(G)); each vertex v ∈ V (G) may
have a label λ(v). The agent starts from a single node of the graph, called the homebase.
The agent can traverse any edge of the graph incident to its current location. At each
node v ∈ V (G), the edges incident to v are distinguishable to any agent arriving at v.
There is a bijective function δv : N(v) → {1, 2, . . .deg(v)} which assigns unique labels
(port-numbers) to the edges incident at node v (where deg(v) is the degree of v). We
denote by (G, δ) the graph G endowed with a port numbering δ = {δv}v∈V (G). By abuse
of notation, since the port numbering is usually fixed, we denote by G a graph (G, δ).

An agent at a node v can choose to go to any adjacent node u by specifying the port
number δv(u). On reaching the node u, the agent knows the port number δu(v) of the
edge through which it arrived, as well as the degree of u.

For any edge uv ∈ E(G), we use δ(u, v) to denote the ordered pair of la-
bels (δu(v),δv(u)). A path in G is a sequence of nodes P = (u0, u1, . . . , uk)
such that ujuj+1 ∈ E(G), ∀j, 0 ≤ j < k and the label sequence of path P is
δ(P ) = ((δ(u0, u1), δ(u1, u0)), . . . , (δ(uk−1, uk), δ(uk, uk−1))). Given a label sequence s =
((p1, q1), . . . , (pk, qk)) and a vertex v0, if there exists v1, . . . , vk such that δvi(vi+1) = pi
and δvi+1(vi) = qi for every 0 ≤ i < k, then we denote vk by reach(v0, s). In other words,
vk is the vertex that is reached from v0 by following the port numbers of s.

There is no global guarantee on the labels of the nodes of G, in particular vertices
have no identity (anonymous/homonymous setting), i.e., labels are not guaranteed to be
unique. In other words, nodes having the same degree and the same label look identical
to the agents. The agent has computing and storage capabilities. When an agent moves
from one node to another, it carries with its own local memory. When the agent is
located at any node of the graph, it has access to a read-write memory which can be
used for local computation (but not for storing information). When an agent arrives at a
node, using the degree of the node, the incoming port number and its local memory, the
agent computes its next move (i.e., the port number it wants to use next) and updates
its local memory.

An execution ρ of an algorithm A for a mobile agent is composed by a (possibly
infinite) sequence of moves by the agent. The length |ρ| of an execution ρ is the total
number of moves. The complexity measure we are interested in is the number of edge
traversals (or moves) performed by the agent during the execution of the algorithm.
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2. Graph Exploration without Information

In this chapter, we consider the Exploration Problem without Information for a
mobile agent. In this setting, an algorithm A is an Exploration algorithm if for any
graph G = (V,E), for any port numbering δG, starting from any arbitrary vertex v0 ∈ V ,

• either the agent visits every vertex at least once and terminates;
• either the agent never halts.1

In other words, if the agent halts, then we know that every vertex has been visited.
The intuition in this definition is to model the absence of global knowledge while main-
taining safety of composition. Since we have no access to global information, we might
not be able to visit every node on some networks, but, in this case, we do not allow
the algorithm to appear as correct by terminating. This allows to safely compose an
Exploration algorithm with another algorithm without additional global information.

We say that a graph G is explorable if there exists an Exploration algorithm that
halts on G starting from any point. An algorithm A explores F if it is an Exploration
algorithm such that for all G ∈ F , A explores and halts. (Note that since A is an
Exploration algorithm, for any G /∈ F , when executed on G from a starting point v, A
either never halts, or A explores G.)

In the context of distributed computability, a very natural question is to characterize
the maximal sets of explorable networks. Observe that because an Exploration algorithm
cannot stop on any graph before it has visited all vertices, one can compose several
Exploration algorithm: if were are given an Exploration algorithm A1 for a family F1

and an Exploration algorithm A2 for a family F2, then we can obtain an Exploration
algorithm for F1 ∪F2 by interleaving the executions of A1 and A2. Consequently, there
exist a maximum family of explorable graphs without information.

3. Covers of Graphs and Explorable Graphs

It is well-known that without information, the only explorable graphs are the trees.
Moreover, trees can be explored using a Depth-First-Search strategy with a linear num-
ber of moves. In this section, we explain how one can use covers to obtain such a
result.

3.1. Covers in the case of Graphs. If we consider a graph as a 1-dimensional
simplicial complex, the notion of covers defined in Chapter 1 coincides with the standard
notion of covers used in distributed computing since the seminal work of Angluin [9].
Given two simple graphs G,H, the graph G is a cover of a graph H via a covering map
ϕ : V (G)→ V (H) if ϕ is a locally bijective homomorphism, i.e., if for every v ∈ V (G), ϕ
induces a bijection between NG(v) and NH(ϕ(v)). We say that G is a non-trivial cover
of H if G is a cover of H, and G and H are not isomorphic. As usual, when considering
labeled graphs (with labels on nodes and port-numbers), we only consider covering maps
that preserve the labels.

Note that covers of graphs are much easier to understand to understand and manip-
ulate than covers of simplicial complexes. For example, the result of Reidemeister [209]
enables to construct all covers of size qn of a graph with n vertices for any integer q.
Such a result does not exist for covers of simplicial complexes. One can easily show that
for a graph H, there exists a non-trivial cover G of H if and only if H is a tree. On the
other hand, one cannot algorithmically decide whether a simplicial complex X admits
a non-trivial cover [134].

When dealing with covers, the universal cover of a graph G is always a tree: either G

is a tree and its universal cover G̃ is isomorphic to G, or G is not a tree and its universal

1a seemingly stronger definition could require that the agent performs perpetual exploration in this
case. It is easy to see that this is actually equivalent for computability considerations since it is always
possible to compose in parallel (see below) a perpetual BFS to any never halting algorithm.
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cover G̃ is an infinite tree. The notion of universal cover is very close to the notion of
view used in distributed computing [33,259].

3
1

2

3

1
1

1
2

2
2

3
1 2

2 13

1 21 2

2

1 3

1

3 2

2

1 2

1

32 2 1 13

Figure 5.1. A graph G with a port-numbering δ and the first levels of
the view TG(v) of a vertex v of degree 3 in G. The view TG(v) is an

infinite tree that is isomorphic to the universal cover G̃ of G.

The view TG(v) of a vertex v in a graph G is an infinite tree where all vertices are
the non-stuttering2 paths starting in v0 (See Figure 5.1 for an example). The label of
this vertex t = (v = v0, v1, . . . , vp−1, vp) is λ(t) = λ(vp). For every such vertex t = (v =
v0, v1, . . . , vp−1, vp) with p > 0, there is an edge from t to t′ = (v = v0, v1, . . . , vp−1) in
TG(v) with δt(t, t

′) = δvp(vp, vp−1) and δt(t
′, t) = δvp−1(vp−1, vp). It is straightforward to

see that TG(v) is a cover of G via a covering map that maps the root (v) of TG(v) to
v. Moreover, one can easily show that if K is a cover of G via a covering map ϕ, then
TK(v) = TG(ϕ(v)) for any vertex v ∈ V (K). Consequently, TG(v) is the universal cover
of G and is thus independent of the choice of v. However, it may be sometimes useful to

remember the vertex v. In fact, the view TG(v) of v in G can be seen as the universal G̃
cover of G pointed at some vertex ṽ that is mapped to v by the covering map. Since we
are interested in algorithms that stop, an agent evolving in a graph G cannot a priori
compute the view TG(v0) of its starting vertex v0 since it can be infinite. The view
TG(v0, k) of depth k of v0 in G is the finite subtree of TG(v0) containing all vertices at
distance at most k from the root of TG(v0). The nodes of TG(v0, k) correspond exactly
to the non-stuttering paths starting in v0 of length at most k. For an integer k, two
graphs G,G′ and two vertices v ∈ V (G), v′ ∈ V (G′), if TG(v, k) = TG′(v′, k), we say
that v and v′ are k-equivalent and we denote it by v ≡k v′.

Remark 5.5. An agent starting on a graph G at a vertex v0 can compute its view
TG(v0, k) of depth k by performing a number of moves that is linear in the size of
TG(v0, k). Note however that the number of vertices of TG(v0, k) can be exponential in
k

When dealing with finite graphs (or complexes), the size of the preimages of vertices
(or edges) are the same. The following proposition can be proved easily since we only
consider connected graphs.

Proposition 5.6 ([209]). Given two finite simple graphs G,H such that G is a
cover of H via ϕ, there exists q ∈ N such that for every x ∈ V (H)∪E(H), ϕ−1(v) = q.

This number q is called the number of sheets of the cover.

2A path (v = v0, v1, . . . , vp−1, vp) is non-stuttering if vi−1 6= vi+1 for every 0 < i < p.
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3.2. Explorable Graphs. Consider an algorithm A and an execution of A per-
formed by a mobile agent starting on a vertex v in a network G. For any i ∈ N, we denote
respectively the position of the agent and its state (i.e., the content of its memory) at
step i by posi(A, G, v) and memi(A, G, v). By standard techniques (see [9,33,73,259]),
we have the following lemma.

Lemma 5.7 (Lifting Lemma). Consider two graphs G and G′ such that there exists
a covering map ϕ : G′ → G. For any algorithm A and for any vertices v ∈ V (G) and
v′ ∈ V (G′) such that ϕ(v′) = v, for any step i ∈ N, memi(A, G′, v′) = memi(A, G, v) and
ϕ(posi(A, G′, v′)) = posi(A, G, v).

Note that in particular, an agent evolving in a graph G behaves as if it was evolving
in the view TG(v0) where v0 is its starting position in v0. Using this observation, we can
establish the following theorem.

Theorem 5.1 (Folklore). For a finite simple graph G, the following are equivalent:

(1) G is explorable,

(2) G has no non-trivial cover, i.e., the universal cover G̃ of G is isomorphic to G,
(3) G has no infinite cover,
(4) G is a tree.

Proof. If G is a tree, then its universal cover G̃ is isomorphic to G and thus G has
no infinite cover. Conversely, if G has no infinite cover, then TG(v) is finite (for any

choice of v), and consequently, the universal cover G̃ of G is isomorphic to TG(v) and is

a tree. Consequently, |V (G̃)| = |E(G̃)|+ 1. By Proposition 5.6, there exists q ∈ N such

that |V (G̃)| = q|V (G)| and |E(G̃)| = q|E(G)|. Since |V (G̃)| and |E(G̃)| are coprime,

necessarily q = 1. Therefore G̃ is isomorphic to G and G is a tree.
Using a simple depth first search strategy, one can design an algorithm that explores

all the trees and stop. On any graph that is not a tree, this algorithm will never stop.
This shows that trees are explorable. Conversely, consider a graph G that is not a
tree and assume that there exists an Exploration algorithm A for G. Let v0 be the
starting position of the agent and assume that A stops after k steps. By Lemma 5.7,
A stops after k steps when executed on TG(v0) starting from the root r. Consider
the tree T = Bk+1(TG(v0), r). Since G is not a tree, TG(v0) is infinite and thus there
exists a vertex v at distance k + 1 from r in T . Since A cannot distinguish T from
TG(v0) (and thus from G) in k steps, the agent stops in T after k steps before visiting
v. Consequently, A is not an Exploration algorithm, a contradiction. �

4. Mobile Agents with Binoculars

In the rest of this chapter, we empower the agent with binoculars of range 1: when
on a vertex v, the agent can see the graph induced by BG(v, 1) (as well as the labels and
the port numbers on this graph). In order to reuse standard techniques and algorithms,
we actually assume that the nodes of the graph we are exploring are labeled by these
induced balls. In the following, we assume that every vertex v of G has a label ν(v)
corresponding to the binoculars labeling of v. This binoculars label ν(v) is a graph
isomorphic to BG(v, 1) with its port numbering (See Figure 5.2 for an example). It is
straightforward to see that in a graph with such a binoculars labeling of the nodes, an
agent with binoculars has the same computational power as an agent without binoculars
(the “binoculars” primitive gives only access to more information, it does not enable
more moves). The following proposition enables to derive impossibility results for mobile
agents with binoculars from impossibility results in the standard model.

Proposition 5.8. For any graphs G,H, (G, νG) is a cover of (H, νH) if and only if
the clique complex X(G) of G is a cover of the clique complex X(H) of H.
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Figure 5.2. A graph G with the binocular labeling attached to each
vertex. In the label of a vertex v, the bold vertex is the center of BG(v, 1)
and corresponds to v.

Combining Lemma 5.7 and Proposition 5.8, we obtain a Lifting Lemma for covers of
clique complexes that is the counterpart of Lemma 5.7 for covers of graphs. This lemma
shows that every execution on a graph G can be lifted up to every graph G′ such that
X(G′) is a cover of X(G), and in particular, to the 1-skeleton of the universal cover

X̃(G) of X(G).

Lemma 5.9 (Lifting Lemma). Consider two graphs G and G′ such that there exists
a covering map ϕ : X(G′) → X(G). For any algorithm A (using binoculars) and
for any vertices v ∈ V (G) and v′ ∈ V (G′) such that ϕ(v′) = v, for any step i ∈ N,
memi(A, G′, v′) = memi(A, G, v) and ϕ(posi(A, G′, v′)) = posi(A, G, v).

In the following, we will need to distinguish the graphs depending on whether their
clique complexes have a finite or infinite universal cover. We define the three following
classes:

• FC = {G : the universal cover of X(G) is finite},
• IC = {G : G is finite and the universal cover of X(G) is infinite},
• SC = {G : G is finite and X(G) is simply connected}.

Note that FC = {G : ∃K ∈ SC, X(K) is a cover of X(G)} ( SC.
Using Lemma 5.9 above, we are now able to prove a first result about explorable

graphs and the move complexity of their exploration.

Proposition 5.10. Any graph G that is explorable with binoculars belongs to FC,
and any Exploration algorithm exploring G performs at least |V (G′)| − 1 moves, where

G′ = X̃1(G) is the 1-skeleton of the universal cover X̃(G) of the clique complex X(G).

Proof. Suppose it is not the case and assume there exists an Exploration algorithm
A that explores a graph G ∈ IC when it starts from a vertex v0 ∈ V (G). Let r be the
number of steps performed by A on G when it starts on v0.

Let G′ = X̃1(G) be the 1-skeleton of the universal cover of X(G). Consider a

covering map ϕ : X̃(G) → X(G) and consider a vertex v′0 ∈ V (G′) such that ϕ(v′0) =
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Algorithm 5.1: FC-Exploration algorithm

k := 0;

repeat
Increment k ;

Compute T(G,ν)(v0, 2k);
Find a complex H (if it exists) such that:

• |V (H)| < k, and
• ∃ṽ0 ∈ V (H) such that ṽ0 ≡2k v0, and
• every simple cycle of X(H) is k-contractible;

until H is defined ;

Stop the exploration;

v0. By Lemma 5.9, when executed on G′, A stops after k steps. Consider the graph
H = BG′(v

′
0, k + 1). Since G ∈ IC, G′ is infinite and |V (H)| > k + 1. When executed

on H starting in v′0, A behaves as in G′ during at least k steps since the k first moves
can only depend of BH(v′0, k) = BG′(v

′
0, k). Consequently A stops after k steps when

executed on H starting in v′0. Since |V (H)| > k + 1, A stops before it has visited all
nodes of H and thus A is not an Exploration algorithm, a contradiction.

The move complexity bound is obtained from the Lifting Lemma applied to any

covering map ϕ : X̃(G)→ X(G). Assume we have an Exploration algorithm A halting
on G at some step q. If |V (G′)| > q + 1 then A halts on G′ and has not visited all
vertices of G′, a contradiction. �

Note that this is the same lifting technique that shows that, without binoculars, tree
networks are the only explorable networks without global knowledge.

5. Exploration of FC

We propose in this section an Exploration algorithm for the family FC in order to
prove that this family is the maximum set of explorable networks.

The goal of Algorithm 5.1 is to visit, in a BFS fashion, a ball centered on the
homebase of the agent until the radius of the ball is sufficiently large to ensure that G
is explored. Once such a radius is reached, the agent stops. To detect when the radius
is sufficiently large, we use the view of the homebase (more details below) to search for
a simply connected graph which locally looks like the explored ball.

Note that in the following, we will consider the case where each node v is labeled by
ν(v), the graph that is obtained using binoculars from v.

5.1. Presentation of the Algorithm. Consider a graph G and let v0 ∈ V (G) be
the homebase of the agent in G. Let k be an integer initialized to 1. Algorithm 5.1 is
divided in phases. At the beginning of a phase, the agent follows all paths of length at
most 2k originating from v0 in order to compute the labeled view T (v0, 2k) of v0.

At the end of the phase, the agent backtracks to its homebase, and enumerates all
graphs of size at most k until it finds a graph H such that every simple cycle c of X(H)
is k-contractible (i.e., Area4(c) ≤ k) and such that there exists a vertex ṽ0 ∈ V (H) that
has the same view at distance 2k as v0, i.e., TH(ṽ0, 2k) = TG(v0, 2k). If such an H exists
then the algorithm stops. Otherwise, k is incremented and the agent starts another
phase. Deciding if Area4(c) ≤ k for a given cycle c is computable (by considering all
disk diagrams of area at most k). Since the total number of simple cycles of a graph is
finite, Algorithm 5.1 can be implemented on a Turing machine.

5.2. Correction of the algorithm. In order to prove the correction of this algo-
rithm, we prove that when the first graph H satisfying every condition of Algorithm 5.1
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is found, then X(H) is actually the universal cover of X(G) (Corollary 5.12). Intuitively,
this is because it is not possible to find a simply connected complex that looks locally
the same as a strict subpart of another complex.

Remember that given a path p in a complex G, δ(p) denotes the sequence of port
numbers followed by p in G. We denote by destG(v0, δ(p)), the vertex in G reached by
the path starting in v0 and labeled by δ(p). We show (Proposition 5.11) that if we fix
a vertex ṽ0 ∈ V (H) such that ṽ0 ≡2k v0, we can define unambiguously a map ϕ from
V (H) to V (G) as follows: for any ũ ∈ V (H), let p be any path from ṽ0 to ũ in H and let
u = ϕ(ũ) be the vertex reached from v0 in G by the path labeled by δ(p). The technical
part of the proof is the following proposition.

Proposition 5.11. Consider a graph G such that Algorithm 5.1 stops on G when
it starts in v0. Let k ∈ N and let H be the graph computed by the algorithm before it
stops. Consider any vertex ṽ0 ∈ V (H) such that v0 ≡2k ṽ0.

For any vertex ũ ∈ V (H), for any two paths q̃, q̃′ from ṽ0 to ũ in H,
destG(v0, δ(q̃)) = destG(v0, δ(q̃

′)).

Showing that ϕ is a covering, we get the following corollary.

Corollary 5.12. Consider a graph G such that Algorithm 5.1 stops on G when it
starts in v0 ∈ V (G) and let H be the graph computed by the algorithm before it stops.
The clique complex X(H) is the universal cover of X(G).

Proof. By the definition of Algorithm 5.1, the complex X(H) is simply connected.
Consequently, we just have to show that X(H) is a cover of X(G).

Consider any vertex ṽ0 ∈ V (H) such that v0 ≡2k ṽ0. For any vertex ũ ∈ V (H), con-
sider any path p̃ũ from ṽ0 to ũ and let ϕ(ũ) = destG(v0, δ(p̃ũ)). From Proposition 5.11,
ϕ(ũ) is independent from our choice of p̃ũ. Since v0 ≡2k ṽ0 and since |V (H)| ≤ k, for
any ũ ∈ V (H), ν(ϕ(ũ)) = ν(ũ). Consequently, for any ũ ∈ V (H) and for any neigh-
bour w̃ ∈ NH(ũ), there exists a unique w ∈ NG(ϕ(ũ)) such that δ(ũ, w̃) = δ(ϕ(ũ), w).
Conversely, for any w ∈ NG(ϕ(ũ)), there exists a unique w̃ ∈ NH(ũ) such that
δ(ũ, w̃) = δ(ϕ(ũ), w). In both cases, let p̃w̃ = p̃ũ · (ũ, w̃); this is a path from ṽ0 to
w̃. From Proposition 5.11, ϕ(w̃) = destG(v0, δ(p̃w̃)) = destG(u, δ(ũ, w̃)) = w. Conse-
quently, ϕ is a covering map from H to G, and by definition of H, ϕ also preserves the
binoculars labeling. Therefore, the complex X(H) is a cover of the complex X(G). �

To finish to prove that Algorithm 5.1 is an Exploration algorithm for FC, we remark
that, when considering connected complexes (or graphs), coverings are always surjective.
Consequently, G has been explored when the algorithm stops.

Theorem 5.13. Algorithm 5.1 is an Exploration algorithm for FC.

Proof. From Corollary 5.12, we know that if Algorithm 5.1 stops, then the clique
complex X(H) of the graph H computed by the algorithm is a cover of X(G). Moreover,
since |V (G)| ≤ |V (H)| ≤ k and since the agent has constructed TG(v, 2k), it has visited
all vertices of G.

We just have to prove that Algorithm 5.1 always halts on any graph G ∈ FC.
Consider any graph G ∈ FC and let G′ = X̃1(G) be the 1-skeleton of the universal cover

X̃(G) of X(G). Since G ∈ FC, G′ is finite and there exists k′ ∈ N such that every simple

cycle of G′ is k′-contractible. Let k = max(|V (G′)|, k′). At phase k, since X(G′) = X̃(G)
is the universal cover of X(G), there exists v′0 ∈ V (G′) such that TG(v0) = TG′(v′0).
Consequently, TG(v0, 2k) = TG′(v′0, 2k), |V (G′)| ≤ k, and every simple cycle of X(G′)
is k-contractible. Therefore, at iteration k, the halting condition of Algorithm 5.1 is
satisfied. �

From Proposition 5.10 and Theorem 5.13 above, we get the following corollary.
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Corollary 5.14. The family FC is the maximum set of Explorable networks.

Observe that the family of graphs explorable with binoculars is much larger than the
family of trees: it contains planar triangulations, triangulations of the projective plane,
as well as many classes studied in metric graph theory such as chordal graphs, (weakly)-
bridged graphs, Helly graphs, Johnson graphs, or prime pre-median graphs. Note that
all these classes of graphs are contained in SC except the class of triangulations of the
projective plane that are in FC \ SC.

6. Complexity of the Exploration Problem for SC

In the previous section, we did not provide any bound on the number of moves
performed by an agent executing our universal exploration algorithm. In this section,
we study the complexity of the problem and we show that there does not exist any
exploration algorithm for all graphs in FC such that one can bound the number of
moves performed by the agent by a computable function.

The first reason that such a bound cannot exist is rather simple: if the 1-skeleton

G′ = X̃1(G) of the universal cover of the clique complex ofG is finite, then by Lemma 5.9,
when executed on G, any exploration algorithm has to perform at least |V (G′)|−1 steps
before it halts. In other words, one can only hope to bound the number of moves

performed by an exploration algorithm on a graph G by a function of the size of X̃1(G).
However, in the following theorem, we show that even if we consider only graphs with

simply connected clique complexes (i.e., graphs that are isomorphic to their universal
covers), there is no Exploration algorithm for this class of graph such that one can bound
its complexity by a computable function. Our proof relies on a result of Haken [134]
that show that it is undecidable to detect whether a finite simplicial complex is simply
connected or not.

Theorem 5.15. Consider any algorithm A that explores every finite graph G ∈ SC.
For any computable function t : N → N, there exists a graph G ∈ SC such that when
executed on G, A executes strictly more than t(|V (G)|) steps.

Proof. Suppose this is not true and consider an algorithm A and a computable
function t : N → N such that for any graph G ∈ SC, A visits all the vertices of G and
stops in at most t(|V (G)|) steps. We show that in this case, it is possible to algorith-
mically decide whether the clique complex of any given graph G is simply connected or
not. However, this problem is undecidable [134] and thus we get a contradiction3.

Algorithm 5.2 is an algorithm that takes as an input a graph G and then simulates
A on G for t(|V (G)|) steps. If A does not stop within these t(|V (G)|) steps, then by
our assumption on A, we know that G /∈ SC and the algorithm returns no. If A stops
within these t(|V (G)|) steps, then we check whether there exists a graph H such that
|V (G)| < |V (H)| ≤ t(|V (G)|) and such that the clique complex X(H) is a cover of
X(G). If such an H exists, then G /∈ SC and the algorithms returns no. If we do not
find such an H, the algorithm returns yes.

In order to show Algorithm 5.2 decides simple connectivity, it is sufficient to show
that when the algorithm returns yes on a graph G, the clique complex X(G) is simply

connected. Suppose it is not the case and let G′ = X̃1(G) be the 1-skeleton of the

universal cover X̃(G) of the clique complex X(G). Consider a covering map ϕ from

X̃(G) to X(G) and let v′0 ∈ V (G′) be any vertex such that ϕ(v′0) = v0. By Lemma 5.9,
when executed on G′ starting in v′0, A stops after at most t(|V (G)|) steps.

If G′ is finite, then G′ ∈ SC and by our assumption on A, when executed on G′, A
must explore all vertices of G′ before it halts. Consequently, X(G′) = X̃(G) is a cover of

3Note that the original result of Haken [134] does not assume that the simplicial complexes are
clique complexes. However, for any simplicial complex K, the barycentric subdivision K′ of K is a
clique complex that is simply connected if and only if K is simply connected (see [137]).
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Algorithm 5.2: An algorithm to check simple connectivity

Input: a graph G

Simulate A starting from an arbitrary starting vertex v0 during t(|V (G)|) steps;

if A halts within t(|V (G)|) steps then
if there exists a graph H such that |V (G)| < |V (H)| ≤ t(|V (G)|) and such
that the clique complex X(H) is a cover of the clique complex X(G) then

return no; // X(G) is not simply connected
else

return yes; // X(G) is simply connected

else return no; // X(G) is not simply connected;

X(G) with at most t(|V (G)|) vertices. Since X(G) is not simply connected, necessarily
|V (G)| < |V (G′)| and in this case, the algorithm returns no and we are done.

Assume now that G′ = X̃1(G) is infinite. Let k = t(|V (G)|) and let B = BG′(v
′
0, k).

Note that when A is executed on G′ starting in v′0, any node visited by A belongs to
B. Given two vertices, u′, v′ ∈ V (G′), we say that u′ ≡B v′ if there exists a path from
u′ to v′ in G′ \ B. Observe that ≡B is an equivalence relation, and that every vertex

of B is the only vertex in its equivalence class. For a vertex u′ ∈ V (G̃), we denote its
equivalence class by [u′]. Let H be the graph defined by V (H) = {[u′] : u′ ∈ V (G′)}
and E(H) = {[u′][v′] : ∃u′′ ∈ [u′], v′′ ∈ [v′], u′′v′′ ∈ E(G′)}.

One can show that the graph H is finite and that its clique complex X(H) is simply
connected, i.e., that H ∈ SC. Since for every u′ ∈ B, [u′] = {u′}, the ball BH([v′0], k)
is isomorphic to B. Consequently, when A is executed on H starting in [v′0], A stops
after at most k steps, and thus before it has visited all vertices of H, contradicting our
assumption on A. �

7. An Efficient Exploration Algorithm for Weetman Graphs

Even if there is no hope to find an Exploration algorithm that is efficient for all graphs
that are explorable with binoculars (see Section 6), it is possible to design Exploration
algorithms that are efficient for subclasses of FC.

In this section, we present an Exploration algorithm for a large class of graphs that
we call Weetman graphs.
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Figure 5.3. Triangle and interval-neighborhood conditions

Definition 5.16 (Weetman graphs [229, 248]). A graph G is a Weetman graph
with respect to a vertex u if its distance function d satisfies the following triangle and
interval-neighborhood conditions (see Figure 5.3):
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• Triangle condition TC(u): for any two vertices v, w with 1 = d(v, w) <
d(u, v) = d(u,w) there exists a common neighbor x of v and w such that
d(u, x) = d(u, v)− 1.
• Interval-Neighborhood condition INC(u): for any vertex v with d(u, v) = k ≥ 1,

the set of vertices {w : w ∈ NG(v) and d(u,w) = k − 1} induces a connected
subgraph of G.

A graph G is called Weetman if G is Weetman with respect to any vertex u.

Observe that chordal graphs, (weakly-)bridged graphs, Helly graphs, Johnson graphs
and prime pre-median graphs are example of Weetman graphs.

Using the Triangle and the Interval-Neighborhood Conditions, one can show that for
any Weetman graph G, its clique complex X(G) is simply connected, i.e., G ∈ SC ⊆ FC,
and thus Weetman graphs are explorable with binoculars.

Given a vertex v0 in a graph G, recall that the sphere S(v0, k) of radius k centered
at v0 is S(v0, k) = {x ∈ V : dG(v0, x) = k}, that a connected component Υ of the
subgraph of G induced by V \ S(v0, k − 1) is called an end of G, and that the vertices
of Υ ∩ S(v0, k) form a cluster of G with respect to v0.

Observe that in a Weetman graph, two vertices u, v at distance k from v0 are in
the same cluster if and only if there exists a path from u to v in S(v0, k). We define
the cluster-tree of G with root v0 as the tree obtained by contracting every cluster of G
with respect to v0. In order to obtain an efficient Exploration algorithm for Weetman
graphs, we will use this cluster-tree to guide the exploration of the agent.

7.1. The Exploration Algorithm. The pseudo-code of the algorithm is given in
Algorithm 5.3. The general idea of the algorithm is to visit the clusters of G in the
order given by a DFS on the cluster tree. While the agent explores a cluster C that
is at distance k from its starting point v0, the agent can discover (using its binoculars)
the nodes that are incident to a vertex of V and at distance k + 1 from v0. Note that
during this exploration of C, the agent visits only the vertices of C. Using the local
observations made at each vertex of C and using ideas that are similar to what we did
in the universal cover construction in Chapter 1, the agent will construct a map of every
cluster C ′ at distance k + 1 from v0 such that C is the parent of C ′ in the cluster-tree.
This map of C ′ will then be used in order to navigate efficiently in C ′ when the agent
will explore the vertices of C.

However, there is no guarantee that the input graph G is a Weetman graph, or even
that the clique complex X(G) is simply connected. During the execution, the agent

builds a graph G̃ in such a way that if the execution terminates, at the end of the

execution X(G̃) is a cover of X(G). Since the clique complexes of Weetman graphs are

simply connected, if G is a Weetman graph, then G̃ will be isomorphic to G at the end
of the execution.

In order to obtain local information on the graph G, we assume that a function
getBino is available to the agent. When called on a vertex u ∈ V (G), the function
getBino returns a graph B endowed with a port-labeling δ pointed at a vertex w0 that
is isomorphic to the ball B1(u,G) pointed at u.

During the execution, the agent builds a graph G̃ as well as the collection of clusters

of G̃. At each step, the “unexplored” vertices of G̃ are the vertices of the clusters

corresponding to the leaves of the cluster tree of G̃. Moreover, there exists a map

f : G̃ → G such that for every ũ ∈ G̃ that is not in a leaf cluster, f induces an

isomorphism between B1(ũ, G̃) and B1(f(ũ), G). During the algorithm, when the agent

calls getBino while processing a vertex ũ ∈ V (G̃), it is located on f(ũ) and it gets a
map of B1(f(ũ), G).

During one step, the agent consider such an unexplored cluster C̃ and builds a

shortest path π
C̃

in C̃ that visit all vertices of C̃. Then, it follows the port numbers
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appearing on π
C̃

in G and for each node ũ ∈ π
C̃

, it calls getBino to get a local map
B of B1(f(ũ), G). Using this information, it detects what are the missing neighbors of

ũ in G̃ (with the associated port-numbers) and stores all missing neighbors in a set Z.
Using the local maps, he also detects if the missing neighbors of two adjacent nodes

of C̃ coincide (using the set ≡0), and remembers what edges should be added between
two missing neighbors of a given node (in a set H). Then, computing the reflexive and
transitive closure ≡ of ≡0, the agent computes the set of vertices and edges that should

be added to G̃ in such a way that f induces an isomorphism between B1(ũ, G̃) and

B1(f(ũ), G) for every ũ in C̃. The clusters containing the new vertices of G̃ are then
computed and added to the list of clusters to be explored.

While exploring a cluster C̃, the agent may discover an error in the construction of

the graph G̃. The following errors can occur:

• The reconstructed graph G̃ is not a simple graph, or the labeling δ̃ is not a
port-numbering;
• There is a vertex ũi in π

C̃
such that the ball B obtained via getBino in the

execution of Algorithm 5.3 when considering ũi is not isomorphic to B1(ũi, G̃).

If such an error is detected during the algorithm, the agent stops executing the algorithm
and starts executing Algorithm 5.1.

7.2. Correction of the Algorithm. We first show that Algorithm 5.3 is an ex-
ploration algorithm. Observe that if an error is detected during the execution of the
algorithm on a graph G, then Algorithm 5.1 is executed and if the algorithm stops, then
G is explored. Suppose now that no error is detected during the execution.

Let G̃ be the graph constructed during the execution of the algorithm on G. Let

C̃0 = {ṽ0}, C̃1, C̃2, . . . , C̃i, . . . be the list of clusters of G̃ constructed during the execution
of the algorithm. Observe that this list of clusters is obtained by a depth-first-search

traversal of the cluster-tree of G̃. We denote by G̃i the graph constructed after the first

i clusters C̃0 = {ṽ0}, C̃1, C̃2, . . . , C̃i have been explored. Let ∂G̃i = G̃i \ ∪ii=1C̃i, i.e., the

vertices of G̃i that have not been explored yet, i.e., the vertices of G̃i that belong to

some cluster of ToVisit once C̃i has been explored.

We first observe that the graph G̃i is a Weetman graph with respect to ṽ0. This

property holds by construction of G̃i: the Triangle condition follows from the way the
edges in Ehor are defined, and the Interval-Neighborhood condition follows from the way
the equivalence relation ≡ is defined.

Lemma 5.17. The graph G̃i satisfies TC(ṽ0) and INC(ṽ0)

We now define a map fi : V (G̃i)→ V (G). For any vertex ũ in G̃, let πũ be a shortest

path from ṽ0 to ũ in G̃, let fi(ũ) = reachG(v0, δ̃(πũ) (if it exists). One can show that
this map is well defined and that f(ũ) is independent of the choice of πũ:

Lemma 5.18. For every u ∈ V (G̃), for every path π′ũ from ṽ0 to ũ in G̃, f(ũ) =

reachG(v0, δ̃(π
′
ũ)).

Remark 5.19. By Lemma 5.18, if the agent executes getBino while considering a

vertex ũ of G̃, then the agent is located on u = f(ũ) and gets getBino returns the graph
B1(u,G) pointed at u.

We prove by induction on i that fi is a local isomorphism for vertices in G̃i \ ∂G̃i
and is locally injective for vertices in ∂G̃i.

Proposition 5.20. At any step i, the following holds:

(1) for any ũ ∈ G̃i \ ∂G̃i, B1(ũ, G̃i) is isomorphic to B1(fi(ũ), G),
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Algorithm 5.3: Exploration Algorithm for Weetman Graphs

ToVisit← emptyStack(); G̃← ({ṽ0}, ∅); push(({ṽ0}, ∅),ToVisit); posG̃ ← ṽ0;

repeat

C̃ ← pop(ToVisit);

Compute in G̃ a shortest path π′
C̃

from pos
G̃

to a vertex ũ0 ∈ C̃;

Compute a shortest path π
C̃

= (ũ0, ũ1, . . . , ũk) in G̃ visiting all vertices of C̃;

Follow the port-numbers of the path π′
C̃

in G;

pos
G̃
← ũ0; Z ← ∅; ≡0 ← ∅; H ← ∅;

for each ũi ∈ πC̃ do
B ← getBino();

for each w ∈ NB(w0) do
p← δw0(w); q ← δw(w0);

if @ũ ∈ N
G̃

(ũi) such that δ̃ũi(ũ) = p then
Z ← Z ∪ {(ũi, p, q)};
for each w′ ∈ NB(w0) ∩NB(w) do

p′ ← δw0(w′); q ← δw′(w0); r ← δw(w′); r′ ← δw′(w);

if there exists ũ′ ∈ NG(ũi) with δũi(ũ
′) = p′ then

≡0 ← ≡0 ∪ {((ũi, p, q), (ũ′, p′, q′))};
else

H ← H ∪ {((ũi, p, q), (ũi, p′, q′), (r, r′))};

if i < k then

move through port δ̃ũi(ũi+1) in G;

pos
G̃
← ũi+1;

Compute the reflexive and transitive closure ≡ of ≡0

(the equivalence class of (ũ, p, q) ∈ Z is denoted by [ũ, p, q]);

Vnew ← Z/≡; Evert ← ∅; Ehor ← ∅;
for each (ũ, p, q) ∈ Z do

Add the edge ũ[ũ, p, q] to Evert with δ̃ũ([ũ, p, q]) = p and δ̃[ũ,p,q](ũ) = q;

for each ((ũ, p, q), (ũ, p′, q′), (r, r′)) ∈ H do

Add the edge [ũ, p, q][ũ, p′, q′] to Ehor with δ̃[ũ,p,q]([ũ, p
′, q′]) = r and

δ̃[ũ,p′,q′]([ũ, p, q]) = r′;

V (G̃)← V (G̃) ∪ Vnew; E(G̃)← E(G̃) ∪ Evert ∪ Ehor;

Compute the connected components C̃ ′1, C̃
′
2, . . . , C̃

′
` of (Vnew, Ehor);

for each C̃ ′j do index(C̃ ′j)← min{i | ∃ũ′ ∈ C̃ ′j ∩NG̃
(ũi)} ;

for each C̃ ′j (sorted by increasing index) do push(C̃ ′j ,ToVisit) ;

until ToVisit is empty or an error is detected in G̃;

if an error is detected in G̃ then
Execute Algorithm 5.1

(2) for any ũ ∈ ∂G̃i, fi is an injective map from N
G̃

(ũ) to NG(fi(ũ)).

Consequently, if the algorithm terminates without detecting an error, the clique

complex X(G̃) of the reconstructed graph G̃ is a cover of the clique complex X(G) of

G. Since G̃ is a Weetman graph, X(G̃) is simply connected and is the universal cover of
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X(G). Consequently, since G is connected, the cover f : G̃→ G is surjective and every
vertex u of G has been explored.

When Algorithm 5.3 is executed on a Weetman graph G, then the reconstructed

graph G̃ is isomorphic to G.

Proposition 5.21. If G satisfies TC(v0) and INC(v0), then for each step i, G̃i is

isomorphic to fi(G̃i).

Consequently, no error is detected during the execution of Algorithm 5.3 on a Weet-

man graph G and the execution stops after all vertices of G̃ have been explored.

7.3. Complexity of the Algorithm. We are interested in evaluating the number
of moves performed by an agent that executes Algorithm 5.3 on a Weetman graph G.
The number of moves the agent executes on G is related to the number of moves the

agent “executes” on G̃: each move on G corresponds to a move on G̃. We denote by C
the set of clusters of G̃.

When it explores a cluster C̃ ∈ C, the agent compute a shortest path π
C̃

visiting all

vertices of C̃. This path has length at most 2(|V (C̃)| − 1).
When going from one cluster to another, the agent computes a shortest path π′

C̃
to

reach C̃. In order to evaluate the sum of the length of these paths, we observe that the

clusters are explored in an order that is a depth-first-search order on the cluster-tree of G̃.

Observe also that when considering all the children C̃ ′1, . . . , C̃
′
` of a cluster in the cluster-

tree, these clusters are sorted according to the order in which their first neighbor appears

in the path π
C̃

. Consequently,
∑

C̃∈C |π
′
C̃
| ≤ 2|C|+3

∑
C̃∈C(|V (C̃)|−1) ≤ 3

∑
C̃∈C |V (C̃)|.

Since
∑

C̃∈C |V (C̃)| = |V (G̃)| = |V (G)|, the number of moves performed by the
agent is linear in the number of vertices of G.

Theorem 5.22. Algorithm 5.3 is an Exploration algorithm that explores any Weet-
man graph G in O(|V (G)|) moves.

Remark 5.23. We can wonder what happens when Algorithm 5.3 is executed on
a graph G that is not a Weetman graph. First, observe that if G satisfies TC(v0)
and INC(v0) for the starting position v0 of the agent, then Algorithm 5.3 is still an
Exploration algorithm for G that uses a linear number of moves.

If X(G) is not simply connected but if the universal cover X̃(G) is the clique complex

X(G̃) of a Weetman graph G̃ (or satisfies TC(ṽ0) and INC(ṽ0) where ṽ0 is the preimage

of the starting position v0 of the agent in G), then Algorithm 5.3 reconstructs G̃ and

explores G in O(|V (G̃)|) moves. Observe that by Proposition 5.10, Ω(|V (G̃)|) moves are
necessary for an Exploration algorithm before it halts in G.

8. Conclusion

Enhancing a mobile agent with binoculars, we have shown that, even without any
global information it is possible to explore and halt in the class of graphs whose clique
complexes have a finite universal cover. This class is maximal and is the counterpart
of tree networks in the classical case without binoculars. Note that, contrary to the
classical case, where the detection of unvisited nodes is somehow trivial (any node that
is visited while not backtracking is new, and the end of the discovery of new nodes is
immediate at leaves), it is more challenging in the new model to detect when it is no
more possible to encounter “new” nodes.

The class where we are able to explore is fairly large and has been proved maxi-
mal when using binoculars of range 1. When considering binoculars of range k, clique
complexes are no longer the right tool to use, but we believe we can obtain a similar
characterization of explorable graphs by considering other cell complexes associated with
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the graph. Note that for triangle-free networks, enhancing the agent with binoculars of
range 1 does not change the class of explorable networks. More generally, it can also be
shown that providing only local information (e.g. using binoculars of range k) cannot
be enough to explore all graphs (e.g. graphs with large girth).

Note that our universal Exploration algorithm can actually compute the universal
cover of the graph, and therefore yields a Map Construction algorithm if we know
that the underlying graph has a simply connected clique complex. However, note that
there is no algorithm that can construct the map for all graphs of FC. Indeed, there
exist graphs in FC that are not simply connected (e.g. triangulations of the projective
plane) and by the Lifting Lemma, they are indistinguishable from their universal cover.
Note that without binoculars, the class of trees is not only the class of graphs that are
explorable without information, but also the class of graphs where we can reconstruct
the map without information. Here, adding binoculars, not only enables to explore more
networks but also give a model with a richer computability structure : some problems
(like Exploration and Map Construction) are no longer equivalent.

While providing binoculars is a natural enhancement, it appears here that explorabil-
ity increases at the cost of a huge increase in complexity: the number of moves, as a
function of the size of the graph, increase faster that any computable function. This
cannot be expected to be reduced for all explorable graphs for fundamental Turing com-
putability reasons. However, our results on Weetman graphs show that with binoculars,
there is a linear exploration algorithm for a class that is much larger than the class of
trees. So the fact that the full class of explorable networks is not explorable efficiently
should not hide the fact that the improvement is real for large classes of graphs.

One of the interesting open problem is to identify classes of networks that can be
explored efficiently (with linear or polynomial algorithms) with binoculars. Natural
classes to consider are classes of graphs arising from metric and geometric graph theory.
For example, if we consider binoculars of radius 2, it should be quite easy to adapt our
algorithm for Weetman graphs to show that all weakly modular graphs (as well as basis
graphs of matroids) can be explored in linear time. A next step would be to consider
δ-hyperbolic graphs. For these graphs, we know from Theorem 3.9 that the cell complex
of a hyperbolic graph G where all cycles of length at most 16δ are 2-dimensional cells is
simply connected. Consequently, with binoculars of large enough radius, δ-hyperbolic
graphs should be explorable. Moreover, we know that these cell complexes satisfy a
linear isoperimetric inequality and it would be interesting to know if we can use this
property in order to derive an efficient Exploration algorithm for δ-hyperbolic graphs.



CHAPTER 6

Minimum Base Construction in Anonymous Networks

We saw in the previous chapter that in the standard mobile agent model, an agent
can explore a graph without information if and only if the graph is a tree. We now
assume that the agent is given initially some information about the network. Observe
that if the agent knows a bound n̂ on the size n of the network G, then the agent can use
this information to explore G: it can explore all paths of length at most n̂ starting at its
initial position. Observe that if we are given enough information to explore the graph
with termination, i.e., if we are given an algorithm that explores a graph G and stops,
then one can easily compute an upper bound on the number of nodes of the graph just
by counting the number of steps performed during the execution. In other words, from
a computability point of view, exploration is as hard as computing an upper bound on
the size of the network.

In this chaper, we assume that the agent initially knows an upper bound n̂ on the
size of the network. Observe that the exploration algorithm sketched above is very
inefficient since the number of moves performed by such an algorithm is the size of the
view TG(v0, n̂) that can be exponential in n̂. Several methods have been proposed in the
litterature (see Section 3) to solve the exploration problem much more efficiently when
an upper bound on the size of the network is initially given to the agent. The number
of moves performed by these algorithms is polynomial in the given bound.

As observed by Yamashita and Kameda [259], the view of a node is the maximum
amount of information the node can gather about the network it belongs to. Similarly,
a mobile agent evolving in an unknown graph cannot learn more information during the
execution of any algorithm than the information contained in the view of its homebase.
Even if views are a priori infinite, Norris showed in [186] that it is enough to compute
the view of a node up to depth 2n to obtain all the computable information about a
network of size n. Hendrickx later showed that it is enough to compute the view of depth
O(D log(n/D) where D is the diameter of the network (See Section 1). In general, the
view of depth k of a node has a size that is exponential in k, but Tani showed that
in anonymous message passing systems, the nodes can compute efficiently compressed
representations of their views that have a size polynomial in the number of nodes of the
network.

Even if views contain all the information that can be gathered, they are not always
easy to handle since they are infinite and since their compressed representations can
still be quite large. As observed by Boldi and Vigna [34] as well as Yamashita and
Kameda [259], when dealing with networks endowed with a port-numbering, one can use
the notion of minimum bases (that is called quotient graph by Yamashita and Kameda)
that also contains all the information one can gather about the network. The minimum
base B(G) of G is a (di)graph such that for any (di)graph H, if (the directed version of)
G is a cover of H, then H is a cover of B(G) (See Section 2). In some sense, computing
the view of a node of G is looking for the largest cover of G (its universal cover), while
constructing the minimum base is looking for the smallest (di)graph that is covered by
B(G). In anonymous message passing systems, one can compute the minimum base of
the network with polynomial algorithms (See Section 2).

In this chapter, we explain how a mobile agent evolving in a network can also
compute the minimum base of the network in polynomial time. More precisely, we
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show that if we are given an exploration algorithm for a given network (or a family
of networks), we can use it as a black-box to obtain an algorithm that computes the
minimum base of the network. The overhead in the complexity is polynomial in the
size of the minimum base. The techniques we use are similar to the techniques used to
minimize finite deterministic automata (See Section 4).

The results of this chapter are based on the paper [68].

1. View Construction in Anonymous Message-passing Systems

As observed by Yamashita and Kameda [259], in a network of processes, the view
TG(v) of a vertex v contains all the information v can learn about the network. Con-
sequently, to solve any distributed task, each vertex v can first compute its view TG(v)
and then perform some local computation based on TG(v). Note however that if the
graph G is not a tree, then the view of a vertex is an infinite tree. However, Norris [186]
showed that for any graph G with n vertices, if two vertices u, v ∈ V (G) have the same
view of depth n− 1, i.e., TG(u, n− 1) = TG(v, n− 1), then they have the same view, i.e.,
TG(u) = TG(v). Using a pseudo-synchronous algorithm, each node v can easily compute
its view TG(v, k) of depth k for any given k. Consequently, if the processes know the
number n of vertices in the network as well as the diameter D of the network, each
vertex v can compute its view TG(v, n + D) of depth n + D. In this way, each node
knows all the views of depth n that appear in the network and can compute its view up
to arbitrary depth. It can then use this to locally solve the distributed task. If instead
of knowing the size n and the diameter D, the vertices only know a bound n̂ on the size
of the network, the nodes can compute their view up to depth 2n̂ and then solve the
problem locally. This shows that any distributed task can be solved (if it is solvable)
in O(n) (resp. O(n̂)) rounds of communication in an anonymous network provided the
size n (resp. a bound n̂ on the size) of the network is initially known by the processes.
Note however that again the views that the vertices exchange can be of exponential size.
In order to reduce the size of the messages exchanged while the vertices construct their
views, Tani [238] observed that for any k, there are at most n different views of depth
k in a network G of size n. Using this, he was able to design an algorithm allowing each
node to compute its view of depth k in G in 2k rounds while exchanging messages of
size polynomial in n for any given k.

Hendrickx [139] showed that since we are considering networks that are endowed
with a port-numbering, if two vertices u, v have the same view up to depth k (i.e.,
TG(u, k) = TG(v, k)) for some k = O(D + D log(n/D)), then they have the same view.
Dereniowski, Kosowski, and Pajak [102] showed that one cannot find a better upper
bound for k up to a constant factor. This shows in particular that we cannot remove
the dependency on the size of G. One of the consequence of the result of Hendrickx
is that if the processes initially know only a bound D̂ on the diameter of the network,
then by constructing their view up to depth D̂, the vertices can discover the maximum

degree ∆ of G. Using n̂ = ∆D̂ as an upper bound on the size of G, this means that it
is enough for each vertex v to compute its view TG(v, k) for k = O(D̂2 log(∆)) in order
to be able to reconstruct its view locally up to any arbitrary depth.

2. Minimum Bases

Views enable to express the symmetries between nodes but they are not always easy
to handle since we generally have to handle infinite or very large trees. The notion
of minimum bases [34] (or equivalently quotient graphs [259]) enables to express the
symmetries of the network using only finite graphs. Moreover, as it is the case for the
views, the minimum base of a network contains all the information a node can learn
about the network. The view of a node in a network G is the universal cover of G and is
thus the “largest” cover of G. On the opposite, the minimum base B of G is the smallest
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graph that is covered by G: for any network H such that G covers H, H covers B. Note
however that contrary to universal covers, for an unlabeled graph G, the minimum base
of G does not always exists (but it always exists if we consider (op)fibrations instead
of covering maps, see Section 5), but as shown by Boldi and Vigna [34], if the graph
G is endowed with a port-numbering, then the minimum base of G always exists. Note
also that in order to be able to talk about minimum bases, one has to consider directed
graphs with multiple arcs and self-loops.

Given a directed graph D = (V (D), A(D)) (with possibly self-loops and multiple
arcs), for each arc a ∈ A(D), we denote by sD(a) its source and by tD(a) its target
(when D will be clear from the context, the subscripts will be omitted). A directed
graph D is symmetric if there exists an involution σD : A(D) → A(D) such that for
each arc a ∈ A(D), sD(σ(a)) = tD(a) and tD(σ(a)) = sD(a). Observe that if a is a
self-loop (i.e., s(a) = t(a)), it is possible to have a = σ(a); in this case, a is called a
symmetric self-loop, and it is called an asymmetric self-loop otherwise.
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Figure 6.1. A graph G with a port-numbering δ, the digraph Dir(G),
the minimum base B(G), and a simpler graphical representation of B(G)
where each undirected edge corresponds to two symmetric directed arcs.

Given a network G with a port-numbering δ and a vertex-labeling λ, the symmetric
directed graph Dir(G) is defined as follows. The vertices of Dir(G) are the vertices of
G (with the same labels). For each edge uv ∈ E(G) there are two arcs auv and avu with
s(auv) = t(avu) = u, t(auv) = s(avu) = u, σ(auv) = avu and each arc auv is labeled by
(δu(v), δv(u)) (See Figure 6.1 (top) for an example).

A homomorphism ϕ from a directed graph D to a directed graph D′ is given by a
map from V (D) to V (D′) and a map from A(D) to A(D′) (that are both denoted by
ϕ) such that for each a ∈ A(D), sD′(ϕ(a)) = ϕ(sD(a)) and tD′(ϕ(a)) = ϕ(tD(a)). A
directed graph D is a cover of a directed graph D′ via a homomorphism ϕ : D → D′ if
for any vertex v ∈ V (D), ϕ induces a bijection between I−D(v) = {a ∈ A(D) | sD(a) = v}
and I−D(ϕ(v)) = {a′ ∈ A(D′) | sD′(a′) = ϕ(v)} as well as a bijection between I+

D(v) =

{a ∈ A(D) | tD(a) = v} and I+
D(ϕ(v)) = {a′ ∈ A(D′) | tD′(a′) = ϕ(v)}. A symmetric

directed graph D is a symmetric cover of a symmetric directed graph D′ via ϕ if D is
a cover of D′ such that for any arc a ∈ A(D), σD′(ϕ(a)) = ϕ(σD(a)). Observe that if
a simple undirected graph G is a cover of a simple undirected graph H, then Dir(G) is
a symmetric cover of Dir(H). As always, when dealing with labeled digraphs, we only
consider homomorphisms and (symmetric) covers that preserve the labels.
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When dealing with (symmetric) covers of directed graphs, we have a result similar
to Proposition 5.6.

Proposition 6.1 ([34]). If a digraph D is a cover of a (connected) digraph D′ via
a covering map ϕ, there exists q such that for all x ∈ V (D′) ∪A(D′), |ϕ−1(x)| = q.

This number q is called the number of sheets of the cover.

Given a network G, the minimum base B(G) of G is a labeled digraph such that for
any digraphD such thatDir(G) is a covering ofD, thenD is a covering ofB(G) [34] (See
Figure 6.1 for an example). Observe that B(G) and Dir(G) have the same universal

cover Dir(G̃). In fact, one can reconstruct the minimum base B(G) of G from the
collection of the views of the vertices of G:

• V (B(G)) = {TG(v) | v ∈ V (G)}, i.e., there is a vertex in B(G) for each distinct
view of G.
• there is an arc aT1,T2,p,q from T1 = TG(v1) to T2 if there exists a neighbor v2

of v1 in G such that TG(v2) = T2, δv1(v2) = p, and δv2(v1) = q. The label of
aT1,T2,p,q is (p, q) and σB(G)(aT1,T2,p,q) = aT2,T1,q,p.

The symmetric covering map ϕ from Dir(G) to B(G) maps a vertex v to TG(v) and
thus, two nodes of G have the same view if and only if they have the same image in
B(G) by ϕ.

Observe that using the results mentionned above, if we know a bound on the size of
the graph, then we can compute the minimum base of a network G in a number of rounds
that is linear in the given bound by exchanging messages of size polynomial in the size
of G. Other polynomial algorithms have been proposed to compute the minimum base
of a network. In [73,77], reusing ideas from Mazurkiewicz [170], the idea is to compute
the minimum base using a procedure that is similar to degree refinment [34,160] (or to
the method used to minimize a deterministic finite automata [142,172]). One can also
obtain another algorithm by adapting the algorithm of [99] to message passing systems;
the construction proposed in [99] is inspired from the characterization of coverings of a
given graph by Reidemeister [209]

When an agent evolving in a network is given a bound n̂ on the size of the network,
it is also possible to compute the minimum base by computing the view of depth 2n̂ by
traversing all paths of length 2n̂ starting from the initial position of the agent. Note
however that this leads to a very inefficient algorithm since the number of such paths
can be exponential in n̂.

3. Universal Exploration Sequences

In order to explore more efficiently an unknown graph, one can use universal explo-
ration sequence (UXS) [152] if we initially know a bound on the number of vertices of
the network.

Given a a node u and an integer p ∈ [1, deg(u)], we denote by succ(u, p) the unique
node v such that δu(v) = p. Given a sequence of integers (a1, a2, . . . , ak), an application
of this sequence to a graph G at node u is the sequence of nodes (u0, . . . , uk+1) obtained
as follows: u0 = u, u1 = succ(u0, 0); for any 1 ≤ i ≤ k, ui+1 = succ(ui, (p + ai)
mod d(ui)), where p = δui(ui−1). A sequence (a1, a2, . . . , ak) whose application to a
graph G at any node u contains all nodes of this graph is called a UXS for this graph.
A UXS for a class G of graphs is a UXS for all graphs in this class.

For all integers n̂ and ∆, let U(n̂,∆) be a UXS for the class Gn̂,∆ of all graphs with
at most n̂ nodes and maximum degree at most ∆. The following important result, based
on a reduction from Kouckỳ [152], is due to Reingold [210].

Theorem 6.2 ( [210]). For any positive integer n̂, there exists a UXS Y (n̂) =
(a1, a2, . . . , aM ) for the class Gn̂,n̂ of all graphs with at most n̂ nodes, such that
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• M is polynomial in n̂,
• for any i ≤M , the integer ai can be constructed using O(log n̂) bits of memory.

The above result implies that a (usually non-simple) path (u0, . . . , uM+1) traversing
all nodes can be computed (node by node) in memory O(log n), for any graph with at
most n nodes. Moreover, logarithmic memory suffices to walk back and forth on this
path: to walk forward at node ui, port (p + ai) mod d(ui) should be computed when
coming by port p, to walk backward, port (p− ai) mod d(ui) should be computed.

The degree of the polynomial in Theorem 6.2 bounding the length of the UXS is
very large. Aleliunas et al. [6] proved the existence of universal exploration sequences
of length of small polynomial size.

Theorem 6.3 ([6]). For any positive integers n̂,∆, ∆ < n̂, there exists a universal
exploration sequence of length O(n̂3∆2 log n̂) for the family of all graphs with at most n̂
nodes and maximum degree at most ∆.

Note that the exploration sequences in the proposition above are not constructible in
logarithmic memory, while the log-space constructible sequences from Proposition 6.2 are
much longer (though still polynomial in n). The resutl of Aleliunas et al. [6] is obtained
by derandomizing a (classical) random walk where at each step the next outgoing port
is chosen uniformly at random. Derandomizing the Metropolis walk (that can be seen
as a biased random walk), Kosowski [150, 151] shows that one can gain a factor ∆ in
the complexity (at the cost of a log n̂ factor).

Theorem 6.4 ([150]). For any positive integers n̂,∆, ∆ < n̂, there exists an algo-
rithm for a mobile agent that explores any anonymous graph with at most n̂ nodes and
maximum degree at most ∆ in O(n̂3∆ log2 n̂) steps.

These results show that even very little information about the network (a bound on
the size of the network), an agent can explore a network quite efficiently (in a time that
is polynomial in the given bound).

4. Minimum Base Construction by a Mobile Agent

As explained above, if we are given an upper bound n̂ on the size of a network G,
the agent can compute the view TG(v0, n̂) of the homebase v0 of the agent in G and
from this view, it can compute the minimum base of G.

We now present a more efficient algorithm to compute the minimum base of a net-
work G assuming we are given an exploration algorithm A for G. The overhead of this
algorithm is polynomial in the size of the minimum base B(G) of G. Our algorithm uses
ideas that are usually used to minimize a deterministic automaton.

Given a graph G, a node u of G and a sequence of edge-labels Y =
((p1, q1), (p2, q2), . . . , (pj , qj)), we say that Y is accepted from u if there exists a path
P = (u = u0, u1, . . . , uj) in G such that δ(P ) = Y , i.e., for each i, 1 ≤ i ≤ j,
(pi, qi) = δ(ui−1, ui). Recall that for any k > 0, two vertices u, v that have the same view
up to depth k are said to be k-equivalent; we denote it by u≡kv. The k-class of u is the set
of all vertices that are k-equivalent to u. Given any two distinct k-classes C,C ′, a (C,C ′)-
distinguishing path is a sequence of edge-labels YC,C′ = ((p1, q1), (p2, q2), . . . , (pj , qj)) of
length at most k such that YC,C′ is accepted from each node u ∈ C and it is not ac-
cepted from any node v ∈ C ′. For any two distinct k-classes, there always exists either
a (C,C ′)-distinguishing path or a (C ′, C)-distinguishing path.

We present an algorithm (See Algorithm 6.1) that iterates over k, and for each k, ex-
plores the graph and identifies the k-classes of the visited nodes and their neighborhoods.
We use the exploration algorithm A to visit all vertices of G.

For k = 1, it is easy to determine the k-class of any node v by traversing each
edge incident to v and noting the labels. From this information, one can find the
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distinguishing paths for any pair of 1-classes. For k ≥ 2, it is possible to identify the
k-classes and the corresponding distinguishing paths (from the knowledge of the k − 1
classes) using the properties below.

Proposition 6.5. For k ≥ 2, two nodes u and v belong to the same (k + 1)-class,
if and only if

(i) u and v belong to the same k-class, and
(ii) for each i, 0 ≤ i ≤ degG(u) = degG(v), ui = succ(u, i) and vin = succ(v, i) belong

to the same k-class and δ(u, ui) = δ(v, vi) = (i, j), for some j ≥ 0.

For a vertex v ∈ V (G), we denote its k-class by Ck(v). Note that if Ck(u) = Ck(v)
for two vertices u, v ∈ V (G), then Ck−1(u) = Ck−1(v). Consequently, for each k-class
C, there is a unique (k − 1)-class C ′ containing the vertices of C. We can arrange the
classes in a tree: there is only one class at depth 0, and for each k, the children of a
k-class C are the (k + 1)-classes C1, . . . , Cp such that C =

⋃p
i=1Ci. The number of

children of a class C is called the degree of C and is denoted by deg(C).

Algorithm 6.1: Class-Refinement(n)

Let v1, v2, . . . vt be the sequence of nodes visited by A, possibly containing
duplicate nodes ;

Follow A and for each node vi do
Store the labels of each edge incident to vi;

Compute the number of 1-classes and store a distinguishing path for each pair
of distinct classes ;

Return to v1;

k := 0;

repeat
Increment k;

Execute A and for each visited node vi do
for each edge (vi, w) incident to vi do

Compute the k-class of w (using the distinguishing paths between
the children of the (k − 1) class of w);

Store the label of (vi, w) and the index of the k-class of w ;

Compute the number of (k + 1)-classes and store a distinguishing path for
each pair of distinct (k + 1)-classes ;

Return to v1;

until the number of (k + 1)-classes is equal to the number of k-classes;

Compute the minimum base ;

Theorem 6.6. Algorithm 6.1 builds the minimum base of any graph G in O(NG ·
∆nBDB log(nB/DB)) moves where NG is the number of moves performed by A on G and
where ∆, nB, and DB are respectively the maximum degree, the size, and the diameter
of the minimum base B of G.

Proof. During the (k+1)th iteration, on each node v reached by the execution ofA,
for each neighbor w of v, the agent computes the k-class of w. Since it knows the k-class
Ck(v) of v, it also knows the (k − 1) class Ck−1(w) of w. Let C1, C2, . . . , Cdeg(Ck−1(w))

be the k-classes of G that are the children of Ck−1(w). In order to compute the k-class
Ck(w) of w, the agent needs to check at most deg(Ck−1(w))− 1 different distinguishing
paths of length at most k.

Assume that the algorithm ends after p + 1 iterations of the loop, i.e., the set of
p-classes is the same as the set of (p + 1)-classes. For each vertex v, and for each
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neighbor w of v, overall the agent traverses at most Σp
k=0(deg(Ck(w) − 1) paths of

length at most p. Note that there are at least Σp
k=0(deg(Ck(w) − 1) p-classes, i.e.,

Σp
k=0(deg(Ck(w)−1) ≤ nB. Consequently, for each neighbor w of each vertex v traversed

by the exploration algorithm A, the agent traverses at most (p+ 1) · nB edges.
Since we know that p ≤ DB log(nB/DB) [139], overall the agent performs O(NG ·

∆nBDB log(nB/DB)) moves. �

If we use the algorithms of Aleliunas et al. [6] and Kosowski [150] described in
Section 3 as an exploration algorithm, we obtain the following corollary.

Corollary 6.7. Given an upper bound n̂ on the size of a network G, one can
compute its minimum base in time O(n̂3∆3 log n̂ · nBDB log(nB/DB)) = O(n̂5∆3 log n̂)
or O(n̂3∆2 log2 n̂ · nBDB log(nB/DB)) = O(n̂5∆2 log2 n̂).

Remark 6.8. The algorithm presented in this chapter is the same as the one in [68]
but the analysis is different, leading to a better complexity (improved by a factor of n̂).

5. Computing the Minimum Base without Incoming Port-numbers

All the algorithms presented in the previous sections use intensively the ability for
the agent to backtrack. This is possible since when the agent reaches a node, it knows
its incoming port-number.

When the agent is not able to detect the incoming port-number of a node, one has
to use opfibrations of graphs instead of covers of graphs. A directed graph D is an
opfibration of a directed graph D′ via a homomorphism ϕ : D → D′ if for any vertex
v ∈ V (D), ϕ induces a bijection I+

D(v) = {a ∈ A(D) | tD(a) = v} and I+
D(ϕ(v)) = {a′ ∈

A(D′) | tD′(a′) = ϕ(v)}.
Given a graph G with port-numbering δ, the digraph Dir(G) is a directed graph

(that is no longer symmetric) whose vertices are the vertices of G and where each edge
uv ∈ E(G) is replaced by an arc auv labeled δu(v) and an arc avu labeled δu(v) such
that s(auv) = t(avu) = u and t(auv) = s(avu) = u. In this case, the minimum base of G
is the smallest digraph B(G) such that G is an opfibration of B(G).

Even if the previous algorithms cannot be used to compute the minimum base of G,
we showed in [64,67] that one can still compute the minimum base of a network G when
we are given an upper bound n̂ on its size. The idea is to enumerate all digraphs H of
size at most n̂ that are not opfibred over any other digraph and to consider all possible
vertices v ∈ V (H). For two given pairs (H, v), (H ′, v′), there is always a distinguishing
path that enables to distinguish (H, v) and (H ′, v′). By enumerating all such paths, it
is possible to find the unique pair (H, v) such that H is the minimum base of G and v
is the image of the homebase v0 of the agent in v by the opfibration map.





CHAPTER 7

Mapping Polygons

As explained in the previous chapter, the minimum base contains all the information
an agent can gather about the network (provided a bound on its size is given). A natural
problem to consider is the mapping problem where the goal is to output a map of the
underlying network. Unfortunately, it is easy to build different networks that have the
same minimum base, showing that the mapping problem cannot always be solved. For
example, if we are in the family of cycles, the agent has no way to be able to compute
the size of the cycle. In fact, using Reidemeister theorem [209], one can easily construct
families of networks that have the same size and the same minimum base, showing that
there is no hope to infer the map of the network from its size. However, one can ask
if for some classes of graphs, the problem is solvable (using the fact that we know that
the network is in this class). For example, one can consider planar graphs or chordal
graphs. The idea is to use the structural properties of these classes.

In this chapter, we focus on the mapping problem for visibility graphs of simple
polygons. There are potentially many geometric information that we can provide to
an agent moving in a polygon. The difficulty of the mapping problem depends on the
characteristics of the environment itself and on the sophistication of the agents, i.e., on
their sensory and locomotive capabilities. A natural question is how much sophistication
an agent needs to be able to solve the problem. The ultimate goal is to characterize the
difficulty of the mapping problem by finding minimal agent models that allow an agent
to create a map.

We consider agents operating in environments in the shape of simple polygons. For
many tasks, instead of inferring a detailed map of the geometry of the environment, it
is enough to obtain the visibility graph. The visibility graph has a node for each ver-
tex of the polygon and an edge connecting two nodes if the corresponding vertices see
each other, i.e. if the straight-line segment between them is contained in the polygon.
The goal in this context becomes to find minimal agent models that allow an agent
inside a polygonal environment to reconstruct the visibility graph of the environment.
The information the agent can gather must be sufficient to uniquely infer the visibility
graph. A variety of minimalistic agent models have been studied, focusing on differ-
ent types of environments and objectives [8, 45, 92, 148]. The model considered here
originates from [234]. Roughly speaking, our agent is allowed to move along the edges
of the visibility graph. While at a vertex, the agent sees the vertices visible from its
current location in counter-clockwise (ccw) order starting with its ccw neighbor along
the boundary. Apart from this ordering the vertices are indistinguishable to the agent.
In each move the agent may select one of them and move to it.

Table 1 summarizes known results that are based on the agent model considered
here, as well as open problems. Besides employing different sensors, the results differ in
the agent’s initial knowledge about the size n of the polygon, its movement capabilities,
and, in case of positive results, the running times of the reconstruction algorithms. The
first part of the table concerns agents that are restricted to moving along the boundary
only. It was shown that even with this severe movement restriction an agent can still
reconstruct the visibility graph, as long as it can measure the exact angle between any
pair of visible vertices [105,106]. On the other hand, only measuring the angle between
the two neighboring vertices along the boundary is not sufficient, even if the agent can
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Visibility Graph Reconstruction

initial results
sensors info movement solvable time source
angles, directions – boundary yes poly [29]
angles n boundary yes poly [105]
angles – boundary yes poly [106]
cvv, boundary angles n boundary no [29]
angle-types boundary open
distances boundary open
pebble – free yes poly [234]
cvv, look-back – free no [45]
angle-types, look-back – free yes poly [29]
angle-types, directions – free yes poly [29]
directions n̂ free yes exp [104]
look-back n̂ free yes poly [63,65]
angle-types n̂ free yes exp [64,67]
distances free open
no sensors n free open

Table 1. Summary of the cases in which an agent is known to be
able/not able to solve the visibility graph reconstruction problem. Note
that a polynomial running time in a setting where only an upper bound
n̂ ≥ n is known a priori means polynomial in n̂ rather than n.

distinguish whether any two visible vertices are neighbors along the boundary (“cvv” in
the table) [29]

For agents that move across the polygon (as opposed to along the boundary), it is
sufficient to be able to mark a single vertex (e.g., with a pebble) in order reconstruct the
visibility graph [234]. Without this powerful ability, it is difficult for the agent to relate
the information it collected so far to subsequent observations. One way to overcome
this difficulty is to endowed the agent with a look-back sensor that allows to identify
the vertex the agent came from in its last move. But even with a look-back sensor
some knowledge of an upper bound on the size n of the polygon is required to solve the
reconstruction problem [45]. A direction sensor that measures the angle between the
boundary and a global reference direction makes it possible to reconstruct the visibility
graph, even in the presence of holes [104]

An angle-type sensor allows the agent to distinguish convex (≤ π) from reflex (≥ π)
angles. It was shown before that an agent with a look-back sensor and an angle-type
sensor is powerful enough to allow visibility graph reconstruction [29]. In this chapter,
we show that provided the agent is given an upper bound on the size of the polygon,
any of these two sensors alone is enough to be able to reconstruct the visibility graph of
the polygon.

Theorem 7.1 ([63, 65]). Given an upper bound n̂ on the size of a simple polygon
P, a look-back agent can reconstruct the visibility graph G(P) of P.

Theorem 7.2 ([64, 67]). Given an upper bound n̂ on the size of a simple polygon
P, an angle-type agent can reconstruct the visibility graph G(P) of P.

It remains an open problem whether the angle-type sensor is sufficient even when
the agent is restricted to moving along the boundary. Other interesting open prob-
lems are whether knowledge of n (or of an upper bound on n) on its own is already
enough to reconstruct the visibility graph, and how a distance sensor may be used for
reconstruction.
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In the agent model we use, the agent moves along the edges of the visibility graph and
can locally access some information about the edges. We can model this in the context
of general graph exploration of labeled graphs considered in the previous chapters: the
information given by the different sensors we consider can be encoded in the labels of
the vertices of the visibility graph as well as in the port-numbering associated to this
visibility graph.

The results of this chapter are based on the papers [63, 65], [64, 67], and on the
survey [66].

1. The Visibility Graph Reconstruction Problem – Model and Notations

1.1. Simple Polygons and Visibility Graphs. We consider simple polygons
only and we assume polygons to be in general position, i.e. no three vertices lie on a
common line. Let in the following P be such a simple polygon with n vertices. We
denote the set of vertices of P by V (P), where we drop the argument P whenever
the polygon is evident from the context. The boundary of P together with an (arbi-
trary) choice of a starting vertex v0 induces an order among the vertices and we write
v0, . . . , vn−1 to denote the vertices along the boundary in counter-clockwise order. We
define chain (vi, vj) := (vi, vi+1, . . . , vj). Note that all indices of vertices are modulo n,
unless otherwise specified.

We say two vertices u,w ∈ V see each other or u sees w if and only if the line
segment uw lies entirely in P – in particular vi sees vi+1 for all i. If vi−1 sees vi+1, we
say vi forms an ear.

The visibility graph G(P) of a polygon has a node for every vertex of the polygon
and an edge for every pair of vertices that see each other. We use m to denote the
number of edges in the visibility graph of a given polygon. We write di, 0 ≤ i < n, to
denote the degree of vi, i.e., the number of edges incident to vi in G(P). For convenience,
all operations on indices are understood modulo n.

With vis(vi) = (u1, . . . , udi) we denote the sequence of vertices that a vertex vi ∈ V
of degree di sees, enumerated in counter-clockwise order along the boundary starting at
u1 = vi+1 and ending at ud = vi−1. We write visj(vi), 1 ≤ j ≤ d, to denote uj , vis−j(vi)
to denote ud+1−j and vis0(vi) to denote vi itself. For a given sequence chain(vi, vj)
we denote by chainv(vi, vj) the subsequence of chain(vi, vj) containing only the vertices
visible to v.

Let C = (u0, . . . , ul−1) be a cycle of length l in the visibility graph of P. We
say C is an ordered cycle, if and only if u0, . . . , ul−1 appear on the boundary of P in
that order (counter-clockwise). As ui sees ui+1 for 0 ≤ i ≤ l − 1, an ordered cycle C
induces a subpolygon of P with C being the boundary of the subpolygon. Note that C
being an ordered cycle implies that the boundary of the induced subpolygon does not
self-intersect.

Lemma 7.3. Let P be a simple polygon of size n ≥ 4. For all 0 ≤ i < n we have
that either the degree of vi or the degree of vi+1 is greater than two.

1.2. Look-back Agents and Angle-type Agents. In the following, we consider
a mobile agent exploring a simple polygon P with n vertices (cf. Figure 7.1). The goal
of the agent is to reconstruct the visibility graph G(P) of P.

While located at a vertex vi, the agent perceives the edges of G(P) incident to vi
in counter-clockwise order, starting with the boundary edge (vi, vi+1) (cf. Figure 7.1).
In other words, the agent is moving in the graph G(P) endowed with a port-numbering
where the port-numbers are given by this counter-clockwise order.

We choose v0 to be the agent’s initial location, therefore the agent can keep track
of its global position as long as it moves along the boundary only. However, it can
neither perceive the global index i of its location vi directly, nor the global indices of
the vertices to which the edges from vi lead. This means that once it moves along an
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Figure 7.1. Left: A simple polygon with embedded visibility graph.
Right: The polygon as perceived locally by an agent located at v0. All
that the agent can observe is an order of the edges incident to its location.
Except for the two boundary-edges, the agent does not know to which
vertex, or in which direction, each edge leads.

edge through the inside of P, in a way, the agent looses sense of its global position. The
counter-clockwise ordering of the edges at a vertex is the only means of orientation that
the agent has when deciding a move.

The move itself is assumed to be instantaneous, i.e., the agent cannot make any
observations while moving. Every movement decision of the agent and the conclusions
it draws from local observations are based on all the information it has collected so far
– a history of movement decisions and observed vertex degrees. Because our focus is to
study the effect of movement and sensing capabilities, we do not restrict the agent com-
putationally, and we assume that the agent has enough memory to store all the history
of movements and observations. The question is whether the information collected this
way is sufficient for the agent to infer G(P).

In order to reconstruct the visibility graph, it is sufficient to decide for every vertex
where the edges incident to this vertex lead in terms of global identities (i.e., global
indices). This task becomes trivial if there is a vertex v? with the property that the
agent can distinguish at any time whether or not it is currently located at v?. In that
case, the agent can decide where an edge leads simply by moving along the edge and
then counting the number of moves along the boundary that it takes to get back to v?.
Hence, the visibility graph reconstruction problem is non-trivial only if no individual
vertex of P can be recognized by the agent. In some sense, the problem is difficult only
if P is symmetric with respect to the data which the agent is able to perceive.

Observe that in the algorithm proposed above when the agent can distinguish a
particular node, when an agent enters a node, it does not need to be able to backtrack,
and thus it does not need to know the label of the edge leading back to its previous
location. It is an open problem to determine whether one can reconstruct G(P) from an
upper bound on the size of P in this model when the agent is not given any additional
sensor.

A natural way for an agent to be able to backtrack is to to equip the agent with
an additional sensor which perceives the label of the arc that leads back to the agent’s
previous location (cf. Figure 7.2), i.e., in the labeled graph G(P) to allow the agent to
detect the incoming port-number when it enters a node (cf. Figure 7.2). We refer to an
agent with this capability as a look-back agent.

The standard angle sensor [105,106] measures all counter-clockwise angles between
pairs of edges of G(P) which are incident to the agent’s current location (see. Figure 7.3,
left). The angle-type sensor is the same as the standard angle sensor, except that angles
are not measured exactly: for each angle, the angle-type sensor only returns whether
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Figure 7.2. The perception of the agent with look-back capability after
its move from v5 to v0. The agent can distinguish the arc leading back
to v5, i.e., it knows its index “4” in the local ordering.

α3 α1

α2

≥ π ?

Figure 7.3. Local perception with a standard angle sensor (left) and
an angle type sensor(right).

this angle is convex (≤ π) or reflex (> π) (cf. Figure 7.3, right). We refer to an agent
endowed with an angle-type sensor as a angle-type agent.

2. Reconstructing a Polygon with a Look-Back Agent

2.1. Computing the Minimum Base. The first step of our algorithm is for the
agent to reconstruct the minimum base of G(P). Observe that the agent is able to
explore all vertices of G(P) by following the boundary of the polygon, i.e., by following
port-numbers 1. We assume that the agent knows initially an upper bound n̂ on the
number n of vertices of P. Consequently, by following n̂ times the port number 1,
the agent knows it has explored all vertices of the polygon. Since we consider a look-
back agent, one can apply Theorem 6.6 with NG = n̂. In fact, since the agent follows
a hamiltonian path during its exploration algorithm, we can replace NG∆ = n̂∆ by
n̂mn = n̂mBnB and we get the following proposition.

Proposition 7.4. Given an upper bound n̂ on the size of a polygon P, a look-back
agent can reconstruct the minimum base B(P) of G(P) in O(n̂ · mBDB log(nB/DB)
where mB, nB, and DB are respectively the number of arcs, the number of vertices and
the diameter of B(P).

2.2. Identifying a Clique in G(P). Once the agent has computed B(P), it has
gathered all the information it can collect by exploring G(P) (or P). We now explain
how one can extract a map of G(P) from B(P). In the following, we say that two vertices
are equivalent if they have the same image in B(P), and we denote the equivalence class
of a vertex v by [v]P , or [v] when P is clear from the context. The equivalence classes
[v] can be identify with the vertices of B(P). First observe that by Proposition 6.1, all
equivalence classes have the same size q. In our particular case, the sequence of classes
to which the vertices along the boundary belong is periodical with period n

q .
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Lemma 7.5. Let vi be a vertex of a simple polygon P of size n. For all vertices
u ∈ V (P) we have q := |[vi]| = |[u]| and p := n

q = |V (B(P))| is an integer equal to the

number of different classes of P.
For all integers k we have [vi] = [vi+kp].

The following simple lemma is the key lemma in the reconstruction of G(P). It
shows that one can detect if a vertex vi is an ear by looking at the labels of path of
length at most 2 starting at vi.

Lemma 7.6. Let vi be a vertex of a simple polygon P of size n ≥ 3. We have that vi
is an ear if and only if vi−1 has a neighbor u such that δvi−1(u) = 2 and δuvi−1 = −2.

Since two vertices are equivalent if and only if they have the same view, we get the
following proposition.

Proposition 7.7. If a vertex vi of P is a polygon, then every vertex of P that is
equivalent to vi is also an ear.

The following lemma allows an agent to ’cut off’ ears of the polygon. With cutting
off an ear vi of a polygon P we mean the operation that removes a vertex vi yielding
the subpolygon induced by the ordered cycle v0, . . . , vi−1, vi+1, . . . , vn−1 in P’s visibility
graph. Cutting off a single ear is problematic for an agent as it has no obvious way
of deciding which edges of the visibility graph it has to ignore afterwards in order to
restrict itself to the remaining subpolygon. An edge might lead to a vertex of the same
class as the one the agent cut off, in which case it has no way of distinguishing whether
the vertex is still there or not. Cutting off all vertices of one class however is possible as
the agent can then simply ignore all edges leading to vertices of the corresponding class
altogether.

Lemma 7.8. Let v be a vertex of a simple polygon P of size n with |[v]P | < n (i.e., P
has more than one class). If v is an ear of P, the subpolygon P ′ of P obtained by cutting
off the vertices [v] is well-defined and for all vertices u of P ′ we have [u]P ⊆ [u]P ′.

As long as there are at least two classes, the agent can identify a class [v] of ears, and
update its map of B(P) by removing [v] and the arcs incident to [v] and by updating
the port-numbers of the remaining vertices. When we are left with only one equivalence
class, we know that all vertices of P are ears, i.e., we know that P is convex and thus
G(P) is a clique.

Theorem 7.9. For any simple polygon P there is an equivalence class [v∗]P that
forms a clique in the visibility graph of P.

Moreover [v∗]P forms a clique in G(P) if and only if there are |[v∗]P | − 1 self-loops
at [v∗]P in B(P).

Observe that even if the agent does not initially know the number n of vertices of P,
but only the minimum base B(P) of G(P) (or enough information allowing the agent to
compute B(P)), then it is able to compute the value of n. Indeed, once it has computed
B(P), it looks for the node [v] ∈ B(P) with the maximum number k of self-loops at [v].
Then, the agent knows that P has (k + 1)|V (B(P))| vertices.

Corollary 7.10. Given the minimum base B(P) of the visibility graph G(P) of a
polygon P (or an upper bound n̂ on the size of P), a look-back agent can compute the
size of P

2.3. Reconstructing G(P). Since the classes of G(P) appear periodically on the
boundary of P, and since the agent knows B(P) and the number n of vertices of P, it
can reconstruct a cycle of size n and it knows the class [v]P of each vertex of this cycle.
The agent they identify a class [v∗] of vertices that form a clique. Observe that since
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the port-numbers are given in the ccw order and since [v∗] is a clique, the agent can
reconstruct all edges vu with v ∈ [v∗].

In order to identify the other edges of G(P), the agent proceeds by induction. As-
suming that the agent has reconstructed all the edges vivj with |j − i| < k, one has
to decide whether vi and vi+k are adjacent. The following lemma shows that one can
decide it from the label of the arcs of the minimum base B(P).

Lemma 7.11. If vi is adjacent to p vertices in {vi+1, . . . , vk} and vi+k is adjacent to
q vertices in {vi+1, . . . , vk}, then vi is adjacent to vi+k if and only if vi has a neighbor
u such that δvi(u) = p+ 1 and δu(vi) = q + 1.

Observe that one direction of the lemma is trivial. The other direction is more
involved and relies on the use of the vertices from [v∗]. This gives us the following
theorem.

Theorem 7.1 ([63, 65]). Given an upper bound n̂ on the size of a simple polygon
P, a look-back agent can reconstruct the visibility graph G(P) of P.

Observe that if we are given the minimum base B(P) of G(P) instead of an upper
bound on the size, one can also reconstruct P and thus we have the following corollary.

Corollary 7.12. For any digraph D, there is at most one polygon P such that D
is the minimum base B(P) of G(P).

Observe that once the agent has computed the minimum base B(P) of the visibility
graph G(P) of the polygon P, the agent does not need to move anymore in order to
compute G(P). Consequently, the agent can reconstruct the visibility graph G(P) of P
in time O(n̂ ·mBDB log(nB/DB) where mB, nB, and DB are respectively the number
of arcs, the number of vertices and the diameter of B(P).

3. Reconstructing a Polygon with an Angle-type Agent

The general idea of the algorithm is similar to the one presented in the previous
section. Using the method described in Section 5 of Chapter 6, the agent can reconstruct
the minimum base B(P) of the visibility graph G(P) of the polygon P where each node
v of G(P) is labeled by the observations that the agent can make at v. In our case, the
observations an agent can make at a node v are the angle types of all angles incident to
v, but the following proposition holds for any kind of observation the agent can make.

Proposition 7.13. An angle-type agent can reconstruct the minimum base B(P) of
the visibility graph G(P) of the polygon P.

As in the previous section, we denote by [v]P (or simply [v]) the equivalence class
of a vertex v of G(P) and as before, one can identify these equivalence classes with the
vertices of B(P). Note that contrary to the previous section, Dir(G(P)) is an opfibration
of B(P) and not a cover. However, the different classes all appear periodically on the
boundary and consequently, all classes have the same size.

Even if the result is similar to Proposition 7.7, the proof is completely different and
more involved. It relies on the fact that if two nodes are equivalent, the agent makes
the same angle-type observations at these two nodes.

Proposition 7.14. If a vertex v of G(P) is an ear, then all vertices in [v]P are
ears.

Cutting of classes of ears by considering the minimum base B(P), we get the fol-
lowing theorem as in the previous section.

Theorem 7.15. For any simple polygon P there is an equivalence class [v∗]P that
forms a clique in the visibility graph of P.

Moreover [v∗]P forms a clique in G(P) if and only if there are |[v∗]P | − 1 self-loops
at [v∗]P in B(P).
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As before, observe that this theorem allows an agent to compute the size of the
polygon P from the minimum base B(P) (or an upper bound n̂ on its size).

Finally, we reconstruct the graph G(P). The method is different from the one
presented in the previous section. Here we add back the classes of vertices that have
been removed one after the other in the same order as the one in which they have been
cut off to find the class [v∗]. Let [v∗] = [v0], [v1], . . . , [vnB ] be the classes of vertices and
assume that for each 1 ≤ i ≤ nB, [vi] is a class of ears in the polygon Pi induced by the
vertices in

⋃
j≤i[vij. We show that we can reconstruct G(Pi+1) from G(Pi) and we get

the following theorem.

Theorem 7.2 ([64, 67]). Given an upper bound n̂ on the size of a simple polygon
P, an angle-type agent can reconstruct the visibility graph G(P) of P.

Contrary to the algorithm presented in the previous section, the number of moves
performed by an agent executing our algorithm is exponential in the upper bound n̂ on
the size of P. Indeed, the minimum base construction algorithm presented in Section 5
of Chapter 6 requires an exponential number of moves.

4. Conclusion

Our solutions for the mapping problem with look-back agent and with an angle-type
agent follow the same approach:

(1) Construct the minimum base B(P) of the visibility graph G(P) of the polygon P
(where the labels of G(P) contain all the information available to the agent).

(2) Establishing that if v is an ear of P, then all vertices in its equivalence class [v]P are
ears. This implies that there exists an equivalence class [v∗]P that forms a clique in
G(P).

(3) Showing that starting from the clique [v∗]P , one can reconstruct G(P) from B(P).

Note also that in both cases, the agent is able to compute the size n of the polygon
from an upper bound n̂. This is impossible when we consider general families of graphs
(consider the family of cycles for example).

A natural question is to identify other types of sensors we can give to the agent
so that the previous approach can be applied. In particular, one can ask whether any
information is really necessary besides the knowledge of an upper bound on the size of
the polygon.

Conjecture 7.16. The knowledge of an upper bound n̂ on the size of P allow an
agent to reconstruct the visibility graph G(P).

Observe that in this case, we can reconstruct the minimum base B(P) of G(P) as
explained in Section 3 and that Dir(G(P)) is an opfibration of B(P) via some homo-
morphism ϕ. We can also show that all equivalence classes have the same size in this
case. In order to solve Question 7.16, it should be enough to establish that ϕ is a cover-
ing map. Indeed, in this case, we would be able to reuse the techniques of Section 3 to
establish Property (2) and (3). In [103], Disser established that if the minimum base
B(P) has only one vertex (i.e., if G(P) is regular), then G(P) is a complete graph and
P is a convex polygon. This implies that in this very particular case, ϕ is a covering
map.

When we consider look-back agents, we know that without any information, the
agent cannot detect when it has visited all the vertices of the polygon [45], and thus the
knowledge of an upper bound n̂ on the size of the polygon (or some initial knowledge
allowing the agent to compute such a bound) is necessary. However, for angle-type
agent, we do not have such an impossibility result and thus one can ask the following
question.
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Figure 7.4. Two planar graphs (left and center) that have the same
minimum base (right).

Figure 7.5. Two chordal graphs (left and center) that have the same
minimum base (right).

Question 7.17. Can an angle-type agent reconstruct the visibility graph G(P) of
the polygon P without initial information?

Observe that from what we have shown above, this is equivalent to ask whether an
angle-type agent can compute an upper bound on the size of the polygon.

When we consider agents that can only move on the boundary, we do not know
whether angle-types are sufficient to reconstruct the visibility graph. Since angle-types
sensors seem quite weak, we suspect the answer to be negative, but we do not have any
counter-example.

Another interesting open problem when the agent is restricted to move on the bound-
ary of the polygon is when the agent can measure the distances to the other vertices of
the polygon. We assume that when an agent is at a vertex vi with vis(vi) = (u1, . . . , udi),
it can access the ordered list of distances (d(vi, u1), . . . , d(vi, udi)).

Question 7.18. Can an agent measuring distances reconstruct the polygon P?

Note that if the agent additionally knows the size of the polygon, then this problem
is an offline problem that is also widely open. In fact, even if the agent can move freely
in the polygon, we do not know whether being able to measure distances is enough to
reconstruct the polygon.

Another direction of research would be to identify other natural classes of graphs
where it is possible to reconstruct the graph from the minimum base. In other words,
we would like to identify some class F of graphs such that for any digraph D, there is
at most one graph G ∈ F such that D is the minimum base of G.

The graphs on Figures 7.4 and 7.5 show that the families of chordal graphs and
planar graphs do not satisfy this property. Observe that even if we fix the size of the
graph, the graphs on Figures 7.4 and 7.5 are still counterexamples.
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171. T. Mészáros and L. Rónyai, Shattering-extremal set systems of VC dimension at most 2, Electron.

J. Combin. 21 (2014), no. 4, P4.30.
172. E. F. Moore, Gedanken-experiments on sequential machines, Automata studies, Ann. of Math.

Stud., no. 34, Princeton University Press, Princeton, N. J., 1956, pp. 129–153.
173. S. Moran, Shattering-extremal systems, arXiv preprint 1211.2980 (2012).
174. S. Moran and M. K. Warmuth, Labeled compression schemes for extremal classes, ALT 2016,

Lecture Notes in Comput. Sci., vol. 9925, Springer, 2016, pp. 34–49.
175. S. Moran and A. Yehudayoff, Sample compression schemes for VC classes, J. ACM 63 (2016),

no. 3, 21:1–21:10.
176. R. Morin, Concurrent automata vs. asynchronous systems, MFCS 2005, Lecture Notes in Comput.

Sci., vol. 3618, Springer, 2005, pp. 686–698.
177. H. M. Mulder, The interval function of a graph, Mathematical Centre tracts, vol. 132, Mathematisch

Centrum, Amsterdam, 1980.
178. D. E. Müller and P. E. Schupp, The theory of ends, pushdown automata, and second order logic,

Theoret. Comput. Sci. 37 (1985), 51–75.
179. S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), no. 2,

401–404.
180. O. Narayan and I. Saniee, Large-scale curvature of networks, Phys. Rev. E 84 (2011), 066108.



BIBLIOGRAPHY 149

181. A. Naudin, Impact des connaissances initiales sur la calculabilité distribuée, Ph.D. thesis, Aix-
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