Local Computations
on Closed Unlabelled Edges:
the Election Problem and the Naming Problem
(Extended Abstract)

Jérémie Chalopin

chalopin@labri.fr
LaBRI, Université Bordeaux I
351 cours de la Libération
33405 Talence, France

1 Introduction

The different local computations mechanisms are very useful for delimiting the
borderline between positive and negative results in distributed computations.
Indeed, they enable to study the importance of the synchronization level and
to understand how important is the initial knowledge. A high level of synchro-
nization involved in one atomic computation step makes a model powerful but
reduces the degree of parallelism. Charron-Bost et al. [5] study the difference be-
tween synchronous and asynchronous message passing models. The model stud-
ied in this paper involves more synchronization than the message passing model:
an elementary computation step modifies the states of two neighbours in the
network, depending only on their current states. The information the processors
initially have can be global information about the network, such as the size, the
diameter or the topology of the network. The initial knowledge can also be local:
each node can initially know its own degree for example. Another example of
local knowledge is the existence of a port numbering: each processor locally gives
numbers to its incident edges and in this way, it can consistently distinguish its
neighbours. In Angluin’s model [1], it is assumed that a port numbering exists,
whereas it is not the case in our model. In fact, we obtain a model with a strictly
lower power of computation by relaxing the hypothesis on the existence of a port
numbering.

The Model. A network of processors will be represented as a simple connected
undirected graph. As usual the vertices represent processors and edges direct
communication links. The state of each processor is represented by the label
A(v) of the corresponding vertex.

An elementary computation step will be represented by relabelling rules of
the form given schematically in Figure 1. If, in a graph G, there are two neigh-
bours labelled X and Y then applying this rule we replace X (resp. V) by a new
label X' (resp. Y'). The labels of all other graph vertices are irrelevant for such

a computation step and remain unchanged. The computations using uniquely
this type of relabelling rules are called in this paper local computations on closed
unlabelled edges. Thus an algorithm in our model is simply given by some (pos-
sibly infinite but always recursive) set of rules of the type presented in Figure 1.
A run of the algorithm consists in applying the relabelling rules specified by
the algorithm until no rule is applicable, which terminates the execution. The
relabelling rules are applied asynchronously and in any order, which means that
given the initial labelling usually many different runs are possible.

X Y XY

*r—e —> o0—=0

Fig. 1. Graphical form of a rule for local computations on closed unlabelled edges.

Election, Naming and Enumeration. The election problem is one of the
paradigms of the theory of distributed computing. It was first posed by LeLann
[7]. A distributed algorithm solves the election problem if it always terminates
and in the final configuration exactly one processor is marked as elected and
all the other processors are mon-elected. Moreover, it is supposed that once a
processor becomes elected or non-elected then it remains in such a state until
the end of the algorithm. The naming problem is another important problem
in the theory of distributed computing. The aim of a naming algorithm is to
arrive at a final configuration where all processors have unique identities. The
enumeration problem is a variant of the naming problem whose aim is to give to
each node a unique number between 1 and the size of the graph. These problems
are important since they constitute basic initial steps of many other distributed
algorithms.

Related Works. Graphs where election is possible were already studied for dif-
ferent types of basic computation steps and particular types of network topology
(tree, grid, torus, ring with a known prime number of vertices, etc.), see [11].

Yamashita and Kameda [12] characterize the graphs for which there exists an
election algorithm in the message passing model and they study the importance
of the port numbering in [13].

Mazurkiewicz [8] considers an asynchronous computation model where in one
computation step, labels are modified on a subgraph consisting of a node and
its neighbours, according to certain rules depending on this subgraph only. His
characterization of the graphs where enumeration and election are possible can
be formulated using coverings [6]. In this model, the port numbering does not
give a more powerful model, since in each computation step, a node can always
distinguish its neighbours.

Chalopin and Métivier [3] consider three different asynchronous models that
are defined by the rules presented in Figure 2. Note that, contrary to the model
we examine in the present paper, all these models allow edge labelling. In fact,
allowing to label the edges is equivalent to the existence of a port numbering,

since in these models, it is always possible for a processor to consistently identify
its neighbours. Consequently, the first model studied in [3] is equivalent to the
model of Angluin [1]. It turns out that for all models of Figure 2 the election and
naming problems can be solved on a graph G if and only if G is not a covering
of any graph H not isomorphic to G, where H can have multiple edges but no
self-loop. Mazurkiewicz [9] has also studied the first model described in Figure 2
and he gives an equivalent characterization thanks to equivalence relations over
the vertices and the edges of the graph.

In the conclusion of [13], Yamashita and Kameda underline the importance
of the edge labelling and it is a natural question to wonder if the edge labelling,
or equivalently the existence of a port numbering, modify the power of the dif-
ferent models of Figure 2. Boldi et al. [2] consider a model where the network
is a directed multigraph. When a processor is activated, it changes its state de-
pending on its previous state and on the states of its ingoing neighbours. They
characterize the graphs that admits an election algorithm using fibrations, that
are generalization of coverings to directed graphs. Chalopin et al. [4] consider a
model where an elementary computation step modifies the state of one vertex
depending on its current state and the state of one of its neighbours; as in the
model studied here, the edges are not labelled. In this model, naming and elec-
tion are not equivalent and characterizations are given using submersions that
are locally surjective morphisms. The comparison between the characterization
given in [2], in [4] and in [3] shows that for the second and the third model of
Figure 2, it gives strictly more powerful models to allow the edges to be labelled.
In this paper, we complete the study of the importance of the port numbering;:
the characterization we give of the graphs for which the naming and the elec-
tion problems can be solved for the model of Figure 1 is very different of the
characterization given in [3]. Moreover, we can remark that the three models
of Figure 2 that are equivalent when the edges can be labelled are no longer
equivalent when this hypothesis is relaxed.

Model 1: X oY o 7
Model 2: X oY o 7
Xa X1

Model 3: -

Fig. 2. Elementary relabelling steps for the models studied in [3].

Main Results. We introduce in Section 2 the notion of pseudo-covering, that
is a generalization of coverings. We prove in Section 3 that naming and election
can be solved on a graph G if and only if G is minimal for the pseudo-covering
relation (Theorem 1).

The problems are solved constructively: we encode an enumeration algorithm
with explicit termination by local computations on closed unlabelled edges that

work correctly for all graphs where these problems are solvable. This algorithm
uses some ideas from Mazurkiewicz’algorithm [8]. However, in the models consid-
ered in [2,3,8,9,13], a node can consistently distinguish its neighbours whereas
it is impossible in the model studied here. Each execution of our algorithm on a
graph G computes a labelling that induces a graph H such that G is a pseudo-
covering of H. Consequently, there exists an integer & such that each label of the
final labelling of G appears exactly k times in the graph; it is not the case for the
model studied in [4]. In our solution, stamps are associated to synchronizations
between neighbours. These associated stamps solve the problem, but they intro-
duce a non-trivial difficulty in the proof of the termination of the algorithm: we
must prove that stamps are bounded.

Imposed space limitations do not allow to present all the proofs in the paper.

2 Preliminaries

Graphs. The notations used here are essentially standard [10]. We consider
finite, undirected, connected graphs G = (V(G), E(G)) with vertices V(G) and
edges F(G) without multiple edges or self-loop. Two vertices u and v are said
to be adjacent or neighbours if {u,v} is an edge of G and N¢(v) will stand for
the set of neighbours of v. An edge e is incident to a vertex v if v € e and I;(v)
will stand for the set of all the edges of G incident to v.

A homomorphism between graphs G and H is a mapping v: V(G) — V(H)
such that if {u,v} € E(G) then {vy(u),v(v)} € E(H). We say that v is an
isomorphism if + is bijective and v~ ! is a homomorphism.

A graph H is a subgraph of G, noted H C G, it V(H) C V(G) and E(H) C
E(G). A subgraph H of G is called a partial graph of G if G and H have the
same set of vertices.

A matching F of a graph G is a subset of E(G) such that for every e, e’ € F,
eNe’ = : F is a set of disjoint edges of G. A matching F' of G is perfect if every
vertex v € V(@) is the endvertex of exactly one edge e € F'.

Throughout the paper we will consider graphs where vertices are labelled
with labels from a recursive label set L. A graph labelled over L is a couple
G = (G, \), where G is the underlying non labelled graph and A: V(G) — L is
the (vertex) labelling function. Let H be a subgraph of G and Ag the restriction
of the labelling A: V(G) — L to V(H). Then the labelled graph H = (H, Ag) is
called a subgraph of G = (G, \); we note this fact by H C G. A homomorphism
of labelled graphs is just a homomorphism that preserves the labelling.

For any set S, | S| denotes the cardinality of S. For any integer ¢, we denote

by [1, ¢] the set of integers {1,2,...,¢q}.
Coverings and Pseudo-Coverings. A graph G is a covering of a graph H via
v if 7y is a surjective homomorphism from G onto H such that for every vertex v
of V(@) the restriction of v to Ig(v) is a bijection onto Iy (7y(v)). The covering
is proper if G and H are not isomorphic. A graph G is called covering-minimal
if every covering from G to some H is a bijection.

A graph G is a pseudo-covering of H via a morphism ¢ modulo a graph G’
if G' is a partial graph of G that is a covering of H via the restriction oq of
¢ to G'. The pseudo-covering is proper if G and H are not isomorphic. A graph
G is said pseudo-covering-minimal if there does not exist a graph H such that
G is a proper pseudo-covering of H. An example of pseudo-covering is given in
Figure 3. Naturally, coverings and pseudo-coverings of labelled graphs are just
coverings and pseudo-coverings of underlying graphs such that the associated
morphisms preserve the labelling.

If G is a pseudo-covering of a graph H via ¢ modulo G', then for every
edge f = {wy,wa} € E(H), @E,(f) is a perfect matching of o' ({w1,w2}).
Consequently, there exists an integer ¢ such that for every vertex v € V(H),
o) = .

Fig. 3. The graph G is a pseudo-covering of H via the mapping ¢ modulo G’ where
 maps each vertex of G labelled ¢ to the unique vertex of H with the same label i.
This pseudo-covering is proper and the graph H is pseudo-covering-minimal.

Local Computations on Closed Unlabelled Edges. For any set R of edge
local relabelling rules of the type described in Figure 1 we shall write G R G' if
G’ can be obtained from G by applying a rule of R on some edge of G. Obviously,
G and G’ have the same underlying graph G, only the labelling changes for the
endvertices of exactly one (active) edge. Thus, slightly abusing the notation, R
will stand both for a set of rules and the induced relabelling relation over labelled
graphs. The reflexive transitive closure of such a relabelling relation is noted R*.
The relation R is called noetherian on a graph G if there is no infinite relabelling
sequence Gg R G; R ..., with Gy = G. The relation R is noetherian on a set
of graphs if it is noetherian on each graph of the set. Finally, the relation R is
called noetherian if it is noetherian on each graph. Clearly noetherian relations
code always terminating algorithms.

The following lemma is a counterpart of the lifting lemma of Angluin [1]
adapted to pseudo-coverings; it exhibits a strong link between pseudo-coverings
and local computations on closed unlabelled edges. An immediate corollary is
that there does not exist any algorithm using local computations on closed unla-
belled edges that solves the election problem or the naming problem on a graph
G that is not pseudo-covering-minimal.

Lemma 1 (Lifting Lemma). Let R be a relabelling relation encoding an al-
gorithm using local computations on closed unlabelled edges and let Gg be a

pseudo-covering of Hy. If Hg R* Hy then there exists Gy such that Go R* Gy
and G1 is a pseudo-covering of Hy.

3 An Enumeration Algorithm

In this section, we describe a Mazurkiewicz-like algorithm M using local com-
putations on closed unlabelled edges that solves the enumeration problem on a
pseudo-covering-minimal graph G.

Each vertex v attempts to get its own number between 1 and |V (G)]|. A ver-
tex chooses a number and exchanges its number with its neighbours. If during a
computation step, two neighbours exchange their numbers, a stamp o is given to
the operation such that two operations involving the same vertex have different
stamps. Each node broadcasts its number, its label and its local view (the num-
bers of its neighbours and the stamps of the operations of exchange associated
to each neighbour) all over the network. If a vertex u discovers the existence of
another vertex v with the same number, then it compares its local view with
the local view of v. If the label of u or the local view of u is “weaker”, then
u chooses another number and broadcasts it again with its local view. At the
end of the computation, every vertex will have a unique number if the graph is
pseudo-covering-minimal.

The main difference with Mazurkiewicz’algorithm is the existence of the
stamps o. The algorithm we will describe below computes a graph H such that
G is a pseudo-covering of H. To define a pseudo-covering, we need to define a
morphism and a subset of E(G). As in Mazurkiewicz’algorithm, the numbers of
the nodes will be used to define the morphism ¢ whereas the stamps o will be
used to select the edges of G.

Labels. We consider a labelled graph G = (G, A). For each vertex v € V(G), the
label of v is the pair (A(v), c(v)) where A(v) is the initial label of v whereas ¢(v)
is a triple (n(v), N(v), M (v)) representing the following information obtained
during the computation:

— n(v) € N is the number of the vertex v computed by the algorithm;

— N(v) € N is the local view of v. If the node v has a neighbour v', some
relabelling rules will allow v and v’ to add n(v') in N(v) and n(v) in N(v").
Each time this operation is done between two neighbours a stamp o is given
to the operation and (n(v'),0) is added to N(v) (resp. (n(v), o) is added to
N(v")). Consequently, N (v) is a finite set of pairs (n, 0);

— M(v) CNx L x N is the mailboz of v and contains the whole information
received by v at any step of the computation, i.e., the numbers, the labels
and the local views of the nodes of the network.

The fundamental property of the algorithm is based on a total order on local
views, as defined in [8], such that the local view of any vertex cannot decrease
during the computation. Consider a vertex v such that the local view N(v) € A/
is the set {(n1,01), (na2,09), ..., (na,04)}, we assume that ny > no > ... > ny

and we say that the d-tuple ((n1,01), (n2,02), ..., (n4,04)) is the ordered rep-
resentation of N(v). We define a total order < on such ordered tuples using the
alphabetical order; it induces naturally a total order on A/. We assume that the
set of labels L is totally ordered by <, and we extend < on L x N.

The Relabeling Rules. We now describe the relabelling rules of the algorithm;
the first rule Mg is a special rule that extends the initial label A(v) of each
vertex to (A(v), (0,0,0)). The rules M; and M, are very close to the rules of
Mazurkiewicz’s algorithm.

The first rule enables two neighbours v and v' having different mailboxes to
share the information they have about the labels present in the graphs.

(llz(nlzNhMl)) (127(7127N2,M2)) (l17(n17N1=M’)) (l2=(n2=N27M’))
My @ L > @ @
IfM] #Mz then M = M] UMZ

The second rule enables a vertex v to change its number if n(v) = 0 or if
there exists a vertex v’ such that n(v) = n(v') and v has a weaker label or a
weaker local view than v'.

(I, (n, N, M)) (¢, (k, N, M"))
My : [J —_— e
If n =0 or A(n,l', N') € M such that (I, N) < (I',N")
then k := 14+ max{n' | I(n',lI', N') € M} and M' := M U {(k,I,N)}.

The third rule enables a node having a neighbour with exactly the same label
to change its number. If this rule is applied, the number of each node is inserted
in the local view of the other with a stamp o associated to the operation that is
different of the other stamps associated to operations involving one of the two
nodes. Moreover, when the number n(v') of a neighbour v' of v is inserted in
N (v), all the elements (m, 0) belonging to N (v) such that m < n(v') are deleted
from the local view. The rationale behind this deletion step is explained in the
next rule My below.

(l7(n=N=M)) (l7(nNM)) (l (k7N17MI)) (l7(n=N27MI))

Ms @ @ > @ @

If n>0andV(n,l',N)e M, N")=<(l,N)

then k := 1+ max{n' | I(n',l', N') € M};
0:=1+max{o | I(n',0') € N};
Ny :=N\{(n',0) e N|n' <n}U{(n,0)};
Ny :={(k,0)} and M' := M U {(k,l,Ny),(n,l, No2)}.

The fourth rule enables two neighbours v and v' to exchange their numbers
if an update is needed, i.e., if there does not exist o such that (n2,0) € N; and
(n1,0) € Ny. As for the precedent rule, if the number n(v') of a neighbour v’
of v is inserted in N(v), all the elements (m,o0) belonging to N(v) such that
m < n(v') are deleted.

The role of the stamp o associated to the operation is to ensure that at the
end of the computation, if the local view of a vertex vy contains (n, 0), it means
that it has a neighbour v{, such that n(vj) = n, (n(vg),0) € N(vj) and such that
the rule M3 or M, was applied to these two vertices; an interesting consequence
is that in the final labelling, |{v | n(v) = n(vo)}| = [{v | n(v) = n(v{)}-

(I, (na, Ny, M)) - (l2, (n2, N2, M)) (I, (n1, Ni, M")) (2, (n2, Ny, M"))
My : ® @ > @ @

If ny,ny >0, 77,17577,2,
v(nlz ’17N1’) €M, (lllN{) = (l1;N1)7
v(n2= ’27N2’) €M, (léNé) = (l2;N2)7
and Fo | (n2,0) € Ny and (n1,0) € Ny

then 0 := 1+ max{o' | I(n',0') € Ny U Na};
Ni{:= N\ {(n',0') € Ny | n' <na2}U{(n2,0)};
NJ =Ny \ {(n',0") € Ny |n' <ni}U{(n,0)};
M' = MU {(n],l]7N1’) (n27l27N2')}.

The intuitive justification for the deletion of all the (m,o0) is the following.
If there is a synchronization between two neighbours v and v', then they should
agree on an integer og and add (n(v), o) to N(v') and (n(v'),00) to N(v). But,
it is possible that v synchronized with v’ in the past and in the meantime v’ has
changed its identity number or has synchronized with another vertex w such that
n(w) = n(v). In this case, to remain in a consistent state, the vertex v should
modify its local view to remove the old identity number of v' and the o associated
to this precedent synchronization. The trouble is that v has no means to know
which of the pairs (m, 0) belonging to its view N(v) should be deleted. However,
since our algorithm assures the monotonicity of subsequent identity numbers of
each vertex and monotonicity of subsequent o involving the node v', we know
that the couple (m,0) to remove is such that (m,0) <re, (n(v'),00) Therefore,
by deleting all such (m,o0) from the local view N(v), we are sure to delete all
invalid information. Of course, in this way we risk to delete also the legitimate
current informations about other neighbours of v from its view N(v). However,
v can recover this information just by (re)synchronizing with all such neighbours.

Properties. In the following, we consider an execution of the algorithm on a
graph G. We will denote by (A(v), (n;(v), N;(v), M;(v)) the label of the vertex
v after the ith computation step.

We can see that the label of each node can only “increase” during the com-
putation. Indeed, for each step i, for each vertex v, n;(v) < njp1(v), Ni(v) =
Nit1(v) and M;(v) C M;14(v). Moreover, if a vertex v knows the existence of a
node with the number m (i.e., 3(m, I, N) € M;(v)), then for each m' < m, there
exists a node w such that n;(w) = m'. An immediate corollary of this property
is that after each computation step the numbers of the nodes is a set [1, k] with
k< V(G

We will now prove that each execution of M on a graph G is finite. In fact,
we just have to prove that the values of n(v), N(v) and M (v) are bounded for

3

each vertex v . Since we already know that n(v) < |V (G)|, we just have to prove
that the stamps o are also bounded. It will imply that N(v) and M (v) can only
take a finite number of values. From the properties described above, there exists
a step ip such that Vi > ig,Vv € V(G),n;(v) = n;,(v) and therefore the rules
My and M3 cannot be applied after the step ig. Consider two neighbours v
and w such that n; (v) > n;,(w) and two steps jo > ji > ip where the rule
M, is applied to the edge {v,w}. Then, there must exist an edge {v',w'} with
(g (), Mip (W) <Lew (i (v'), N4 (w")) and a step j € [j1,72] where the rule
M, is applied to {v',w’}. Consequently, the rule My can only be applied a
finite number of time over each edge and we can ensure the termination of the
algorithm.

For each execution of the algorithm over G, a graph H is associated to
the final labelling with V(H) = {n(v) | v € V(G)} such that G is a pseudo-
covering of H. If G is pseudo-covering-minimal, then G ~ H. Consequently,
for every run of the enumeration algorithm, the graph associated to the final
labelling is isomorphic to G and therefore the set of numbers the vertices have
is exactly [1, |V (G)]]. Moreover, once a vertex gets the number |V (G)], it knows
that all the vertices have a different number that will not change any more
and therefore it can detect the termination. We can therefore transform the
enumeration algorithm into an election algorithm, by choosing to elect the node
that gets the number |V(G)|. From these results and Lemma 1, we have the
following theorem.

Theorem 1. For every graph G, it is equivalent to solve the following problems
on G with local computations on closed unlabelled edges: naming, naming with
explicit termination and election. These problems can be solved on G if and only
if G is a pseudo-covering-minimal graph.

4 Comparison with Other Models

It is easy to see that each algorithm encoded by local computations on closed
unlabelled edges can be translated in the models of Mazurkiewicz [8], Angluin
[1] and Chalopin and Métivier [3]. And the algorithms encoded in the model of
[4] can be encoded by local computations on closed unlabelled edges.

In the models of Mazurkiewicz [8], Angluin [1], Chalopin and Métivier [3],
Yamashita and Kameda [12] and Boldi et al. [2], the election and the naming
problems can be solved in the graph G; of Figure 4. Nevertheless, this graph
G is a pseudo-covering of the graph H;. Therefore, it is not possible to solve
the election problem by using local computations on closed unlabelled edges.

If we consider the pseudo-covering-minimal graphs G5 and G5 of Figure 4,
we can solve the election problem over these graphs with local computations on
closed unlabelled edges. But the election problem cannot be solved over G5 in
the models studied in [2] and in [4]. Moreover there does not exist any election
algorithm for the graph G5 in the model studied in [12].

Consequently, our model is strictly less powerful than the models studied by
Mazurkiewicz [8], by Angluin [1] and by Chalopin and Métivier [3], but strictly

._.
N
e Ut
[BN
N
[
~

—o (G5 Gs

Fig. 4. Different graphs that show the differences between the different models.

more powerful than the model studied by Chalopin et al. [4]. And the power
of computation of our model is not comparable to the power of the models of
Yamashita and Kameda [12,13] and Boldi et al. [2].

References

1. D. Angluin. Local and global properties in networks of processors. In Proc. of the
12th Symposium on Theory of Computing, pages 82-93, 1980.

2. P. Boldi, B. Codenotti, P. Gemmell, S. Shammah, J. Simon, and S. Vigna. Sym-
metry breaking in anonymous networks: Characterizations. In Proc. 4th Israeli
Symposium on Theory of Computing and Systems, pages 16 26. IEEE Press, 1996.

3. J. Chalopin and Y. Métivier. Election and local computations on edges (extended
abstract). In Proc. of FOSSACS’ 04, number 2987 in LNCS, pages 90 104, 2004.

4. J. Chalopin, Y. Métivier, and W. Zielonka. Election, naming and cellular edge local
computations (eztended abstract). In Proc. of ICGT 04, number 3256 in LNCS,
pages 242 256, 2004.

5. B. Charron-Bost, F. Mattern, and G. Tel. Synchronous, asynchronous and causally
ordered communication. Distributed Computing, 9(4):173 191, 1996.

6. E. Godard, Y. Métivier, and A. Muscholl. Characterization of classes of graphs
recognizable by local computations. Theory of Computing Systems, 37(2):249 293,
2004.

7. G. LeLann. Distributed systems: Towards a formal approach. In B. Gilchrist,
editor, Information processing’77, pages 155-160. North-Holland, 1977.

8. A. Mazurkiewicz. Distributed enumeration. Inf. Processing Letters, 61:233 239,
1997.

9. A. Mazurkiewicz. Bilateral ranking negotiations. Fundamenta Informaticae, 60:1
16, 2004.

10. K. H. Rosen, editor. Handbook of discrete and combinatorial mathematics. CRC
Press, 2000.

11. G. Tel. Introduction to distributed algorithms. Cambridge University Press, 2000.

12. M. Yamashita and T. Kameda. Computing on anonymous networks: Part i -
characterizing the solvable cases. IEEE Transactions on parallel and distributed
systems, 7(1):69-89, 1996.

13. M. Yamashita and T. Kameda. Leader election problem on networks in which
processor identity numbers are not distinct. IEEE Transactions on parallel and
distributed systemns, 10(9):878 887, 1999.

