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e1 Introdu
tionThe di�erent lo
al 
omputations me
hanisms are very useful for delimiting theborderline between positive and negative results in distributed 
omputations.Indeed, they enable to study the importan
e of the syn
hronization level andto understand how important is the initial knowledge. A high level of syn
hro-nization involved in one atomi
 
omputation step makes a model powerful butredu
es the degree of parallelism. Charron-Bost et al. [5℄ study the di�eren
e be-tween syn
hronous and asyn
hronous message passing models. The model stud-ied in this paper involves more syn
hronization than the message passing model:an elementary 
omputation step modi�es the states of two neighbours in thenetwork, depending only on their 
urrent states. The information the pro
essorsinitially have 
an be global information about the network, su
h as the size, thediameter or the topology of the network. The initial knowledge 
an also be lo
al:ea
h node 
an initially know its own degree for example. Another example oflo
al knowledge is the existen
e of a port numbering: ea
h pro
essor lo
ally givesnumbers to its in
ident edges and in this way, it 
an 
onsistently distinguish itsneighbours. In Angluin's model [1℄, it is assumed that a port numbering exists,whereas it is not the 
ase in our model. In fa
t, we obtain a model with a stri
tlylower power of 
omputation by relaxing the hypothesis on the existen
e of a portnumbering.The Model. A network of pro
essors will be represented as a simple 
onne
tedundire
ted graph. As usual the verti
es represent pro
essors and edges dire
t
ommuni
ation links. The state of ea
h pro
essor is represented by the label�(v) of the 
orresponding vertex.An elementary 
omputation step will be represented by relabelling rules ofthe form given s
hemati
ally in Figure 1. If, in a graph G, there are two neigh-bours labelled X and Y then applying this rule we repla
e X (resp. Y ) by a newlabel X 0 (resp. Y 0). The labels of all other graph verti
es are irrelevant for su
h



a 
omputation step and remain un
hanged. The 
omputations using uniquelythis type of relabelling rules are 
alled in this paper lo
al 
omputations on 
losedunlabelled edges. Thus an algorithm in our model is simply given by some (pos-sibly in�nite but always re
ursive) set of rules of the type presented in Figure 1.A run of the algorithm 
onsists in applying the relabelling rules spe
i�ed bythe algorithm until no rule is appli
able, whi
h terminates the exe
ution. Therelabelling rules are applied asyn
hronously and in any order, whi
h means thatgiven the initial labelling usually many di�erent runs are possible.X Y X 0 Y 0Fig. 1. Graphi
al form of a rule for lo
al 
omputations on 
losed unlabelled edges.Ele
tion, Naming and Enumeration. The ele
tion problem is one of theparadigms of the theory of distributed 
omputing. It was �rst posed by LeLann[7℄. A distributed algorithm solves the ele
tion problem if it always terminatesand in the �nal 
on�guration exa
tly one pro
essor is marked as ele
ted andall the other pro
essors are non-ele
ted. Moreover, it is supposed that on
e apro
essor be
omes ele
ted or non-ele
ted then it remains in su
h a state untilthe end of the algorithm. The naming problem is another important problemin the theory of distributed 
omputing. The aim of a naming algorithm is toarrive at a �nal 
on�guration where all pro
essors have unique identities. Theenumeration problem is a variant of the naming problem whose aim is to give toea
h node a unique number between 1 and the size of the graph. These problemsare important sin
e they 
onstitute basi
 initial steps of many other distributedalgorithms.Related Works. Graphs where ele
tion is possible were already studied for dif-ferent types of basi
 
omputation steps and parti
ular types of network topology(tree, grid, torus, ring with a known prime number of verti
es, et
.), see [11℄.Yamashita and Kameda [12℄ 
hara
terize the graphs for whi
h there exists anele
tion algorithm in the message passing model and they study the importan
eof the port numbering in [13℄.Mazurkiewi
z [8℄ 
onsiders an asyn
hronous 
omputation model where in one
omputation step, labels are modi�ed on a subgraph 
onsisting of a node andits neighbours, a

ording to 
ertain rules depending on this subgraph only. His
hara
terization of the graphs where enumeration and ele
tion are possible 
anbe formulated using 
overings [6℄. In this model, the port numbering does notgive a more powerful model, sin
e in ea
h 
omputation step, a node 
an alwaysdistinguish its neighbours.Chalopin and M�etivier [3℄ 
onsider three di�erent asyn
hronous models thatare de�ned by the rules presented in Figure 2. Note that, 
ontrary to the modelwe examine in the present paper, all these models allow edge labelling. In fa
t,allowing to label the edges is equivalent to the existen
e of a port numbering,



sin
e in these models, it is always possible for a pro
essor to 
onsistently identifyits neighbours. Consequently, the �rst model studied in [3℄ is equivalent to themodel of Angluin [1℄. It turns out that for all models of Figure 2 the ele
tion andnaming problems 
an be solved on a graph G if and only if G is not a 
overingof any graph H not isomorphi
 to G, where H 
an have multiple edges but noself-loop. Mazurkiewi
z [9℄ has also studied the �rst model des
ribed in Figure 2and he gives an equivalent 
hara
terization thanks to equivalen
e relations overthe verti
es and the edges of the graph.In the 
on
lusion of [13℄, Yamashita and Kameda underline the importan
eof the edge labelling and it is a natural question to wonder if the edge labelling,or equivalently the existen
e of a port numbering, modify the power of the dif-ferent models of Figure 2. Boldi et al. [2℄ 
onsider a model where the networkis a dire
ted multigraph. When a pro
essor is a
tivated, it 
hanges its state de-pending on its previous state and on the states of its ingoing neighbours. They
hara
terize the graphs that admits an ele
tion algorithm using �brations, thatare generalization of 
overings to dire
ted graphs. Chalopin et al. [4℄ 
onsider amodel where an elementary 
omputation step modi�es the state of one vertexdepending on its 
urrent state and the state of one of its neighbours; as in themodel studied here, the edges are not labelled. In this model, naming and ele
-tion are not equivalent and 
hara
terizations are given using submersions thatare lo
ally surje
tive morphisms. The 
omparison between the 
hara
terizationgiven in [2℄, in [4℄ and in [3℄ shows that for the se
ond and the third model ofFigure 2, it gives stri
tly more powerful models to allow the edges to be labelled.In this paper, we 
omplete the study of the importan
e of the port numbering:the 
hara
terization we give of the graphs for whi
h the naming and the ele
-tion problems 
an be solved for the model of Figure 1 is very di�erent of the
hara
terization given in [3℄. Moreover, we 
an remark that the three modelsof Figure 2 that are equivalent when the edges 
an be labelled are no longerequivalent when this hypothesis is relaxed.Model 1: X ZY X 0 Z0Y 0Model 2: X ZY X 0 ZY 0Model 3: XXd X1 X2X3Yd Y1 Y2Y3 X 0Xd X1 X2X3Y 0d Y 01 Y 02Y 03Fig. 2. Elementary relabelling steps for the models studied in [3℄.Main Results. We introdu
e in Se
tion 2 the notion of pseudo-
overing, thatis a generalization of 
overings. We prove in Se
tion 3 that naming and ele
tion
an be solved on a graph G if and only if G is minimal for the pseudo-
overingrelation (Theorem 1).The problems are solved 
onstru
tively: we en
ode an enumeration algorithmwith expli
it termination by lo
al 
omputations on 
losed unlabelled edges that



work 
orre
tly for all graphs where these problems are solvable. This algorithmuses some ideas from Mazurkiewi
z'algorithm [8℄. However, in the models 
onsid-ered in [2, 3, 8, 9, 13℄, a node 
an 
onsistently distinguish its neighbours whereasit is impossible in the model studied here. Ea
h exe
ution of our algorithm on agraph G 
omputes a labelling that indu
es a graph H su
h that G is a pseudo-
overing of H . Consequently, there exists an integer k su
h that ea
h label of the�nal labelling of G appears exa
tly k times in the graph; it is not the 
ase for themodel studied in [4℄. In our solution, stamps are asso
iated to syn
hronizationsbetween neighbours. These asso
iated stamps solve the problem, but they intro-du
e a non-trivial diÆ
ulty in the proof of the termination of the algorithm: wemust prove that stamps are bounded.Imposed spa
e limitations do not allow to present all the proofs in the paper.2 PreliminariesGraphs. The notations used here are essentially standard [10℄. We 
onsider�nite, undire
ted, 
onne
ted graphs G = (V (G); E(G)) with verti
es V (G) andedges E(G) without multiple edges or self-loop. Two verti
es u and v are saidto be adja
ent or neighbours if fu; vg is an edge of G and NG(v) will stand forthe set of neighbours of v. An edge e is in
ident to a vertex v if v 2 e and IG(v)will stand for the set of all the edges of G in
ident to v.A homomorphism between graphs G and H is a mapping 
 : V (G)! V (H)su
h that if fu; vg 2 E(G) then f
(u); 
(v)g 2 E(H). We say that 
 is anisomorphism if 
 is bije
tive and 
�1 is a homomorphism.A graph H is a subgraph of G, noted H � G, if V (H) � V (G) and E(H) �E(G). A subgraph H of G is 
alled a partial graph of G if G and H have thesame set of verti
es.A mat
hing F of a graph G is a subset of E(G) su
h that for every e; e0 2 F ,e\ e0 = ;: F is a set of disjoint edges of G. A mat
hing F of G is perfe
t if everyvertex v 2 V (G) is the endvertex of exa
tly one edge e 2 F .Throughout the paper we will 
onsider graphs where verti
es are labelledwith labels from a re
ursive label set L. A graph labelled over L is a 
oupleG = (G; �), where G is the underlying non labelled graph and � : V (G) ! L isthe (vertex) labelling fun
tion. Let H be a subgraph of G and �H the restri
tionof the labelling � : V (G)! L to V (H). Then the labelled graph H = (H;�H ) is
alled a subgraph of G = (G; �); we note this fa
t by H � G. A homomorphismof labelled graphs is just a homomorphism that preserves the labelling.For any set S, jSj denotes the 
ardinality of S. For any integer q, we denoteby [1; q℄ the set of integers f1; 2; : : : ; qg:Coverings and Pseudo-Coverings. A graph G is a 
overing of a graph H via
 if 
 is a surje
tive homomorphism from G onto H su
h that for every vertex vof V (G) the restri
tion of 
 to IG(v) is a bije
tion onto IH (
(v)). The 
overingis proper if G and H are not isomorphi
. A graph G is 
alled 
overing-minimalif every 
overing from G to some H is a bije
tion.



A graph G is a pseudo-
overing of H via a morphism ' modulo a graph G0if G0 is a partial graph of G that is a 
overing of H via the restri
tion 'jG0 of' to G0. The pseudo-
overing is proper if G and H are not isomorphi
. A graphG is said pseudo-
overing-minimal if there does not exist a graph H su
h thatG is a proper pseudo-
overing of H . An example of pseudo-
overing is given inFigure 3. Naturally, 
overings and pseudo-
overings of labelled graphs are just
overings and pseudo-
overings of underlying graphs su
h that the asso
iatedmorphisms preserve the labelling.If G is a pseudo-
overing of a graph H via ' modulo G0, then for everyedge f = fw1; w2g 2 E(H), '�1jG0(f) is a perfe
t mat
hing of '�1(fw1; w2g).Consequently, there exists an integer q su
h that for every vertex v 2 V (H),j'�1(v)j = q. 1 2 3123G 1 2 3123 G01 23H
partial graph' 'jG0Fig. 3. The graph G is a pseudo-
overing of H via the mapping ' modulo G0 where' maps ea
h vertex of G labelled i to the unique vertex of H with the same label i.This pseudo-
overing is proper and the graph H is pseudo-
overing-minimal.Lo
al Computations on Closed Unlabelled Edges. For any set R of edgelo
al relabelling rules of the type des
ribed in Figure 1 we shall write G R G0 ifG0 
an be obtained fromG by applying a rule ofR on some edge ofG. Obviously,G and G0 have the same underlying graph G, only the labelling 
hanges for theendverti
es of exa
tly one (a
tive) edge. Thus, slightly abusing the notation, Rwill stand both for a set of rules and the indu
ed relabelling relation over labelledgraphs. The re
exive transitive 
losure of su
h a relabelling relation is noted R�.The relationR is 
alled noetherian on a graphG if there is no in�nite relabellingsequen
e G0 R G1 R : : : ; with G0 = G: The relation R is noetherian on a setof graphs if it is noetherian on ea
h graph of the set. Finally, the relation R is
alled noetherian if it is noetherian on ea
h graph. Clearly noetherian relations
ode always terminating algorithms.The following lemma is a 
ounterpart of the lifting lemma of Angluin [1℄adapted to pseudo-
overings; it exhibits a strong link between pseudo-
overingsand lo
al 
omputations on 
losed unlabelled edges. An immediate 
orollary isthat there does not exist any algorithm using lo
al 
omputations on 
losed unla-belled edges that solves the ele
tion problem or the naming problem on a graphG that is not pseudo-
overing-minimal.Lemma 1 (Lifting Lemma). Let R be a relabelling relation en
oding an al-gorithm using lo
al 
omputations on 
losed unlabelled edges and let G0 be a



pseudo-
overing of H0. If H0 R� H1 then there exists G1 su
h that G0 R� G1and G1 is a pseudo-
overing of H1.3 An Enumeration AlgorithmIn this se
tion, we des
ribe a Mazurkiewi
z-like algorithm M using lo
al 
om-putations on 
losed unlabelled edges that solves the enumeration problem on apseudo-
overing-minimal graph G.Ea
h vertex v attempts to get its own number between 1 and jV (G)j. A ver-tex 
hooses a number and ex
hanges its number with its neighbours. If during a
omputation step, two neighbours ex
hange their numbers, a stamp o is given tothe operation su
h that two operations involving the same vertex have di�erentstamps. Ea
h node broad
asts its number, its label and its lo
al view (the num-bers of its neighbours and the stamps of the operations of ex
hange asso
iatedto ea
h neighbour) all over the network. If a vertex u dis
overs the existen
e ofanother vertex v with the same number, then it 
ompares its lo
al view withthe lo
al view of v. If the label of u or the lo
al view of u is \weaker", thenu 
hooses another number and broad
asts it again with its lo
al view. At theend of the 
omputation, every vertex will have a unique number if the graph ispseudo-
overing-minimal.The main di�eren
e with Mazurkiewi
z'algorithm is the existen
e of thestamps o. The algorithm we will des
ribe below 
omputes a graph H su
h thatG is a pseudo-
overing of H. To de�ne a pseudo-
overing, we need to de�ne amorphism and a subset of E(G). As in Mazurkiewi
z'algorithm, the numbers ofthe nodes will be used to de�ne the morphism ' whereas the stamps o will beused to sele
t the edges of G.Labels.We 
onsider a labelled graphG = (G; �). For ea
h vertex v 2 V (G), thelabel of v is the pair (�(v); 
(v)) where �(v) is the initial label of v whereas 
(v)is a triple (n(v); N(v);M(v)) representing the following information obtainedduring the 
omputation:{ n(v) 2 N is the number of the vertex v 
omputed by the algorithm;{ N(v) 2 N is the lo
al view of v. If the node v has a neighbour v0, somerelabelling rules will allow v and v0 to add n(v0) in N(v) and n(v) in N(v0).Ea
h time this operation is done between two neighbours a stamp o is givento the operation and (n(v0); o) is added to N(v) (resp. (n(v); o) is added toN(v0)). Consequently, N(v) is a �nite set of pairs (n; o);{ M(v) � N � L�N is the mailbox of v and 
ontains the whole informationre
eived by v at any step of the 
omputation, i.e., the numbers, the labelsand the lo
al views of the nodes of the network.The fundamental property of the algorithm is based on a total order on lo
alviews, as de�ned in [8℄, su
h that the lo
al view of any vertex 
annot de
reaseduring the 
omputation. Consider a vertex v su
h that the lo
al view N(v) 2 Nis the set f(n1; o1); (n2; o2); : : : ; (nd; od)g, we assume that n1 > n2 > ::: > nd



and we say that the d-tuple ((n1; o1); (n2; o2); : : : ; (nd; od)) is the ordered rep-resentation of N(v). We de�ne a total order � on su
h ordered tuples using thealphabeti
al order; it indu
es naturally a total order on N . We assume that theset of labels L is totally ordered by <L and we extend � on L�N .The Relabeling Rules.We now des
ribe the relabelling rules of the algorithm;the �rst rule M0 is a spe
ial rule that extends the initial label �(v) of ea
hvertex to (�(v); (0; ;; ;)). The rules M1 and M2 are very 
lose to the rules ofMazurkiewi
z's algorithm.The �rst rule enables two neighbours v and v0 having di�erent mailboxes toshare the information they have about the labels present in the graphs.M1 :(l1; (n1; N1;M1)) (l2; (n2; N2;M2)) (l1; (n1; N1;M 0)) (l2; (n2; N2;M 0))If M1 6=M2 then M 0 :=M1 [M2.The se
ond rule enables a vertex v to 
hange its number if n(v) = 0 or ifthere exists a vertex v0 su
h that n(v) = n(v0) and v has a weaker label or aweaker lo
al view than v0.M2 : (l; (n;N;M)) (l; (k;N;M 0))If n = 0 or 9(n; l0; N 0) 2M su
h that (l; N) � (l0; N 0)then k := 1 +maxfn0 j 9(n0; l0; N 0) 2Mg and M 0 :=M [ f(k; l; N)g.The third rule enables a node having a neighbour with exa
tly the same labelto 
hange its number. If this rule is applied, the number of ea
h node is insertedin the lo
al view of the other with a stamp o asso
iated to the operation that isdi�erent of the other stamps asso
iated to operations involving one of the twonodes. Moreover, when the number n(v0) of a neighbour v0 of v is inserted inN(v), all the elements (m; o) belonging to N(v) su
h that m � n(v0) are deletedfrom the lo
al view. The rationale behind this deletion step is explained in thenext rule M4 below.M3 :(l; (n;N;M)) (l; (n;N;M)) (l; (k;N1;M 0)) (l; (n;N2;M 0))If n > 0 and 8(n; l0; N 0) 2M; (l0; N 0) � (l; N)then k := 1 +maxfn0 j 9(n0; l0; N 0) 2Mg;o := 1 +maxfo0 j 9(n0; o0) 2 Ng;N1 := N n f(n0; o0) 2 N j n0 � ng [ f(n; o)g;N2 := f(k; o)g and M 0 :=M [ f(k; l; N1); (n; l;N2)g.The fourth rule enables two neighbours v and v0 to ex
hange their numbersif an update is needed, i.e., if there does not exist o su
h that (n2; o) 2 N1 and(n1; o) 2 N2. As for the pre
edent rule, if the number n(v0) of a neighbour v0of v is inserted in N(v), all the elements (m; o) belonging to N(v) su
h thatm � n(v0) are deleted.



The role of the stamp o asso
iated to the operation is to ensure that at theend of the 
omputation, if the lo
al view of a vertex v0 
ontains (n; o), it meansthat it has a neighbour v00 su
h that n(v00) = n, (n(v0); o) 2 N(v00) and su
h thatthe ruleM3 orM4 was applied to these two verti
es; an interesting 
onsequen
eis that in the �nal labelling, jfv j n(v) = n(v0)gj = jfv j n(v) = n(v00)gj.M4 :(l1; (n1; N1;M)) (l2; (n2; N2;M)) (l1; (n1; N 01;M 0)) (l2; (n2; N 02;M 0))If n1; n2 > 0, n1 6= n2,8(n1; l01; N 01) 2M; (l01; N 01) � (l1; N1),8(n2; l02; N 02) 2M; (l02; N 02) � (l2; N2),and �o j (n2; o) 2 N1 and (n1; o) 2 N2then o := 1 +maxfo0 j 9(n0; o0) 2 N1 [N2g;N 01 := N1 n f(n0; o0) 2 N1 j n0 � n2g [ f(n2; o)g;N 02 := N2 n f(n0; o0) 2 N2 j n0 � n1g [ f(n1; o)g;M 0 :=M [ f(n1; l1; N 01); (n2; l2; N 02)g.The intuitive justi�
ation for the deletion of all the (m; o) is the following.If there is a syn
hronization between two neighbours v and v0, then they shouldagree on an integer o0 and add (n(v); o0) to N(v0) and (n(v0); o0) to N(v). But,it is possible that v syn
hronized with v0 in the past and in the meantime v0 has
hanged its identity number or has syn
hronized with another vertex w su
h thatn(w) = n(v). In this 
ase, to remain in a 
onsistent state, the vertex v shouldmodify its lo
al view to remove the old identity number of v0 and the o asso
iatedto this pre
edent syn
hronization. The trouble is that v has no means to knowwhi
h of the pairs (m; o) belonging to its view N(v) should be deleted. However,sin
e our algorithm assures the monotoni
ity of subsequent identity numbers ofea
h vertex and monotoni
ity of subsequent o involving the node v0, we knowthat the 
ouple (m; o) to remove is su
h that (m; o) <Lex (n(v0); o0) Therefore,by deleting all su
h (m; o) from the lo
al view N(v), we are sure to delete allinvalid information. Of 
ourse, in this way we risk to delete also the legitimate
urrent informations about other neighbours of v from its view N(v). However,v 
an re
over this information just by (re)syn
hronizing with all su
h neighbours.Properties. In the following, we 
onsider an exe
ution of the algorithm on agraph G. We will denote by (�(v); (ni(v); Ni(v); Mi(v)) the label of the vertexv after the ith 
omputation step.We 
an see that the label of ea
h node 
an only \in
rease" during the 
om-putation. Indeed, for ea
h step i, for ea
h vertex v, ni(v) � ni+1(v), Ni(v) �Ni+1(v) and Mi(v) �Mi+1(v). Moreover, if a vertex v knows the existen
e of anode with the number m (i.e., 9(m; l;N) 2Mi(v)), then for ea
h m0 � m, thereexists a node w su
h that ni(w) = m0. An immediate 
orollary of this propertyis that after ea
h 
omputation step the numbers of the nodes is a set [1; k℄ withk � jV (G)j.We will now prove that ea
h exe
ution of M on a graph G is �nite. In fa
t,we just have to prove that the values of n(v), N(v) and M(v) are bounded for



ea
h vertex v . Sin
e we already know that n(v) � jV (G)j, we just have to provethat the stamps o are also bounded. It will imply that N(v) and M(v) 
an onlytake a �nite number of values. From the properties des
ribed above, there existsa step i0 su
h that 8i � i0;8v 2 V (G); ni(v) = ni0(v) and therefore the rulesM2 and M3 
annot be applied after the step i0. Consider two neighbours vand w su
h that ni0(v) > ni0(w) and two steps j2 > j1 > i0 where the ruleM4 is applied to the edge fv; wg. Then, there must exist an edge fv0; w0g with(ni0(v); ni0 (w)) <Lex (ni0 (v0); ni0(w0)) and a step j 2 [j1; j2℄ where the ruleM4 is applied to fv0; w0g. Consequently, the rule M4 
an only be applied a�nite number of time over ea
h edge and we 
an ensure the termination of thealgorithm.For ea
h exe
ution of the algorithm over G, a graph H is asso
iated tothe �nal labelling with V (H) = fn(v) j v 2 V (G)g su
h that G is a pseudo-
overing of H. If G is pseudo-
overing-minimal, then G ' H. Consequently,for every run of the enumeration algorithm, the graph asso
iated to the �nallabelling is isomorphi
 to G and therefore the set of numbers the verti
es haveis exa
tly [1; jV (G)j℄. Moreover, on
e a vertex gets the number jV (G)j, it knowsthat all the verti
es have a di�erent number that will not 
hange any moreand therefore it 
an dete
t the termination. We 
an therefore transform theenumeration algorithm into an ele
tion algorithm, by 
hoosing to ele
t the nodethat gets the number jV (G)j. From these results and Lemma 1, we have thefollowing theorem.Theorem 1. For every graph G, it is equivalent to solve the following problemson G with lo
al 
omputations on 
losed unlabelled edges: naming, naming withexpli
it termination and ele
tion. These problems 
an be solved on G if and onlyif G is a pseudo-
overing-minimal graph.4 Comparison with Other ModelsIt is easy to see that ea
h algorithm en
oded by lo
al 
omputations on 
losedunlabelled edges 
an be translated in the models of Mazurkiewi
z [8℄, Angluin[1℄ and Chalopin and M�etivier [3℄. And the algorithms en
oded in the model of[4℄ 
an be en
oded by lo
al 
omputations on 
losed unlabelled edges.In the models of Mazurkiewi
z [8℄, Angluin [1℄, Chalopin and M�etivier [3℄,Yamashita and Kameda [12℄ and Boldi et al. [2℄, the ele
tion and the namingproblems 
an be solved in the graph G1 of Figure 4. Nevertheless, this graphG1 is a pseudo-
overing of the graph H1. Therefore, it is not possible to solvethe ele
tion problem by using lo
al 
omputations on 
losed unlabelled edges.If we 
onsider the pseudo-
overing-minimal graphs G2 and G3 of Figure 4,we 
an solve the ele
tion problem over these graphs with lo
al 
omputations on
losed unlabelled edges. But the ele
tion problem 
annot be solved over G3 inthe models studied in [2℄ and in [4℄. Moreover there does not exist any ele
tionalgorithm for the graph G2 in the model studied in [12℄.Consequently, our model is stri
tly less powerful than the models studied byMazurkiewi
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