
Loal Computationson Closed Unlabelled Edges:the Eletion Problem and the Naming Problem(Extended Abstrat)J�er�emie Chalopinhalopin�labri.frLaBRI, Universit�e Bordeaux I351 ours de la Lib�eration33405 Talene, Frane1 IntrodutionThe di�erent loal omputations mehanisms are very useful for delimiting theborderline between positive and negative results in distributed omputations.Indeed, they enable to study the importane of the synhronization level andto understand how important is the initial knowledge. A high level of synhro-nization involved in one atomi omputation step makes a model powerful butredues the degree of parallelism. Charron-Bost et al. [5℄ study the di�erene be-tween synhronous and asynhronous message passing models. The model stud-ied in this paper involves more synhronization than the message passing model:an elementary omputation step modi�es the states of two neighbours in thenetwork, depending only on their urrent states. The information the proessorsinitially have an be global information about the network, suh as the size, thediameter or the topology of the network. The initial knowledge an also be loal:eah node an initially know its own degree for example. Another example ofloal knowledge is the existene of a port numbering: eah proessor loally givesnumbers to its inident edges and in this way, it an onsistently distinguish itsneighbours. In Angluin's model [1℄, it is assumed that a port numbering exists,whereas it is not the ase in our model. In fat, we obtain a model with a stritlylower power of omputation by relaxing the hypothesis on the existene of a portnumbering.The Model. A network of proessors will be represented as a simple onnetedundireted graph. As usual the verties represent proessors and edges diretommuniation links. The state of eah proessor is represented by the label�(v) of the orresponding vertex.An elementary omputation step will be represented by relabelling rules ofthe form given shematially in Figure 1. If, in a graph G, there are two neigh-bours labelled X and Y then applying this rule we replae X (resp. Y ) by a newlabel X 0 (resp. Y 0). The labels of all other graph verties are irrelevant for suh



a omputation step and remain unhanged. The omputations using uniquelythis type of relabelling rules are alled in this paper loal omputations on losedunlabelled edges. Thus an algorithm in our model is simply given by some (pos-sibly in�nite but always reursive) set of rules of the type presented in Figure 1.A run of the algorithm onsists in applying the relabelling rules spei�ed bythe algorithm until no rule is appliable, whih terminates the exeution. Therelabelling rules are applied asynhronously and in any order, whih means thatgiven the initial labelling usually many di�erent runs are possible.X Y X 0 Y 0Fig. 1. Graphial form of a rule for loal omputations on losed unlabelled edges.Eletion, Naming and Enumeration. The eletion problem is one of theparadigms of the theory of distributed omputing. It was �rst posed by LeLann[7℄. A distributed algorithm solves the eletion problem if it always terminatesand in the �nal on�guration exatly one proessor is marked as eleted andall the other proessors are non-eleted. Moreover, it is supposed that one aproessor beomes eleted or non-eleted then it remains in suh a state untilthe end of the algorithm. The naming problem is another important problemin the theory of distributed omputing. The aim of a naming algorithm is toarrive at a �nal on�guration where all proessors have unique identities. Theenumeration problem is a variant of the naming problem whose aim is to give toeah node a unique number between 1 and the size of the graph. These problemsare important sine they onstitute basi initial steps of many other distributedalgorithms.Related Works. Graphs where eletion is possible were already studied for dif-ferent types of basi omputation steps and partiular types of network topology(tree, grid, torus, ring with a known prime number of verties, et.), see [11℄.Yamashita and Kameda [12℄ haraterize the graphs for whih there exists aneletion algorithm in the message passing model and they study the importaneof the port numbering in [13℄.Mazurkiewiz [8℄ onsiders an asynhronous omputation model where in oneomputation step, labels are modi�ed on a subgraph onsisting of a node andits neighbours, aording to ertain rules depending on this subgraph only. Hisharaterization of the graphs where enumeration and eletion are possible anbe formulated using overings [6℄. In this model, the port numbering does notgive a more powerful model, sine in eah omputation step, a node an alwaysdistinguish its neighbours.Chalopin and M�etivier [3℄ onsider three di�erent asynhronous models thatare de�ned by the rules presented in Figure 2. Note that, ontrary to the modelwe examine in the present paper, all these models allow edge labelling. In fat,allowing to label the edges is equivalent to the existene of a port numbering,



sine in these models, it is always possible for a proessor to onsistently identifyits neighbours. Consequently, the �rst model studied in [3℄ is equivalent to themodel of Angluin [1℄. It turns out that for all models of Figure 2 the eletion andnaming problems an be solved on a graph G if and only if G is not a overingof any graph H not isomorphi to G, where H an have multiple edges but noself-loop. Mazurkiewiz [9℄ has also studied the �rst model desribed in Figure 2and he gives an equivalent haraterization thanks to equivalene relations overthe verties and the edges of the graph.In the onlusion of [13℄, Yamashita and Kameda underline the importaneof the edge labelling and it is a natural question to wonder if the edge labelling,or equivalently the existene of a port numbering, modify the power of the dif-ferent models of Figure 2. Boldi et al. [2℄ onsider a model where the networkis a direted multigraph. When a proessor is ativated, it hanges its state de-pending on its previous state and on the states of its ingoing neighbours. Theyharaterize the graphs that admits an eletion algorithm using �brations, thatare generalization of overings to direted graphs. Chalopin et al. [4℄ onsider amodel where an elementary omputation step modi�es the state of one vertexdepending on its urrent state and the state of one of its neighbours; as in themodel studied here, the edges are not labelled. In this model, naming and ele-tion are not equivalent and haraterizations are given using submersions thatare loally surjetive morphisms. The omparison between the haraterizationgiven in [2℄, in [4℄ and in [3℄ shows that for the seond and the third model ofFigure 2, it gives stritly more powerful models to allow the edges to be labelled.In this paper, we omplete the study of the importane of the port numbering:the haraterization we give of the graphs for whih the naming and the ele-tion problems an be solved for the model of Figure 1 is very di�erent of theharaterization given in [3℄. Moreover, we an remark that the three modelsof Figure 2 that are equivalent when the edges an be labelled are no longerequivalent when this hypothesis is relaxed.Model 1: X ZY X 0 Z0Y 0Model 2: X ZY X 0 ZY 0Model 3: XXd X1 X2X3Yd Y1 Y2Y3 X 0Xd X1 X2X3Y 0d Y 01 Y 02Y 03Fig. 2. Elementary relabelling steps for the models studied in [3℄.Main Results. We introdue in Setion 2 the notion of pseudo-overing, thatis a generalization of overings. We prove in Setion 3 that naming and eletionan be solved on a graph G if and only if G is minimal for the pseudo-overingrelation (Theorem 1).The problems are solved onstrutively: we enode an enumeration algorithmwith expliit termination by loal omputations on losed unlabelled edges that



work orretly for all graphs where these problems are solvable. This algorithmuses some ideas from Mazurkiewiz'algorithm [8℄. However, in the models onsid-ered in [2, 3, 8, 9, 13℄, a node an onsistently distinguish its neighbours whereasit is impossible in the model studied here. Eah exeution of our algorithm on agraph G omputes a labelling that indues a graph H suh that G is a pseudo-overing of H . Consequently, there exists an integer k suh that eah label of the�nal labelling of G appears exatly k times in the graph; it is not the ase for themodel studied in [4℄. In our solution, stamps are assoiated to synhronizationsbetween neighbours. These assoiated stamps solve the problem, but they intro-due a non-trivial diÆulty in the proof of the termination of the algorithm: wemust prove that stamps are bounded.Imposed spae limitations do not allow to present all the proofs in the paper.2 PreliminariesGraphs. The notations used here are essentially standard [10℄. We onsider�nite, undireted, onneted graphs G = (V (G); E(G)) with verties V (G) andedges E(G) without multiple edges or self-loop. Two verties u and v are saidto be adjaent or neighbours if fu; vg is an edge of G and NG(v) will stand forthe set of neighbours of v. An edge e is inident to a vertex v if v 2 e and IG(v)will stand for the set of all the edges of G inident to v.A homomorphism between graphs G and H is a mapping  : V (G)! V (H)suh that if fu; vg 2 E(G) then f(u); (v)g 2 E(H). We say that  is anisomorphism if  is bijetive and �1 is a homomorphism.A graph H is a subgraph of G, noted H � G, if V (H) � V (G) and E(H) �E(G). A subgraph H of G is alled a partial graph of G if G and H have thesame set of verties.A mathing F of a graph G is a subset of E(G) suh that for every e; e0 2 F ,e\ e0 = ;: F is a set of disjoint edges of G. A mathing F of G is perfet if everyvertex v 2 V (G) is the endvertex of exatly one edge e 2 F .Throughout the paper we will onsider graphs where verties are labelledwith labels from a reursive label set L. A graph labelled over L is a oupleG = (G; �), where G is the underlying non labelled graph and � : V (G) ! L isthe (vertex) labelling funtion. Let H be a subgraph of G and �H the restritionof the labelling � : V (G)! L to V (H). Then the labelled graph H = (H;�H ) isalled a subgraph of G = (G; �); we note this fat by H � G. A homomorphismof labelled graphs is just a homomorphism that preserves the labelling.For any set S, jSj denotes the ardinality of S. For any integer q, we denoteby [1; q℄ the set of integers f1; 2; : : : ; qg:Coverings and Pseudo-Coverings. A graph G is a overing of a graph H via if  is a surjetive homomorphism from G onto H suh that for every vertex vof V (G) the restrition of  to IG(v) is a bijetion onto IH ((v)). The overingis proper if G and H are not isomorphi. A graph G is alled overing-minimalif every overing from G to some H is a bijetion.



A graph G is a pseudo-overing of H via a morphism ' modulo a graph G0if G0 is a partial graph of G that is a overing of H via the restrition 'jG0 of' to G0. The pseudo-overing is proper if G and H are not isomorphi. A graphG is said pseudo-overing-minimal if there does not exist a graph H suh thatG is a proper pseudo-overing of H . An example of pseudo-overing is given inFigure 3. Naturally, overings and pseudo-overings of labelled graphs are justoverings and pseudo-overings of underlying graphs suh that the assoiatedmorphisms preserve the labelling.If G is a pseudo-overing of a graph H via ' modulo G0, then for everyedge f = fw1; w2g 2 E(H), '�1jG0(f) is a perfet mathing of '�1(fw1; w2g).Consequently, there exists an integer q suh that for every vertex v 2 V (H),j'�1(v)j = q. 1 2 3123G 1 2 3123 G01 23H
partial graph' 'jG0Fig. 3. The graph G is a pseudo-overing of H via the mapping ' modulo G0 where' maps eah vertex of G labelled i to the unique vertex of H with the same label i.This pseudo-overing is proper and the graph H is pseudo-overing-minimal.Loal Computations on Closed Unlabelled Edges. For any set R of edgeloal relabelling rules of the type desribed in Figure 1 we shall write G R G0 ifG0 an be obtained fromG by applying a rule ofR on some edge ofG. Obviously,G and G0 have the same underlying graph G, only the labelling hanges for theendverties of exatly one (ative) edge. Thus, slightly abusing the notation, Rwill stand both for a set of rules and the indued relabelling relation over labelledgraphs. The reexive transitive losure of suh a relabelling relation is noted R�.The relationR is alled noetherian on a graphG if there is no in�nite relabellingsequene G0 R G1 R : : : ; with G0 = G: The relation R is noetherian on a setof graphs if it is noetherian on eah graph of the set. Finally, the relation R isalled noetherian if it is noetherian on eah graph. Clearly noetherian relationsode always terminating algorithms.The following lemma is a ounterpart of the lifting lemma of Angluin [1℄adapted to pseudo-overings; it exhibits a strong link between pseudo-overingsand loal omputations on losed unlabelled edges. An immediate orollary isthat there does not exist any algorithm using loal omputations on losed unla-belled edges that solves the eletion problem or the naming problem on a graphG that is not pseudo-overing-minimal.Lemma 1 (Lifting Lemma). Let R be a relabelling relation enoding an al-gorithm using loal omputations on losed unlabelled edges and let G0 be a



pseudo-overing of H0. If H0 R� H1 then there exists G1 suh that G0 R� G1and G1 is a pseudo-overing of H1.3 An Enumeration AlgorithmIn this setion, we desribe a Mazurkiewiz-like algorithm M using loal om-putations on losed unlabelled edges that solves the enumeration problem on apseudo-overing-minimal graph G.Eah vertex v attempts to get its own number between 1 and jV (G)j. A ver-tex hooses a number and exhanges its number with its neighbours. If during aomputation step, two neighbours exhange their numbers, a stamp o is given tothe operation suh that two operations involving the same vertex have di�erentstamps. Eah node broadasts its number, its label and its loal view (the num-bers of its neighbours and the stamps of the operations of exhange assoiatedto eah neighbour) all over the network. If a vertex u disovers the existene ofanother vertex v with the same number, then it ompares its loal view withthe loal view of v. If the label of u or the loal view of u is \weaker", thenu hooses another number and broadasts it again with its loal view. At theend of the omputation, every vertex will have a unique number if the graph ispseudo-overing-minimal.The main di�erene with Mazurkiewiz'algorithm is the existene of thestamps o. The algorithm we will desribe below omputes a graph H suh thatG is a pseudo-overing of H. To de�ne a pseudo-overing, we need to de�ne amorphism and a subset of E(G). As in Mazurkiewiz'algorithm, the numbers ofthe nodes will be used to de�ne the morphism ' whereas the stamps o will beused to selet the edges of G.Labels.We onsider a labelled graphG = (G; �). For eah vertex v 2 V (G), thelabel of v is the pair (�(v); (v)) where �(v) is the initial label of v whereas (v)is a triple (n(v); N(v);M(v)) representing the following information obtainedduring the omputation:{ n(v) 2 N is the number of the vertex v omputed by the algorithm;{ N(v) 2 N is the loal view of v. If the node v has a neighbour v0, somerelabelling rules will allow v and v0 to add n(v0) in N(v) and n(v) in N(v0).Eah time this operation is done between two neighbours a stamp o is givento the operation and (n(v0); o) is added to N(v) (resp. (n(v); o) is added toN(v0)). Consequently, N(v) is a �nite set of pairs (n; o);{ M(v) � N � L�N is the mailbox of v and ontains the whole informationreeived by v at any step of the omputation, i.e., the numbers, the labelsand the loal views of the nodes of the network.The fundamental property of the algorithm is based on a total order on loalviews, as de�ned in [8℄, suh that the loal view of any vertex annot dereaseduring the omputation. Consider a vertex v suh that the loal view N(v) 2 Nis the set f(n1; o1); (n2; o2); : : : ; (nd; od)g, we assume that n1 > n2 > ::: > nd



and we say that the d-tuple ((n1; o1); (n2; o2); : : : ; (nd; od)) is the ordered rep-resentation of N(v). We de�ne a total order � on suh ordered tuples using thealphabetial order; it indues naturally a total order on N . We assume that theset of labels L is totally ordered by <L and we extend � on L�N .The Relabeling Rules.We now desribe the relabelling rules of the algorithm;the �rst rule M0 is a speial rule that extends the initial label �(v) of eahvertex to (�(v); (0; ;; ;)). The rules M1 and M2 are very lose to the rules ofMazurkiewiz's algorithm.The �rst rule enables two neighbours v and v0 having di�erent mailboxes toshare the information they have about the labels present in the graphs.M1 :(l1; (n1; N1;M1)) (l2; (n2; N2;M2)) (l1; (n1; N1;M 0)) (l2; (n2; N2;M 0))If M1 6=M2 then M 0 :=M1 [M2.The seond rule enables a vertex v to hange its number if n(v) = 0 or ifthere exists a vertex v0 suh that n(v) = n(v0) and v has a weaker label or aweaker loal view than v0.M2 : (l; (n;N;M)) (l; (k;N;M 0))If n = 0 or 9(n; l0; N 0) 2M suh that (l; N) � (l0; N 0)then k := 1 +maxfn0 j 9(n0; l0; N 0) 2Mg and M 0 :=M [ f(k; l; N)g.The third rule enables a node having a neighbour with exatly the same labelto hange its number. If this rule is applied, the number of eah node is insertedin the loal view of the other with a stamp o assoiated to the operation that isdi�erent of the other stamps assoiated to operations involving one of the twonodes. Moreover, when the number n(v0) of a neighbour v0 of v is inserted inN(v), all the elements (m; o) belonging to N(v) suh that m � n(v0) are deletedfrom the loal view. The rationale behind this deletion step is explained in thenext rule M4 below.M3 :(l; (n;N;M)) (l; (n;N;M)) (l; (k;N1;M 0)) (l; (n;N2;M 0))If n > 0 and 8(n; l0; N 0) 2M; (l0; N 0) � (l; N)then k := 1 +maxfn0 j 9(n0; l0; N 0) 2Mg;o := 1 +maxfo0 j 9(n0; o0) 2 Ng;N1 := N n f(n0; o0) 2 N j n0 � ng [ f(n; o)g;N2 := f(k; o)g and M 0 :=M [ f(k; l; N1); (n; l;N2)g.The fourth rule enables two neighbours v and v0 to exhange their numbersif an update is needed, i.e., if there does not exist o suh that (n2; o) 2 N1 and(n1; o) 2 N2. As for the preedent rule, if the number n(v0) of a neighbour v0of v is inserted in N(v), all the elements (m; o) belonging to N(v) suh thatm � n(v0) are deleted.



The role of the stamp o assoiated to the operation is to ensure that at theend of the omputation, if the loal view of a vertex v0 ontains (n; o), it meansthat it has a neighbour v00 suh that n(v00) = n, (n(v0); o) 2 N(v00) and suh thatthe ruleM3 orM4 was applied to these two verties; an interesting onsequeneis that in the �nal labelling, jfv j n(v) = n(v0)gj = jfv j n(v) = n(v00)gj.M4 :(l1; (n1; N1;M)) (l2; (n2; N2;M)) (l1; (n1; N 01;M 0)) (l2; (n2; N 02;M 0))If n1; n2 > 0, n1 6= n2,8(n1; l01; N 01) 2M; (l01; N 01) � (l1; N1),8(n2; l02; N 02) 2M; (l02; N 02) � (l2; N2),and �o j (n2; o) 2 N1 and (n1; o) 2 N2then o := 1 +maxfo0 j 9(n0; o0) 2 N1 [N2g;N 01 := N1 n f(n0; o0) 2 N1 j n0 � n2g [ f(n2; o)g;N 02 := N2 n f(n0; o0) 2 N2 j n0 � n1g [ f(n1; o)g;M 0 :=M [ f(n1; l1; N 01); (n2; l2; N 02)g.The intuitive justi�ation for the deletion of all the (m; o) is the following.If there is a synhronization between two neighbours v and v0, then they shouldagree on an integer o0 and add (n(v); o0) to N(v0) and (n(v0); o0) to N(v). But,it is possible that v synhronized with v0 in the past and in the meantime v0 hashanged its identity number or has synhronized with another vertex w suh thatn(w) = n(v). In this ase, to remain in a onsistent state, the vertex v shouldmodify its loal view to remove the old identity number of v0 and the o assoiatedto this preedent synhronization. The trouble is that v has no means to knowwhih of the pairs (m; o) belonging to its view N(v) should be deleted. However,sine our algorithm assures the monotoniity of subsequent identity numbers ofeah vertex and monotoniity of subsequent o involving the node v0, we knowthat the ouple (m; o) to remove is suh that (m; o) <Lex (n(v0); o0) Therefore,by deleting all suh (m; o) from the loal view N(v), we are sure to delete allinvalid information. Of ourse, in this way we risk to delete also the legitimateurrent informations about other neighbours of v from its view N(v). However,v an reover this information just by (re)synhronizing with all suh neighbours.Properties. In the following, we onsider an exeution of the algorithm on agraph G. We will denote by (�(v); (ni(v); Ni(v); Mi(v)) the label of the vertexv after the ith omputation step.We an see that the label of eah node an only \inrease" during the om-putation. Indeed, for eah step i, for eah vertex v, ni(v) � ni+1(v), Ni(v) �Ni+1(v) and Mi(v) �Mi+1(v). Moreover, if a vertex v knows the existene of anode with the number m (i.e., 9(m; l;N) 2Mi(v)), then for eah m0 � m, thereexists a node w suh that ni(w) = m0. An immediate orollary of this propertyis that after eah omputation step the numbers of the nodes is a set [1; k℄ withk � jV (G)j.We will now prove that eah exeution of M on a graph G is �nite. In fat,we just have to prove that the values of n(v), N(v) and M(v) are bounded for



eah vertex v . Sine we already know that n(v) � jV (G)j, we just have to provethat the stamps o are also bounded. It will imply that N(v) and M(v) an onlytake a �nite number of values. From the properties desribed above, there existsa step i0 suh that 8i � i0;8v 2 V (G); ni(v) = ni0(v) and therefore the rulesM2 and M3 annot be applied after the step i0. Consider two neighbours vand w suh that ni0(v) > ni0(w) and two steps j2 > j1 > i0 where the ruleM4 is applied to the edge fv; wg. Then, there must exist an edge fv0; w0g with(ni0(v); ni0 (w)) <Lex (ni0 (v0); ni0(w0)) and a step j 2 [j1; j2℄ where the ruleM4 is applied to fv0; w0g. Consequently, the rule M4 an only be applied a�nite number of time over eah edge and we an ensure the termination of thealgorithm.For eah exeution of the algorithm over G, a graph H is assoiated tothe �nal labelling with V (H) = fn(v) j v 2 V (G)g suh that G is a pseudo-overing of H. If G is pseudo-overing-minimal, then G ' H. Consequently,for every run of the enumeration algorithm, the graph assoiated to the �nallabelling is isomorphi to G and therefore the set of numbers the verties haveis exatly [1; jV (G)j℄. Moreover, one a vertex gets the number jV (G)j, it knowsthat all the verties have a di�erent number that will not hange any moreand therefore it an detet the termination. We an therefore transform theenumeration algorithm into an eletion algorithm, by hoosing to elet the nodethat gets the number jV (G)j. From these results and Lemma 1, we have thefollowing theorem.Theorem 1. For every graph G, it is equivalent to solve the following problemson G with loal omputations on losed unlabelled edges: naming, naming withexpliit termination and eletion. These problems an be solved on G if and onlyif G is a pseudo-overing-minimal graph.4 Comparison with Other ModelsIt is easy to see that eah algorithm enoded by loal omputations on losedunlabelled edges an be translated in the models of Mazurkiewiz [8℄, Angluin[1℄ and Chalopin and M�etivier [3℄. And the algorithms enoded in the model of[4℄ an be enoded by loal omputations on losed unlabelled edges.In the models of Mazurkiewiz [8℄, Angluin [1℄, Chalopin and M�etivier [3℄,Yamashita and Kameda [12℄ and Boldi et al. [2℄, the eletion and the namingproblems an be solved in the graph G1 of Figure 4. Nevertheless, this graphG1 is a pseudo-overing of the graph H1. Therefore, it is not possible to solvethe eletion problem by using loal omputations on losed unlabelled edges.If we onsider the pseudo-overing-minimal graphs G2 and G3 of Figure 4,we an solve the eletion problem over these graphs with loal omputations onlosed unlabelled edges. But the eletion problem annot be solved over G3 inthe models studied in [2℄ and in [4℄. Moreover there does not exist any eletionalgorithm for the graph G2 in the model studied in [12℄.Consequently, our model is stritly less powerful than the models studied byMazurkiewiz [8℄, by Angluin [1℄ and by Chalopin and M�etivier [3℄, but stritly
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