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t. We dis
uss eleven well-known basi
 models of distributed 
omputing:four message-passing models that di�er by the (non-)existen
e of port-numbers anda hierar
hy of seven lo
al 
omputations models. In ea
h of these models, we studythe 
omputational 
omplexity of the de
ision problem whether the leader ele
tionand/or naming problem 
an be solved on a given network. It is already known thatthis problem is solvable in polynomial time for two models and 
o-NP-
ompletefor another one. Here, we settle the 
omputational 
omplexity for the remainingeight problems by showing 
o-NP-
ompleteness. The results for six models and thealready known 
o-NP-
ompleteness result follow from a more general result on graphlabelings.1 Introdu
tionIn distributed 
omputing, one 
an �nd a wide variety of models of 
ommuni
ation. Thesemodels re
e
t di�erent system ar
hite
tures, di�erent levels of syn
hronization and di�erentlevels of abstra
tion. In this paper we 
onsider eleven well-known basi
 models that satisfythe following two underlying assumptions. Firstly, a distributed system is represented bya simple (i.e., without loops or multiple edges), 
onne
ted, undire
ted graph. Its verti
esrepresent the pro
essors, and its edges represent dire
t 
ommuni
ation links. Se
ondly, ina distributed algorithm, all the pro
essors exe
ute the same 
ode to solve some problemand they do not have initial identi�ers.The eleven basi
 models 
an be divided into four message-passing models [6, 15, 17℄ andseven lo
al 
omputations models [1, 4, 5, 12, 13℄. In a message-passing model, pro
essors
ommuni
ate by sending and re
eiving messages. In a lo
al 
omputations model, 
om-muni
ation between pro
essors is a
hieved thanks to syn
hronization (en
oded by lo
alrelabeling rules) between neighboring pro
essors.Understanding the 
omputational power of various models enhan
es our understandingof basi
 distributed algorithms. For this purpose a number of standard problems in dis-tributed 
omputing are studied. The ele
tion problem is one of the paradigms of the theoryof distributed 
omputing. In our setting, a distributed algorithm solves the ele
tion prob-lem if it always terminates and in the �nal 
on�guration exa
tly one pro
essor is markedas ele
ted and all the other pro
essors are non-ele
ted. Ele
tions 
onstitute a building blo
k



of many other distributed algorithms, sin
e the ele
ted vertex 
an be subsequently used tomake 
entralized de
isions. A se
ond important problem in distributed 
omputing is thenaming problem. Here, the aim is to arrive at a �nal 
on�guration where all pro
essorshave been assigned unique identities. Again this is an essential prerequisite to many otherdistributed algorithms that only work 
orre
tly under the assumption that all pro
essors
an be unambiguously identi�ed. For a survey on distributed algorithms we refer to [14℄.OUR RESULTS. Whether the naming or ele
tion problem 
an be solved on a givengraph depends on the properties of the 
onsidered model. If it is possible to solve theele
tion (naming) problem we 
all the graph a solution graph for the ele
tion (naming)problem. It is a natural question to ask how hard it is to 
he
k whether a given graph is asolution graph in a 
ertain model. For two models this problem is known to be polynomiallysolvable [2℄ and for one model it is 
o-NP-
omplete [16℄. What about the 
omputational
omplexity of this problem for the other models? In this paper we solve this question byshowing that this de
ision problem is 
o-NP-
omplete for all remaining models.The paper is organized as follows. In Se
tion 2 we de�ne the ne
essary graph terminol-ogy. To obtain our results we translate known 
hara
terizations [1, 4{7, 12, 13, 15, 17℄ of so-lution graphs in terms of graph labelings. This is shown in Se
tion 3 for the message-passingmodels and in Se
tion 4 for the lo
al 
omputations models. In Se
tion 5 we introdu
e a newkind of labeling that does not 
orrespond to any model of distributed 
omputing but thatenables us to present a simpler 
o-NP-
ompleteness proof for seven basi
 models in
ludingthe already known model in [16℄. In Se
tion 6 we give the results for the remaining twomodels.2 PreliminariesFor graph terminology not de�ned below we refer to [3℄. A labeling of a graph G = (VG; EG)is a mapping ` : VG ! f1; 2; 3; : : : ; g. For a set S � VG we use the shorthand notation `(S)to denote the image set of S under `, i.e., `(S) = f`(u) j u 2 Sg. A labeling ` of G is 
alledproper if j`(VG)j < jVGj. For any label i � 1, the set `�1(i) is equal to fu 2 VG j `(u) = ig.The subgraph of G indu
ed by a subset S � VG is denoted by G[S℄. For a label i � 1 wewrite G[i℄ = G[`�1(i)℄. For two labels i; j, we let G[i; j℄ be the bipartite graph obtained fromG[`�1(i)[ `�1(j)℄ by deleting all edges fu; vg with `(u) = `(v) = i or with `(u) = `(v) = j.For a vertex u 2 VG in a graph G = (VG; EG), we denote its neighborhood by NG(u) =fv j [u; v℄ 2 EGg. A graph is regular, if all its verti
es have the same number k of neighbors(i.e. are of degree degG(u) = k), in that 
ase we also say that the graph is k-regular. Agraph is regular bipartite if it is regular and bipartite. A graph is semi-regular bipartite if itis bipartite and the verti
es of one 
lass of the bipartition are of degree k and all others areof degree l, in that 
ase we also say that the graph is (k; l)-regular bipartite. In our 
ontexta perfe
t mat
hing is a (1; 1)-regular bipartite graph.3 Message-passing modelsIn [15{17℄, Yamashita and Kameda study four message-passing models. In the port-to-portmodel, ea
h pro
essor 
an send di�erent messages to di�erent neighbors (by having a

ess



to unique port-numbers that distinguish between neighbors), and ea
h pro
essor knows theneighbor ea
h re
eiving message is 
oming from (again by using the port-numbers). Inthe broad
ast-to-mailbox model, port-numbers do not exist. A pro
essor 
an only send amessage to all of its neighbors and all re
eiving messages arrive in a mailbox, so it neverknows their senders. The two mixed models are 
alled the broad
ast-to-port model and theport-to-mailbox model. There exists an ele
tion (or naming) algorithm for a graph G if andonly if the algorithm solves the problem on G whatever the port-numbers are.In [17℄, Yamashita and Kameda 
hara
terize these four models: a graph G is a solutiongraph for the ele
tion and naming problem in the port-to-port model if and only if G doesnot have a proper symmetri
 regular labeling, i.e., a proper labeling ` su
h that(i) for all i 2 `(VG), G[i℄ is regular and 
ontains a perfe
t mat
hing if its verti
es have odddegree, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is regular bipartite.A graph G is a solution graph for the ele
tion and naming problem in the port-to-mailboxmodel if and only if G does not have a proper regular labeling, i.e., a proper labeling ` su
hthat(i) for all i 2 `(VG), G[i℄ is regular, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is regular bipartite.A graph G is a solution graph for the ele
tion and naming problem in the broad
ast-to-mailbox and the broad
ast-to-port model if and only if G does not have a proper semi-regular labeling, i.e., a proper labeling ` su
h that(i) for all i 2 `(VG), G[i℄ is regular, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is semi-regular bipartite.In [1, 6℄, di�erent 
hara
terizations for these models are obtained (based on �brations and
overings of dire
ted graphs). The problem of de
iding whether a graph G is a solutiongraph for the ele
tion and naming problem in the port-to-port model is 
o-NP-
omplete [16℄.On the other hand, in [2℄, it is shown that the problem of de
iding whether a graphG is a solution problem for the ele
tion and naming problem is polynomially solvablein the broad
ast-to-mailbox and the broad
ast-to-port model (by 
omputing the degreere�nement of G).4 Lo
al 
omputations modelsIn the lo
al 
omputations models, a 
omputation step 
an be des
ribed by the appli
ationof some lo
al relabeling rule that enables the modi�
ation of the states of the di�erentverti
es involved in the syn
hronization. Two lo
al 
omputation models are di�erent inthe types of relabeling rules that they allow, see Figure 1. In models (5); (6) and (7) ofFigure 1, a 
omputation step involves some syn
hronization between one vertex and allits neighbors, whereas in models (1); (2); (3) and (4), a 
omputation step involves somesyn
hronization between two neighbors.Mazurkiewi
z [12℄ 
hara
terizes model (7) of Figure 1: a graph G is a solution graphfor the ele
tion and naming problem if and only if G does not have a proper perfe
t-regular
oloring, i.e., a proper labeling ` su
h that



(i) for all i 2 `(VG), G[i℄ is empty, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is edgeless or else is a perfe
t mat
hing.

(1) ((2) ((4) �(3) ((6) ((7)
(5) (

(Fig. 1. A hierar
hy of lo
al 
omputations models. Labels of bla
k verti
es 
an 
hange when therule is applied. Labels of white verti
es only enable to apply the relabeling rule but do not 
hange.A relabeling rule 
an modify edge labels only in models (3); (4) and (6). If ri ( rj for rules ri andrj then rj 
an simulate ri but not vi
e versa, i.e., rj has a greater 
omputational power than ri. Ifri � rj then ri and rj have the same 
omputational power. Otherwise, ri and rj are in
omparable.Boldi et al. [1℄ 
hara
terize model (5) of Figure 1: a graph G is a solution graph for thenaming problem if and only if G does not have a proper semi-regular 
oloring, i.e., a properlabeling ` of G su
h that(i) for all i 2 `(VG), G[i℄ is empty, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is semi-regular bipartite.[5℄ 
hara
terizes the models (3), (4) and (6) of Figure 1: a graph G is a solution graph forthe ele
tion and the naming problem in ea
h of these models if and only if G does not havea proper regular 
oloring, i.e., a proper labeling ` su
h that(i) for all i 2 `(VG), G[i℄ is empty, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is regular bipartite.We note that Mazurkiewi
z [13℄ given an equivalent 
hara
terization of model (4) in termsof equivalen
e relations over verti
es and edges. The 
hara
terizations for model (6) 
analso be obtained from [1℄.[4℄ 
hara
terizes model (2) of Figure 1: a graph G is a solution graph for the ele
tionand naming problem if and only if G does not have a proper pseudo-regular 
oloring, i.e.,a proper labeling ` su
h that(i) for all i 2 `(VG), G[i℄ is empty, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is edgeless or else 
ontains a perfe
t mat
hing.



[7℄ 
hara
terizes model (1) of Figure 1: a graphG is a solution graph for the naming problemif and only if G does not admit any proper 
onne
ted 
oloring, i.e., a proper labeling ` su
hthat(i) for all i 2 `(VG), G[i℄ is empty, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is edgeless or else has minimum degree one.We note that the hierar
hy in Figure 1 is also re
e
ted by the labelings, e.g., a perfe
t-regular 
oloring is also a regular 
oloring, and so on.5 Pseudo-regular labelingsWe 
all a labeling ` of a graph G a pseudo-regular labeling if(i) for all i 2 `(VG), G[i℄ is regular, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is edgeless or else 
ontains a perfe
t mat
hing.In this se
tion we prove that the problem whether a given graph G has a proper pseudo-regular labeling is NP-
omplete. The following observation is useful.Observation 1 Let ` be a pseudo-regular labeling of a 
onne
ted graph G. Then j`�1(i)j =jVGjj`(VG)j for all i 2 `(VG).Let G = (VG; EG) and H = (VH ; VG) be two graphs. We write VH = f1; 2; : : : ; jVH jg. Fora mapping f : VG ! VH and a set S � VG, we write f(S) = ff(u) j u 2 Sg. A graphhomomorphism from G to H is a vertex mapping f : VG ! VH satisfying the property thatfor any edge [u; v℄ in EG, we have [f(u); f(v)℄ in EH , in other words, f(NG(u)) � NH(f(u))for all u 2 VG. A homomorphism f from G to H that indu
es a one-to-one mapping onthe neighborhood of every vertex is 
alled lo
ally bije
tive, i.e., for all u 2 VG it satis�esf(NG(u)) = NH(f(u)) and jNG(u)j = jNH(f(u))j. In that 
ase we write G B�! H , and 
allthe verti
es of H 
olors of G. Sometimes, we also say that the labels `(i) of a labeling ` ofG are 
olors of G.The H-Cover problem asks whether there exists a lo
ally bije
tive homomorphismfrom an instan
e graph G to a �xed graph H . In our NP-
ompleteness proof we use redu
-tion from the K-Cover problem, where K is the graph obtained after deleting an edgein the 
omplete graph K5 on �ve verti
es. The K-Cover problem is NP-
omplete [11℄.Note that the two non-adja
ent verti
es have degree three. The other three verti
es areadja
ent to two verti
es of degree three and two verti
es of degree four. Then the followingobservation immediately follows from the de�nition of a lo
ally bije
tive homomorphism.Observation 2 Let G be a graph with G B�! K. Then VG = B1 [ B2 for two blo
ks B1and B2 with jB1j = 2k and jB2j = 3k for some k � 1 su
h that{ for all u 2 B1, jNG(u) \ B1j = 0 and jNG(u) \B2j = 3{ for all u 2 B2, jNG(u) \ B1j = 2 and jNG(u) \B2j = 2.



Sin
e the 
onditions in Observation 2 
an be 
he
ked in polynomial time, we assume with-out loss of generality that any instan
e graph G of the K-Cover problem satis�es these
onditions.For our NP-
ompleteness stru
ture we modify an instan
e graph G of the K-Cover asfollows. Let u and v be verti
es of G with degG(u) = 3 and degG(v) = 4. We repla
e theedge [u; v℄ by a 
hain of q � 1 \diamonds" as des
ribed in Figure 2. We 
all the resultinggraph G0 a diamond graph of G with respe
t to the edge [u; v℄. For i = 1; : : : ; q, the subgraphDi = G[fai; bi; 
i; di; eig℄ is 
alled a diamond of G0. The next lemma shows among othersu = e0 a1 b1 
1d1 e1 a2 b2 
2d2 e2 aq bq 
qdq eq v = aq+1
Fig. 2. The 
hain of q diamonds that repla
e the edge [u; v℄.that a pseudo-regular labeling is inje
tive on the neighborhood of any vertex in a diamond.Its proof involves a 
ase analysis and will be presented in the journal version of our paper.Lemma 3. Let G be a graph on 5k verti
es that 
ontains adja
ent verti
es u; v withdegG(u) = 3 and degG(v) = 4. Let G0 be a diamond graph of G with respe
t to [u; v℄that has diamonds D1; : : :Dq, where q > k+2 and q+k is a prime number. If ` is a properpseudo-regular labeling of G0, then j`(VDi)j = 5 and `(ei�1) =2 `(Dinfeig) for all 1 � i � q.The following lemma is a key result.Lemma 4. Let G be a graph on 5k verti
es that 
ontains adja
ent verti
es u; v withdegG(u) = 3 and degG(v) = 4. Let G0 be a diamond graph of G with respe
t to [u; v℄that has diamonds D1; : : :Dq, where q > k+2 and q+k is a prime number. If ` is a properpseudo-regular labeling of G0 then j`(VG0)j = 5.Proof. We write p = q + k. Then jVG0 j = 5p and p is a prime number. Hen
e we �nd thatj`(VG0)j = 5 or j`(VG0)j = p, due to Observation 1.Suppose j`(VG0)j = p > 5. By our 
hoi
e of q, there exist a vertex u in a diamond Diwith the same 
olor as a vertex v in a diamond Dj . By Lemma 3, we may assume thati < j. We 
hoose u and v su
h that there do not exist two verti
es in G[Di [ : : : [Dj�1℄having the same 
olor. By Lemma 3, we 
an write `(ai) = 1, `(bi) = 2, `(
i) = 3, `(di) = 4and `(ei) = 5, and we �nd that `(ei�1) =2 f1; 2; 3; 4g. If `(ei�1) = 5, then `(ai+1) = 5 and
onsequently j`(VG0)j = 5 < p, so we write `(ei�1) = 6.By Observation 2 and the 
onstru
tion of G0, every vertex of G has either degree 3 or4. Note that, for ea
h x in G0 with `(x) = 1 (respe
tively `(x) = 3, `(x) = 4), we havethat f2; 3; 4; 6g � `(NG0(x)) (respe
tively f1; 2; 4; 5g � `(NG0(x)), f1; 2; 3; 5g � `(NG0(x))).Consequently, ea
h vertex x with `(x) 2 f1; 3; 4g has degG0(x) = 4.By our 
hoi
e of Di and Dj , vertex ai+1 belongs to some diamond. By Lemma 3, weknow that j`(NG0(ai+1))j = 4. Then ea
h vertex x with `(x) = `(ai+1) has degG0(x) = 4.



Suppose now that there exists a vertex y su
h that degG0(y) = 4 and `(y) = 2 (respe
tively`(y) = 5). Then `(NG0(y)) = f1; 3; 4g (respe
tively `(NG0(y)) = f3; 4; `(ai+1)g ). Then y hasthree neighbors of degree four and this is not possible due to Observation 2. Consequently,ea
h vertex y with `(y) 2 f2; 5g has degG0(y) = 3.We show that 1 =2 `(Dj). Suppose `(aj) = 1. From our 
hoi
e of Di and Dj , we knowthat `(ej�1) =2 f2; 3; 4g. Then `(fbj ; 
j ; djg) = f2; 3; 4g and `(ej�1) = 6. Then `(VG) =`(Di [ : : : [ Dj�1) and sin
e all 
olors are di�erent on diamonds Di; Di+1; : : : ; Dj�1, we�nd that p = j`(VG)j = 5(j � i). Sin
e p is a prime number not equal to 5, this is notpossible. We already know that 1 =2 `(fbj ; ejg) sin
e degG0(bj) = degG0(ej) = 3. Suppose`(
j) = 1 (respe
tively `(dj) = 1). Then `(dj) 2 f3; 4g (respe
tively `(
j) 2 f3; 4g) and`(fbj ; ejg) = f2; 6g. Then a vertex with 
olor in f3; 4g is adja
ent to a vertex with 
olor 6.This is not possible.We show that 2 =2 `(Dj). We already know that the only verti
es in Dj that 
an bemapped to 2 are bj and ej in Dj . If `(bj) = 2, then 1 2 `(faj ; 
j ; djg). If `(ej) = 2, theneither 1 2 `(f
j ; djg) or `(f
j ; djg) = f3; 4g and in the se
ond 
ase `(aj) = 1.We show that 3 =2 `(Dj). We already know that only verti
es aj ; 
j ; dj 
an be mappedto 3. If `(aj) = 3 then 1, whi
h does not o

ur on Dj , must be the 
olor of `(ej�1). This isnot possible due to our 
hoi
e of Di and Dj . In the other two 
ases we �nd that 1 2 `(Dj).By symmetry, we dedu
e that 4 =2 `(Dj).Finally, we show that 5 =2 `(Dj). We already know that only verti
es bj and ej 
an bemapped to 5. In both 
ases, at least one of the 
olors 3; 4 is a 
olor of a vertex in Dj . This�nishes the proof of the lemma. utLemma 5. Let G be a graph that 
ontains adja
ent verti
es u; v with degG(u) = 3 anddegG(v) = 4. Let G0 be a diamond graph of G with respe
t to (u; v). Then G B�! K if andonly if G0 B�! K.Proof. We denote the verti
es of K by 1; 2; 3; 4; 5 and its edges by [1; 2℄, [1; 3℄, [1; 4℄, [1; 5℄,[2; 3℄, [2; 4℄, [3; 4℄, [3; 5℄, [4; 5℄. Suppose G B�! K. Without loss of generality we assume thatu has 
olor 5 and v has 
olor 1. Then we assign 
olor 1 to all ai, 
olor 2 all bi, 
olor 3 toall 
i, 
olor 4 to all di and 
olor 5 to all ei.Suppose G0 B�! K. The restri
tion of any lo
ally bije
tive homomorphism f 0 : VG0 ! VKto VG is a witness for G B�! K. utTheorem 1. The problems that ask whether a given graph G allows a proper pseudo-regular 
oloring, a proper pseudo-regular labeling, a proper regular 
oloring, a proper regularlabeling, a proper symmetri
 regular labeling, or a proper perfe
t-regular 
oloring, respe
-tively, are NP-
omplete.Proof. Obviously, all problems are in NP. We use redu
tion from the NP-
omplete problemK-Cover [11℄. Let G be an instan
e graph of this problem. By Observation 2, graph Ghas 5k verti
es for some k � 1 and 
ontains adja
ent verti
es u of degree three and v ofdegree four. We 
onstru
t the diamond graph G0 with respe
t to [u; v℄ that has q diamondsD1; : : : ; Dq, where we 
hose q su
h that q > k + 2 and p = q + k is a prime number. ByLemma 5 we 
an 
onsider G0 as our instan
e graph for the K-Cover problem.Any lo
ally bije
tive homomorphism is a proper perfe
t-regular 
oloring, whi
h is aregular 
oloring, whi
h is a symmetri
 regular labeling, whi
h is a regular labeling, whi
h



is a pseudo-regular labeling, and any regular 
oloring is a pseudo-regular 
oloring, whi
his a pseudo-regular labeling.So we are left to show that a proper pseudo-regular labeling of G0 implies that G0 B�! K.Suppose G0 allows a proper pseudo-regular labeling `. By Lemma 3, j`(D1)j = 5. Let`(a1) = 1, `(b1) = 2, `(
1) = 3, `(d1) = 4 and `(e1) = 5. By Lemma 3, `(e0) =2 f1; 2; 3; 4g.Sin
e j`(VG)j = 5 due to Lemma 4, we then �nd that `(e0) = 5. This means that ` de�nesa lo
ally bije
tive homomorphism from G to K. ut6 Conne
ted 
olorings and semi-regular 
oloringsA hypergraph (Q;S) is a set Q = fq1; : : : ; qmg together with a set S = fS1; : : : ; Sng ofsubsets of Q. A 2-
oloring of a hypergraph (Q;S) is a partition of Q into Q1 [ Q2 su
hthat Q1 \ Sj 6= ; and Q2 \ Sj 6= ; for 1 � j � n. In our proofs we use redu
tion from thefollowing, well-known NP-
omplete problem (
f. [9℄).Hypergraph 2-ColorabilityInstan
e: A hypergraph (Q;S).Question: Does (Q;S) have a 2-
oloring?With a hypergraph (Q;S) we asso
iate its in
iden
e graph I , whi
h is a bipartite graph onQ [ S, where [q; S℄ forms an edge if and only if q 2 S. From the in
iden
e graph I we a
tas follows. Let Ck denote a 
y
le on k verti
es. First we make a 
opy S0 for ea
h S 2 S.We add edges (S0; q) if and only if q 2 S. Let S 0 = fS01; : : : ; S0ng. Then we glue a 
y
le Cqiisomorphi
 to a C6i�3 in I by vertex qi for 1 � i � m. We add a new vertex v and edgesfrom v to all verti
es in S. Finally we glue a 
y
le Cv isomorphi
 to C6m+3 in I by v. We
all the resulting graph I� the C3-minimizer of (Q;S). See Figure 3 for an example.
I vC3

S01 S0nq1 S1 qmFig. 3. Example of a C3-minimizer I� of a hypergraph (Q;S).The proof of the following lemma will be in
luded in the journal version.Lemma 6. Let I� be the C3-minimizer of a hypergraph (Q;S) with Sj 6= Sk for all j; k. If` is a proper 
onne
ted 
oloring of I� then j`(VI�)j = 3.Theorem 2. The problem that asks whether a given graph G has a proper 
onne
ted 
ol-oring is NP-
omplete.Proof. Obviously, this problem is in NP. We prove NP-
ompleteness by redu
tion from theHypergraph 2-Colorability problem. Let (Q;S) be a hypergraph. We assume without



loss of generality that Sj 6= Sk for j 6= k. We 
laim that (Q;S) has a 2-
oloring if and onlyif its C3-minimizer I� admits a proper 
onne
ted 
oloring.Suppose (Q;S) has a 2-
oloring Q1 [ Q2. De�ne `(v) = 1, `(S) = 2 for all S 2 S [ S 0,`(q) = 1 for all q 2 Q1 and `(q) = 3 for all q 2 Q2. Finish the 
oloring in the obvious way.Suppose I� has a proper 
onne
ted 
oloring `. By Lemma 6 we �nd j`(VI�)j = 3. Let`(v) = 1. Then `(Sj) 2 f2; 3g for all j. If `(S0j) = 1 for some j, then S0j needs a neighborof 
olor 2 and a neighbor of 
olor 3, both are adja
ent to Sj . Hen
e, `(S0j) 2 f2; 3g for allj. We de�ne Q1 = fq 2 Q j `(q) = 1g and Q2 = QnQ1. Sin
e ea
h S0j needs at least twoneighbors with di�erent 
olors and at least one neighbor with 
olor 1, the partition Q1[Q2is a 2-
oloring of (Q;S). utThe proof of Theorem 3 uses arguments of the proofs of Theorem 1 and Theorem 2 butthe NP-
ompleteness 
onstru
tion is more involved. We postpone it to the journal version.Theorem 3. The problem that asks whether a given graph G has a proper semi-regular
oloring is NP-
omplete.7 Con
lusionsBy Theorems 1, 2 and 3 we have determined the 
omputational 
omplexity of the questionwhether the ele
tion and/or naming problem 
an be solved on a given graph in elevendi�erent models of distributed 
omputing that all have been studied in the literature.Corollary 1. It is 
o-NP-
omplete to de
ide if on a given graph G we 
an solve(a) the ele
tion problem in the models des
ribed in Se
tions 3 and 4 ex
ept for the broad
ast-to-port model, the broad
ast-to-mailbox model and models (1), (5) of Figure 1;(b) the naming problem in the models des
ribed in Se
tions 3 and 4 ex
ept for the broad
ast-to-port and broad
ast-to-mailbox model.As a matter of fa
t the above de
ision problem is 
o-NP-
omplete for the ele
tion problemin model (5) as well. We need to modify the 
orresponding labeling a little. Showing howto do this is postponed to the journal version. For the ele
tion problem in model (1) a
hara
terization in terms of a graph labeling is still unknown.We note that the problem that asks whether a given 
onne
ted graph G has a proper
overing is equivalent to the problem that asks whether G B�! H for some 
onne
ted graphH with jVH j < jVGj. A graph homomorphism f from G to H satisfying f(NG(u)) =NH(f(u)) for all u 2 VG is 
alled lo
ally surje
tive. If su
h a homomorphism exists, wewrite G S�! H . The problem that asks whether a 
onne
ted graph G has a proper 
onne
ted
oloring is equivalent to the problem that asks whether G S�! H for some 
onne
ted graphH with jVH j < jVGj. Let C denote the set of 
onne
ted graphs (up to isomorphism). In [8℄ ithas been proven that (C; B�!) and (C; S�!) are partial orders. Theorem 1 and 2 imply that itis 
o-NP-
omplete to 
he
k whether a graph is minimal in (C; B�!) and (C; S�!), respe
tively.Also the other studied graph labeling problems 
an easily be formulated as problems thatask whether there exist a homomorphism f , that satis�es a few extra 
onstraints, froma given graph G to a smaller graph H . In the future we will study the relations betweenthese 
onstrained homomorphisms more 
arefully.A
knowledgements. The authors thank Ji�r�� Fiala for the idea on prime numbers in Lemma 4.
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Appendix AHere is the proof of Lemma 3.Proof. We write p = q + k. Then jVG0 j = 5p and p is a prime number. Hen
e we �nd thatj`(VG0)j = 5 or j`(VG0)j = p � 5, due to Observation 1. Let Di be a diamond. Re
all thatu = e0 and v = aq+1 have been de�ned. We prove the lemma by a sequen
e of 
laims. Let`(ai) = 1.Claim 1. We may assume that `(bi) = 2.We prove this 
laim as follows. Suppose `(bi) = 1. If `(
i) = `(di) = 1, then j`(VG0)j = 1 < 5;whi
h is not possible.Suppose `(
i) = 1. Then `(di) 6= 1. We assume `(di) = 2. Sin
e G0[1; 2℄ 
ontains aperfe
t mat
hing, we then �nd that `(ei�1) = `(ei) = 2. Then j`(VG0)j = 2 < 5. Hen
e`(
i) 6= 1. Say `(
i) = 2.If `(di) = 1 then we return to the previous 
ase. If `(di) = 2 then `(ei) = 1 or `(ei) =2, as otherwise G0[2; `(ei)℄ does not 
ontain a perfe
t mat
hing. In both 
ases, however,j`(VG0)j = 2 < 5. Suppose `(di) =2 f1; 2g, say `(di) = 3. If `(ei�1) = 1 then G0[1℄ is notregular. If `(ei�1) = i with i 2 f2; 3g, then G0[1; 5� i℄ does not 
ontain a perfe
t mat
hing.Suppose `(ei�1) =2 f1; 2; 3g, say `(ei�1) = 4. Then G0[1; 4℄ does not 
ontain a perfe
tmat
hing. This proves Claim 1. From now on we assume that `(ai) = 1 and `(bi) = 2.Claim 2. We may assume that `(
i) = 3.We prove this 
laim as follows. Suppose `(
i) = 1. Suppose `(di) = 1. Sin
e G0[1; 2℄ hasa perfe
t mat
hing, `(ei�1) = `(ei) = 2. Then j`(VG0)j = 2 < 5. Suppose `(di) = 2. ThenG0[2℄ is 1-regular, and hen
e `(ei) = 1. Then j`(VG0)j = 2 < 5. Suppose `(di) =2 f1; 2g, say`(di) = 3. If `(ei) 2 f1; 2; 3g, then j`(VG0)j = 3 < 5. We assume without loss of generalitythat `(ei) = 4. Sin
e G0[1; 4℄ 
ontains a perfe
t mat
hing, `(ei�1) = 4. Then G0[1; 2℄ doesnot have a perfe
t mat
hing.Suppose `(
i) = 2. If `(di) = 1 then we return to a previous 
ase. If `(di) = 2, thenG0[1; 2℄ does not 
ontain a perfe
t mat
hing. Suppose `(di) =2 f1; 2g, say `(di) = 3. Sin
eG0[2; 3℄ has a perfe
t mat
hing, `(ei) = 3. Then G0[1; 2℄ does not allow a perfe
t mat
hing.This proves the 
laim, and from now on we assume that `(ai) = 1, `(bi) = 2 and `(
i) = 3.Claim 3. We may assume that `(di) = 4.We prove this 
laim as follows. If `(di) = 1 or `(di) = 2 then we return to a previous 
ase.Suppose `(di) = 3. Sin
e G0[2; 3℄ has a perfe
t mat
hing, `(ei) = 2. Then G0[1; 3℄ doesnot 
ontain a perfe
t mat
hing. This proves the 
laim, and from now on we assume that`(ai) = 1, `(bi) = 2, `(
i) = 3, and `(di) = 4.Claim 4. We may assume that `(ei) = 5.We prove this 
laim as follows. Suppose `(ei) = 1. Sin
e G0[1; 2℄ has a perfe
t mat
hing,`(ai+1) = 2. Then j`(VG0)j = 4 < 5. Suppose `(ei) = 2. Sin
e G0[1; 2℄ has a perfe
tmat
hing, `(ai+1) = 1. Then G0[2; 3℄ does not have a perfe
t mat
hing. Suppose `(ei) = 3.Sin
e G0[3; 4℄ has a perfe
t mat
hing, `(ai+1) = 4. Then G0[2; 3℄ does not have a perfe
tmat
hing. By symmetry `(ei) 6= 4 either. This proves the 
laim, and from now on weassume that `(ai) = 1, `(bi) = 2, `(
i) = 3, `(di) = 4, and `(ei) = 5.



To �nish the proof of the lemma, we show that ei�1 is not mapped to a 
olor in f1; 2; 3; 4g.If `(ei�1) = 1, then ei�1 must have neighbors 
olored 1; 2; 3; 4. This is not possible, sin
edegG0(ei�1) = 3. If `(ei�1) = 3, then ei�1 must have neighbors 
olored 1; 2; 4; 5. This isnot possible, sin
e degG0(ei�1) = 3. By symmetry, ei�1 
an not be mapped to 4 either.Suppose `(ei�1) = 2. Then the two neighbors of ei�1 outside Di must be 
olored with 3and 4. Then G0[1; 2℄ does not have a perfe
t mat
hing. utAppendix BHere is the proof of Lemma 6.Proof. Suppose ` is a proper 
onne
ted 
oloring of I�. We note that, by de�nition, twoneighbors must be mapped to di�erent 
olors. We write `(q1) = 1. Let the other twoverti
es of Cq1 be s; t with `(s) = 2 and `(t) = 3. If q1 only has neighbors with 
olor 1 or2, then `(VI�) = f1; 2; 3g, and we are done.Suppose q1 has a neighbor in S [ S 0 with a 
olor not in f2; 3g. Then all verti
es of I�mapped to 1 have at least degree three. By a sequen
e of 
laims, we show that j`(VI�)j =jVI� j. This is then a 
ontradi
tion with our assumption that ` is proper.Claim 1. Colors 2; 3 are not in `(VI�nfs; tg).In order to obtain a 
ontradi
tion let `(w) = 2 for some w 2 VI�nfs; tg. Suppose w isin VCpnfpg for some p 2 Q[ fvg, then w needs a neighbor with 
olor 1. Re
all that su
h aneighbor must have degree at least three. The only 
andidate is p. However, w also needs aneighbor with 
olor 3 and this neighbor must be adja
ent to a neighbor with 
olor 1. Sin
ejCpj 
ontains at least six verti
es, this is not possible.Suppose w = p for some p 2 Q [ fvg. Let x be a neighbor of w on Cp. Then x musthave 
olor 1 or 3. The �rst 
ase is not possible sin
e x has degree 2 < 3. The se
ond 
aseis not possible, sin
e then x has a (degree-two) neighbor y on Cp with 
olor 1.Suppose w = S for some S 2 S [ S 0. Then w must have a neighbor p0, whi
h is isQ [ fvg, with 
olor 3. By symmetry of x and y, we 
an return to the previous 
ase. This�nishes the proof of Claim 1.Claim 2. For all p 2 Q [ fvg; j`(VCp)j = jVCp j.For p = q1, this 
ondition is satis�ed. In order to obtain a 
ontradi
tion let j`(VCp)j <jVCp j for some p 2 (Qnfq1g) [ fvg. We �rst make the following observation, whi
h 
aneasily be proven by an indu
tive argument:Let a1; a2; : : : ; ak be a sequen
e of di�erent 
olors from `(VI�) su
h that, for j = 1 : : : k, thesubgraph I�[aj ; aj+1℄ is not edgeless. Then, for any vertex r with 
olor a1, there exists apath P = r1; s2; : : : ; rk from r1 = r to some vertex rk su
h that `(rh) = ah for h = 1; : : : ; k.Now suppose z 2 VCpnfpg has 
olor `(p). By Claim 1, 
olor 2 is not a 
olor of any vertex inCp. Sin
e p is a 
utvertex of I�, any path from z with 
olor a1 = `(p) to a vertex with 
olorak = 2 
ontains p with 
olor `(p) = a1. This is not possible due to the above observation.By the same argument, we dedu
e that any other 
olor not equal to `(p) appears at mosttwi
e on Cp.Suppose `(u1) = `(u2) for some u1; u2 2 VCpnfpg. By the above observation witha1 = `(u1) and ak = 2, the path P1 from u1 to p not using u2 and the path P2 from u2 to



p not using u1 must use exa
tly the same jVP1 j = jVP2 j 
olors (in exa
tly the same order).We 
hoose u1 and u2 su
h that P1 and P2 are maximal. Let v1 be the neighbor of u1 noton P1, and let v2 be the neighbor of u2 not on P2. If v1 is not equal to v2, then v1 and v2must be mapped to the same 
olor. This 
ontradi
ts the maximality of P1 and P2. Hen
ev1 = v2, and exa
tly one 
olor appears on
e on Cpnfpg and all other 
olors appear twi
eon Cpnfpg. This implies that jCpj is even. This is not possible, sin
e jCpj is divisible by 3.Hen
e, we have proven Claim 2.Claim 3. `(VCp) \ `(VCq ) = ; for all p; q 2 Q [ fvg with p 6= q.Suppose `(VCp) \ `(VCq ) 6= ; for some p; q 2 Q [ fvg with p 6= q. We assume p < q,so Cp 
ontains less verti
es than Cq . We note that due to Claim 2, both neighbors of p onCp have a di�erent 
olor. Suppose these 
olors are the only 
olors the neighbors of p have.Then j`(VI�)j = jVCp j. This not possible, sin
e the number of di�erent 
olors on I� is atleast jVCv j = 6m + 3 > jVCp j, due to Claim 2. So on the neighborhood of p at least threedi�erent 
olors are used. This means that any vertex with 
olor `(p) must have degree atleast three.Let a be a 
ommon 
olor on Cp and Cq . Suppose a is not equal to `(p) already. Thenthere is a path in Cq from a vertex x with 
olor a to a vertex y 6= q with 
olor `(p), be
auseCq has at least three more verti
es than Cp. Sin
e we showed that a vertex with 
olor `(p)must have degree at least three, we �nd that a = `(q) = `(p) and `(VCp) \ `(VCq ) = fag.Let r1 be a neighbor of p on Cp and let r2 be a neighbor of r1 6= p. Then `(r1) isthe 
olor of a vertex in S [ S 0 and 
onsequently `(r2) 6= `(p) is the 
olor of a vertex onCq0 for some q0 2 Q [ fvg. We 
onsider Cp and Cq0 instead of Cp and Cq , and obtain a
ontradi
tion. This proves Claim 3.By Claim 2 and Claim 3, all verti
es in the union of all 
y
les Cp over p 2 Q [ fvg aremapped to di�erent 
olors. Sin
e any two Sj ; Sk 2 S with j 6= k are di�erent subsets of Q,they 
an not have the same 
olor. The same holds for any two S0j ; S0k 2 S 0. Furthermore, allS0j are not adja
ent to v, so `(S) \ `(S 0) is empty. Hen
e we have found that j`(S [ S 0)j =jSj+ jS 0j = 2n.Suppose some S 2 S [ S 0 has the same 
olor as a vertex u of some Cp. Then the 
olorsof the neighbors of u on Cp must appear on the neighbors of S, whi
h lie on some 
y
le.This violates Claim 2. Hen
e j`(VI�)j = jVI� j and ` is not proper. This �nishes the proofof the lemma. utAppendix CHere we prove Theorem 3. Obviously, de
iding if G admits a proper semi-regular 
oloringis in NP. To show that the problem is NP-
omplete, we will use the NP-
ompleteness ofthe K4-
over problem [10℄, where K4 is the 
omplete graph on four verti
es.Consider a graph G. We may assume that G is a 3-regular graph with jVGj = 4q andjEGj = 6q for some q � 0; otherwise G B�! K4 is false. Let EG = fe1; e2; : : : ; emg. For ea
hk 2 [1;m℄, we repla
e the edge ek by a 
hain of k + 1 multi-diamonds D1(k); : : : Dk+1(k)as represented in Figure 4. We denote the resulting graph by G0. The verti
es of the 
hainthat repla
e the edge ek arefai(k); bi(k); b0i(k); 
i(k); 
0i(k); di(k); d0i(k); ei(k); e0i(k); fi(k); f 0i(k); gi(k) j 1 � i � k + 1g:



g0u a1 b1 
1 d1e1 f1b01 
01 d01e01 f 01 g1 ak+1 bk+1 
k+1 dk+1ek+1 fk+1b0k+1 
0k+1 d0k+1e0k+1 f 0k+1 gk+1 ak+2v
Fig. 4. The 
hain of k + 1 multi-diamonds that repla
e the edge ek = [u; v℄.When no 
onfusion is possible, we will note ai for ai(k), et
. The next property is useful.Lemma 7. Let ` be a semi-regular 
oloring of G0 then for any multi-diamonds Di(k); Dj(k0),`(gi(k)) = `(gj(k0)) and `(ai+1(k)) = `(aj+1(k0)) if and only if `(gi�1(k)) = `(gj�1(k0))and `(ai(k)) = `(aj(k0)).Proof. Suppose `(gi(k)) = `(gj(k0)) and `(ai+1(k)) = `(aj+1(k0)). Then `(ffi(k); f 0i(k)g) =`(ffj(k0); f 0j(k0)g). Without loss of generality, we assume `(fi(k)) = `(fj(k0)) and `(f 0i(k)) =`(f 0j(k0)). Consequently, `(fdi(k); ei(k)g) = `(fdj(k0); ej(k0)g) and `(
i(k)) = `(
j(k0)).Then `(bi(k)) = `(bj(k0)) and by symmetry, `(b0i(k)) = `(b0j(k0)). Hen
e, `(gi�1(k)) =`(gj�1(k0)) and `(ai(k)) = `(aj(k0)). In the same way we show the reverse statement. utBy using Lemma 7, we dedu
e that G B�! K4 if and only if G0 B�! K4. Any witness forG0 B�! K4 is a proper perfe
t-regular 
oloring of G0, whi
h is a proper semi-regular 
oloringof G0. We are left to show that if G0 B�! K4 is not true (we say if G does not 
over K4), thenG0 does not allow a proper semi-regular 
oloring. For this, we need a few lemmas. In thefollowing one, we show that if G0 does not 
overK4 then all the verti
es in a multi-diamondhave di�erent 
olors.Lemma 8. If G0 does not 
over K4, then j`(Di(k)j = 12 for any multi-diamond Di(k) andfor any semi-regular 
oloring ` of G0.Proof. Note that 
i; di; ei have di�erent 
olors. Let `(di) = 1, `(ei) = 2 and `(
i) = 3.Claim 1. We may assume that `(bi) = 4 and `(b0i) =2 f`(d0i); `(e0i)g.Note that `(bi) 6= 3. We write a = `(fi) and b = `(gi). If `(bi) = 1, then either `(ai) = 2and `(b0i) = a, or `(ai) = a and `(b0i) = 2. In the �rst 
ase, `(
0i) = b and then either`(d0i) = `(f 0i), or `(e0i) = `(f 0i), whi
h is impossible. In the se
ond 
ase, `(
0i) = 3, and then
0i must have two neighbors 
olored by 1, but then `(e0i) = `(d0i) = 1. This is impossible.Hen
e, we 
an write `(bi) = 4. By symmetry, we �nd that `(bi) 6= 2. Then, by symmetry,`(b0i) =2 f`(d0i); `(e0i)g.Claim 2. We may assume that `(fi) = 5 and `(
0i) 6= `(f 0i).Note that `(fi) =2 f1; 2g. Suppose `(fi) = `(bi) = 4. Then f`(ai); `(b0i)g = f1; 2g and`(gi) = 3. Consequently, `(VG0) = f1; 2; 3; 4g and for ea
h v 2 VG0 , `(v) = 1 (respe
tively`(v) = 2, `(v) = 3, `(v) = 4), then `(NG0(v)) = f2; 3; 4g (respe
tively `(NG0(v)) = f1; 3; 4g,



`(NG0(v)) = f1; 2; 4g, `(NG0(v)) = f1; 2; 3g). Then G0 B�! K4, whi
h is impossible. Suppose`(fi) = `(
i) = 3. We write a = `(ai) and b = `(b0i). Sin
e fi must have a neighbor labeledby 4, we �nd `(gi) = 4. Consequently, either `(f 0i) = a or `(f 0i) = b. In the �rst 
ase,b = `(b0i) must belongs to f`(d0i); `(e0i)g but, by Claim 1, this is not possible. In the se
ond
ase, either `(
0i) = `(d0i) or `(
0i) = `(e0i) but this is not possible. Hen
e we 
an write`(fi) = 5. By symmetry, we �nd that `(
0i) 6= `(f 0i).Claim 3. We may assume that `(ai) = 6 and 6 =2 f`(b0i); `(
0i); `(d0i); `(e0i); `(f 0i)g.We know that `(ai) 6= 4. Sin
e ai has a neighbor labeled by 4 whereas 
i and di donot have su
h a neighbor, we know that `(ai) =2 f1; 2g. Suppose `(ai) 2 f3; 5g. Then`(b0i) 2 f1; 2g; without loss of generality we say that `(b0i) = 1. But in this 
ase, `(bi) = 4must appear in `(NG0(di)), whi
h is impossible. Hen
e we 
an write `(ai) = 6. By symmetry,6 =2 f`(b0i); `(
0i); `(d0i); `(e0i); `(f 0i)g.Claim 4. We may assume that `(b0i) = 7.We know that `(b0i) =2 f1; 2; 3; 4; 6g. Suppose `(b0i) = 5. Then `(NG0(b0i)) must 
ontainf1; 2; 4; 6g but this is impossible sin
e degG0(b0i) = 3. Hen
e, we 
an write `(b0i) = 7.Claim 5. We may assume that `(
0i) = 8.We note that `(
0i) =2 f1; 2; 3; 4; 6; 7g. Suppose that `(
0i) = 5. Then `(gi) = 7, and`(fd0i; e0ig) = f1; 2g. Consequently, `(f 0i) = 3, but this is impossible sin
e 7 =2 `(NG0(
i)).Claim 6. We may assume that `(d0i) = 9 and `(e0i) = 10.We note that `(d0i) =2 f1; 2; 3; 4; 6; 7; 8g. Suppose that `(d0i) = 5, then `(e0i) 2 f1; 2g but thisis impossible sin
e 8 =2 `(NG0(di)) [ `(NG0(ei)). We 
an write `(d0i) = 9. By symmetry andsin
e `(e0i) 6= `(d0i), we �nd that `(e0i) =2 f1; 2; 3; 4; 5; 6; 7; 8; 9g.Claim 7. We may assume that `(f 0i) = 11.We know that `(f 0i) =2 f1; 2; 3; 4; 6; 7; 8; 9; 10g. Suppose that `(f 0i) = 5. Then `(NG0(f 0i))must 
ontain f1; 2; 9; 10g but this is impossible sin
e degG0(f 0i) = 3.Claim 8. We may assume that `(g0i) = 12.We know that `(g0i) =2 f1; 2; 3; 4; 5; 7; 8; 9; 10; 11g. Suppose that `(f 0i) = 6. Then `(NG0(g0i))must 
ontain f4; 5; 7; 11g but this is impossible sin
e degG0(g0i) = 3. This ends the proof ofthe lemma. utIn the following lemma, we show that if G0 does not 
over K4, a 
olor that appears ona vertex gi(k) 
annot appear on another multi-diamond Dj(k0) elsewhere than in gj(k0).Lemma 9. If G0 does not 
over K4, then for any semi-regular 
oloring ` of G0, for anymulti-diamonds Di(k) and Dj(k0), for ea
h u 2 Di(k) n fgi(k)g, `(u) 6= `(gj(k0)).Proof. For any vertex u 2 Di(k) n fgi(k)g, there exists two verti
es v; w 2 NG0(u) su
hthat [v; w℄ 2 EG0 .Suppose that `(u) = `(gj(k0)). Then f`(v); `(w)g \ f`(fj(k0)); `(f 0j(k0))g 6= ;; withoutloss of generality, we say that `(v) = `(fj(k0)). Then `(w) 2 f`(dj(k0)); `(ej(k0))g; withoutloss of generality, we say that `(w) = `(dj(k0)).Consequently, `(gj(k0)) = `(u) 2 `(NG0(dj(k0))) = f`(
j(k0)); `(ej(k0)); `(fj(k0))g, butthis is impossible from Lemma 8. ut



In the following lemma, we show that if G0 does not 
over K4, a 
olor that appears ona vertex ai(k) 
annot appear on another multi-diamond Dj(k0) elsewhere than in aj(k0).Lemma 10. If G0 does not 
over K4, then for any semi-regular 
oloring ` of G0, for anymulti-diamonds Di(k) and Dj(k0), for ea
h u 2 Di(k) n fai(k)g, `(u) 6= `(aj(k0)).Proof. From Lemma 8, one 
an suppose that `(dj(k0)) = 1; `(ej(k0)) = 2; `(
j(k0)) =3; `(bj(k0)) = 4; `(fj(k0)) = 5; `(aj(k0)) = 6; `(b0j(k0)) = 7; `(
0j(k0)) = 8; `(d0j(k0)) =9; `(e0j(k0)) = 10; `(f 0j(k0)) = 11; `(gj(k0)) = 12, as represented on the left of Figure 5.We will also note a and b for `(gj�1(k0)) and `(aj+1(k0)).
a 6 4 3 12 57 8 910 11 12 b ai bi 
i diei fib0i 
0i d0ie0i f 0i gi

Fig. 5. The two multi-diamonds we 
onsider for the proof of Lemma 10.We will note ai for ai(k), et
. We just have to show that for ea
h v 2 fbi; 
i; di; fi; gig,`(v) 6= 6. From Lemma 9, we already know that `(gi) 6= 6.Suppose that `(
i) = 6 (resp. `(fi) = 6). Then f`(di); `(ei)g \ f4; 7g 6= ;. Without lossof generality, we say that `(di) = 4. Then 
i (resp. fi) and di must both have a neighborlabeled by 7. From Lemma 8, it implies that `(ei) = 7. Sin
e ei must also have a neighborlabeled by 8, it implies that `(fi) = 8 (resp. `(
i) = 8), but this is impossible sin
e fi (resp
i) 
annot have a neighbor labeled by 4.Suppose that `(di) = 6. Then f`(
i); `(fi)g \ f4; 7g 6= ;. Without loss of generality,suppose that `(
i) = 4 (resp. `(fi) = 4). Then 
i (resp. fi) and di must both have aneighbor labeled by 7. From Lemma 8, it implies that `(ei) = 7. Sin
e ei must also havea neighbor labeled by 8, it implies that `(fi) = 8 (resp. `(
i) = 8), but this is impossiblesin
e fi (resp. 
i) 
annot have a neighbor labeled by 6.Suppose that `(bi) = 6. If j � 2, bi must have a neighbor labeled by a = `(gj�1(k0)),but this is impossible from Lemma 9. We will now suppose that j = 1. From Lemma8, `(fai; b0ig) = f4; 7g. Without loss of generality, we say that `(ai) = 7 and `(b0i) = 4.Consequently, `(
0i) = 3, `(fd0i; e0ig) = f1; 2g, `(f 0i) = 5 and `(gi) = 12. Consequently, either`(fi) = b, or `(fi) = 11. In the �rst 
ase, sin
e j = 1, b = `(a2(k0)) and we already knowthat it is impossible. In the se
ond 
ase, if `(fi) = 11, then `(fdi; eig) = f9; 10g and then`(
i) = 8, but this is impossible sin
e 
i 
annot have a neighbor labeled by 6. utIn the following lemma, we show that if G0 does not 
over K4, then a vertex u thatdoes not belong to any multi-diamond (i.e. a vertex that was in the graph G) 
annot havethe same 
olor as a vertex that belongs to a multi-diamond.



Lemma 11. If G0 does not 
over K4, then for any semi-regular 
oloring ` of G0, for anymulti-diamond Di(k), for any v 2 Di(k) and for any u 2 VG0 su
h that 8k;8i; u =2 Di(k),we have `(u) 6= `(v).Proof. Consider su
h a vertex u. In G0, for any u0 2 NG0(u), there exists k0 su
h that eitheru0 = a1(k0) or u0 = gk0+1(k0). Consider any vertex v of any multi-diamond Di(k). Thereexists v0 2 NG0(v) su
h that v0 2 Di(k) n fai(k); gi(k)g. If `(u) = `(v), then there existsa vertex u0 2 NG0(u) su
h that `(v0) = `(u0), but this is impossible from Lemmas 9 and10. utIn the following lemma, we show that if G0 does not 
overK4, any semi-regular 
oloring` of G0 is a perfe
t-regular 
oloring of G0.Lemma 12. If G0 does not 
over K4, for any semi-regular 
oloring ` of G0, for ea
h vertexv 2 VG0 , j`(NG0(v))j = jNG0(v)j.Proof. We �rst 
onsider verti
es that belong to some multi-diamond. Consider a multi-diamond Di(k) for some i; k. From Lemma 8, we already know that j`(NG0(v))j = jNG0(v)jif v =2 fai(k); gi(k)g. From Lemmas 9, 10 and 11, we also know that j`(NG0(v))j = jNG0(v)jif v 2 fai(k); gi(k)g.We now 
onsider a vertex u that does not belong to any multi-diamond Di(k). Supposethat there exist two distin
t verti
es v; v0 2 NG0(u) su
h that `(v) = `(v0). From Lemmas 9and 10, we know that either v = a1(k) and v0 = a1(k0) or v = gk+1(k) and v0 = gk0+1(k0) forsome k; k0. By 
onstru
tion of G0, we know that k 6= k0; without loss of generality, we saythat k < k0. If we apply Lemma 7 k + 1 times, then `(ak+2(k)) = `(ak+2(k0) (respe
tively`(g0(k)) = `(gk0�k(k0)) for the se
ond 
ase) but from Lemma 11, this is impossible sin
eak+2(k0) (respe
tively gk0�k(k0)) belongs to some multi-diamond but ak+2(k) (respe
tivelyg0(k)) does not. utIn the following lemma, we show that if G0 does not 
overK4, any semi-regular 
oloringof G0 needs jVG0 j 
olors.Lemma 13. If G0 does not 
over K4, any semi-regular 
oloring ` of G0 is not proper.Proof. Consider a vertex u that does not belong to any multi-diamond Di(k). Supposethat there exists u0 2 VG0 su
h that `(u) = `(u0). From Lemma 11, we already know thatu0 does not either belong to any multi-diamond.There exists v in NG0(u) and v0 in NG0(u0) su
h that `(v) = `(v0). From Lemmas 9 and10, we know that either v = a1(k) and v0 = a1(k0) or v = gk+1(k) and v0 = gk0+1(k0) forsome k; k0. By 
onstru
tion of G0, we know that k 6= k0 and then with the same proof asfor Lemma 12, one 
an show that there is a 
ontradi
tion.Consequently, j`�1(`(u))j = 1. From Lemma 12 it is easy to see that ` is a pseudo-regularlabeling. Then we know from Observation 1 that for any vertex v 2 VG0 , j`�1(`(v))j = 1.Consequently j`(VG0)j = jVG0 j and ` is not a proper semi-regular 
oloring. utSummarizing, G B�! K4 if and only if G0 B�! K4 if and only if G0 allows a propersemi-regular 
oloring. Therefore, we have proven Theorem 3.


