
Graph labelings derived frommodels in distributed omputingJ�er�emie Chalopin1 and Dani�el Paulusma21 LaBRI Universit�e Bordeaux 1,351 ours de la Lib�eration, 33405 Talene, Franehalopin�labri.fr2 Department of Computer Siene, Durham University,Siene Laboratories, South Road, Durham DH1 3LE, England.daniel.paulusma�durham.a.ukAbstrat. We disuss eleven well-known basi models of distributed omputing:four message-passing models that di�er by the (non-)existene of port-numbers anda hierarhy of seven loal omputations models. In eah of these models, we studythe omputational omplexity of the deision problem whether the leader eletionand/or naming problem an be solved on a given network. It is already known thatthis problem is solvable in polynomial time for two models and o-NP-ompletefor another one. Here, we settle the omputational omplexity for the remainingeight problems by showing o-NP-ompleteness. The results for six models and thealready known o-NP-ompleteness result follow from a more general result on graphlabelings.1 IntrodutionIn distributed omputing, one an �nd a wide variety of models of ommuniation. Thesemodels reet di�erent system arhitetures, di�erent levels of synhronization and di�erentlevels of abstration. In this paper we onsider eleven well-known basi models that satisfythe following two underlying assumptions. Firstly, a distributed system is represented bya simple (i.e., without loops or multiple edges), onneted, undireted graph. Its vertiesrepresent the proessors, and its edges represent diret ommuniation links. Seondly, ina distributed algorithm, all the proessors exeute the same ode to solve some problemand they do not have initial identi�ers.The eleven basi models an be divided into four message-passing models [6, 15, 17℄ andseven loal omputations models [1, 4, 5, 12, 13℄. In a message-passing model, proessorsommuniate by sending and reeiving messages. In a loal omputations model, om-muniation between proessors is ahieved thanks to synhronization (enoded by loalrelabeling rules) between neighboring proessors.Understanding the omputational power of various models enhanes our understandingof basi distributed algorithms. For this purpose a number of standard problems in dis-tributed omputing are studied. The eletion problem is one of the paradigms of the theoryof distributed omputing. In our setting, a distributed algorithm solves the eletion prob-lem if it always terminates and in the �nal on�guration exatly one proessor is markedas eleted and all the other proessors are non-eleted. Eletions onstitute a building blok



of many other distributed algorithms, sine the eleted vertex an be subsequently used tomake entralized deisions. A seond important problem in distributed omputing is thenaming problem. Here, the aim is to arrive at a �nal on�guration where all proessorshave been assigned unique identities. Again this is an essential prerequisite to many otherdistributed algorithms that only work orretly under the assumption that all proessorsan be unambiguously identi�ed. For a survey on distributed algorithms we refer to [14℄.OUR RESULTS. Whether the naming or eletion problem an be solved on a givengraph depends on the properties of the onsidered model. If it is possible to solve theeletion (naming) problem we all the graph a solution graph for the eletion (naming)problem. It is a natural question to ask how hard it is to hek whether a given graph is asolution graph in a ertain model. For two models this problem is known to be polynomiallysolvable [2℄ and for one model it is o-NP-omplete [16℄. What about the omputationalomplexity of this problem for the other models? In this paper we solve this question byshowing that this deision problem is o-NP-omplete for all remaining models.The paper is organized as follows. In Setion 2 we de�ne the neessary graph terminol-ogy. To obtain our results we translate known haraterizations [1, 4{7, 12, 13, 15, 17℄ of so-lution graphs in terms of graph labelings. This is shown in Setion 3 for the message-passingmodels and in Setion 4 for the loal omputations models. In Setion 5 we introdue a newkind of labeling that does not orrespond to any model of distributed omputing but thatenables us to present a simpler o-NP-ompleteness proof for seven basi models inludingthe already known model in [16℄. In Setion 6 we give the results for the remaining twomodels.2 PreliminariesFor graph terminology not de�ned below we refer to [3℄. A labeling of a graph G = (VG; EG)is a mapping ` : VG ! f1; 2; 3; : : : ; g. For a set S � VG we use the shorthand notation `(S)to denote the image set of S under `, i.e., `(S) = f`(u) j u 2 Sg. A labeling ` of G is alledproper if j`(VG)j < jVGj. For any label i � 1, the set `�1(i) is equal to fu 2 VG j `(u) = ig.The subgraph of G indued by a subset S � VG is denoted by G[S℄. For a label i � 1 wewrite G[i℄ = G[`�1(i)℄. For two labels i; j, we let G[i; j℄ be the bipartite graph obtained fromG[`�1(i)[ `�1(j)℄ by deleting all edges fu; vg with `(u) = `(v) = i or with `(u) = `(v) = j.For a vertex u 2 VG in a graph G = (VG; EG), we denote its neighborhood by NG(u) =fv j [u; v℄ 2 EGg. A graph is regular, if all its verties have the same number k of neighbors(i.e. are of degree degG(u) = k), in that ase we also say that the graph is k-regular. Agraph is regular bipartite if it is regular and bipartite. A graph is semi-regular bipartite if itis bipartite and the verties of one lass of the bipartition are of degree k and all others areof degree l, in that ase we also say that the graph is (k; l)-regular bipartite. In our ontexta perfet mathing is a (1; 1)-regular bipartite graph.3 Message-passing modelsIn [15{17℄, Yamashita and Kameda study four message-passing models. In the port-to-portmodel, eah proessor an send di�erent messages to di�erent neighbors (by having aess



to unique port-numbers that distinguish between neighbors), and eah proessor knows theneighbor eah reeiving message is oming from (again by using the port-numbers). Inthe broadast-to-mailbox model, port-numbers do not exist. A proessor an only send amessage to all of its neighbors and all reeiving messages arrive in a mailbox, so it neverknows their senders. The two mixed models are alled the broadast-to-port model and theport-to-mailbox model. There exists an eletion (or naming) algorithm for a graph G if andonly if the algorithm solves the problem on G whatever the port-numbers are.In [17℄, Yamashita and Kameda haraterize these four models: a graph G is a solutiongraph for the eletion and naming problem in the port-to-port model if and only if G doesnot have a proper symmetri regular labeling, i.e., a proper labeling ` suh that(i) for all i 2 `(VG), G[i℄ is regular and ontains a perfet mathing if its verties have odddegree, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is regular bipartite.A graph G is a solution graph for the eletion and naming problem in the port-to-mailboxmodel if and only if G does not have a proper regular labeling, i.e., a proper labeling ` suhthat(i) for all i 2 `(VG), G[i℄ is regular, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is regular bipartite.A graph G is a solution graph for the eletion and naming problem in the broadast-to-mailbox and the broadast-to-port model if and only if G does not have a proper semi-regular labeling, i.e., a proper labeling ` suh that(i) for all i 2 `(VG), G[i℄ is regular, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is semi-regular bipartite.In [1, 6℄, di�erent haraterizations for these models are obtained (based on �brations andoverings of direted graphs). The problem of deiding whether a graph G is a solutiongraph for the eletion and naming problem in the port-to-port model is o-NP-omplete [16℄.On the other hand, in [2℄, it is shown that the problem of deiding whether a graphG is a solution problem for the eletion and naming problem is polynomially solvablein the broadast-to-mailbox and the broadast-to-port model (by omputing the degreere�nement of G).4 Loal omputations modelsIn the loal omputations models, a omputation step an be desribed by the appliationof some loal relabeling rule that enables the modi�ation of the states of the di�erentverties involved in the synhronization. Two loal omputation models are di�erent inthe types of relabeling rules that they allow, see Figure 1. In models (5); (6) and (7) ofFigure 1, a omputation step involves some synhronization between one vertex and allits neighbors, whereas in models (1); (2); (3) and (4), a omputation step involves somesynhronization between two neighbors.Mazurkiewiz [12℄ haraterizes model (7) of Figure 1: a graph G is a solution graphfor the eletion and naming problem if and only if G does not have a proper perfet-regularoloring, i.e., a proper labeling ` suh that



(i) for all i 2 `(VG), G[i℄ is empty, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is edgeless or else is a perfet mathing.

(1) ((2) ((4) �(3) ((6) ((7)
(5) (

(Fig. 1. A hierarhy of loal omputations models. Labels of blak verties an hange when therule is applied. Labels of white verties only enable to apply the relabeling rule but do not hange.A relabeling rule an modify edge labels only in models (3); (4) and (6). If ri ( rj for rules ri andrj then rj an simulate ri but not vie versa, i.e., rj has a greater omputational power than ri. Ifri � rj then ri and rj have the same omputational power. Otherwise, ri and rj are inomparable.Boldi et al. [1℄ haraterize model (5) of Figure 1: a graph G is a solution graph for thenaming problem if and only if G does not have a proper semi-regular oloring, i.e., a properlabeling ` of G suh that(i) for all i 2 `(VG), G[i℄ is empty, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is semi-regular bipartite.[5℄ haraterizes the models (3), (4) and (6) of Figure 1: a graph G is a solution graph forthe eletion and the naming problem in eah of these models if and only if G does not havea proper regular oloring, i.e., a proper labeling ` suh that(i) for all i 2 `(VG), G[i℄ is empty, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is regular bipartite.We note that Mazurkiewiz [13℄ given an equivalent haraterization of model (4) in termsof equivalene relations over verties and edges. The haraterizations for model (6) analso be obtained from [1℄.[4℄ haraterizes model (2) of Figure 1: a graph G is a solution graph for the eletionand naming problem if and only if G does not have a proper pseudo-regular oloring, i.e.,a proper labeling ` suh that(i) for all i 2 `(VG), G[i℄ is empty, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is edgeless or else ontains a perfet mathing.



[7℄ haraterizes model (1) of Figure 1: a graphG is a solution graph for the naming problemif and only if G does not admit any proper onneted oloring, i.e., a proper labeling ` suhthat(i) for all i 2 `(VG), G[i℄ is empty, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is edgeless or else has minimum degree one.We note that the hierarhy in Figure 1 is also reeted by the labelings, e.g., a perfet-regular oloring is also a regular oloring, and so on.5 Pseudo-regular labelingsWe all a labeling ` of a graph G a pseudo-regular labeling if(i) for all i 2 `(VG), G[i℄ is regular, and(ii) for all i; j 2 `(VG) with i 6= j, G[i; j℄ is edgeless or else ontains a perfet mathing.In this setion we prove that the problem whether a given graph G has a proper pseudo-regular labeling is NP-omplete. The following observation is useful.Observation 1 Let ` be a pseudo-regular labeling of a onneted graph G. Then j`�1(i)j =jVGjj`(VG)j for all i 2 `(VG).Let G = (VG; EG) and H = (VH ; VG) be two graphs. We write VH = f1; 2; : : : ; jVH jg. Fora mapping f : VG ! VH and a set S � VG, we write f(S) = ff(u) j u 2 Sg. A graphhomomorphism from G to H is a vertex mapping f : VG ! VH satisfying the property thatfor any edge [u; v℄ in EG, we have [f(u); f(v)℄ in EH , in other words, f(NG(u)) � NH(f(u))for all u 2 VG. A homomorphism f from G to H that indues a one-to-one mapping onthe neighborhood of every vertex is alled loally bijetive, i.e., for all u 2 VG it satis�esf(NG(u)) = NH(f(u)) and jNG(u)j = jNH(f(u))j. In that ase we write G B�! H , and allthe verties of H olors of G. Sometimes, we also say that the labels `(i) of a labeling ` ofG are olors of G.The H-Cover problem asks whether there exists a loally bijetive homomorphismfrom an instane graph G to a �xed graph H . In our NP-ompleteness proof we use redu-tion from the K-Cover problem, where K is the graph obtained after deleting an edgein the omplete graph K5 on �ve verties. The K-Cover problem is NP-omplete [11℄.Note that the two non-adjaent verties have degree three. The other three verties areadjaent to two verties of degree three and two verties of degree four. Then the followingobservation immediately follows from the de�nition of a loally bijetive homomorphism.Observation 2 Let G be a graph with G B�! K. Then VG = B1 [ B2 for two bloks B1and B2 with jB1j = 2k and jB2j = 3k for some k � 1 suh that{ for all u 2 B1, jNG(u) \ B1j = 0 and jNG(u) \B2j = 3{ for all u 2 B2, jNG(u) \ B1j = 2 and jNG(u) \B2j = 2.



Sine the onditions in Observation 2 an be heked in polynomial time, we assume with-out loss of generality that any instane graph G of the K-Cover problem satis�es theseonditions.For our NP-ompleteness struture we modify an instane graph G of the K-Cover asfollows. Let u and v be verties of G with degG(u) = 3 and degG(v) = 4. We replae theedge [u; v℄ by a hain of q � 1 \diamonds" as desribed in Figure 2. We all the resultinggraph G0 a diamond graph of G with respet to the edge [u; v℄. For i = 1; : : : ; q, the subgraphDi = G[fai; bi; i; di; eig℄ is alled a diamond of G0. The next lemma shows among othersu = e0 a1 b1 1d1 e1 a2 b2 2d2 e2 aq bq qdq eq v = aq+1
Fig. 2. The hain of q diamonds that replae the edge [u; v℄.that a pseudo-regular labeling is injetive on the neighborhood of any vertex in a diamond.Its proof involves a ase analysis and will be presented in the journal version of our paper.Lemma 3. Let G be a graph on 5k verties that ontains adjaent verties u; v withdegG(u) = 3 and degG(v) = 4. Let G0 be a diamond graph of G with respet to [u; v℄that has diamonds D1; : : :Dq, where q > k+2 and q+k is a prime number. If ` is a properpseudo-regular labeling of G0, then j`(VDi)j = 5 and `(ei�1) =2 `(Dinfeig) for all 1 � i � q.The following lemma is a key result.Lemma 4. Let G be a graph on 5k verties that ontains adjaent verties u; v withdegG(u) = 3 and degG(v) = 4. Let G0 be a diamond graph of G with respet to [u; v℄that has diamonds D1; : : :Dq, where q > k+2 and q+k is a prime number. If ` is a properpseudo-regular labeling of G0 then j`(VG0)j = 5.Proof. We write p = q + k. Then jVG0 j = 5p and p is a prime number. Hene we �nd thatj`(VG0)j = 5 or j`(VG0)j = p, due to Observation 1.Suppose j`(VG0)j = p > 5. By our hoie of q, there exist a vertex u in a diamond Diwith the same olor as a vertex v in a diamond Dj . By Lemma 3, we may assume thati < j. We hoose u and v suh that there do not exist two verties in G[Di [ : : : [Dj�1℄having the same olor. By Lemma 3, we an write `(ai) = 1, `(bi) = 2, `(i) = 3, `(di) = 4and `(ei) = 5, and we �nd that `(ei�1) =2 f1; 2; 3; 4g. If `(ei�1) = 5, then `(ai+1) = 5 andonsequently j`(VG0)j = 5 < p, so we write `(ei�1) = 6.By Observation 2 and the onstrution of G0, every vertex of G has either degree 3 or4. Note that, for eah x in G0 with `(x) = 1 (respetively `(x) = 3, `(x) = 4), we havethat f2; 3; 4; 6g � `(NG0(x)) (respetively f1; 2; 4; 5g � `(NG0(x)), f1; 2; 3; 5g � `(NG0(x))).Consequently, eah vertex x with `(x) 2 f1; 3; 4g has degG0(x) = 4.By our hoie of Di and Dj , vertex ai+1 belongs to some diamond. By Lemma 3, weknow that j`(NG0(ai+1))j = 4. Then eah vertex x with `(x) = `(ai+1) has degG0(x) = 4.



Suppose now that there exists a vertex y suh that degG0(y) = 4 and `(y) = 2 (respetively`(y) = 5). Then `(NG0(y)) = f1; 3; 4g (respetively `(NG0(y)) = f3; 4; `(ai+1)g ). Then y hasthree neighbors of degree four and this is not possible due to Observation 2. Consequently,eah vertex y with `(y) 2 f2; 5g has degG0(y) = 3.We show that 1 =2 `(Dj). Suppose `(aj) = 1. From our hoie of Di and Dj , we knowthat `(ej�1) =2 f2; 3; 4g. Then `(fbj ; j ; djg) = f2; 3; 4g and `(ej�1) = 6. Then `(VG) =`(Di [ : : : [ Dj�1) and sine all olors are di�erent on diamonds Di; Di+1; : : : ; Dj�1, we�nd that p = j`(VG)j = 5(j � i). Sine p is a prime number not equal to 5, this is notpossible. We already know that 1 =2 `(fbj ; ejg) sine degG0(bj) = degG0(ej) = 3. Suppose`(j) = 1 (respetively `(dj) = 1). Then `(dj) 2 f3; 4g (respetively `(j) 2 f3; 4g) and`(fbj ; ejg) = f2; 6g. Then a vertex with olor in f3; 4g is adjaent to a vertex with olor 6.This is not possible.We show that 2 =2 `(Dj). We already know that the only verties in Dj that an bemapped to 2 are bj and ej in Dj . If `(bj) = 2, then 1 2 `(faj ; j ; djg). If `(ej) = 2, theneither 1 2 `(fj ; djg) or `(fj ; djg) = f3; 4g and in the seond ase `(aj) = 1.We show that 3 =2 `(Dj). We already know that only verties aj ; j ; dj an be mappedto 3. If `(aj) = 3 then 1, whih does not our on Dj , must be the olor of `(ej�1). This isnot possible due to our hoie of Di and Dj . In the other two ases we �nd that 1 2 `(Dj).By symmetry, we dedue that 4 =2 `(Dj).Finally, we show that 5 =2 `(Dj). We already know that only verties bj and ej an bemapped to 5. In both ases, at least one of the olors 3; 4 is a olor of a vertex in Dj . This�nishes the proof of the lemma. utLemma 5. Let G be a graph that ontains adjaent verties u; v with degG(u) = 3 anddegG(v) = 4. Let G0 be a diamond graph of G with respet to (u; v). Then G B�! K if andonly if G0 B�! K.Proof. We denote the verties of K by 1; 2; 3; 4; 5 and its edges by [1; 2℄, [1; 3℄, [1; 4℄, [1; 5℄,[2; 3℄, [2; 4℄, [3; 4℄, [3; 5℄, [4; 5℄. Suppose G B�! K. Without loss of generality we assume thatu has olor 5 and v has olor 1. Then we assign olor 1 to all ai, olor 2 all bi, olor 3 toall i, olor 4 to all di and olor 5 to all ei.Suppose G0 B�! K. The restrition of any loally bijetive homomorphism f 0 : VG0 ! VKto VG is a witness for G B�! K. utTheorem 1. The problems that ask whether a given graph G allows a proper pseudo-regular oloring, a proper pseudo-regular labeling, a proper regular oloring, a proper regularlabeling, a proper symmetri regular labeling, or a proper perfet-regular oloring, respe-tively, are NP-omplete.Proof. Obviously, all problems are in NP. We use redution from the NP-omplete problemK-Cover [11℄. Let G be an instane graph of this problem. By Observation 2, graph Ghas 5k verties for some k � 1 and ontains adjaent verties u of degree three and v ofdegree four. We onstrut the diamond graph G0 with respet to [u; v℄ that has q diamondsD1; : : : ; Dq, where we hose q suh that q > k + 2 and p = q + k is a prime number. ByLemma 5 we an onsider G0 as our instane graph for the K-Cover problem.Any loally bijetive homomorphism is a proper perfet-regular oloring, whih is aregular oloring, whih is a symmetri regular labeling, whih is a regular labeling, whih



is a pseudo-regular labeling, and any regular oloring is a pseudo-regular oloring, whihis a pseudo-regular labeling.So we are left to show that a proper pseudo-regular labeling of G0 implies that G0 B�! K.Suppose G0 allows a proper pseudo-regular labeling `. By Lemma 3, j`(D1)j = 5. Let`(a1) = 1, `(b1) = 2, `(1) = 3, `(d1) = 4 and `(e1) = 5. By Lemma 3, `(e0) =2 f1; 2; 3; 4g.Sine j`(VG)j = 5 due to Lemma 4, we then �nd that `(e0) = 5. This means that ` de�nesa loally bijetive homomorphism from G to K. ut6 Conneted olorings and semi-regular oloringsA hypergraph (Q;S) is a set Q = fq1; : : : ; qmg together with a set S = fS1; : : : ; Sng ofsubsets of Q. A 2-oloring of a hypergraph (Q;S) is a partition of Q into Q1 [ Q2 suhthat Q1 \ Sj 6= ; and Q2 \ Sj 6= ; for 1 � j � n. In our proofs we use redution from thefollowing, well-known NP-omplete problem (f. [9℄).Hypergraph 2-ColorabilityInstane: A hypergraph (Q;S).Question: Does (Q;S) have a 2-oloring?With a hypergraph (Q;S) we assoiate its inidene graph I , whih is a bipartite graph onQ [ S, where [q; S℄ forms an edge if and only if q 2 S. From the inidene graph I we atas follows. Let Ck denote a yle on k verties. First we make a opy S0 for eah S 2 S.We add edges (S0; q) if and only if q 2 S. Let S 0 = fS01; : : : ; S0ng. Then we glue a yle Cqiisomorphi to a C6i�3 in I by vertex qi for 1 � i � m. We add a new vertex v and edgesfrom v to all verties in S. Finally we glue a yle Cv isomorphi to C6m+3 in I by v. Weall the resulting graph I� the C3-minimizer of (Q;S). See Figure 3 for an example.
I vC3

S01 S0nq1 S1 qmFig. 3. Example of a C3-minimizer I� of a hypergraph (Q;S).The proof of the following lemma will be inluded in the journal version.Lemma 6. Let I� be the C3-minimizer of a hypergraph (Q;S) with Sj 6= Sk for all j; k. If` is a proper onneted oloring of I� then j`(VI�)j = 3.Theorem 2. The problem that asks whether a given graph G has a proper onneted ol-oring is NP-omplete.Proof. Obviously, this problem is in NP. We prove NP-ompleteness by redution from theHypergraph 2-Colorability problem. Let (Q;S) be a hypergraph. We assume without



loss of generality that Sj 6= Sk for j 6= k. We laim that (Q;S) has a 2-oloring if and onlyif its C3-minimizer I� admits a proper onneted oloring.Suppose (Q;S) has a 2-oloring Q1 [ Q2. De�ne `(v) = 1, `(S) = 2 for all S 2 S [ S 0,`(q) = 1 for all q 2 Q1 and `(q) = 3 for all q 2 Q2. Finish the oloring in the obvious way.Suppose I� has a proper onneted oloring `. By Lemma 6 we �nd j`(VI�)j = 3. Let`(v) = 1. Then `(Sj) 2 f2; 3g for all j. If `(S0j) = 1 for some j, then S0j needs a neighborof olor 2 and a neighbor of olor 3, both are adjaent to Sj . Hene, `(S0j) 2 f2; 3g for allj. We de�ne Q1 = fq 2 Q j `(q) = 1g and Q2 = QnQ1. Sine eah S0j needs at least twoneighbors with di�erent olors and at least one neighbor with olor 1, the partition Q1[Q2is a 2-oloring of (Q;S). utThe proof of Theorem 3 uses arguments of the proofs of Theorem 1 and Theorem 2 butthe NP-ompleteness onstrution is more involved. We postpone it to the journal version.Theorem 3. The problem that asks whether a given graph G has a proper semi-regularoloring is NP-omplete.7 ConlusionsBy Theorems 1, 2 and 3 we have determined the omputational omplexity of the questionwhether the eletion and/or naming problem an be solved on a given graph in elevendi�erent models of distributed omputing that all have been studied in the literature.Corollary 1. It is o-NP-omplete to deide if on a given graph G we an solve(a) the eletion problem in the models desribed in Setions 3 and 4 exept for the broadast-to-port model, the broadast-to-mailbox model and models (1), (5) of Figure 1;(b) the naming problem in the models desribed in Setions 3 and 4 exept for the broadast-to-port and broadast-to-mailbox model.As a matter of fat the above deision problem is o-NP-omplete for the eletion problemin model (5) as well. We need to modify the orresponding labeling a little. Showing howto do this is postponed to the journal version. For the eletion problem in model (1) aharaterization in terms of a graph labeling is still unknown.We note that the problem that asks whether a given onneted graph G has a properovering is equivalent to the problem that asks whether G B�! H for some onneted graphH with jVH j < jVGj. A graph homomorphism f from G to H satisfying f(NG(u)) =NH(f(u)) for all u 2 VG is alled loally surjetive. If suh a homomorphism exists, wewrite G S�! H . The problem that asks whether a onneted graph G has a proper onnetedoloring is equivalent to the problem that asks whether G S�! H for some onneted graphH with jVH j < jVGj. Let C denote the set of onneted graphs (up to isomorphism). In [8℄ ithas been proven that (C; B�!) and (C; S�!) are partial orders. Theorem 1 and 2 imply that itis o-NP-omplete to hek whether a graph is minimal in (C; B�!) and (C; S�!), respetively.Also the other studied graph labeling problems an easily be formulated as problems thatask whether there exist a homomorphism f , that satis�es a few extra onstraints, froma given graph G to a smaller graph H . In the future we will study the relations betweenthese onstrained homomorphisms more arefully.Aknowledgements. The authors thank Ji�r�� Fiala for the idea on prime numbers in Lemma 4.
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Appendix AHere is the proof of Lemma 3.Proof. We write p = q + k. Then jVG0 j = 5p and p is a prime number. Hene we �nd thatj`(VG0)j = 5 or j`(VG0)j = p � 5, due to Observation 1. Let Di be a diamond. Reall thatu = e0 and v = aq+1 have been de�ned. We prove the lemma by a sequene of laims. Let`(ai) = 1.Claim 1. We may assume that `(bi) = 2.We prove this laim as follows. Suppose `(bi) = 1. If `(i) = `(di) = 1, then j`(VG0)j = 1 < 5;whih is not possible.Suppose `(i) = 1. Then `(di) 6= 1. We assume `(di) = 2. Sine G0[1; 2℄ ontains aperfet mathing, we then �nd that `(ei�1) = `(ei) = 2. Then j`(VG0)j = 2 < 5. Hene`(i) 6= 1. Say `(i) = 2.If `(di) = 1 then we return to the previous ase. If `(di) = 2 then `(ei) = 1 or `(ei) =2, as otherwise G0[2; `(ei)℄ does not ontain a perfet mathing. In both ases, however,j`(VG0)j = 2 < 5. Suppose `(di) =2 f1; 2g, say `(di) = 3. If `(ei�1) = 1 then G0[1℄ is notregular. If `(ei�1) = i with i 2 f2; 3g, then G0[1; 5� i℄ does not ontain a perfet mathing.Suppose `(ei�1) =2 f1; 2; 3g, say `(ei�1) = 4. Then G0[1; 4℄ does not ontain a perfetmathing. This proves Claim 1. From now on we assume that `(ai) = 1 and `(bi) = 2.Claim 2. We may assume that `(i) = 3.We prove this laim as follows. Suppose `(i) = 1. Suppose `(di) = 1. Sine G0[1; 2℄ hasa perfet mathing, `(ei�1) = `(ei) = 2. Then j`(VG0)j = 2 < 5. Suppose `(di) = 2. ThenG0[2℄ is 1-regular, and hene `(ei) = 1. Then j`(VG0)j = 2 < 5. Suppose `(di) =2 f1; 2g, say`(di) = 3. If `(ei) 2 f1; 2; 3g, then j`(VG0)j = 3 < 5. We assume without loss of generalitythat `(ei) = 4. Sine G0[1; 4℄ ontains a perfet mathing, `(ei�1) = 4. Then G0[1; 2℄ doesnot have a perfet mathing.Suppose `(i) = 2. If `(di) = 1 then we return to a previous ase. If `(di) = 2, thenG0[1; 2℄ does not ontain a perfet mathing. Suppose `(di) =2 f1; 2g, say `(di) = 3. SineG0[2; 3℄ has a perfet mathing, `(ei) = 3. Then G0[1; 2℄ does not allow a perfet mathing.This proves the laim, and from now on we assume that `(ai) = 1, `(bi) = 2 and `(i) = 3.Claim 3. We may assume that `(di) = 4.We prove this laim as follows. If `(di) = 1 or `(di) = 2 then we return to a previous ase.Suppose `(di) = 3. Sine G0[2; 3℄ has a perfet mathing, `(ei) = 2. Then G0[1; 3℄ doesnot ontain a perfet mathing. This proves the laim, and from now on we assume that`(ai) = 1, `(bi) = 2, `(i) = 3, and `(di) = 4.Claim 4. We may assume that `(ei) = 5.We prove this laim as follows. Suppose `(ei) = 1. Sine G0[1; 2℄ has a perfet mathing,`(ai+1) = 2. Then j`(VG0)j = 4 < 5. Suppose `(ei) = 2. Sine G0[1; 2℄ has a perfetmathing, `(ai+1) = 1. Then G0[2; 3℄ does not have a perfet mathing. Suppose `(ei) = 3.Sine G0[3; 4℄ has a perfet mathing, `(ai+1) = 4. Then G0[2; 3℄ does not have a perfetmathing. By symmetry `(ei) 6= 4 either. This proves the laim, and from now on weassume that `(ai) = 1, `(bi) = 2, `(i) = 3, `(di) = 4, and `(ei) = 5.



To �nish the proof of the lemma, we show that ei�1 is not mapped to a olor in f1; 2; 3; 4g.If `(ei�1) = 1, then ei�1 must have neighbors olored 1; 2; 3; 4. This is not possible, sinedegG0(ei�1) = 3. If `(ei�1) = 3, then ei�1 must have neighbors olored 1; 2; 4; 5. This isnot possible, sine degG0(ei�1) = 3. By symmetry, ei�1 an not be mapped to 4 either.Suppose `(ei�1) = 2. Then the two neighbors of ei�1 outside Di must be olored with 3and 4. Then G0[1; 2℄ does not have a perfet mathing. utAppendix BHere is the proof of Lemma 6.Proof. Suppose ` is a proper onneted oloring of I�. We note that, by de�nition, twoneighbors must be mapped to di�erent olors. We write `(q1) = 1. Let the other twoverties of Cq1 be s; t with `(s) = 2 and `(t) = 3. If q1 only has neighbors with olor 1 or2, then `(VI�) = f1; 2; 3g, and we are done.Suppose q1 has a neighbor in S [ S 0 with a olor not in f2; 3g. Then all verties of I�mapped to 1 have at least degree three. By a sequene of laims, we show that j`(VI�)j =jVI� j. This is then a ontradition with our assumption that ` is proper.Claim 1. Colors 2; 3 are not in `(VI�nfs; tg).In order to obtain a ontradition let `(w) = 2 for some w 2 VI�nfs; tg. Suppose w isin VCpnfpg for some p 2 Q[ fvg, then w needs a neighbor with olor 1. Reall that suh aneighbor must have degree at least three. The only andidate is p. However, w also needs aneighbor with olor 3 and this neighbor must be adjaent to a neighbor with olor 1. SinejCpj ontains at least six verties, this is not possible.Suppose w = p for some p 2 Q [ fvg. Let x be a neighbor of w on Cp. Then x musthave olor 1 or 3. The �rst ase is not possible sine x has degree 2 < 3. The seond aseis not possible, sine then x has a (degree-two) neighbor y on Cp with olor 1.Suppose w = S for some S 2 S [ S 0. Then w must have a neighbor p0, whih is isQ [ fvg, with olor 3. By symmetry of x and y, we an return to the previous ase. This�nishes the proof of Claim 1.Claim 2. For all p 2 Q [ fvg; j`(VCp)j = jVCp j.For p = q1, this ondition is satis�ed. In order to obtain a ontradition let j`(VCp)j <jVCp j for some p 2 (Qnfq1g) [ fvg. We �rst make the following observation, whih aneasily be proven by an indutive argument:Let a1; a2; : : : ; ak be a sequene of di�erent olors from `(VI�) suh that, for j = 1 : : : k, thesubgraph I�[aj ; aj+1℄ is not edgeless. Then, for any vertex r with olor a1, there exists apath P = r1; s2; : : : ; rk from r1 = r to some vertex rk suh that `(rh) = ah for h = 1; : : : ; k.Now suppose z 2 VCpnfpg has olor `(p). By Claim 1, olor 2 is not a olor of any vertex inCp. Sine p is a utvertex of I�, any path from z with olor a1 = `(p) to a vertex with olorak = 2 ontains p with olor `(p) = a1. This is not possible due to the above observation.By the same argument, we dedue that any other olor not equal to `(p) appears at mosttwie on Cp.Suppose `(u1) = `(u2) for some u1; u2 2 VCpnfpg. By the above observation witha1 = `(u1) and ak = 2, the path P1 from u1 to p not using u2 and the path P2 from u2 to



p not using u1 must use exatly the same jVP1 j = jVP2 j olors (in exatly the same order).We hoose u1 and u2 suh that P1 and P2 are maximal. Let v1 be the neighbor of u1 noton P1, and let v2 be the neighbor of u2 not on P2. If v1 is not equal to v2, then v1 and v2must be mapped to the same olor. This ontradits the maximality of P1 and P2. Henev1 = v2, and exatly one olor appears one on Cpnfpg and all other olors appear twieon Cpnfpg. This implies that jCpj is even. This is not possible, sine jCpj is divisible by 3.Hene, we have proven Claim 2.Claim 3. `(VCp) \ `(VCq ) = ; for all p; q 2 Q [ fvg with p 6= q.Suppose `(VCp) \ `(VCq ) 6= ; for some p; q 2 Q [ fvg with p 6= q. We assume p < q,so Cp ontains less verties than Cq . We note that due to Claim 2, both neighbors of p onCp have a di�erent olor. Suppose these olors are the only olors the neighbors of p have.Then j`(VI�)j = jVCp j. This not possible, sine the number of di�erent olors on I� is atleast jVCv j = 6m + 3 > jVCp j, due to Claim 2. So on the neighborhood of p at least threedi�erent olors are used. This means that any vertex with olor `(p) must have degree atleast three.Let a be a ommon olor on Cp and Cq . Suppose a is not equal to `(p) already. Thenthere is a path in Cq from a vertex x with olor a to a vertex y 6= q with olor `(p), beauseCq has at least three more verties than Cp. Sine we showed that a vertex with olor `(p)must have degree at least three, we �nd that a = `(q) = `(p) and `(VCp) \ `(VCq ) = fag.Let r1 be a neighbor of p on Cp and let r2 be a neighbor of r1 6= p. Then `(r1) isthe olor of a vertex in S [ S 0 and onsequently `(r2) 6= `(p) is the olor of a vertex onCq0 for some q0 2 Q [ fvg. We onsider Cp and Cq0 instead of Cp and Cq , and obtain aontradition. This proves Claim 3.By Claim 2 and Claim 3, all verties in the union of all yles Cp over p 2 Q [ fvg aremapped to di�erent olors. Sine any two Sj ; Sk 2 S with j 6= k are di�erent subsets of Q,they an not have the same olor. The same holds for any two S0j ; S0k 2 S 0. Furthermore, allS0j are not adjaent to v, so `(S) \ `(S 0) is empty. Hene we have found that j`(S [ S 0)j =jSj+ jS 0j = 2n.Suppose some S 2 S [ S 0 has the same olor as a vertex u of some Cp. Then the olorsof the neighbors of u on Cp must appear on the neighbors of S, whih lie on some yle.This violates Claim 2. Hene j`(VI�)j = jVI� j and ` is not proper. This �nishes the proofof the lemma. utAppendix CHere we prove Theorem 3. Obviously, deiding if G admits a proper semi-regular oloringis in NP. To show that the problem is NP-omplete, we will use the NP-ompleteness ofthe K4-over problem [10℄, where K4 is the omplete graph on four verties.Consider a graph G. We may assume that G is a 3-regular graph with jVGj = 4q andjEGj = 6q for some q � 0; otherwise G B�! K4 is false. Let EG = fe1; e2; : : : ; emg. For eahk 2 [1;m℄, we replae the edge ek by a hain of k + 1 multi-diamonds D1(k); : : : Dk+1(k)as represented in Figure 4. We denote the resulting graph by G0. The verties of the hainthat replae the edge ek arefai(k); bi(k); b0i(k); i(k); 0i(k); di(k); d0i(k); ei(k); e0i(k); fi(k); f 0i(k); gi(k) j 1 � i � k + 1g:
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Fig. 4. The hain of k + 1 multi-diamonds that replae the edge ek = [u; v℄.When no onfusion is possible, we will note ai for ai(k), et. The next property is useful.Lemma 7. Let ` be a semi-regular oloring of G0 then for any multi-diamonds Di(k); Dj(k0),`(gi(k)) = `(gj(k0)) and `(ai+1(k)) = `(aj+1(k0)) if and only if `(gi�1(k)) = `(gj�1(k0))and `(ai(k)) = `(aj(k0)).Proof. Suppose `(gi(k)) = `(gj(k0)) and `(ai+1(k)) = `(aj+1(k0)). Then `(ffi(k); f 0i(k)g) =`(ffj(k0); f 0j(k0)g). Without loss of generality, we assume `(fi(k)) = `(fj(k0)) and `(f 0i(k)) =`(f 0j(k0)). Consequently, `(fdi(k); ei(k)g) = `(fdj(k0); ej(k0)g) and `(i(k)) = `(j(k0)).Then `(bi(k)) = `(bj(k0)) and by symmetry, `(b0i(k)) = `(b0j(k0)). Hene, `(gi�1(k)) =`(gj�1(k0)) and `(ai(k)) = `(aj(k0)). In the same way we show the reverse statement. utBy using Lemma 7, we dedue that G B�! K4 if and only if G0 B�! K4. Any witness forG0 B�! K4 is a proper perfet-regular oloring of G0, whih is a proper semi-regular oloringof G0. We are left to show that if G0 B�! K4 is not true (we say if G does not over K4), thenG0 does not allow a proper semi-regular oloring. For this, we need a few lemmas. In thefollowing one, we show that if G0 does not overK4 then all the verties in a multi-diamondhave di�erent olors.Lemma 8. If G0 does not over K4, then j`(Di(k)j = 12 for any multi-diamond Di(k) andfor any semi-regular oloring ` of G0.Proof. Note that i; di; ei have di�erent olors. Let `(di) = 1, `(ei) = 2 and `(i) = 3.Claim 1. We may assume that `(bi) = 4 and `(b0i) =2 f`(d0i); `(e0i)g.Note that `(bi) 6= 3. We write a = `(fi) and b = `(gi). If `(bi) = 1, then either `(ai) = 2and `(b0i) = a, or `(ai) = a and `(b0i) = 2. In the �rst ase, `(0i) = b and then either`(d0i) = `(f 0i), or `(e0i) = `(f 0i), whih is impossible. In the seond ase, `(0i) = 3, and then0i must have two neighbors olored by 1, but then `(e0i) = `(d0i) = 1. This is impossible.Hene, we an write `(bi) = 4. By symmetry, we �nd that `(bi) 6= 2. Then, by symmetry,`(b0i) =2 f`(d0i); `(e0i)g.Claim 2. We may assume that `(fi) = 5 and `(0i) 6= `(f 0i).Note that `(fi) =2 f1; 2g. Suppose `(fi) = `(bi) = 4. Then f`(ai); `(b0i)g = f1; 2g and`(gi) = 3. Consequently, `(VG0) = f1; 2; 3; 4g and for eah v 2 VG0 , `(v) = 1 (respetively`(v) = 2, `(v) = 3, `(v) = 4), then `(NG0(v)) = f2; 3; 4g (respetively `(NG0(v)) = f1; 3; 4g,



`(NG0(v)) = f1; 2; 4g, `(NG0(v)) = f1; 2; 3g). Then G0 B�! K4, whih is impossible. Suppose`(fi) = `(i) = 3. We write a = `(ai) and b = `(b0i). Sine fi must have a neighbor labeledby 4, we �nd `(gi) = 4. Consequently, either `(f 0i) = a or `(f 0i) = b. In the �rst ase,b = `(b0i) must belongs to f`(d0i); `(e0i)g but, by Claim 1, this is not possible. In the seondase, either `(0i) = `(d0i) or `(0i) = `(e0i) but this is not possible. Hene we an write`(fi) = 5. By symmetry, we �nd that `(0i) 6= `(f 0i).Claim 3. We may assume that `(ai) = 6 and 6 =2 f`(b0i); `(0i); `(d0i); `(e0i); `(f 0i)g.We know that `(ai) 6= 4. Sine ai has a neighbor labeled by 4 whereas i and di donot have suh a neighbor, we know that `(ai) =2 f1; 2g. Suppose `(ai) 2 f3; 5g. Then`(b0i) 2 f1; 2g; without loss of generality we say that `(b0i) = 1. But in this ase, `(bi) = 4must appear in `(NG0(di)), whih is impossible. Hene we an write `(ai) = 6. By symmetry,6 =2 f`(b0i); `(0i); `(d0i); `(e0i); `(f 0i)g.Claim 4. We may assume that `(b0i) = 7.We know that `(b0i) =2 f1; 2; 3; 4; 6g. Suppose `(b0i) = 5. Then `(NG0(b0i)) must ontainf1; 2; 4; 6g but this is impossible sine degG0(b0i) = 3. Hene, we an write `(b0i) = 7.Claim 5. We may assume that `(0i) = 8.We note that `(0i) =2 f1; 2; 3; 4; 6; 7g. Suppose that `(0i) = 5. Then `(gi) = 7, and`(fd0i; e0ig) = f1; 2g. Consequently, `(f 0i) = 3, but this is impossible sine 7 =2 `(NG0(i)).Claim 6. We may assume that `(d0i) = 9 and `(e0i) = 10.We note that `(d0i) =2 f1; 2; 3; 4; 6; 7; 8g. Suppose that `(d0i) = 5, then `(e0i) 2 f1; 2g but thisis impossible sine 8 =2 `(NG0(di)) [ `(NG0(ei)). We an write `(d0i) = 9. By symmetry andsine `(e0i) 6= `(d0i), we �nd that `(e0i) =2 f1; 2; 3; 4; 5; 6; 7; 8; 9g.Claim 7. We may assume that `(f 0i) = 11.We know that `(f 0i) =2 f1; 2; 3; 4; 6; 7; 8; 9; 10g. Suppose that `(f 0i) = 5. Then `(NG0(f 0i))must ontain f1; 2; 9; 10g but this is impossible sine degG0(f 0i) = 3.Claim 8. We may assume that `(g0i) = 12.We know that `(g0i) =2 f1; 2; 3; 4; 5; 7; 8; 9; 10; 11g. Suppose that `(f 0i) = 6. Then `(NG0(g0i))must ontain f4; 5; 7; 11g but this is impossible sine degG0(g0i) = 3. This ends the proof ofthe lemma. utIn the following lemma, we show that if G0 does not over K4, a olor that appears ona vertex gi(k) annot appear on another multi-diamond Dj(k0) elsewhere than in gj(k0).Lemma 9. If G0 does not over K4, then for any semi-regular oloring ` of G0, for anymulti-diamonds Di(k) and Dj(k0), for eah u 2 Di(k) n fgi(k)g, `(u) 6= `(gj(k0)).Proof. For any vertex u 2 Di(k) n fgi(k)g, there exists two verties v; w 2 NG0(u) suhthat [v; w℄ 2 EG0 .Suppose that `(u) = `(gj(k0)). Then f`(v); `(w)g \ f`(fj(k0)); `(f 0j(k0))g 6= ;; withoutloss of generality, we say that `(v) = `(fj(k0)). Then `(w) 2 f`(dj(k0)); `(ej(k0))g; withoutloss of generality, we say that `(w) = `(dj(k0)).Consequently, `(gj(k0)) = `(u) 2 `(NG0(dj(k0))) = f`(j(k0)); `(ej(k0)); `(fj(k0))g, butthis is impossible from Lemma 8. ut



In the following lemma, we show that if G0 does not over K4, a olor that appears ona vertex ai(k) annot appear on another multi-diamond Dj(k0) elsewhere than in aj(k0).Lemma 10. If G0 does not over K4, then for any semi-regular oloring ` of G0, for anymulti-diamonds Di(k) and Dj(k0), for eah u 2 Di(k) n fai(k)g, `(u) 6= `(aj(k0)).Proof. From Lemma 8, one an suppose that `(dj(k0)) = 1; `(ej(k0)) = 2; `(j(k0)) =3; `(bj(k0)) = 4; `(fj(k0)) = 5; `(aj(k0)) = 6; `(b0j(k0)) = 7; `(0j(k0)) = 8; `(d0j(k0)) =9; `(e0j(k0)) = 10; `(f 0j(k0)) = 11; `(gj(k0)) = 12, as represented on the left of Figure 5.We will also note a and b for `(gj�1(k0)) and `(aj+1(k0)).
a 6 4 3 12 57 8 910 11 12 b ai bi i diei fib0i 0i d0ie0i f 0i gi

Fig. 5. The two multi-diamonds we onsider for the proof of Lemma 10.We will note ai for ai(k), et. We just have to show that for eah v 2 fbi; i; di; fi; gig,`(v) 6= 6. From Lemma 9, we already know that `(gi) 6= 6.Suppose that `(i) = 6 (resp. `(fi) = 6). Then f`(di); `(ei)g \ f4; 7g 6= ;. Without lossof generality, we say that `(di) = 4. Then i (resp. fi) and di must both have a neighborlabeled by 7. From Lemma 8, it implies that `(ei) = 7. Sine ei must also have a neighborlabeled by 8, it implies that `(fi) = 8 (resp. `(i) = 8), but this is impossible sine fi (respi) annot have a neighbor labeled by 4.Suppose that `(di) = 6. Then f`(i); `(fi)g \ f4; 7g 6= ;. Without loss of generality,suppose that `(i) = 4 (resp. `(fi) = 4). Then i (resp. fi) and di must both have aneighbor labeled by 7. From Lemma 8, it implies that `(ei) = 7. Sine ei must also havea neighbor labeled by 8, it implies that `(fi) = 8 (resp. `(i) = 8), but this is impossiblesine fi (resp. i) annot have a neighbor labeled by 6.Suppose that `(bi) = 6. If j � 2, bi must have a neighbor labeled by a = `(gj�1(k0)),but this is impossible from Lemma 9. We will now suppose that j = 1. From Lemma8, `(fai; b0ig) = f4; 7g. Without loss of generality, we say that `(ai) = 7 and `(b0i) = 4.Consequently, `(0i) = 3, `(fd0i; e0ig) = f1; 2g, `(f 0i) = 5 and `(gi) = 12. Consequently, either`(fi) = b, or `(fi) = 11. In the �rst ase, sine j = 1, b = `(a2(k0)) and we already knowthat it is impossible. In the seond ase, if `(fi) = 11, then `(fdi; eig) = f9; 10g and then`(i) = 8, but this is impossible sine i annot have a neighbor labeled by 6. utIn the following lemma, we show that if G0 does not over K4, then a vertex u thatdoes not belong to any multi-diamond (i.e. a vertex that was in the graph G) annot havethe same olor as a vertex that belongs to a multi-diamond.



Lemma 11. If G0 does not over K4, then for any semi-regular oloring ` of G0, for anymulti-diamond Di(k), for any v 2 Di(k) and for any u 2 VG0 suh that 8k;8i; u =2 Di(k),we have `(u) 6= `(v).Proof. Consider suh a vertex u. In G0, for any u0 2 NG0(u), there exists k0 suh that eitheru0 = a1(k0) or u0 = gk0+1(k0). Consider any vertex v of any multi-diamond Di(k). Thereexists v0 2 NG0(v) suh that v0 2 Di(k) n fai(k); gi(k)g. If `(u) = `(v), then there existsa vertex u0 2 NG0(u) suh that `(v0) = `(u0), but this is impossible from Lemmas 9 and10. utIn the following lemma, we show that if G0 does not overK4, any semi-regular oloring` of G0 is a perfet-regular oloring of G0.Lemma 12. If G0 does not over K4, for any semi-regular oloring ` of G0, for eah vertexv 2 VG0 , j`(NG0(v))j = jNG0(v)j.Proof. We �rst onsider verties that belong to some multi-diamond. Consider a multi-diamond Di(k) for some i; k. From Lemma 8, we already know that j`(NG0(v))j = jNG0(v)jif v =2 fai(k); gi(k)g. From Lemmas 9, 10 and 11, we also know that j`(NG0(v))j = jNG0(v)jif v 2 fai(k); gi(k)g.We now onsider a vertex u that does not belong to any multi-diamond Di(k). Supposethat there exist two distint verties v; v0 2 NG0(u) suh that `(v) = `(v0). From Lemmas 9and 10, we know that either v = a1(k) and v0 = a1(k0) or v = gk+1(k) and v0 = gk0+1(k0) forsome k; k0. By onstrution of G0, we know that k 6= k0; without loss of generality, we saythat k < k0. If we apply Lemma 7 k + 1 times, then `(ak+2(k)) = `(ak+2(k0) (respetively`(g0(k)) = `(gk0�k(k0)) for the seond ase) but from Lemma 11, this is impossible sineak+2(k0) (respetively gk0�k(k0)) belongs to some multi-diamond but ak+2(k) (respetivelyg0(k)) does not. utIn the following lemma, we show that if G0 does not overK4, any semi-regular oloringof G0 needs jVG0 j olors.Lemma 13. If G0 does not over K4, any semi-regular oloring ` of G0 is not proper.Proof. Consider a vertex u that does not belong to any multi-diamond Di(k). Supposethat there exists u0 2 VG0 suh that `(u) = `(u0). From Lemma 11, we already know thatu0 does not either belong to any multi-diamond.There exists v in NG0(u) and v0 in NG0(u0) suh that `(v) = `(v0). From Lemmas 9 and10, we know that either v = a1(k) and v0 = a1(k0) or v = gk+1(k) and v0 = gk0+1(k0) forsome k; k0. By onstrution of G0, we know that k 6= k0 and then with the same proof asfor Lemma 12, one an show that there is a ontradition.Consequently, j`�1(`(u))j = 1. From Lemma 12 it is easy to see that ` is a pseudo-regularlabeling. Then we know from Observation 1 that for any vertex v 2 VG0 , j`�1(`(v))j = 1.Consequently j`(VG0)j = jVG0 j and ` is not a proper semi-regular oloring. utSummarizing, G B�! K4 if and only if G0 B�! K4 if and only if G0 allows a propersemi-regular oloring. Therefore, we have proven Theorem 3.


