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Abstract. We discuss eleven well-known basic models of distributed computing:
four message-passing models that differ by the (non-)existence of port-numbers and
a hierarchy of seven local computations models. In each of these models, we study
the computational complexity of the decision problem whether the leader election
and/or naming problem can be solved on a given network. It is already known that
this problem is solvable in polynomial time for two models and co-NP-complete
for another one. Here, we settle the computational complexity for the remaining
eight problems by showing co-NP-completeness. The results for six models and the
already known co-NP-completeness result follow from a more general result on graph
labelings.

1 Introduction

In distributed computing, one can find a wide variety of models of communication. These
models reflect different system architectures, different levels of synchronization and different
levels of abstraction. In this paper we consider eleven well-known basic models that satisfy
the following two underlying assumptions. Firstly, a distributed system is represented by
a simple (i.e., without loops or multiple edges), connected, undirected graph. Its vertices
represent the processors, and its edges represent direct communication links. Secondly, in
a distributed algorithm, all the processors execute the same code to solve some problem
and they do not have initial identifiers.

The eleven basic models can be divided into four message-passing models [6,15,17] and
seven local computations models [1,4,5,12,13]. In a message-passing model, processors
communicate by sending and receiving messages. In a local computations model, com-
munication between processors is achieved thanks to synchronization (encoded by local
relabeling rules) between neighboring processors.

Understanding the computational power of various models enhances our understanding
of basic distributed algorithms. For this purpose a number of standard problems in dis-
tributed computing are studied. The election problem is one of the paradigms of the theory
of distributed computing. In our setting, a distributed algorithm solves the election prob-
lem if it always terminates and in the final configuration exactly one processor is marked
as elected and all the other processors are non-elected. Elections constitute a building block



of many other distributed algorithms, since the elected vertex can be subsequently used to
make centralized decisions. A second important problem in distributed computing is the
naming problem. Here, the aim is to arrive at a final configuration where all processors
have been assigned unique identities. Again this is an essential prerequisite to many other
distributed algorithms that only work correctly under the assumption that all processors
can be unambiguously identified. For a survey on distributed algorithms we refer to [14].

OUR RESULTS. Whether the naming or election problem can be solved on a given
graph depends on the properties of the considered model. If it is possible to solve the
election (naming) problem we call the graph a solution graph for the election (naming)
problem. It is a natural question to ask how hard it is to check whether a given graph is a
solution graph in a certain model. For two models this problem is known to be polynomially
solvable [2] and for one model it is co-NP-complete [16]. What about the computational
complexity of this problem for the other models? In this paper we solve this question by
showing that this decision problem is co-NP-complete for all remaining models.

The paper is organized as follows. In Section 2 we define the necessary graph terminol-
ogy. To obtain our results we translate known characterizations [1,4-7,12,13,15,17] of so-
lution graphs in terms of graph labelings. This is shown in Section 3 for the message-passing
models and in Section 4 for the local computations models. In Section 5 we introduce a new
kind of labeling that does not correspond to any model of distributed computing but that
enables us to present a simpler co-NP-completeness proof for seven basic models including
the already known model in [16]. In Section 6 we give the results for the remaining two
models.

2 Preliminaries

For graph terminology not defined below we refer to [3]. A labeling of a graph G = (V, E)
is a mapping £ : Vo — {1,2,3,...,}. For a set S C Viz we use the shorthand notation £(.5)
to denote the image set of S under £, i.e., £(S) = {{(u) | u € S}. A labeling € of G is called
proper if |[((Vg)| < |Vg|. For any label i > 1, the set £71(i) is equal to {u € Vg | £(u) = i}.
The subgraph of G induced by a subset S C Vi is denoted by G[S]. For a label i > 1 we
write G[i] = G[¢~1(i)]. For two labels i, j, we let G[i, j] be the bipartite graph obtained from
G[e=1(i)UL=1(j)] by deleting all edges {u,v} with £(u) = £(v) =i or with £(u) = £(v) = j.

For a vertex u € Vg in a graph G = (Vg, Eg), we denote its neighborhood by Ng(u) =
{v|[u,v] € Eg}. A graph is regular, if all its vertices have the same number k of neighbors
(i.e. are of degree deg~(u) = k), in that case we also say that the graph is k-regular. A
graph is regular bipartite if it is regular and bipartite. A graph is semi-regular bipartite if it
is bipartite and the vertices of one class of the bipartition are of degree k and all others are
of degree [, in that case we also say that the graph is (k,1)-regular bipartite. In our context
a perfect matching is a (1, 1)-regular bipartite graph.

3 Message-passing models

In [15-17], Yamashita and Kameda study four message-passing models. In the port-to-port
model, each processor can send different messages to different neighbors (by having access



to unique port-numbers that distinguish between neighbors), and each processor knows the
neighbor each receiving message is coming from (again by using the port-numbers). In
the broadcast-to-mailboxz model, port-numbers do not exist. A processor can only send a
message to all of its neighbors and all receiving messages arrive in a mailbox, so it never
knows their senders. The two mixed models are called the broadcast-to-port model and the
port-to-mailbox model. There exists an election (or naming) algorithm for a graph G if and
only if the algorithm solves the problem on G whatever the port-numbers are.

In [17], Yamashita and Kameda characterize these four models: a graph G is a solution
graph for the election and naming problem in the port-to-port model if and only if G does
not have a proper symmetric reqular labeling, i.e., a proper labeling £ such that

(i) for alli € ¢(Vg), GJi] is regular and contains a perfect matching if its vertices have odd
degree, and
(ii) for all 4,j € ¢(Vz) with i # j, G[i, j] is regular bipartite.

A graph G is a solution graph for the election and naming problem in the port-to-mailbox
model if and only if G does not have a proper regular labeling, i.e., a proper labeling £ such
that

(i) for all i € £(V), G[i] is regular, and
(ii) for all 4,j € (V) with i # j, G[i, j] is regular bipartite.

A graph @G is a solution graph for the election and naming problem in the broadcast-to-
mailbox and the broadcast-to-port model if and only if G does not have a proper semi-
reqular labeling, i.e., a proper labeling ¢ such that

(i) for all i € £(V), G[i] is regular, and
(ii) for all 4,j € (V) with i # j, G[i, j] is semi-regular bipartite.

In [1, 6], different characterizations for these models are obtained (based on fibrations and
coverings of directed graphs). The problem of deciding whether a graph G is a solution
graph for the election and naming problem in the port-to-port model is co-NP-complete [16].
On the other hand, in [2], it is shown that the problem of deciding whether a graph
G is a solution problem for the election and naming problem is polynomially solvable
in the broadcast-to-mailbox and the broadcast-to-port model (by computing the degree
refinement of G).

4 Local computations models

In the local computations models, a computation step can be described by the application
of some local relabeling rule that enables the modification of the states of the different
vertices involved in the synchronization. Two local computation models are different in
the types of relabeling rules that they allow, see Figure 1. In models (5), (6) and (7) of
Figure 1, a computation step involves some synchronization between one vertex and all
its neighbors, whereas in models (1), (2),(3) and (4), a computation step involves some
synchronization between two neighbors.

Mazurkiewicz [12] characterizes model (7) of Figure 1: a graph G is a solution graph
for the election and naming problem if and only if G does not have a proper perfect-reqular
coloring, i.e., a proper labeling ¢ such that



(1) for all 7 € £(Vz), G[i] is empty, and
(ii) for all 4,j € £(V) with @ # j, G[i, j] is edgeless or else is a perfect matching.
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Fig. 1. A hierarchy of local computations models. Labels of black vertices can change when the
rule is applied. Labels of white vertices only enable to apply the relabeling rule but do not change.
A relabeling rule can modify edge labels only in models (3), (4) and (6). If r; C r; for rules r; and
r; then r; can simulate r; but not vice versa, i.e., r; has a greater computational power than r;. If
r; = r; then r; and r; have the same computational power. Otherwise, r; and r; are incomparable.

Boldi et al. [1] characterize model (5) of Figure 1: a graph G is a solution graph for the
naming problem if and only if G does not have a proper semi-reqular coloring, i.e., a proper
labeling ¢ of G such that

(1) for all i € £(Vz), G[i] is empty, and
(ii) for all 4,j € (V) with i # j, G[i, j] is semi-regular bipartite.

[5] characterizes the models (3), (4) and (6) of Figure 1: a graph G is a solution graph for
the election and the naming problem in each of these models if and only if G does not have
a proper reqular coloring, i.e., a proper labeling ¢ such that

(1) for all 7 € £(Viz), G[i] is empty, and
(ii) for all 4,j € ¢(Vz) with ¢ # j, G[i, j] is regular bipartite.

We note that Mazurkiewicz [13] given an equivalent characterization of model (4) in terms
of equivalence relations over vertices and edges. The characterizations for model (6) can
also be obtained from [1].

[4] characterizes model (2) of Figure 1: a graph G is a solution graph for the election
and naming problem if and only if G does not have a proper pseudo-regular coloring, i.e.,
a proper labeling ¢ such that

(1) for all i € £(Vz), G[i] is empty, and
(ii) for all 4,j € £(Vy) with i # j, G[i, j] is edgeless or else contains a perfect matching.



[7] characterizes model (1) of Figure 1: a graph G is a solution graph for the naming problem
if and only if G does not admit any proper connected coloring, i.e., a proper labeling ¢ such
that

(1) for all 7 € ¢(V), G[i] is empty, and
(ii) for all 4,j € (V) with i # j, G[i, j] is edgeless or else has minimum degree one.

We note that the hierarchy in Figure 1 is also reflected by the labelings, e.g., a perfect-
regular coloring is also a regular coloring, and so on.

5 Pseudo-regular labelings

We call a labeling ¢ of a graph G a pseudo-regular labeling if

(i) for all i € £(V), G[i] is regular, and
(ii) for all 4,j € £(Vy) with i # j, G[i, j] is edgeless or else contains a perfect matching.

In this section we prove that the problem whether a given graph G has a proper pseudo-
regular labeling is NP-complete. The following observation is useful.

Observation 1 Let { be a pseudo-regular labeling of a connected graph G. Then [(71(i)] =

ek for all i € (V).

Let G = (Vig, Eg) and H = (Vi, V) be two graphs. We write Vi = {1,2,...,|Vg|}. For
a mapping f : Vo — Vg and a set S C Vi, we write f(S) = {f(u) | u € S}. A graph
homomorphism from G to H is a vertex mapping f : Vg — Vg satisfying the property that
for any edge [u,v] in Eq, we have [f(u), f(v)] in Eg, in other words, f(Ng(u)) C Nu(f(u))
for all u € V. A homomorphism f from G to H that induces a one-to-one mapping on
the neighborhood of every vertex is called locally bijective, i.e., for all u € Vi it satisfies
f(Ng(u)) = Ng(f(u)) and |[Ng(u)| = [Ng(f(u))]. In that case we write G > H, and call
the vertices of H colors of G. Sometimes, we also say that the labels £(i) of a labeling ¢ of
G are colors of G.

The H-COVER problem asks whether there exists a locally bijective homomorphism
from an instance graph G to a fixed graph H. In our NP-completeness proof we use reduc-
tion from the K-COVER problem, where K is the graph obtained after deleting an edge
in the complete graph Kj on five vertices. The K-COVER problem is NP-complete [11].
Note that the two non-adjacent vertices have degree three. The other three vertices are
adjacent to two vertices of degree three and two vertices of degree four. Then the following
observation immediately follows from the definition of a locally bijective homomorphism.

Observation 2 Let G be a graph with G 2 K. Then Vg = By U By for two blocks By
and By with |By| = 2k and |Bs| = 3k for some k > 1 such that

— for all u € By, |Ng(u) N By| =0 and |[Ng(u) N By| =3
— for all u € Bs, |Ng(u) N By| =2 and |[Ng(u) N By| = 2.



Since the conditions in Observation 2 can be checked in polynomial time, we assume with-
out loss of generality that any instance graph G of the K-COVER problem satisfies these
conditions.

For our NP-completeness structure we modify an instance graph G of the K-COVER as
follows. Let u and v be vertices of G with degg(u) = 3 and degq (v) = 4. We replace the
edge [u,v] by a chain of ¢ > 1 “diamonds” as described in Figure 2. We call the resulting
graph G’ a diamond graph of G with respect to the edge [u,v]. Fori = 1,..., ¢, the subgraph
D; = G[{ai, bi,ci,d;,e;}] is called a diamond of G'. The next lemma shows among others

Fig. 2. The chain of ¢ diamonds that replace the edge [u, v].

that a pseudo-regular labeling is injective on the neighborhood of any vertex in a diamond.
Its proof involves a case analysis and will be presented in the journal version of our paper.

Lemma 3. Let G be a graph on 5k vertices that contains adjacent vertices u,v with
degn(u) = 3 and degn(v) = 4. Let G' be a diamond graph of G with respect to [u,v]
that has diamonds D+, ...D,, where ¢ > k+2 and q+k is a prime number. If { is a proper
pseudo-reqular labeling of G', then [((Vp,)| =5 and €(e;—1) ¢ ¢(D;\{e;}) for all 1 <i <q.

The following lemma is a key result.

Lemma 4. Let G be a graph on 5k vertices that contains adjacent vertices u,v with
degn(u) = 3 and degn(v) = 4. Let G' be a diamond graph of G with respect to [u,v]
that has diamonds D1, ...D,, where ¢ > k+2 and q+k is a prime number. If { is a proper
pseudo-regqular labeling of G' then |[¢(Ver)| = 5.

Proof. We write p = q+ k. Then |V | = 5p and p is a prime number. Hence we find that
[{(Ver)| =5 or [£(Ver)| = p, due to Observation 1.

Suppose |[((Vg)| = p > 5. By our choice of ¢, there exist a vertex u in a diamond D;
with the same color as a vertex v in a diamond D;. By Lemma 3, we may assume that
i < j. We choose u and v such that there do not exist two vertices in G[D; U...U D;_4]
having the same color. By Lemma 3, we can write £(a;) =1, £(b;) =2, l(¢c;) = 3, £(d;) =4
and {(e;) = 5, and we find that ¢(e;_1) ¢ {1,2,3,4}. If £(e;—1) = 5, then ¢(a;11) = 5 and
consequently [((V)| =5 < p, so we write £(e;—1) = 6.

By Observation 2 and the construction of G', every vertex of G has either degree 3 or
4. Note that, for each z in G' with ¢(x) = 1 (respectively ¢(z) = 3, {(z) = 4), we have
that {2,3,4,6} C {(Ng: (z)) (respectively {1,2,4,5} C {(Ng(x)), {1,2,3,5} Cl(Ng (x))).
Consequently, each vertex z with ¢(z) € {1,3,4} has degq (z) = 4.

By our choice of D; and Dj, vertex a;4; belongs to some diamond. By Lemma 3, we
know that [{(Ng(a;+1))| = 4. Then each vertex x with £(z) = £(a;;1) has degq (z) = 4.




Suppose now that there exists a vertex y such that degq. (y) = 4 and £(y) = 2 (respectively
L(y) = 5). Then £(Ng (y)) = {1, 3,4} (respectively {(N¢ (y)) = {3,4,€(a;1+1)} ). Then y has
three neighbors of degree four and this is not possible due to Observation 2. Consequently,
each vertex y with ¢(y) € {2,5} has degq (y) = 3.

We show that 1 ¢ ¢(D;). Suppose {(a;) = 1. From our choice of D; and D;, we know
that K(ej_l) ¢ {2,3,4}. Then e({b]',Cj,d]'}) = {2,3,4} and é(ej_l) = 6. Then K(Vg) =
¢(D; U...UD,_1) and since all colors are different on diamonds D;, Djy1,...,Dj_1, we
find that p = |£(Vg)| = 5(j — 4). Since p is a prime number not equal to 5, this is not
possible. We already know that 1 ¢ ¢({b;,e;}) since degg (b;) = degq (e;) = 3. Suppose
l(c;) = 1 (respectively £(d;) = 1). Then £(d;) € {3,4} (respectively £(c;) € {3,4}) and
(({b;,e;}) = {2,6}. Then a vertex with color in {3,4} is adjacent to a vertex with color 6.
This is not possible.

We show that 2 ¢ ¢(D;). We already know that the only vertices in D; that can be
mapped to 2 are b; and e; in D;. If £(b;) = 2, then 1 € £({a;,c;,d;}). If £(e;) = 2, then
either 1 € £({c;j,d;}) or £({c;,d;}) = {3,4} and in the second case ¢(a;) = 1.

We show that 3 ¢ ¢£(D;). We already know that only vertices a;, ¢j,d; can be mapped
to 3. If £(a;) = 3 then 1, which does not occur on D;, must be the color of ¢(e;_1). This is
not possible due to our choice of D; and D;. In the other two cases we find that 1 € ¢(D;).
By symmetry, we deduce that 4 ¢ ¢(D;).

Finally, we show that 5 ¢ ¢(D;). We already know that only vertices b; and e; can be
mapped to 5. In both cases, at least one of the colors 3,4 is a color of a vertex in D;. This
finishes the proof of the lemma. O

Lemma 5. Let G be a graph that contains adjacent vertices u,v with degs(u) = 3 and
degy(v) = 4. Let G' be a diamond graph of G with respect to (u,v). Then G 2 K if and
only if G' 2 K.

(2,3], [2,4], [3,4], [3,5], [4,5]. Suppose G =5 K. Without loss of generalfty we assume thaf
u has color 5 and v has color 1. Then we assign color 1 to all a;, color 2 all b;, color 3 to
all ¢;, color 4 to all d; and color 5 to all e;.

B

Suppose G' = K. The restriction of any locally bijective homomorphism f': Vg — Vi
to Vg is a witness for G = K. O

Proof. We denote the vertices of K by 1,2,3,4,5 and its edges by [1,2], [1,3], [1,4], [1, 5]

Theorem 1. The problems that ask whether a given graph G allows a proper pseudo-
reqular coloring, a proper pseudo-regular labeling, a proper regular coloring, a proper reqular
labeling, a proper symmetric reqular labeling, or a proper perfect-reqular coloring, respec-
tively, are NP-complete.

Proof. Obviously, all problems are in NP. We use reduction from the NP-complete problem
K-COVER [11]. Let G be an instance graph of this problem. By Observation 2, graph G
has 5k vertices for some k£ > 1 and contains adjacent vertices u of degree three and v of
degree four. We construct the diamond graph G’ with respect to [u, v] that has ¢ diamonds
Dy,...,D,, where we chose ¢ such that ¢ > k£ + 2 and p = ¢ + k is a prime number. By
Lemma 5 we can consider G’ as our instance graph for the K-COVER problem.

Any locally bijective homomorphism is a proper perfect-regular coloring, which is a

regular coloring, which is a symmetric regular labeling, which is a regular labeling, which



is a pseudo-regular labeling, and any regular coloring is a pseudo-regular coloring, which
is a pseudo-regular labeling.

So we are left to show that a proper pseudo-regular labeling of G’ implies that G' 2+ K.
Suppose G’ allows a proper pseudo-regular labeling ¢. By Lemma 3, [{(D;)| = 5. Let
lay) =1, 0(b1) =2, l(c1) =3, £(dy) = 4 and {(e;) = 5. By Lemma 3, {(eo) ¢ {1,2,3,4}.
Since |£(Ve)| = 5 due to Lemma 4, we then find that ¢(eg) = 5. This means that ¢ defines
a locally bijective homomorphism from G to K. O

6 Connected colorings and semi-regular colorings

A hypergraph (Q,S) is a set @ = {q1,...,¢m} together with a set S = {S1,...,S5,} of
subsets of Q. A 2-coloring of a hypergraph (Q,S) is a partition of @ into 1 U @2 such
that @1 NS; # 0 and Q2 NS; # 0 for 1 < j < n. In our proofs we use reduction from the
following, well-known NP-complete problem (cf. [9]).

HYPERGRAPH 2-COLORABILITY
Instance: A hypergraph (Q,S).
Question: Does (@, S) have a 2-coloring?

With a hypergraph (Q,S) we associate its incidence graph I, which is a bipartite graph on
QU S, where [q, S] forms an edge if and only if ¢ € S. From the incidence graph I we act
as follows. Let C} denote a cycle on k vertices. First we make a copy S’ for each S € S.
We add edges (S',¢) if and only if g € S. Let 8" = {S1,...,S,,}. Then we glue a cycle Cy,
isomorphic to a Cg;_3 in I by vertex ¢; for 1 < i < m. We add a new vertex v and edges
from v to all vertices in S. Finally we glue a cycle C, isomorphic to Cg,,+3 in I by v. We
call the resulting graph I* the C3-minimizer of (Q,S). See Figure 3 for an example.

Fig. 3. Example of a Cs-minimizer I* of a hypergraph (@, S).

The proof of the following lemma will be included in the journal version.

Lemma 6. Let I* be the Cs-minimizer of a hypergraph (Q,S) with S; # Sy, for all j, k. If
{ is a proper connected coloring of I* then |((Vi.)| = 3.

Theorem 2. The problem that asks whether a given graph G has a proper connected col-
oring is NP-complete.

Proof. Obviously, this problem is in NP. We prove NP-completeness by reduction from the
HYPERGRAPH 2-COLORABILITY problem. Let (@, S) be a hypergraph. We assume without



loss of generality that S; # Sk, for j # k. We claim that (@, S) has a 2-coloring if and only
if its C3-minimizer I* admits a proper connected coloring.

Suppose (Q,S) has a 2-coloring @1 U Q). Define £(v) =1, £(S) =2forall S e SUS’,
l(q) =1 for all ¢ € @y and £(q) = 3 for all ¢ € 5. Finish the coloring in the obvious way.

Suppose I* has a proper connected coloring ¢. By Lemma 6 we find |((V}+)| = 3. Let
{(v) = 1. Then £(S;) € {2,3} for all j. If £(S}) = 1 for some j, then S} needs a neighbor
of color 2 and a neighbor of color 3, both are adjacent to S;. Hence, £(S}) € {2,3} for all
j. We define Q1 = {qg € @ | £(q) = 1} and Q> = Q\Q1. Since each S} needs at least two
neighbors with different colors and at least one neighbor with color 1, the partition Q1 UQ>
is a 2-coloring of (@, S). O

The proof of Theorem 3 uses arguments of the proofs of Theorem 1 and Theorem 2 but
the NP-completeness construction is more involved. We postpone it to the journal version.

Theorem 3. The problem that asks whether a given graph G has a proper semi-reqular
coloring is NP-complete.

7 Conclusions

By Theorems 1, 2 and 3 we have determined the computational complexity of the question
whether the election and/or naming problem can be solved on a given graph in eleven
different models of distributed computing that all have been studied in the literature.

Corollary 1. It is co-NP-complete to decide if on a given graph G we can solve

(a) the election problem in the models described in Sections 3 and j except for the broadcast-
to-port model, the broadcast-to-mailbox model and models (1), (5) of Figure 1;

(b) the naming problem in the models described in Sections 8 and 4 except for the broadcast-
to-port and broadcast-to-mailbox model.

As a matter of fact the above decision problem is co-NP-complete for the election problem
in model (5) as well. We need to modify the corresponding labeling a little. Showing how
to do this is postponed to the journal version. For the election problem in model (1) a
characterization in terms of a graph labeling is still unknown.

We note that the problem that asks whether a given connected graph G has a proper
covering is equivalent to the problem that asks whether G 2+ H for some connected graph
H with |Vig| < |Vg|. A graph homomorphism f from G to H satisfying f(Ng(u)) =
Ny (f(u)) for all u € Vi is called locally surjective. If such a homomorphism exists, we
write G = H. The problem that asks whether a connected graph G has a proper connected
coloring is equivalent to the problem that asks whether G =5 H for some connected graph
H with |Vg| < |Vig|. Let C denote the set of connected graphs (up to isomorphism). In [8] it
has been proven that (C, =) and (C,2) are partial orders. Theorem 1 and 2 imply that it
is co-NP-complete to check whether a graph is minimal in (C, Z+) and (C, =), respectively.
Also the other studied graph labeling problems can easily be formulated as problems that
ask whether there exist a homomorphism f, that satisfies a few extra constraints, from
a given graph G to a smaller graph H. In the future we will study the relations between
these constrained homomorphisms more carefully.

Acknowledgements. The authors thank Jiff Fiala for the idea on prime numbers in Lemma 4.
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Appendix A

Here is the proof of Lemma 3.

Proof. We write p = ¢+ k. Then |Vg/| = 5p and p is a prime number. Hence we find that
(Ve )| = 5 or [{(Ver)| = p > 5, due to Observation 1. Let D; be a diamond. Recall that
u = eg and v = ay41 have been defined. We prove the lemma by a sequence of claims. Let
K(al) =1.

Claim 1. We may assume that £(b;) = 2.

We prove this claim as follows. Suppose £(b;) = 1. If £(¢;) = ¢(d;) = 1, then [{(Ve )| =1 < 5,
which is not possible.

Suppose £(¢;) = 1. Then £(d;) # 1. We assume £(d;) = 2. Since G'[1,2] contains a
perfect matching, we then find that £(e;—;) = £(e;) = 2. Then [{(Vg)| = 2 < 5. Hence
U(c;) # 1. Say £(c;) = 2.

If ¢(d;) = 1 then we return to the previous case. If £(d;) = 2 then f(e;) = 1 or £(e;) =
2, as otherwise G'[2,/(e;)] does not contain a perfect matching. In both cases, however,
|6(Ve)| = 2 < 5. Suppose £(d;) ¢ {1,2}, say £(d;) = 3. If L(e;—1) = 1 then G'[1] is not
regular. If £(e;_1) = ¢ with i € {2,3}, then G'[1,5 — ] does not contain a perfect matching.
Suppose £(e;—1) ¢ {1,2,3}, say £(e;j—1) = 4. Then G'[1,4] does not contain a perfect
matching. This proves Claim 1. From now on we assume that ¢(a;) = 1 and £(b;) = 2.

Claim 2. We may assume that £(c;) = 3.

We prove this claim as follows. Suppose £(¢;) = 1. Suppose £(d;) = 1. Since G'[1,2] has
a perfect matching, £(e;_1) = £(e;) = 2. Then [{(Ver)| = 2 < 5. Suppose £(d;) = 2. Then
G'[2] is 1-regular, and hence £(e;) = 1. Then |¢(Ve)| = 2 < 5. Suppose £(d;) ¢ {1,2}, say
0(d;) = 3. If L(e;) € {1,2,3}, then |[{(Ve )| = 3 < 5. We assume without loss of generality
that £(e;) = 4. Since G'[1,4] contains a perfect matching, ¢(e;—1) = 4. Then G'[1,2] does
not have a perfect matching.

Suppose £(c;) = 2. If £(d;) = 1 then we return to a previous case. If ¢(d;) = 2, then
G'[1,2] does not contain a perfect matching. Suppose £(d;) ¢ {1,2}, say ¢(d;) = 3. Since
G'[2, 3] has a perfect matching, £(e;) = 3. Then G'[1, 2] does not allow a perfect matching.
This proves the claim, and from now on we assume that £(a;) = 1, £(b;) = 2 and £(¢;) = 3.

Claim 3. We may assume that £(d;) = 4.

We prove this claim as follows. If £(d;) = 1 or £(d;) = 2 then we return to a previous case.
Suppose £(d;) = 3. Since G'[2,3] has a perfect matching, ¢(e;) = 2. Then G'[1, 3] does
not contain a perfect matching. This proves the claim, and from now on we assume that
E(az) = 1, f(bz) = 2, [(Cz) = 3, and é(dz) =4.

Claim 4. We may assume that {(e;) = 5.

We prove this claim as follows. Suppose £(e;) = 1. Since G'[1, 2] has a perfect matching,
l(aiy1) = 2. Then [{(Ve )] = 4 < 5. Suppose £(e;) = 2. Since G'[1,2] has a perfect
matching, ¢(a;+1) = 1. Then G'[2, 3] does not have a perfect matching. Suppose £(e;) = 3.
Since G'[3,4] has a perfect matching, ¢(a;11) = 4. Then G'[2,3] does not have a perfect
matching. By symmetry f(e;) # 4 either. This proves the claim, and from now on we
assume that £(a;) = 1, £(b;) = 2, £(¢;) = 3, £(d;) = 4, and l(e;) = 5.



To finish the proof of the lemma, we show that e;_; is not mapped to a color in {1,2,3,4}.
If £(e;—1) = 1, then e;—; must have neighbors colored 1,2, 3,4. This is not possible, since
degei(ei—1) = 3. If £(e;—1) = 3, then e;—; must have neighbors colored 1,2,4,5. This is
not possible, since degeqi(e;—1) = 3. By symmetry, e;_; can not be mapped to 4 either.
Suppose £(e;—1) = 2. Then the two neighbors of e;_; outside D; must be colored with 3
and 4. Then G'[1,2] does not have a perfect matching. O

Appendix B

Here is the proof of Lemma 6.

Proof. Suppose £ is a proper connected coloring of I*. We note that, by definition, two
neighbors must be mapped to different colors. We write £(q;) = 1. Let the other two
vertices of Cy, be s,t with £(s) = 2 and £(¢) = 3. If ¢; only has neighbors with color 1 or
2, then £(V7+) = {1,2, 3}, and we are done.

Suppose ¢; has a neighbor in S U S’ with a color not in {2,3}. Then all vertices of I'*
mapped to 1 have at least degree three. By a sequence of claims, we show that [£(V}+)
|Vi+|. This is then a contradiction with our assumption that £ is proper.

Claim 1. Colors 2,3 are not in £(V7-\{s,t}).

In order to obtain a contradiction let £(w) = 2 for some w € V- \{s,t}. Suppose w is
in Ve, \{p} for some p € Q U {v}, then w needs a neighbor with color 1. Recall that such a
neighbor must have degree at least three. The only candidate is p. However, w also needs a
neighbor with color 3 and this neighbor must be adjacent to a neighbor with color 1. Since
|C,| contains at least six vertices, this is not possible.

Suppose w = p for some p € Q U {v}. Let & be a neighbor of w on Cp. Then z must
have color 1 or 3. The first case is not possible since z has degree 2 < 3. The second case
is not possible, since then z has a (degree-two) neighbor y on C, with color 1.

Suppose w = S for some S € SUS’. Then w must have a neighbor p’, which is is
Q U {v}, with color 3. By symmetry of 2 and y, we can return to the previous case. This
finishes the proof of Claim 1.

Claim 2. For all p € Q U {v}, [{(Vc,)| = [Ve, |
For p = q1, this condition is satisfied. In order to obtain a contradiction let [{(Vc,)| <

Ve, | for some p € (Q\{q:1}) U {v}. We first make the following observation, which can
easily be proven by an inductive argument:

Let ay,as, ..., a; be a sequence of different colors from £(Vy+) such that, for j =1...k, the
subgraph I*[aj, ajy1] is not edgeless. Then, for any vertex r with color aq, there exists a
path P =1y, 89,...,1 from ri =1 to some vertex ry, such that £(ry) = ap forh=1,... k.

Now suppose z € V¢, \{p} has color /(p). By Claim 1, color 2 is not a color of any vertex in
C,. Since p is a cutvertex of I*, any path from z with color a; = ¢(p) to a vertex with color
aj = 2 contains p with color £(p) = ay. This is not possible due to the above observation.
By the same argument, we deduce that any other color not equal to ¢(p) appears at most
twice on C).

Suppose f(uy) = f(uz) for some wuy,us € Vg, \{p}. By the above observation with
a; = £(uq) and a = 2, the path Py from wu; to p not using us and the path P, from wus to



p not using u; must use exactly the same |Vp, | = |Vp,| colors (in exactly the same order).
We choose u; and us such that Py and P, are maximal. Let vy be the neighbor of u; not
on Pp, and let v be the neighbor of uy not on P». If vy is not equal to vy, then vy and wvs
must be mapped to the same color. This contradicts the maximality of P; and P,. Hence
v; = v9, and exactly one color appears once on Cp\{p} and all other colors appear twice
on Cp\{p}. This implies that |C,| is even. This is not possible, since |C,| is divisible by 3.
Hence, we have proven Claim 2.

Claim 3. L(Ve,) N E(Ve,) =0 for all p,q € Q U {v} with p # q.

Suppose £(Vg,) N L(Ve,) # 0 for some p,qg € QU {v} with p # q. We assume p < g,
so Cp, contains less vertices than C,. We note that due to Claim 2, both neighbors of p on
C) have a different color. Suppose these colors are the only colors the neighbors of p have.
Then |((V-)| = [Ve,|. This not possible, since the number of different colors on I* is at
least [Vo,| = 6m + 3 > [V, |, due to Claim 2. So on the neighborhood of p at least three
different colors are used. This means that any vertex with color £(p) must have degree at
least three.

Let a be a common color on C), and C,. Suppose a is not equal to £(p) already. Then
there is a path in C from a vertex  with color a to a vertex y # ¢ with color £(p), because
Cy has at least three more vertices than C),. Since we showed that a vertex with color £(p)
must have degree at least three, we find that a = ¢(q) = ¢(p) and £(Vc,) NU(Ve,) = {a}.

Let r1 be a neighbor of p on Cp, and let r» be a neighbor of 71 # p. Then £(ry) is
the color of a vertex in S U S’ and consequently £(ry) # £(p) is the color of a vertex on
Cy for some ¢' € Q U {v}. We consider Cp, and Cy instead of C, and C;, and obtain a
contradiction. This proves Claim 3.

By Claim 2 and Claim 3, all vertices in the union of all cycles C,, over p € Q U {v} are
mapped to different colors. Since any two S;, Sy € S with j # k are different subsets of @,
they can not have the same color. The same holds for any two S, S} € §'. Furthermore, all
S} are not adjacent to v, so £(S) N £(S') is empty. Hence we have found that [((SUS")| =
|S] + |S'| = 2n.

Suppose some S € SUS' has the same color as a vertex u of some C,,. Then the colors
of the neighbors of u on C), must appear on the neighbors of S, which lie on some cycle.
This violates Claim 2. Hence |£(V7+)| = |Vi+| and £ is not proper. This finishes the proof
of the lemma. O

Appendix C

Here we prove Theorem 3. Obviously, deciding if G admits a proper semi-regular coloring
is in NP. To show that the problem is NP-complete, we will use the NP-completeness of
the K4-cover problem [10], where K is the complete graph on four vertices.

Consider a graph G. We may assume that G is a 3-regular graph with |Vg| = 4¢ and
|Eg| = 6q for some g > 0; otherwise G =+ K, is false. Let Eg = {e1,ea,...,en}. For each
k € [1,m], we replace the edge e by a chain of k + 1 multi-diamonds D1(k),... Dyy1(k)
as represented in Figure 4. We denote the resulting graph by G’. The vertices of the chain
that replace the edge ej, are



Qk+1 Ak+2

Fig. 4. The chain of k + 1 multi-diamonds that replace the edge e = [u, v].

When no confusion is possible, we will note a; for a;(k), etc. The next property is useful.

Lemma 7. Let { be a semi-regular coloring of G' then for any multi-diamonds D;(k), D;(k'),
Ugi(k)) = £(g;(K") and L(ai+1(k)) = l(ajr1 (k) if and only if £(gi—1(k)) = £(g;—1(K"))
and l(a;(k)) = l(a;(K")).

Proof. Suppose £(g;(k)) = £(g;(k")) and £(ait1(k)) = £(a;11(K')). Then £({fi(k), fi(k)}) =
({f]( "), f;(k')}). Without loss of generality, we assume £(f;(k)) = €(f; (k")) and £(f;(k)) =
C(f5(K"). Conscquently, €({di(k). c;(k)}) = (({d;().e;(K)}) and ei(k) = €(e;(K)).
Then L(bi(k)) = £(bj(k")) and by symmetry, £(bi(k)) = E(b;(k’)). Hence, ((gi—1(k)) =
l(gj—1 (k")) and £(a;(k)) = £(a;(k')). In the same way we show the reverse statement. O
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By using Lemma 7, we deduce that G 2+ K, if and only if G' 25 Kj. Any witness for
G' £y Ky is a proper perfect-regular coloring of G', which is a proper semi-regular coloring
of G'. We are left to show that if G’ 2+ K is not true (we say if G does not cover K;), then
G' does not allow a proper semi-regular coloring. For this, we need a few lemmas. In the
following one, we show that if G’ does not cover K, then all the vertices in a multi-diamond
have different colors.

Lemma 8. If G' does not cover Ky, then |£(D;(k)| = 12 for any multi-diamond D;(k) and
for any semi-regular coloring ¢ of G'.

Proof. Note that ¢;, d;, e; have different colors. Let £(d;) = 1, £(e;) = 2 and £(¢;) = 3
Claim 1. We may assume that £(b;) =4 and ((b}) ¢ {€(d}), l(e})}.

Note that £(b;) # 3. We write a = ¢(f;) and b = £(g;). If £(b;) = 1, then either £(a;) = 2
and ¢(b}) = a, or {(a;) = a and ¢(b;) = 2. In the first case, ¢(c;) = b and then either
o(dy) = L(f}), or £(e}) = £(f!), which is impossible. In the second case, ¢(c}) = 3, and then
¢ must have two neighbors colored by 1, but then £(e}) = ¢(d}) = 1. This is impossible.
Hence, we can write £(b;) = 4. By symmetry, we find that £(b;) # 2. Then, by symmetry,

€(b;) ¢ {€(d;), £(e)}.

Claim 2. We may assume that £(f;) =5 and £(c}) # £(f]).

Note that £(f;) ¢ {1,2}. Suppose ((f;) = €(b;) = 4. Then {l(a;),¢(b})} = {1,2} and
((g;) = 3. Consequently, (V) = {1,2,3,4} and for each v € Vg, £(v) = 1 (respectively
L(v) =2, L(v) = 3, £(v) = 4), then {(Ng (v)) = {2, 3,4} (respectively {(Ng (v)) = {1, 3,4},



{(Ng (v)) = {1,2,4}, ¢{(Ng' (v)) = {1,2,3}). Then G' =5 K4, which is impossible. Suppose

U(f;) = U(c;) = 3. We write a = {(a;) and b = £(b}). Since f; must have a neighbor labeled

by 4, we find ¢(g;) = 4. Consequently, either £(f/) = a or £(f/) = b. In the first case,

b = ((b}) must belongs to {{(d}), £(e})} but, by Claim 1, this is not possible. In the second

case, either ((c}) = £(d}) or £(c;) = £(e}) but this is not possible. Hence we can write
(fz) = 5. By symmetry, we find that ¢(c}) # £(f}).

Claim 3. We may assume that {(a;) = 6 and 6 ¢ {€(b}), 0(c}), £(d}), €(e}), €(f])}.

13
We know that £(a;) # 4. Since a; has a neighbor labeled by 4 whereas ¢; and d; do
not have such a neighbor, we know that ¢(a;) ¢ {1,2}. Suppose £(a;) € {3,5}. Then
0(b}) € {1,2}; without loss of generality we say that ¢(b;) = 1. But in this case, £(b;) =4
must appear in £(Ng (d;)), which is impossible. Hence we can write £(a;) = 6. By symmetry,
6 & {£(b;), £(cy), €(dy), (e;), £(f)}-
Claim 4. We may assume that £(b}) = T7.

We know that £(b}) ¢ {1,2,3,4,6}. Suppose £(b
{1,2,4,6} but this is 1mp0551ble since degg (b)) =

Claim 5. We may assume that £(c}) = 8.

We note that ¢(c}) ¢ {1,2,3,4,6,7}. Suppose that ¢(c;) = 5. Then £(¢g;) = 7, and
L({d},e;}) = {1,2}. Consequently, £(f]) = 3, but this is impossible since 7 ¢ ¢(Ng:(c;)).
Claim 6. We may assume that £(d}) = 9 and ((e}) = 10.

We note that £(d}) ¢ {1,2,3,4,6,7,8}. Suppose that £(d}) = 5, then £(e}) € {1,2} but this
is impossible since 8 ¢ Z(NG/ (d )) U {(Ng (e;)). We can write ¢(d;) = 9. By symmetry and
since £(e}) # ((d}), we find that ¢(e}) ¢ {1,2,3,4,5,6,7,8,9}.

Claim 7. We may assume that £(f]) = 11.

We know that ¢(f]) ¢ {1,2,3,4,6,7,8,9,10}. Suppose that £(f)
must contain {1,2,9,10} but this is impossible since dege/ (f]) = 3.

Claim 8. We may assume that {(g}) = 12.
We know that ¢(g}) ¢ {1,2,3,4,5,7,8,9,10,11}. Suppose that ¢(f/) = 6. Then {(N¢g (g}))

must contain {4,5,7,11} but this is impossible since deg(g;) = 3. This ends the proof of
the lemma. O

1) = 5. Then ¢(N¢/(b})) must contain
3. Hence, we can write £(b}) = 7.

= 5. Then ¢(N¢/(f]))

In the following lemma, we show that if G’ does not cover K4, a color that appears on
a vertex g;(k) cannot appear on another multi-diamond D; (k') elsewhere than in g;(k').

Lemma 9. If G' does not cover K4, then for any semi-reqular coloring ¢ of G', for any
multi-diamonds D;(k) and D;(k'), for each u € D;(k) \ {gi(k)}, €(u) # £(g;(k')).

Proof. For any vertex u € D;(k) \ {gi(k)}, there exists two vertices v,w € Ng (u) such
that [v,w] € Egr.

Suppose that ¢(u) = ¢(g;(K')). Then {£(v), £(w)} 0 {E(;(K"). €(£1(K))} # 0 without
loss of generality, we say that £(v) = ¢(f;(k")). Then {(w) € {{(d;(K')),l(e;(k"))}; without
loss of generality, we say that ¢(w) = £(d;(k')).

Consequentl, (5;(K)) = f(u) € NG (dj(0)) = (K65 (K e (K. (5K}, b

this is impossible from Lemma O



In the following lemma, we show that if G’ does not cover K4, a color that appears on
a vertex a;(k) cannot appear on another multi-diamond D, (k') elsewhere than in a;(k').

Lemma 10. If G’ does not cover K4, then for any semi-reqular coloring £ of G', for any
multi-diamonds D;(k) and D;(k'), for each u € D;(k) \ {a;(k)}, (u) # (a;(k")).

Proof. From Lemma 8, one can suppose that £(d;(k')) = 1,€(e;(k')) = 2,{(c;(k")) =
3,00;()) = 4,6(f;(K) = 5,0a;(K)) = 6,(B3(K)) = T,0c(k)) = 8, E(d(K)) =
9,0(e; (k') = 10,£(fj(k")) = 11,£(g;(k')) = 12, as represented on the left of Figure 5.
We will also note a and b for ¢(g;—1 (k")) and €(a;+1(k')).

Fig. 5. The two multi-diamonds we consider for the proof of Lemma 10.

We will note a; for a;(k), etc. We just have to show that for each v € {b;,¢;,d;, fi,9i},
£(v) # 6. From Lemma 9, we already know that £(g;) # 6.

Suppose that €(c;) = 6 (resp. £(f;) = 6). Then {¢(d;),l(e;)} N {4, 7} # . Without loss
of generality, we say that £(d;) = 4. Then ¢; (resp. f;) and d; must both have a neighbor
labeled by 7. From Lemma 8, it implies that £(e;) = 7. Since e; must also have a neighbor
labeled by 8, it implies that £(f;) = 8 (resp. £(¢;) = 8), but this is impossible since f; (resp
¢;) cannot have a neighbor labeled by 4.

Suppose that ¢(d;) = 6. Then {€(c;),¢(f:)} N {4,7} # 0. Without loss of generality,
suppose that f(c;) = 4 (resp. £(f;) = 4). Then ¢; (resp. f;) and d; must both have a
neighbor labeled by 7. From Lemma 8, it implies that ¢(e;) = 7. Since e; must also have
a neighbor labeled by 8, it implies that £(f;) = 8 (resp. £(¢;) = 8), but this is impossible
since f; (resp. ¢;) cannot have a neighbor labeled by 6.

Suppose that £(b;) = 6. If j > 2, b; must have a neighbor labeled by a = €(g;—1(k")),
but this is impossible from Lemma 9. We will now suppose that j = 1. From Lemma
8, (({a;,b;}) = {4,7}. Without loss of generality, we say that f(a;) = 7 and £(b}) = 4.
Consequently, ((c}) = 3, (({d},e}}) = {1,2}, £(f!) = 5 and £(g;) = 12. Consequently, either
(f;) = b, or £(f;) = 11. In the first case, since j = 1, b = £(a2(k')) and we already know
that it is impossible. In the second case, if £(f;) = 11, then £({d;,e;}) = {9,10} and then
{(c;) = 8, but this is impossible since ¢; cannot have a neighbor labeled by 6. ad

In the following lemma, we show that if G’ does not cover Ky, then a vertex u that
does not belong to any multi-diamond (i.e. a vertex that was in the graph G) cannot have
the same color as a vertex that belongs to a multi-diamond.



Lemma 11. If G’ does not cover K4, then for any semi-reqular coloring £ of G', for any
multi-diamond D;(k), for any v € D;(k) and for any u € Vi such that Vk,Vi,u ¢ D;(k),
we have ((u) # £(v).

Proof. Consider such a vertex u. In G', for any u’ € Ng/(u), there exists k' such that either
u' = ay (k') or ' = gr11(k'). Consider any vertex v of any multi-diamond D;(k). There
exists v/ € Ng/(v) such that v' € D;(k) \ {a;(k),gi(k)}. If £(u) = £(v), then there exists
a vertex u' € Ngi(u) such that £(v') = £(u'), but this is impossible from Lemmas 9 and
10. a

In the following lemma, we show that if G’ does not cover Ky, any semi-regular coloring
¢ of G' is a perfect-regular coloring of G'.

Lemma 12. IfG' does not cover Ky, for any semi-reqular coloring £ of G', for each vertex
v € Var, [{(Ng(v))] = [Ner (v)]-

Proof. We first consider vertices that belong to some multi-diamond. Consider a multi-
diamond D;(k) for some i, k. From Lemma 8, we already know that |¢(Ng:(v))| = |Ng (v)]
if v ¢ {a;(k), g;(k)}. From Lemmas 9, 10 and 11, we also know that |{(Ng:(v))| = |Ng (v)]
if v € {a;(k),g:(k)}.

We now consider a vertex u that does not belong to any multi-diamond D, (k). Suppose
that there exist two distinct vertices v,v" € Ngs(u) such that £(v) = £(v'). From Lemmas 9
and 10, we know that either v = aq (k) and v’ = a1 (k') or v = g1 (k) and v’ = ggr11 (k') for
some k, k'. By construction of G', we know that k # k'; without loss of generality, we say
that k& < k'. If we apply Lemma 7 k + 1 times, then £(agy2(k)) = (a2 (k') (respectively
(go(k)) = €(gr—x (k")) for the second case) but from Lemma 11, this is impossible since
ap+2 (k") (respectively gp 1 (k') belongs to some multi-diamond but agy2(k) (respectively
go(k)) does not. O

In the following lemma, we show that if G’ does not cover Ky, any semi-regular coloring
of G' needs |V | colors.

Lemma 13. If G' does not cover Ky, any semi-regular coloring € of G' is not proper.

Proof. Consider a vertex u that does not belong to any multi-diamond D;(k). Suppose
that there exists u’ € Vi such that £(u) = {(u'). From Lemma 11, we already know that
u' does not either belong to any multi-diamond.

There exists v in Ng/(u) and v' in Ng/(u') such that £(v) = £(v'). From Lemmas 9 and
10, we know that either v = ay(k) and v' = a1(k") or v = ggr1(k) and v' = g1 (k') for
some k, k'. By construction of G', we know that k& # k' and then with the same proof as
for Lemma 12, one can show that there is a contradiction.

Consequently, |/~ (¢(u))| = 1. From Lemma 12 it is easy to see that / is a pseudo-regular
labeling. Then we know from Observation 1 that for any vertex v € Vg1, [(71(£(v))| = 1.

Consequently |{(V/)| = [V | and £ is not a proper semi-regular coloring. O

B

Summarizing, G 2 K, if and only if G' & K, if and only if G’ allows a proper
semi-regular coloring. Therefore, we have proven Theorem 3.



