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DEJEAN’S CONJECTURE AND LETTER FREQUENCY

Jérémie Chalopin1 and Pascal Ochem2

Abstract. We prove two cases of a strong version of Dejean’s conjec-
ture involving extremal letter frequencies. The results are that there

exist an infinite
“

5
4

+
”
-free word over a 5 letter alphabet with letter

frequency 1
6

and an infinite
“

6
5

+
”
-free word over a 6 letter alphabet

with letter frequency 1
5
.
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1. Introduction

We consider the extremal frequencies of a letter in factorial languages defined
by an alphabet size and a set of forbidden repetitions. Given such a language
L, we denote by fmin (resp. fmax) the minimal (resp. maximal) letter frequency
in an infinite word that belongs to L. Extremal letter frequencies have been
mainly studied in [5,7,10,11]. Let Σi denote the i-letter alphabet {0, 1, . . . , i− 1}.
We consider here the frequency of the letter 0. Let n(v) denote the number of
occurrences of 0 in the finite word v. So the letter frequency in v is n(v)

|v| . We say
that the letter frequency in the infinite word w is q if for every ε > 0, there exists
an integer nε such that for every finite factor v of w of length at least nε, we have∣∣∣n(v)
|v| − q

∣∣∣ < ε.
The repetition threshold is the least exponent α = α(k) such that there exists an

infinite (α+)-free word over Σk. Dejean proved that α(3) = 7
4 . She also conjectured

that α(4) = 7
5 and α(k) = k

k−1 for k ≥ 5. This conjecture is now “almost” solved:
Pansiot [9] proved that α(4) = 7

5 and Moulin-Ollagnier [6] proved that Dejean’s
conjecture holds for 5 ≤ k ≤ 11. Recently, Currie and Mohammad-Noori [3] also

1 LIF, CNRS
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proved the cases 12 ≤ k ≤ 14, and Carpi [1] settled the cases k ≥ 33. For more
information, see [2].

In a previous paper, we proposed the following conjecture which implies De-
jean’s conjecture.

Conjecture 1.1. [7]

(1) For every k ≥ 5, there exists an infinite
(

k
k−1

+
)
-free word over Σk with

letter frequency 1
k+1 .

(2) For every k ≥ 6, there exists an infinite
(

k
k−1

+
)
-free word over Σk with

letter frequency 1
k−1 .

It is easy to see that the values 1
k+1 and 1

k−1 in Conjecture 1.1 are best possible.

For
(

5
4

+
)
-free words over Σ5, we obtained fmax < 103

440 = 0.23409090 · · · < 1
4 [7].

That is why Conjecture 1.1.2 is stated with k ≥ 6.
In this paper, we prove the first case of each part of Conjecture 1.1:

Theorem 1.2.
(1) There exists an infinite

(
5
4

+
)
-free word over Σ5 with letter frequency 1

6 .

(2) There exists an infinite
(

6
5

+
)
-free word over Σ6 with letter frequency 1

5 .

The C++ sources of the programs and the morphisms used in this paper are
available at: http://www.lri.fr/~ochem/morphisms/.

2. Structure and encoding

In the following, a k-word will denote a
(

k
k−1

+
)
-free word w over Σk, for

k ≥ 5. We easily check that in a k-word, the distance between two consecutive
occurrences of the same letter is either k − 1, k, or k + 1. This implies that if
there exists an infinite k-word with letter frequency 1

k+1 (resp. 1
k−1 ), then there

exists an infinite k-word such that the distance between consecutive occurrences
of 0 is always (k + 1) (resp. (k − 1)). Notice that 0’s cannot be regularly spaced
if the letter frequency is 1

k . Such k-words in which 0’s are regularly spaced are
the catenation of factors of size k + 1 (resp. k − 1) of the form 0π1 . . . πk−1π1

(resp. 0π1 . . . πk−2), where π is a permutation of the elements [1, . . . , k − 1]. Let
Πk denote the set of permutations of [1, . . . , k − 1]. The k-word w can thus be
encoded by the word p ∈ Π∗

k consisting in the catenation of the permutations that
correspond to the factors of size k + 1 (resp. k − 1) in w.

Let p = p0p1p2 . . . be the code of w and we suppose that p0 is the identity. We
now encode p by the word c = c0c1c2 · · · ∈ Π∗

k such that pi+1 = ci(pi). Notice that
whereas any permutation in Πk may appear in p, only a small subset S ⊂ Πk of
permutation can be used as letters in c. This is because the latter permutations
rule the transition between two consecutive factors wi and wi+1 in w, and then
wiwi+1 has to be

(
k

k−1

+
)
-free.
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In the following, we will call coding word a word over S∗ consisting of the
transition permutations for a k-word. Moreover, if the transition corresponding to
a coding word c is the identity of Πk, we will say that c is an identity.

Remark 2.1. If a coding word c is an identity, then every conjugate (cyclic
shift) of c is also an identity.

3. Proof of main result

Let us consider the possible transitions for 5-words with letter frequency 1
6 .

There are exactly two of them:
• 012341024312 corresponds to the transition permutation 2431 (noted 0).
• 012341032143 corresponds to the transition permutation 3214 (noted 1).

There are also exactly two possible transitions for 6-words with letter frequency 1
5 :

• 0123405132 corresponds to the transition permutation 51324 (noted 0).
• 0123405213 corresponds to the transition permutation 52134 (noted 1).

In both cases, we have |S| = 2 and we construct a suitable infinite code c as
the fixed point of the following binary endomorphisms:

• For 5-words with letter frequency 1
6 :

0 7→ 010010010100101001001001010100101001001001010010101001001001010
1 7→ 100101001001010100101001001010100101001001001010010010010100101

• For 6-words with letter frequency 1
5 :

0 7→ 0010010100111000110100010
1 7→ 1000100111000100110100011

These morphisms m satisfy the following properties:

(1) m is q-uniform, that is, for all i ∈ Σ2, we have |m(i)| = q.
(2) m is synchronizing, which means that for any a, b, c ∈ Σ2 and s, r ∈ Σ∗

2, if
m(ab) = rm(c)s, then either r = ε and a = c or s = ε and b = c.

(3) for all i ∈ Σ2, we have m(i) = ifi and the factor if is an identity (thus fi
is also an identity by Remark 2.1).

Let Φ denote the decoding function. In the case of 6-words, we thus have
Φ(0) = 0123405132, Φ(1) = 0123405213 and Φ(c = mω(0)) = w. We have checked
that for every factor x of c of size at most 2kq, Φ(x) is

(
k

k−1

+
)
-free.

Let f be a smallest repetition in w of exponent strictly greater than k
k−1 . This

repetition in w implies that there is a repetition r = is in c whose prefix i is an
identity. Since |s| ≥ 2q, s contains a full m-image. So |i| and |s| are multiples
of q because m is synchronizing. By property 3 and Remark 2.1, we can assume
without loss of generality that |i| starts at the beginning of an m-image. Then our
repetition is of the form r = is = m(i′)m(s′) = m(i′s′) = m(r′). By property 3, r′

is a repetition whose prefix i′ is an identity, and thus the factor Φ(r′) is a repetition
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that appears in w. The exponent of Φ(r′) is (k±1)(|r′|+1)
(k±1)|i′| , the exponent of f is less

than (k±1)(|r|+3)
(k±1)|i| = (k±1)(q|r′|+3)

(k±1)q|i′| , and we have (k±1)(|r′|+1)
(k±1)|i′| ≥ (k±1)(q|r′|+3)

(k±1)q|i′| if q ≥ 3.
This is a contradiction because the exponent of Φ(r′) is greater than the exponent
of f and Φ(r′) is strictly smaller than f .

4. Concluding remarks

Theorem 1.2 shows the existence of two types of infinite words, but does not
prove that there exist exponentially many such words (which is probably true).
On the other hand, the growth rate of these words is significantly smaller than
those of

(
k

k−1

+
)
-free words. For example, the growth rate of 5-words is about

1.159 [8], whereas 1.048 is a rough upper bound on the growth rate of 5-words
with letter frequency 1

6 .
Other cases of Conjecture 1.1 might be harder to settle. For 6-words with letter

frequency 1
7 , we have |S| = 3, and it is impossible to construct an infinite code

using only two of these three transition permutations. We have not been able to
find a Σ∗

3 → Σ∗
3 morphism with suitable properties for them.
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