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Abstract. We examine the power and limitations of the weakest vertex relabelling system which
allows to change a label of a vertex in function of its own label and of the label of one of its neigh-
bours. We characterize the graphs for which two important distributed algorithmic problems are
solvable in this model : naming and election.
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1. Introduction

Various models of local computations on graphs provide an elementary and convenient framework to
study basic algorithmic problems of distributed computing. In these models we have at our disposal only
bare synchronisation primitives and the corresponding local computation steps. It turns out that for many
basic algorithmic problems arising in distributed computing such simple models are sufficient, they allow
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either to formulate an algorithm solving the problem or to show formally that the problem is not solvable
in the given context.

The relative simplicity of the local graph computation models facilitates the conception of algorithms
and suitable combinatorial structures which subsequentlycan be translated and applied in a more realistic
but also more involved setting. Such models give us an insight which is difficult to obtain in more
elaborate models.

Local graph computations often allow to delimit precisely the borderline between positive and neg-
ative results in distributed computing. It is clear that thepossibility of solving a particular problem
for a given class of networks depends on the power of the synchronisation primitives and on the initial
knowledge available to the computational agents. Better comprehension of all these factors enhances our
understanding of basic distributed algorithmic problems.

Another point of view is to consider local graph computationas a kind of a higher-level language for
designing algorithms in asynchronous distributed systemsand proving their correctness.

As it is well established in the domain of distributed computing, some algorithmic problems like:
election, naming, termination detection, network topology recognition constitute basic building blocks
for many other algorithms. Yamashita and Kameda [19, 20], Boldi et al. [3], Mazurkiewicz [15, 16],
Godard et al. [11, 12], Chalopin et al. [4, 5, 6] characterizegraphs in which election or naming are
possible for different models of distributed computations.

The local graph computation model that we examine in our paper is the most elementary one and
all the other local computation models considered in the papers cited above [4, 5, 15, 16] can simulate
it trivially. In fact this is the weakest possible model allowing any synchronisation at all. In this model
an elementary computation step modifies the state of one network vertex and this modification depends
on its current state and on the state of one of its neighbours.We focus our attention on two important
algorithmic problems: the naming and the election problems. Although these two problems are often
equivalent in other models this is not the case in our model.

To characterize the graphs where we can solve both problems,we find suitable graph homomor-
phisms that enable us to formulate conveniently the necessary conditions. This step is similar to An-
gluin [1], but in our case the relevant homomorphisms are graph submersions. The presented conditions
turn out to be also sufficient: algorithms, inspired by Mazurkiewicz [15], are given, that enable us to
solve the naming and the election problems for corresponding graphs.

1.1. Our Model

A network of processors will be represented as a connected undirected graphG = (V (G), E(G)) with-
out self-loop and multiple edges. As usual the vertices represent processors and edges direct communica-
tion links. The state of each processor is represented by thelabelλ(v) of the corresponding vertexv. An
elementary computation step will be represented by relabelling rules of the form given schematically in
Figure 1. If in a graphG there is a vertex labelledX with a neighbour labelledY then applying this rule
we replaceX by a new labelX ′. The labels of all the other vertices are irrelevant for sucha computation
step and remain unchanged. The vertex ofG changing the label will be calledactive (and filled with
black in figures), the neighbour vertex used to match the ruleis calledpassive(and marked as unfilled in
figures). All the other vertices ofG not participating in such elementary relabelling step are called idle.
The computations using uniquely this type of relabelling rules are called in our papercellular edge local
computations. Thus an algorithm in our model is simply given by some (possibly infinite but always
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Figure 1. Graphical form of a rule for cellular edge local computations.

recursive) set of rules of the type presented in Figure 1. A run of the algorithm consists in applying the
relabelling rules specified by the algorithm until no rule isapplicable, which terminates the execution.
The relabelling rules are applied asynchronously and in anyorder, which means that given the initial
labelling usually many different runs are possible. The formal definitions of the model follow in Section
2 and Section 3.

1.2. Election, Naming and Enumeration

The election problem is one of the paradigms of the theory of distributed computing. It was first posed by
LeLann [13]. A distributed algorithm solves the election problem if it always terminates and in the final
configuration exactly one processor is marked aselectedand all the other processors arenon-elected.
Moreover, it is supposed that once a processor becomeselectedor non-electedthen it remains in such
a state until the end of the algorithm. Elections constitutea building block of many other distributed
algorithms since the elected vertex can be subsequently used to make some centralized decisions, to
initialize some other activity, to centralize or to broadcast information etc. The generic conditions listed
above, required for an election algorithm, have a direct translation in our model: we are looking for a
relabelling system where each run terminates with exactly one vertex labelledelected and all the other
vertices labelled asnon-elected. Again we require that no rule allows to change either anelectedor a
non-electedlabel.

The aim of a naming algorithm is to arrive at a final configuration where all processors have unique
identities. Again this is an essential prerequisite to manyother distributed algorithms which work cor-
rectly only under the assumption that all processors can be unambiguously identified. The enumeration
problem is a variant of the naming problem. The aim of a distributed enumeration algorithm is to at-
tribute to each network vertex a unique integer in such a way that this yields a bijection between the set
V (G) of vertices and{1, 2, . . . , |V (G)|}.

In our setting, a distributed algorithm terminates if the network is in such a state that no relabelling
rule can be applied, but it does not mean that the processes are aware that the computation has terminated.
We say that we can solve a problem with termination detectionon a graphG if there exists an algorithm
A that solves the problem onG such that in the final state, at least one vertex is aware that no relabelling
rule can be applied in the graph.

The naming and the election problems are often equivalent for various computational models [4, 5,
6, 15, 16, 19, 20], however this is not the case for our model. It turns out that in our model the class of
graphs for which naming is solvable admits a simple and elegant characterization; unfortunately a similar
characterization for the election problem is quite involved.

1.3. Overview of our Results

Under the model of cellular edge local computations, we present a complete characterization of labelled
graphs for which naming and election are possible. Both problems are solved constructively, we present
naming and election algorithms that work correctly for all labelled graphs where these problems are
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solvable. Our naming algorithm is a nice adaptation of the algorithm of Mazurkiewicz [15], whereas our
election algorithm uses also an adaptation of the algorithmof Szymanski et al. [17] which is usually
used to detect the termination of an algorithm in the messagepassing model.

1.4. Related Works

The election problem was already studied in a great variety of models [2, 14, 18]. The proposed algo-
rithms depend on the type of the basic computation steps, they work correctly only for a particular type
of network topology (tree, grid, torus, ring with a known prime number of vertices etc.) or under the
assumption that some initial extra knowledge is available to processors.

Various local computation models studied in the literatureare characterized by the relabelling rules
that they use. Figure 2 presents schematically such rules and their hierarchy in terms of the computational
power. Characterizations of graphs where naming and election can be solved exist for each of these
models, except for the model(1) that is studied in our paper.

Yamashita and Kameda [19] consider the model where, in each step, one of the vertices, depending
on its current label, either changes its state, or sends/receives a message via one of its ports. They proved
that there exists an election algorithm forG if and only if the symmetricity ofG is equal to1, where the
symmetricity depends on the number of vertices having the same view. The view from a vertexv of a
graphG is an infinite labelled tree rooted inv obtained by considering all labelled walks inG starting
from v. This message passing model is strictly less powerful than the model(6) in Figure 2 but its com-
putational power is not comparable with the computational power of the models(1), (2), (3), (4), (5)
in Figure 2. In [20], Yamashita and Kameda study the importance of the port labelling for the election
problem in this message passing model. From the results of Boldi et al. [3], one can obtain different char-
acterizations for the different models considered in [20],based on fibrations and coverings of directed
graphs.

In [6], Chalopin and Métivier consider also the message passing model where there exists a port
numbering, and they give an encoding of the basic events by means of local computations on arcs. This
encoding allows to give a new characterization of networks for which there exists an election algorithm
in the message passing model. This characterization is based on symmetric coverings of directed graphs.

Mazurkiewicz [15] considers the asynchronous computationmodel where in one computation step
labels are modified on a subgraph consisting of a node and its neighbours, according to rules depending
on this subgraph only. This is the model(7) of Figure 2. Mazurkiewicz’s characterization of the graphs
where enumeration/election are possible is based on the notion of unambiguous graphs and may be
formulated equivalently using coverings [10]. He gives a nice and simple enumeration algorithm for the
graphs that are minimal for the covering relation, i.e., which can cover only themselves.

Boldi et al. [3] consider a model where the network is a directed multigraphG. They consider models
where the arcs can be labelled or not. When a processor is activated, it changes its state depending on
its previous state and on the states of its ingoing neighbours; the outgoing neighbours do not participate
in such an elementary computation step. They investigate two modes of computation: synchronous and
asynchronous while in our paper only asynchronous computations are examined. In their study, they
use fibrations which are generalizations of coverings. Boldi et al. [3] prove that there exists an election
algorithm in their model for a graphG if and only if G is not properly fibred over another graphH (for
the asynchronous case, they only consider discrete fibrations). To obtain this characterization, they use
the same mechanism as Yamashita and Kameda: each node computes its own view and next the node
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Figure 2. A hierarchy between the different models studied by Boldi et al., Chalopin et al. and Mazurkiewicz.
The black vertices are active : their labels can change when the rule is applied. The white vertices are passive :
their labels enable to apply the relabelling rule but they donot change. In the models where the edges are marked,
the edges are labelled and the relabelling rules can modify their labels, whereas it is not the case for the other
models. The inclusionr1 ( r2 between the rulesr1 andr2 means thatr2 can simulater1 but not vice versa, i.e.,
r2 has a greater computational power thanr1. The model(3) and(4) have the same computational power, and
this is denoted by the symbol≡. The computational power of the model(5) is incomparable with the power of the
models(2), (3) and(4).

with the weakest view is elected. In the different models they consider, naming and election are not
always equivalent. From the work of Boldi et al., we can easily deduce characterizations of the graphs
where election is possible for the models(5) and(6) of Figure 2.

In [5], the models(3), (4) and(6) of Figure 2 were examined. Note that, contrary to the model we
examine in the present paper, all these models allow edge labelling. In [5], it is shown that the models
(3) and(4) are equivalent in terms of computational power but(6) has a strictly greater power. It turns
out that for all these three models, election and naming overa given graphG are equivalent. In [5], it is
proved that for the models(3), (4) and(6) the election and naming problems can be solved on a graphG
if and only if G is not a covering of any graphH not isomorphic toG, whereH can have multiple edges
but no self-loop. We should note that the model(4) was also examined by Mazurkiewicz [16] who gives
an equivalent characterization based on equivalence relations over graph vertices and edges. Let us note
by the way that although the model studied in the present paper and the model(3) seem to be very close,
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the graphs for which the naming problem and the election problem can be solved are very different for
both models. The intuitive reason is that if we allow to labelthe edges as in(3) then each processor can
subsequently consistently identify the neighbours. On theother hand, in the model(1) that we examine
here, where edges are not labelled, a vertex can never know ifit synchronizes with the same neighbour
as previously or with another one.

In [4], the model(2) of Figure 2 is studied: in one computation step, two neighbours modify simul-
taneously their labels according only to their states (the edges are not labelled). In this model, the graphs
admitting both naming and election algorithms are pseudo-covering-minimal graphs. (A graphG is a
pseudo-covering ofH if there exists a homomorphismϕ from G onto H and a partial graphG′ of G
such thatG′ is a covering ofH via the restriction ofϕ to G′).

The study of local computations uses various locally constrained graph homomorphisms. Some
properties and a complexity classification may be found in [8, 9].

The paper is organised as follows. Section 2 reviews the basic definitions of labelled graphs and
submersions. In Section 3 we give the definition of cellular edge local computations as well as the
relation between such computations and submersions. In Section 4 we prove that there is no naming
(enumeration) algorithm for graphs which are not submersion-minimal. Then we give a naming (an
enumeration) algorithm for submersion-minimal graphs. InSection 5 we give a graph for which the
election problem can be solved but not the enumeration problem. Then, as in Section 4, we characterize
graphs which admit an election algorithm. Section 6 presents some examples of graphs that admit naming
or election algorithms. Section 7 (conclusion) presents some open problems.

A preliminary version of this paper has been published in [7].

2. Preliminaries

2.1. Graphs and Labelled Graphs

We consider finite, undirected, connected graphsG = (V (G), E(G)) with verticesV (G) and edges
E(G) ⊂ V (G) × V (G) without multiple edges or self-loop. Two verticesu and v are said to be
adjacent or neighbours if{u, v} is an edge ofG (thusu andv are necessarily distinct since no self-loop
is admitted) andNG(v) will stand for the set of neighbours ofv. An edgee is incident to a vertexv if
v ∈ e andIG(v) will stand for the set of all the edges incident tov. The degree of a vertexv, denoted
dG(v), is the number of edges incident withv.

A path of lengthp is a sequence(v0, v1, v2, . . . , vp) of vertices such that for every0 ≤ i < p,
{vi, vi+1} ∈ E(G). This path is simple if all vertices are pairwise distinct.

A homomorphism between graphsG andH is a mappingγ : V (G) → V (H) such that if{u, v} ∈
E(G) then{γ(u), γ(v)} ∈ E(H). Since our graphs do not have self-loop, this implies thatγ(u) 6=
γ(v) wheneveru andv are adjacent. We say thatγ is an isomorphism ifγ is bijective andγ−1 is a
homomorphism. A graphH is a subgraph ofG, notedH ⊆ G, if V (H) ⊆ V (G) andE(H) ⊆ E(G).
An occurrence ofH in G is an isomorphismγ betweenH and a subgraphH ′ of G.

Throughout the paper we will consider graphs with vertices labelled with labels from a recursive
label setL. A graph labelled overL is an ordered pairG = (G,λ), whereG is the underlying unlabelled
graph andλ : V (G) → L is the (vertex) labelling function.

Let H be a subgraph ofG andλH the restriction of a labellingλ : V (G) → L to V (H). Then
the labelled graphH = (H,λH) is called a subgraph ofG = (G,λ); we note this fact byH ⊆ G. A
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homomorphism of labelled graphs is just a labelling-preserving homomorphism of underlying unlabelled
graphs.

For any finite setS, |S| denotes the cardinality ofS while Pfin(S) is the set of finite subsets ofS.
For any integerq, we denote by[1, q] the set of integers{1, 2, . . . , q}.

2.2. Submersions

Graph submersions, i.e., locally surjective graph homomorphisms, are the basic tool allowing to formu-
late necessary conditions for naming and election problemsin our paper:

Definition 2.1. A graphG is a submersion of a graphH via a homomorphismγ : G → H if for each
v ∈ V (G), γ is surjective on the neighbourhoodNG(v), that isγ(NG(v)) = NH(γ(v)). The graphG
is aproper submersionof H if γ is not an isomorphism. Finally,G is submersion-minimalif G is not a
proper submersion of any other graph. Naturally, submersions of labelled graphs are just submersions of
underlying unlabelled graphs preserving the labelling.

1

2

3 3

G 1

2

3

H

γ

Figure 3. The labelled graphG is a submersion ofH via the mappingγ which maps each vertex ofG labelledi
to the unique vertex ofH with the same labeli. This submersion is proper and the graphH is itself submersion-
minimal.

The following elementary proposition characterizes submersion-minimal graphs as the graphsG for
which there does not exist any colouring function using lessthan |V (G)| colours and satisfying some
additional properties: two vertices having distinct initial labels have distinct colors, two adjacent vertices
have distinct colors, two vertices having the same color “see” the same colors in their neighbourhood.

Proposition 2.1. A graphG = (G,λ) is submersion-minimal if and only if there is no colouring func-
tion f from V (G) to a set of coloursC with |C| < |V (G)| satisfying the following conditions:

• ∀v, v′ ∈ V (G), f(v) = f(v′) =⇒ λ(v) = λ(v′);

• ∀v ∈ V (G),∀v′ ∈ NG(v), f(v) 6= f(v′);

• ∀v, v′ ∈ V (G) such thatf(v) = f(v′),∀w ∈ NG(v),∃w′ ∈ NG(v′) : f(w) = f(w′).

Example 2.1. A complete graphG cannot be coloured with less than|V (G)| colours and therefore is
submersion-minimal.

3. Cellular Edge Local Computations

In this section, after giving the formal definition of cellular edge local computations, we study their
relations with submersions.
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3.1. Definitions

Let us recall that informally cellular edge local computations are computations that are realized by means
of the rules of the form presented in Figure 1: at each step thelabel of one vertex is modified according
to a rule depending on the label of this vertex and the label ofone of its neighbours. The more formal
framework is the following.

Let GL be the class ofL-labelled graphs. Then any binary relationR ⊆ GL × GL onGL is called a
graph rewriting relation. We assume thatR is closed under isomorphism, i.e., ifG R G

′ andH ≃ G

thenH R H
′ for some labelled graphH′ ≃ G

′. In the remainder of the paperR∗ stands for the reflexive
and transitive closure ofR . The labelled graphG is R-irreducible (or just irreducible ifR is fixed) if
there is noG′ such thatG R G

′.

Definition 3.1. LetR ⊆ GL × GL be a graph rewriting relation.

1. R is a relabelling relation if whenever two labelled graphs are in relation then the underlying
unlabelled graphs are equal, i.e.,:

G R H implies thatG = H.

2. R is cellular if it can only modify the label of only one vertex, i.e.,(G,λ) R (G,λ′) implies that
there exists a vertexv ∈ V (G) such that

λ(x) = λ′(x) for everyx 6= v.

The next definition states that a cellular local relabellingrelationR is edge locally generatedif the
applicability of any relabelling depends only on the labelsof the vertices incident to an edge.

Definition 3.2. Let R be a relabelling relation. ThenR is cellular edge locally generatedif it is cel-
lular and the following is satisfied: for all labelled graphs(G,λ), (G,λ′), (H, η), (H, η′) and all edges
{v1, v2} ∈ E(G) and{w1, w2} ∈ E(H), the following three conditions:

1. λ(v1) = η(w1), λ(v2) = η(w2) andλ′(v1) = η′(w1),

2. λ(v) = λ′(v), for all v 6= v1,

3. η(w) = η′(w), for all w 6= w1,

imply that(G,λ) R (G,λ′) if and only if (H, η) R (H, η′).

We only consider recursive relabelling relations. The purpose of all assumptions about recursiveness
done throughout the paper is to have “reasonable” objects w.r.t. the computational power. By definition,
cellular edge local computations on graphsare computations on graphs corresponding to cellular edge
locally generated relabelling relations.

The relationR is callednoetherianon a graphG if there is no infinite relabelling sequenceG0 R
G1 R . . . , with G0 = G. The relationR is noetherian on a set of graphs if it is noetherian on each
graph of the set. Finally, the relationR is called noetherian if it is noetherian on each graph. Clearly,
noetherian relations code always terminating algorithms.
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A cellular edge locally generated relabelling relation canbe described by a recursive set of relabelling
rules of the type represented in Figure 1. And equivalently,such a set of rules induces a cellular edge
locally generated relabelling relation. Thus, slightly abusing the notation,R will stand both for a set of
rules and the induced relabelling relation over labelled graphs.

3.2. Submersions and Cellular Edge Local Computations

We now present the fundamental lemma connecting submersions and cellular edge local computations.
This is a counterpart of the lifting lemma of Angluin [1] adapted to submersions.

Lemma 3.1. (Lifting Lemma)
Let R be a cellular edge locally generated relabelling relation and let G be a submersion ofH. If
H R∗

H
′ then there existsG′ such thatG R∗

G
′ andG

′ is a submersion ofH′.

Proof:
It is sufficient to prove the lemma for one relabelling step. Let (G,λ), (H, ν) be two graphs such that
(G,λ) is a submersion of(H, ν) via ϕ. Suppose that the relabelling step is applied to the active vertex
w ∈ V (H) and to the passive vertexw′ ∈ V (H) yielding a new labellingν ′ onH.

For every vertexv ∈ ϕ−1(w), since the homomorphismϕ is locally surjective, there existsv′ ∈
ϕ−1(w′) ∩ NG(v). Since the vertices ofϕ−1(w) are pairwise non-adjacent,v′ /∈ ϕ−1(w) and therefore,
we can apply the rule to every vertexv ∈ ϕ−1(w). This yields a labellingλ′ onG such thatϕ : (G,λ′) →
(H, ν ′) remains a submersion. Note that we have simulated here one step relabelling inH by several
relabellings inG that use the same rule. ⊓⊔

This is depicted in the following diagram:

G
R∗

−−−−→ G
′

submersion





y





y
submersion

H −−−−→
R∗

H
′

4. Enumeration and Naming Problems

This section presents a characterization of graphs which admit an enumeration or a naming algorithm.
First we prove that there exist no naming and no enumeration algorithms on a graphG that use cellular
edge local computations if the graph is not submersion-minimal. The proof is analogous to that of
Angluin [1]. Then we give and we prove an enumeration (a naming) algorithm for submersion-minimal
graphs.

4.1. Impossibility results for enumeration and naming

Proposition 4.1. Let G be a labelled graph which is not submersion-minimal. Then there is no naming
and no enumeration algorithm forG using cellular edge local computations.
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Proof:
Let H be a labelled graph not isomorphic toG and such thatG is a submersion ofH via ϕ. For every
cellular edge local algorithmR, consider an execution ofR onH that leads to a final configurationH′.
From Lemma 3.1, there exists an execution ofR onG such that the final configurationG′ = (G,λ′) is
a submersion ofH′. SinceG′ is not isomorphic toH′, there exist distinct verticesv, v′ ∈ V (G) such
thatλ′(v) = λ′(v′). Consequently,R solves neither the naming nor the enumeration problem onG. ⊓⊔

4.2. An Enumeration Algorithm

In this subsection, we describe a Mazurkiewicz-like algorithmM using cellular edge local computations
that solves the enumeration problem on a submersion-minimal graphG.

Each vertexv attempts to get its own unique identity which is a number between1 and|V (G)|. The
vertex chooses a number and gathers the information about the numbers chosen by its neighbours. Then,
it broadcasts its number with itslocal view(which is the set of the numbers of its neighbours). If a vertex
u discovers the existence of another vertexv with the same number then it should decide if it changes its
identity. To this end it compares its local view with the local view of v. If the label ofu or the local view
of u is “weaker”, thenu picks another number — its new temporary identity — and broadcasts it again
with its local view. At the end of the computation, if the graph is submersion-minimal then every vertex
will have a unique number .

4.2.1. Labels

We consider a graphG = (G,λ) with an initial labellingλ : V (G) → L. During the computation each
vertexv ∈ V (G) will acquire new labels of the form(λ(v), n(v),N(v),M(v)), where:

• the first componentλ(v) is just the initial label (and thus remains fixed during the computation),

• n(v) ∈ N is the currentidentity numberof v computed by the algorithm,

• N(v) ∈ Pfin(N) is thelocal viewof v. Intuitively, the algorithm will try to update the current view
in such a way thatN(v) will consist of current identities of the neighbours ofv. ThereforeN(v)
will always be a finite (possibly empty) set of integers,

• M(v) ⊆ N × L × Pfin(N) is the currentmailboxof v. It contains the whole information received
by v during the computation, i.e., the numbers and the local views of the vertices of the network.

In many distributed algorithms, it is required that processors have unique identities, and that each
processor knows its own identity initially. Thus in our framework the labellingλ of the graph may
encode the identities of the vertices (thus∀v, v′ ∈ V (G), λ(v) 6= λ(v′)). On the other hand, if we deal
with anonymous systems, i.e., all the processes have initially the same name, the labellingλ will be
such that∀v, v′ ∈ V (G), λ(v) = λ(v′). More generally, the labelling may encode any initial processor
knowledge. Examples of such knowledge include: no initial knowledge, the number of processors,
the diameter of the graph and the topology. Sometimesk processors have a given label: there arek
distinguished vertices. Thus this modelization encompasses: topological restrictions (tree, complete
networks, . . . ), topological knowledges (size, diameter, .. . ), and local knowledges (identities, degrees,
. . . ).
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4.2.2. An Order on Local Views

The fundamental property of the algorithm is based on a totalorder on the setPfin(N) of local views, as
defined by Mazurkiewicz [15]. The algorithm described belowis such that the local view of any vertex
cannot decrease during the computation.

LetN1, N2 ∈ Pfin(N), N1 6= N2. ThenN1 ≺ N2 if the maximal element of the symmetric difference
N1△N2 = (N1 \N2)∪ (N2 \N1) belongs toN2. Note that in particular the empty set is minimal for≺.

It can be helpful to note that the order≺ is just a reincarnation of the usual lexicographic order. Let
n1, n2, . . . , nk andm1,m2, . . . ,ml be all elements ofN1 andN2 respectively listed in the decreasing
order (decreasing for the usual order over integers):n1 > n2 > · · · > nk andm1 > m2 > · · · > ml.
ThenN1 ≺ N2 if and only if one of the following conditions hold:

• k < l and for alli, 1 ≤ i ≤ k, ni = mi,

• ni < mi wherei is the smallest index such thatni 6= mi.

If N(u) ≺ N(v) then we say that the local viewN(v) of v is strongerthan the one ofu (andN(u)
is weakerthanN(v)). We assume for the rest of the paper that the set of initial labelsL is totally ordered
by <L. We extend≺ to a total order onL × Pfin(N) : (l,N) ≺ (l′,N ′) if either l <L l′, or l = l′ and
N ≺ N ′. Occasionally we shall use the reflexive closure� of ≺.

4.2.3. The Relabelling Rules

We describe here the relabelling rules that define the enumeration algorithm.
First of all, to launch the algorithm there is a special initial ruleM0 that just extends the initial label

λ(v) of each vertexv to (λ(v), 0, ∅, ∅).
The rulesM1 andM2 are close to the rules used by Mazurkiewicz [15].
The first ruleM1 enables a vertex to update its mailbox by looking at the mailbox of one of its

neighbours:

M1:

(ℓ1, n1, N1,M1) (ℓ2, n2, N2,M2) (ℓ1, n1,N1,M
′
1) (ℓ2, n2,N2,M2)

If M2 \ M1 6= ∅ thenM ′
1 := M1 ∪ M2.

The second ruleM2 does not involve any synchronization with a neighbour vertex. It enables a
vertexv to change its identity if the current identity numbern(v) is 0 or if the mailbox ofv contains a
message from a vertex with the same identity but with a stronger label or a stronger local view.

M2:

(ℓ, n,N,M) (ℓ, k,N,M ′)

If (n = 0) or (∃(n, ℓ′,N ′) ∈ M and(ℓ,N) ≺ (ℓ′,N ′))

then k := 1 + max{n′ | ∃(n′, ℓ′,N ′) ∈ M} and

M ′ := M ∪ {(k, ℓ,N)}.
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(In the formula above we assume thatmax of an empty set is0.)

The third ruleM3 allows to change the current identity for a vertexv having a neighbourv′ with
exactly the same current label (all four components should be identical). This relabelling step can be
applied only if the ruleM2 cannot be applied byv or v′. Moreover, at the same step, the identityn(v′)
of the neighbourv′ of v is inserted into the local viewN(v) and at the same time all the elementsm of
N(v) such thatm < n(v′) are deleted from the local view. The rationale behind this deletion step is
explained in the ruleM4 below.

M3:

(ℓ, n,N,M) (ℓ, n,N,M) (ℓ, k,N ′,M ′) (ℓ, n,N,M)

If (n > 0) and

(∀(n, ℓ′, N ′) ∈ M , (ℓ′,N ′) � (ℓ,N))

then k := 1 + max{n′ | ∃(n′, ℓ′,N ′) ∈ M},

N ′ := (N \ {m ∈ N | m < n}) ∪ {n} and

M ′ := M ∪ {(k, ℓ,N ′)}.

The fourth ruleM4 enables a vertexv to add the current identity numbern(v′) of one of its neigh-
bours to its local viewN(v). As for the preceding rule, all the elementsm belonging toN(v) such that
m < n(v′) are deleted from the current view.

The intuitive justification for the deletion of all suchm is the following. Let us suppose that the
vertexv synchronizes with a neighbourv′ and observes that the current identity numbern(v′) of v′ does
not belong to its current viewN(v). Then, since the very purpose of the viewN(v) is to stock the identity
numbers of all the neighbours, we should addn(v′) to the viewN(v) of v. But now two cases arise.
If v synchronizes withv′ for the first time then addingn(v′) to the view ofv is sufficient. However,
it can also be the case thatv synchronized withv′ in the past and in the meantimev′ has changed its
identity number. Thenv should not only add the new identity numbern(v′) to its view but, to remain
in a consistent state, it should delete the old identity number of v′ from its local view. The trouble is
that v has no means to know which of the numbers present in its viewN(v) should be deleted and it
is even unable to decide which of the two cases holds (first synchronization withv′ or not). However,
since our algorithm assures the monotonicity of subsequentidentity numbers of each vertex, we know
that the eventual old identity number ofv′ is less than the current identityn(v′). Therefore, by deleting
all m < n(v′) from the local viewN(v) we are sure to delete all invalid information. Of course, in this
way we risk to delete also the legitimate current identitiesof other neighbours ofv from its viewN(v).
However, this is not a problem sincev can recover this information just by (re)synchronizing with all
such neighbours. The conditions of the if-part imply that a vertex has to update its local view and that
neitherM1 norM2 and norM3 are applicable. This rule transmits the name of a vertex to the view of
an adjacent vertex and updates its mailbox.
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M4:

(ℓ1, n1, N1,M) (ℓ2, n2, N2,M) (ℓ1, n1,N
′
1,M

′) (ℓ2, n2,N2,M)

If (n1 > 0, n2 > 0, n1 6= n2) and

∀(n1, ℓ
′
1, N

′
1) ∈ M, (ℓ′1,N

′
1) � (ℓ1,N1) and

∀(n2, ℓ
′
2, N

′
2) ∈ M , (ℓ′2,N

′
2) � (ℓ2,N2) and

(n2 /∈ N1)

then (N ′
1 := N1 \ {n

′ ∈ N1 | n′ < n2}) ∪ {n2} and

M ′ := M ∪ {(n1, ℓ1,N
′
1)}.

0, ∅, ∅

0, ∅, ∅
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Figure 4. An execution of the algorithmM on K3 where all the vertices have the same initial label (that is not
mentioned, for sake of clarity). At each step, the vertex filled with black is active and apply the ruleMi along the
thick edge that labels the following relabelling step. If a relabelling step is calledMiM∗

1
, it means that we first

apply the ruleMi on the active vertex and then, we apply the ruleM1 as many times as possible. For sake of
clarity, we do not have explicit the content of the mailboxMi at each step: it contains all the(n, N) that appears
on any vertex of the graph earlier in the execution.

An example of an execution of the algorithmM on the complete graphK3 with three vertices is
presented in Figure 4.



98 J. Chalopin et al. / Election, Naming and Cellular Edge LocalComputations

4.3. Correctness of the Enumeration Algorithm

Let G be a simple labelled graph. In the following,i is an integer denoting a computation step. Let
(λ(v), (ni(v), Ni(v),Mi(v)) be the label of the vertexv after theith step of the computation of the
algorithmM given above. We present here some properties satisfied by each execution of the algorithm.

The following lemma, which can be proved easily by inductionon the number of steps, recapitulates
basic labelling properties.

Lemma 4.1. For each vertexv and each stepi,

1. ni(v) 6= 0 =⇒ (ni(v), λ(v), Ni(v)) ∈ Mi(v),

2. ∀n′ ∈ Ni(v), n′ 6= 0 and∃ℓ′ ∈ L,∃N ′ ∈ Pfin(N), (n′, ℓ′,N ′) ∈ Mi(v),

3. ni(v) /∈ Ni(v).

The algorithm has some remarkable monotonicity propertiesthat are described in the following
lemma.

Lemma 4.2. For each stepi and each vertexv:

• ni(v) ≤ ni+1(v),

• Ni(v) � Ni+1(v),

• Mi(v) ⊆ Mi+1(v).

Moreover, there exists at least one vertexv such that at least one of these inequalities/inclusions is strict
for v.

Proof:
The property is obviously true for the vertices that are not involved in the rule applied at stepi. It is easy
to see that, for each vertexv, we always haveMi(v) ⊆ Mi+1(v).

For each vertexv and each stepi such thatni(v) 6= ni+1(v), ni+1(v) = 1+max{n1; (n1, ℓ1,N1) ∈
Mi(v)} and eitherni(v) = 0 < ni+1(v) or (ni(v), λ(v),Ni(v)) ∈ Mi(v) as shown in Lemma 4.1 and
thereforeni(v) < ni+1(v).

For each vertexv such thatNi(v) 6= Ni+1(v), the ruleM3 or M4 has been applied betweenv
and one of its neighboursv′. For everyn ∈ Ni(v), if n > ni+1(v

′), n ∈ Ni+1(v) andni+1(v) ∈
Ni+1(v) \ Ni(v). Consequently,Ni(v) ≺ Ni+1(v).

For each stepi, the rule applied at this step modifies the label of one vertexv and therefore one of
these inequalities is strict forv. ⊓⊔

The local knowledge of a vertexv reflects to some extent some real properties of the current config-
uration. The two following lemmas enable us to prove that if avertexv knows a numberm (i.e., there
existℓ,N such that(m, ℓ,N) ∈ Mi(v)), then for eachm′ ≤ m, there exists a vertexv′ in the graph such
thatni(v

′) = m′. We first show that ifv knowsm there existsv′ such thatni(v
′) = m.

Lemma 4.3. For everyv ∈ V (G) and(m, ℓ,N) ∈ Mi(v), there exists a vertexw ∈ V (G) such that
ni(w) = m.
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Proof:
Assume that the numberm is known byv and letU = {(u, j) ∈ V (G) × N | j ≤ i, nj(u) = m}.
Consider the setU ′ = {(u, j) ∈ U | ∀(u′, j′) ∈ U,Nj′(u

′) ≺ Nj(u) or Nj′(u
′) = Nj(u) andj′ ≤ j}.

It is easy to see that there existsi0 such that for each(u, j) ∈ U ′, j = i0. Since(m, ℓ,N) ∈ Mi(v),
neitherU norU ′ are empty.

If i0 < i, there is at most one element(u, i0) in U ′ because at each step the number of at most one
vertex can change. The numbern(u) of the vertexu must have therefore changed at stepi0 +1 but since
at stepi0 + 1 vertexu has no neighbour with the same number, the ruleM3 cannot be applied and by
maximality, the ruleM2 cannot be applied either. Consequently, there exists a vertex w ∈ V (G) such
thatni(w) = m. ⊓⊔

In the following lemma, we show that if a vertexv knows an identity numberm, then it knows all
the numbers smaller thanm.

Lemma 4.4. For every vertexv ∈ V (G) and every stepi such thatni(v) 6= 0, given (m′, ℓ′,N ′) ∈
Mi(v), for every1 ≤ m ≤ m′, there exists(m, ℓ,N) ∈ Mi(v).

Proof:
We show this claim by induction oni. At the initial step the assertion is true. Suppose that it holds for
i ≥ 0.

If the ruleM4 is applied and it modifies the label of a vertexv, for every(m, ℓ,N) ∈ Mi+1(v), there
exists(m, ℓ,N ′) ∈ Mi(v) and the property holds. If the ruleM1 is applied to a vertexv, depending on
the label of one of its neighboursv′, thenMi+1(v) = Mi(v) ∪ Mi(v

′) and by induction, the property
holds. If the ruleM2 is applied to a vertexv, Mi+1(v) = Mi(v)∪{(ni+1(v) = 1+max{m | (m, ℓ,N) ∈
Mi(v)}, λ(v), Ni(v))}, and consequently for eachm ∈ Mi+1(v), the property is still true. For the same
reasons, the property holds when the ruleM3 is applied. ⊓⊔

From Lemmas 4.3 and 4.4, we can deduce that for each step, the identity numbers of all the vertices
form either a set[1, k] or a set[0, k] with k ≤ V (G).

For each stepi and each vertexv, if there existsn′ ∈ Ni(v), from Lemma 4.1, there existsv′ such
that ni(v

′) = n′ and thereforeN(v) can only have a finite number of values and the same holds for
M(v). During the algorithm, the consecutive labellings of each vertexv form an increasing sequence,
(ni(v), Ni(v),Mi(v)), i = 1, 2, . . . and, for eachi, at least one label strictly increases. Since the number
of possible accessible labels is finite (but dependent on thesize of the graph) the relationM is noetherian:
the algorithm always terminates.

In the following lemma, it is shown that if a vertexv has an identity numbern in its local view then
eitherv has a neighbourv′ such thatn(v′) = n or the ruleM4 can be applied tov and a neighbourv′.

Lemma 4.5. For every stepi, for every vertexv ∈ V (G) and everyn0 ∈ Ni(v), there existsv′ ∈ NG(v)
such that eitherni(v

′) = n0 or ni(v
′) > max{n ∈ Ni(v)}.

Proof:
Let i0 be the last step in whichn0 has been added toN(v) : ∀j ≥ i0, n0 ∈ Nj(v) andn0 /∈ Ni0−1(v).
There exists a vertexv′ such that at the stepi0, the ruleM3 orM4 is applied tov andv′ and consequently,
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ni0(v
′) = n0 and from Lemma 4.1, there exists(n0, ℓ,N) ∈ Mi0(v

′). If ni(v
′) = ni0(v

′), the property
is satisfied.

Otherwise, for every stepj, we definemj(v) = max{n ∈ Nj(v)}. Clearly,mi0(v) ≥ n0 and there
exists(mi0(v), ℓ,N) ∈ Mi0(v

′). Suppose that an elementn1 has been added toN(v) at a stepi1 ∈ [i0, i].
The ruleM3 or M4 has been applied and thereforen1 ≤ n0, sincen0 ∈ Ni1(v). Consequently,
mi0(v) = mi(v). Sinceni(v

′) 6= ni0(v
′), the ruleM2 or M3 has been applied to the nodev′ at a

stepi2 > i0 and thereforeni(v
′) ≥ ni2(v

′) > mi0(v) = mi(v) since there exists(mi0(v), ℓ,N) ∈
Mi0(v

′) ⊆ Mi2−1(v
′). Consequently, the property is also satisfied. ⊓⊔

Since we can ensure that the algorithm always terminates, wecan give some properties of the final
labelling:

Lemma 4.6. Any executionρ of the enumeration algorithm on a connected labelled graphG = (G,λ)
terminates and yields to a final labelling(λ, nρ,Nρ,Mρ) satisfying the following conditions:

1. there exists an integerk ≤ |V (G)| such that{nρ(v) | v ∈ V (G)} = [1, k],

and for all verticesv, v′:

2. Mρ(v) = Mρ(v
′),

3. (nρ(v), λ(v), Nρ(v)) ∈ Mρ(v
′),

4. nρ(v) = nρ(v
′) implies thatλ(v) = λ(v′) andNρ(v) = Nρ(v

′),

5. n ∈ Nρ(v) if and only if there existsw ∈ NG(v) such thatnρ(w) = n; in this case,nρ(v) ∈
Nρ(w).

Proof:

1. By Lemma 4.3 and Lemma 4.4 applied to the final labelling andsince the ruleM2 cannot be
applied.

2. Otherwise, the ruleM1 could be applied.

3. A direct corollary of the previous property using Lemma 4.1.

4. Otherwise, the ruleM2 could be applied tov or v′.

5. By Lemma 4.5 and since no relabelling step can be performedanymore.
⊓⊔

We can therefore prove that there exists a graphH associated to the final labelling ofG such thatG
is a submersion ofH.

Proposition 4.2. Given a graphG, we can associate with the final labelling of any executionρ of the
enumeration algorithm onG, a graphH such that there exists a locally surjective homomorphism from
G ontoH.
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Proof:
We use the notation of Lemma 4.6. LetG = (G,λ).

Consider the graphH defined byV (H) = {m ∈ N | ∃v ∈ V (G), nρ(v) = m} andE(H) =
{{m,m′} | ∃v, v′ ∈ V (G);nρ(v) = m,nρ(v

′) = m′ and{v, v′} ∈ E(G)}.
From Lemma 4.6,{m,m′} ∈ E(H) if and only if there existv, v′ ∈ V (G) such thatnρ(v) =

m,nρ(v
′) = m′, m′ ∈ Nρ(v) andm ∈ Nρ(v

′). From Lemma 4.1, we can conclude that there does not
exist any{n, n} ∈ E(H): the graphH does not contain self-loop. From the definition ofE(H), we
deduce thatH does not contain multiple edges.

From Lemma 4.6,m ∈ NH(nρ(v)) if and only if there existsw ∈ NG(v) such thatnρ(w) = m and
thereforenρ is a locally surjective homomorphism of unlabelled graphs from G ontoH.

It remains to define the labellingλH on H. This is natural, just setλH(n) = λ(v) for v ∈ n−1
ρ (n).

From Lemma 4.6, if two nodesv, v′ are such thatnρ(v) = nρ(v
′), thenλ(v) = λ(v′). Consequently, this

labelling is well-defined and obviouslyG is a submersion ofH = (H,λH) via the homomorphismnρ.
⊓⊔

Consider a graphG that is submersion-minimal. For every runρ of the enumeration algorithm, the
graph associated to the final labelling is isomorphic toG and therefore the set of numbers of the vertices
is exactly{1, . . . , |V (G)|}. The termination detection of the algorithm is possible onG. Indeed, once a
vertex gets the identity number|V (G)|, from Lemma 4.3 and Lemma 4.4, it knows that all the vertices
have different identity numbers that will not change any more and it can conclude that the computation
is over.

Furthermore, it has been shown in Lemma 4.1 that for every graphG that is not submersion-minimal,
there exists no algorithm using cellular edge local computations to solve the naming problem or the
enumeration problem onG. Thus we have proven the following theorem.

Theorem 4.1. For every graphG, the following statements are equivalent:

1. there exists a naming algorithm onG using cellular edge local computations,

2. there exists a naming algorithm with termination detection onG using cellular edge local compu-
tations,

3. there exists an enumeration algorithm onG using cellular edge local computations,

4. there exists an enumeration algorithm with termination detection onG using cellular edge local
computations,

5. the graphG is a submersion-minimal graph.

5. Election Problem

If we can solve the enumeration problem onG then we can solve the election problem onG; once a
vertex gets the identity number|V (G)| we declare itelected.

Nevertheless, in our model, the enumeration and the election problems are not equivalent. The graph
G in Figure 5 is not submersion-minimal, since the homomorphism fromG toH induced by the labelling
of G is locally surjective and therefore neither the enumeration nor the naming problem can be solved
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Figure 5. A graph for which we can solve the election problem but not the enumeration problem.

onG. But let us execute the preceding algorithm onG. At the end, the vertex labelled3 in G will know
that it is unique with at least three different neighbours and therefore it can declare itself as elected.

5.1. Necessary Conditions to Solve the Election Problem

We would like to give here necessary conditions characterizing the graphs that admits an election algo-
rithm. Given a graphG, we denote bySG the set of graphsH such that there exists a submersion from
G ontoH. From Lemma 3.1, any algorithmA that solves the election problem onG using cellular edge
local computations will solve the election problem on everygraphH ∈ SG.

Remark 5.1. Consider an algorithmA that solves the election problem onG. Suppose that there exists
a subgraphG′ of G that is a submersion of a graphH ∈ SG via a homomorphismϕ. If there exists
an execution ofA on H that elects a vertexv ∈ V (H) such that|ϕ−1(v)| > 1, then there exists an
execution ofA on G

′ such that the labelelectedappears at least twice. Since each execution ofA
on G

′ can be extended to an execution ofA on G, there exists an execution ofA over G that leads
to the election of at least two vertices, this is in contradiction with the choice ofA. We can therefore
definePH(G′, ϕ) = {v ∈ V (H) | |ϕ−1(v)| > 1} and each execution ofA on H cannot elect a vertex
v ∈ PH(G′, ϕ).

Consider a graphH ∈ SG. Let PH(G) be the union of allPH(G′, ϕ) for ϕ ranging over all
submersions of subgraphsG′ of G to H and let us setCH(G) = V (H) \ PH(G) (the elements of this
set are called the candidates ofH for G). From Remark 5.1, every election algorithmA overG must be
such that each execution ofA overH should elect a vertex inCH(G). Consequently, if there exists an
election algorithmA onG then for every graphH ∈ SG, CH(G) 6= ∅.

Suppose that there exist two disjoint subgraphsG1 and G2 of G such thatG1 (resp. G2) is a
submersion of a graphH1 ∈ SG (resp. H2 ∈ SG). Then there does not exist any election algorithm
using cellular edge local computations. Indeed, in this case there exists an execution of the algorithm on
G such that the labelelectedappears once inG1 and once inG2, contradicting the election principle.
Recapitulating:

Proposition 5.1. Let G be a labelled graph such that there exists an election algorithm for G using
cellular edge local computations. Then the following conditions are satisfied:

1. for everyH ∈ SG, CH(G) 6= ∅,

2. there do not exist two disjoint subgraphsG1 andG2 of G such thatG1 (resp.G2) is a submersion
of a graphH1 ∈ SG (resp.H2 ∈ SG).
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5.2. Election Algorithm

We now consider a graphG satisfying the conditions of Proposition 5.1.
Our aim is to present an algorithm such that each execution overG will detect a graphH ∈ SG such

that there exists a subgraphG′ of G that is a submersion ofH. To this end we adapt the enumeration
algorithm from the preceding section and the termination detection algorithm of Szymansky, Shi and
Prywes [17].

The idea is to execute the enumeration algorithm given for a graph and to reconstruct a graph from
the contents of the vertices mailboxes. If the reconstructed graph is an element ofSG, the vertices check
if they all agree on this graph.

5.2.1. The SSP Algorithm

This algorithm was originally devised to detect the termination of an algorithm in the message passing
model. We consider a distributed algorithm which terminates when all processes reach their local ter-
mination conditions. Each process is able to determine onlyits own termination condition. The SSP
algorithm detects an instant in which the entire computation is achieved.

Let G be a graph, to each nodev is associated a predicateP (v) and an integera(v), its confidence
level. Initially P (v) is false anda(v) is equal to−1. If a vertexv has finished its computation of the
initial algorithm, then it changes its valueP (v) to true. Each time a vertex changes the value ofP (v) or
a(v) then it informs its neighbours.

Transformations of the value ofa(v) are defined by the following rules. Each computation step acts
on the integera(v0) associated to the vertexv0; the new value ofa(v0) depends on the informationv0

have about the values{a(v1), . . . , a(vd)} of its neighbours. More precisely,

• If P (v0) = false thena(v0) = −1;

• if P (v0) = true thena(v0) = 1 + Min{a(vk) | 0 ≤ k ≤ d}.

We will adapt this algorithm using the ideas of the algorithmGSPP [10]. For every vertexv, the
value ofP (v), instead of being boolean, will be a graph reconstructed from the contents of the mailbox
of v. An important property of the functionP is that it is constant between two moments where it has
the same value.

In our model, a vertex cannot distinguish its neighbours: therefore, we will use the numbers that
appear in the local view: a vertexv will increase its confidence levela(v) only if for each numbern in
its local view, it has a neighbourv′ such thatn(v′) = n anda(v′) ≥ a(v).

5.2.2. Labels

As in Section 4.2, we start with a labelled graphG = (G,λ). During the computation verticesv will
get new labels of the form(λ(v), n(v), N(v),M(v), a(v),H(v)) representing the following information
(again the first componentλ(v) remains fixed) :

• n(v) ∈ N is theidentity numberof the vertexv computed by the algorithm,

• a(v) ∈ N is theconfidence levelof the vertexv,
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• N(v) is the local viewof v. If the vertexv has a neighbourv′, relabelling rules will allowv to
add the ordered pair(n(v′), a(v′)) to N(v). ThusN(v) is always a finite set of ordered pairs of
integers. ForN ∈ Pfin(N2), we noteΠ1(N) = {n | ∃(n, a) ∈ N} the projection on the first
component.

• M(v) ⊆ N × L × Pfin(N) is themailboxof v and contains the information received byv about
the identity numbers existing in the graph and the local views associated with these numbers.

• H(v) is the history of the vertexv. If at some computation step(n,N,M, a) ∈ H(v) then it
means that at some previous step the vertexv had a confidence level equal toa for the valueM .

5.2.3. The Relabelling Rules

The first computation stepS0 replaces just the initial labelλ(v) by (λ(v), 0, ∅, ∅,−1, ∅). The following
four rules mimic the rules of the enumeration algorithm:

S1 :

(ℓ1, n1, N1, M1,−1, H1) (ℓ2, n2, N2, M2, a, H2) (ℓ1, n1, N1, M
′

1
,−1, H1) (ℓ2, n2, N2, M2, a, H2)

If M2 \ M1 6= ∅ thenM ′
1 := M1 ∪ M2.

S2 :

(ℓ, n, N, M,−1, H) (ℓ, k, N, M ′,−1, H)

If n = 0 or there exists(n, ℓ′,K ′) ∈ M such that(ℓ,Π1(N)) ≺ (ℓ′,K ′)

then k := 1 + max{n′ | ∃(n′, ℓ′,K ′) ∈ M} and

M ′ := M ∪ {(k, ℓ,Π1(N))}.

S3 :

(ℓ, n, N1, M,−1, H1) (ℓ, n, N2, M, a, H2) (ℓ, k, N ′

1
, M ′,−1, H1) (ℓ, n, N2, M, a, H2)

If n > 0 and

Π1(N1) = Π1(N2) and

∀(n, ℓ′,K ′) ∈ M , (ℓ′,K ′) � (ℓ,Π1(N1))

then k := 1 + max{n′ | ∃(n′, ℓ′,K ′) ∈ M},

N ′
1 := N1 \ {(n

′, a′) ∈ N1 | n′ < n} ∪ {(n,−1)} and

M ′ := M ∪ {(k, ℓ,Π1(N
′
1))}.
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S4 :

(ℓ1, n1, N1, M,−1, H1) (ℓ2, n2, N2, M, a, H2) (ℓ1, n1, N
′

1
, M ′,−1, H1) (ℓ2, n2, N2, M, a, H2)

If n1 > 0, n2 > 0, n1 6= n2 and

∀(n1, ℓ
′
1,K

′
1) ∈ M , (ℓ′1,K

′
1) � (ℓ1,Π1(N1)) and

∀(n2, ℓ
′
2,K

′
2) ∈ M , (ℓ′2,K

′
2) � (ℓ2,Π1(N2)) and

(n2,−1) /∈ N1

then N ′
1 := N1 \ {(n

′, a′) ∈ N1 | n′ < n2} ∪ {(n2,−1)} and

M ′ := M ∪ {(n1, ℓ1, N
′
1)}.

The fifth rule says that if a vertexv detects that all the neighbours it knows have a confidence level
a ≥ a(v) then it can increment its own confidence level.

To define this rule we need some additional notations. Given amailbox contentsM , for eachn > 0
we defineπn(M) as the set of all triples(n, ℓ,N) ∈ M with the first componentn. For each non empty
setπn(M) we conserve in the mailbox only the triple(n, ℓ,N) with the greatest ordered pair(ℓ,N) for
the order≺. This operation gives a new mailbox contents that we shall denote byu(M).

The next step consists in defining a graphGM . If there exist(n1, ℓ1,N1), (n2, ℓ2,N2) ∈ u(M)
such thatn2,∈ N1 and n1 /∈ N2 then we setGM = (∅, ∅). Otherwise,GM is the graph such
that V (GM ) = {n | (n, ℓ,N) ∈ u(M)} andE(GM ) = {{n1, n2} | ∃(n1, ℓ1,N1), (n2, ℓ2,N2) ∈
u(M), n2 ∈ N1 andn1 ∈ N2}. The labelling ofGM is inherited from the setM : for (n, ℓ,N) ∈ u(M),
λM (n) = ℓ. We will denote byGM = (GM , λM ) the corresponding labelled graph.

S5 :

(ℓ, n, N, M, a, H) (ℓ, n, N, M, a + 1, H)

Applicable whenever n > 0 and

∀(n, ℓ′,K ′) ∈ M, (ℓ′,K ′) � (ℓ,Π1(N)) and

GM ∈ SG and

∀(n′, a′) ∈ N, a ≤ a′ and

a ≤ |V (G)| + 1.

The sixth rule enables a nodev to update its knowledge of the confidence level of one of its neigh-
bours if the confidence level of this neighbour has increased.

S6 :

(ℓ1, n1, N1, M, a1, H1) (ℓ2, n2, N2, M, a2, H2) (ℓ1, n1, N
′

1
, M, a1, H1) (ℓ2, n2, N2, M, a2, H2)

If a1 ≥ 0 and

∀(n2, ℓ
′
2, N

′
2) ∈ M, (ℓ′2, N

′
2) � (ℓ2,Π1(N2)) and

∃(n2, a) ∈ N1; a2 > a

then N ′
1 := N1 \ {(n2, a)} ∪ {(n2, a2)}.
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The rulesS7,S8,S9 are designed to avoid deadlock in the execution of the algorithm. If one of
these rules is applied on a vertexv, then the mailbox ofv is modified and therefore, we have to reset its
confidence level. The ruleS7 enables a vertexv to change the value of its mailboxM whenever there
exists a neighbourv′ that used to have a confidence levela according toM such thata ≥ a(v) − 1 and
such that its mailbox has changed. If a vertex changes the contents of its mailbox, then it modifies also
its historyH(v), so as to remember its former confidence level.

S7 :

(ℓ1, n1, N1, M1, a1, H1) (ℓ2, n2, N2, M2, a2, H2) (ℓ1, n1, N
′

1
, M ′,−1, H1) (ℓ2, n2, N2, M2, a2, H2)

If M2 \ M1 6= ∅ and

eithera1 = 0 or (a1 ≥ 0 and∃(n,N,M1, a) ∈ H2,∃(n, a′) ∈ N1, a ≥ a′)

then N ′
1 := {(n,−1) | ∃(n, a) ∈ N1},

M ′ := M1 ∪ M2 and

H ′
1 := H1 ∪ {(n1, N1,M1, a1)}.

The ruleS8 enables a vertexv whose confidence level is equal to0 to modify its state if it discovers
the existence of a neighbour that has the same number as it. Ifa such vertex changes its state, then it
modifies also its historyH(v), so as to remember its former confidence level.

S8 :

(ℓ, n, N1, M, 0, H1) (ℓ, n, N2, M, a, H2) (ℓ, k, N ′

1
, M ′,−1, H ′

1
) (ℓ, n, N2, M, a, H2)

If n > 0 and

Π1(N1) = Π1(N2) and

∀(n, ℓ′,K ′) ∈ M , (ℓ′,K ′) � (ℓ,Π1(N1))

then k := 1 + max{n′ | ∃(n′, ℓ′,K ′) ∈ M},

N ′
1 := {(n′,−1) | ∃(n′, a′) ∈ N1;n

′ > n} ∪ {(n,−1)},

M ′ := M ∪ {(k, ℓ,Π1(N
′
1))} and

H ′
1 := H1 ∪ {(n,N1,M, 0)}.

The ruleS9 enables a vertexv whose confidence level is equal to0 to modify its state if it discovers
the existence of a neighbour it didn’t know, i.e., the numberof its neighbour does not appear in its local
view. If a such vertex changes its state, then it modifies alsoits historyH(v), so as to remember its
former confidence level.
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S9 :

(ℓ1, n1, N1, M, 0, H1) (ℓ2, n2, N2, M, a, H2) (ℓ1, n1, N
′

1
, M ′,−1, H ′

1
) (ℓ2, n2, N2, M, a, H2)

If n1 > 0, n2 > 0, n1 6= n2 and

∀(n1, ℓ
′
1,K

′
1) ∈ M , (ℓ′1,K

′
1) � (ℓ1,Π1(N1)) and

∀(n2, ℓ
′
2,K

′
2) ∈ M , (ℓ′2,K

′
2) � (ℓ2,Π1(N2)) and

∄(n2, a
′) ∈ N1

then N ′
1 := {(n,−1) | ∃(n, a′) ∈ N1;n > n2} ∪ {(n2,−1)},

M ′ := M ∪ {(n1, ℓ1, N
′
1)} and

H ′
1 := H1 ∪ {(n1, N1,M, 0)}.

The ruleS10 enables a node that has a confidence level equal to|V (G)| + 2 to get the labelelected
if and only if its identity number is the greatest number belonging to the candidates of the reconstructed
graph forG.

S10 :

(ℓ, n, N, M, a, H) elected

Applicable whenever n = max{n ∈ CGM
(G)} and

a = |V (G)| + 2.

The last rules enable to propagate the information, once a node got the final labelelectedit informs
all the other nodes of the graphs that they arenon-elected.

S11 :

(ℓ, n, N, M, a, H) elected non-elected elected

S12 :

(ℓ, n, N, M, a, H) non-elected non-elected non-elected

5.3. Correctness of the Election Algorithm

We will denote the algorithm described above byS and we will first consider the algorithmS ′ described
by the rulesS1, . . . ,S9. If we can ensure the termination ofS ′, we can prove thatS always terminates,
since the rulesS10,S11,S12 can modify the label of each vertex only once. Clearly the labelselectedand
non-electedare terminal. Moreover, if we show that exactly one vertex can apply the ruleS10 then it will
prove the correctness of the algorithm. Indeed, there will be exactly one vertex with the labelelectedin
the final configuration whereas all the other vertices will have the labelnon-elected.
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In the following (λ(v), ni(v), Ni(v),Mi(v), ai(v),Hi(v)) will stand for the label of the vertexv
after theith computation step of the algorithmS ′. As for the precedent algorithm, we can show that the
algorithm has interesting monotonicity properties.

Lemma 5.1. For each stepi, for each vertexv,

1. ni(v) ≤ ni+1(v),

2. Mi(v) ⊆ Mi+1(v),

3. Hi(v) ⊆ Hi+1(v),

4. if Hi(v) = Hi+1(v) thenΠ1(Ni(v)) � Π1(Ni+1(v)), ai(v) ≤ ai+1(v) and∀(n, a1) ∈ Ni(v),
(n, a2) ∈ Ni+1(v), a1 ≤ a2.

And for each stepi, there exists at least one vertexv, such that one of the inequalities is strict forv.

As in the preceding algorithm, we can show that for every vertex v and for every stepi, the value of
ni(v) is always lower or equal to|V (G)|, and since the value ofai(v) is bounded by|V (G)|+ 2, we can
easily deduce that the values ofNi(v),Mi(v) andHi(v) are also bounded. From Lemma 5.1, we can
therefore conclude that each execution of the algorithmS ′ terminates.

In the following lemma, we prove that if at a stepi, a vertexv knows the confidence levela of one
of its neighbours thena ≥ ai(v) − 1,

Lemma 5.2. For every vertexv and stepi, for every(n, a) ∈ Ni(v), a ≥ ai(v) − 1.

Proof:
In the initial configuration, this result is obviously true.Consider now a stepi such that this property is
true after this step. Suppose that at stepi + 1, one of the rulesS1,S2,S3,S4,S7,S8,S9 is applied to a
vertexv, thenai+1(v) = −1 and the property holds.

If the ruleS5 is applied at stepi + 1, for all (n, a) ∈ Ni(v) = Ni+1(v), a ≥ ai(v) = ai+1(v) − 1:
the property holds.

If the ruleS6 is applied tov according to the label of one of its neighboursv′ then(ni(v
′), a1) is

replaced by(ni(v
′), a2) in Ni(v) to obtainNi+1(v). Consequently,ai+1(v) = ai(v) anda2 > a1 ≥

ai+1(v) − 1, the property holds again. ⊓⊔

In the following lemma, we show that if the ruleS7 is applied at a stepj + 1 to a vertexv whose
confidence levelaj(v) was greater than1 then there exists a neighbourv′ of v such that the ruleS7 was
applied tov′ at a stepj′ + 1 ≤ j, whereMj(v) = Mj′(v

′) andaj′(v
′) ≥ aj(v) − 1.

Lemma 5.3. For every vertexv ∈ V (G) and every stepj such thataj(v) ≥ k + 1 ≥ 1 andMj(v) (
Mj+1(v), there exists a vertexv′ ∈ NG(v) and a stepj′ < j such thatMj′(v

′) = Mj(v) ( Mj′+1(v
′)

andaj′(v
′) ≥ k.

Proof:
Sinceaj(v) ≥ k + 1 andMj(v) ( Mj+1(v), it means thataj+1(v) = −1 and that the ruleS7 has been
applied tov according to the label of one of its neighboursv′ at the stepj + 1.
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Thus there exists(n,N,Mj(v), a) ∈ Hj(v
′) such thata ≥ aj(v)−1 ≥ k. If a ≥ 1, then there exists

a stepj′ + 1 ≤ j such that the ruleS7 has been applied tov′ at this step and thereforeaj′(v
′) = a ≥ k

andMj′(v
′) = Mj(v) ( Mj′+1(v

′).
If a = 0, thenk = 0 and there exists a stepj′ + 1 such that one of the rulesS7,S8,S9 has been

applied tov′ at this step. Consequently,aj′(v
′) = 0 ≥ k andMj′(v

′) = Mj(v) ( Mj′+1(v
′). ⊓⊔

In the following proposition, we prove that each execution of the algorithmS ′ on a graphG does not
stop before at least one vertex gets a confidence level equalsto |V (G)| + 2.

Proposition 5.2. For each execution ofS ′ on G, there exists a vertexv ∈ V (G) and a stepi such that
ai(v) = |V (G)| + 2.

Proof:
We already know that each execution ofS ′ terminates. Consider an executionρ of S ′ that yields to a
final labelling(λ, nρ, Nρ,Mρ, aρ,Hρ). Suppose that for each vertexv, aρ(v) ≤ |V (G)| + 1.

Suppose that for each vertexv, aρ(v) = −1, then using the results of the preceding section, the final
numberingnρ induces a graphH such thatG is a submersion ofH via nρ, i.e.,H ∈ SG. Consequently,
for each vertexv, GMρ(v) = H ∈ SG, and since the ruleS2 cannot be applied onv, one can apply the
ruleS5 on v: the computation is not finished.

Consider now a vertexv such thataρ(v) ≥ 1. Since we cannot apply the ruleS5 on v, from Lemma
5.2, there exists some(n′, aρ(v) − 1) ∈ Nρ(v). Consider the last stepj where the ruleS6 has been
applied byv according to the label of a neighbourv′ such thatnj(v

′) = n′. Thenaj(v
′) = aρ(v) − 1,

Mρ(v) = Mj(v) = Mj(v
′) and if Mj(v

′) ( Mρ(v
′), then the vertexv can apply the ruleS7 according

to the label ofv′. Consequently,Mj(v
′) = Mρ(v

′), nj(v
′) = nρ(v

′) andΠ1(Nj(v
′)) = Π1(Nρ(v

′)).
Since we cannot apply the ruleS6 on v according to the label ofv′, it implies thataρ(v

′) = aρ(v) − 1.
Consequently, for eachv such thataρ(v) ≥ 1, there exists some vertexv′ such thatMρ(v) = Mρ(v

′)
andaρ(v

′) = 0.
Consider now a vertexv such thataρ(v) = 0 and such that for each vertexv′, if aρ(v

′) ≥ 0, then
eitherMρ(v) = Mρ(v

′) or Mρ(v
′) \ Mρ(v) 6= ∅. Since we cannot apply the ruleS5 on v, from Lemma

5.2, there exists some(n′,−1) ∈ Nρ(v). Consider the last stepj where the ruleS6 has been applied by
v according to the label of a neighbourv′ such thatnj(v

′) = n′. Thenaj(v
′) = −1.

If aρ(v
′) = −1, then since the ruleS1 andS7 cannot be applied onv′ or v, Mρ(v) = Mρ(v

′) and
GMρ(v′) ∈ SG . Since the ruleS5 cannot be applied onv′, it means that there exists(nρ(v

′), ℓ,K) ∈
Mρ(v

′) such that(λ(v′), Nρ(v
′)) ≺ (ℓ,K) and therefore, the ruleS2 can be applied: the computation is

not finished.
If aρ(v

′) ≥ 0, then since the ruleS7 cannot be applied onv according to the state ofv′, Mρ(v) =
Mρ(v

′). Suppose thatnρ(v) = nρ(v
′), thenΠ1(Nρ(v)) = Π1(Nρ(v

′)) and therefore, one can apply the
rule S8 on v according to the label ofv′. Consequently,nρ(v) 6= nρ(v

′) and from Lemma 4.5, either
nρ(v

′) = nj(v
′) or nρ(v

′) /∈ Π1(Nρ(v)). In the first case, one can apply the ruleS6 on v according to
the label ofv′; in the second case, one can apply the ruleS9 on v according to the label ofv′.

Consequently, there does not exists any executionρ of S ′ that terminates, such that in the final state,
for each vertexv ∈ V (G), aρ(v) ≤ |V (G)| + 1. ⊓⊔

The most important property of the algorithm is given in the following proposition. Roughly speaking
it states that if the confidence level of a vertexv is |V (G)| + 2 thenG contains a submersion ofGM(v).
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Proposition 5.3. If there exists a vertexv0 ∈ V (G) and a stepi0 such thatai0(v0) = |V (G)| + 2 then
G contains a submersionH of GMi0

(v0) and for every stepi ≥ i0 and for every vertexv ∈ V (H),
Mi(v) = Mi0(v0). Moreover, there exists a stepi1 ≥ i0 such that the labelelectedappears on one vertex
v ∈ V (H).

Proof:
Consider a vertexv0 ∈ V (G) and a stepi0 such thatai0(v0) = |V (G)| + 2; we will considerM0 =
Mi0(v0). We will define recursively a sequence of sets of vertices(Vj)j∈N and we will need a partial
functioni overV (G) defined as follows: given a vertexv ∈ V (G), if there exists a stepj ≤ i0 such that
Mj(v) = M0, theni(v) = max{j ≤ i0 | Mj(v) = M0}, otherwisei(v) is not defined.

Let V0 = {v0} andVk+1 = Vk ∪ {w | ∃v ∈ NG(w) ∩ Vk; ai(w)(w) ≥ ai(v)(v) − 1}.
Let H = (H, ν) be the subgraph ofG defined byV (H) =

⋃

j∈N

Vj = V|V (G)| and E(H) =

{

{v, v′} ∈ E(G) | v, v′ ∈ V (H);∃(ni(v)(v), a) ∈ Ni(v′)(v
′); ai(v)(v) ≥ a

}

. We define the labelling of
H as follows: for everyv ∈ V (H), ν(v) = λ(v). Let γ the homomorphism fromH ontoGM0

defined
by γ(v) = ni(v)(v).

For each vertexv ∈ Vp \ Vp−1, there exists a simple path of lengthp from v to v0. Therefore, for
each vertexv ∈ V (H) such thatai(v)(v) = |V (G)| + 2 − p, there exists a simple path fromv to v0 of
length greater or equal top, since such a vertex belongs toVk \ Vk−1 with k ≥ p. Moreover, for every
v ∈ V (H), ai(v)(v) ≥ |V (G)| + 2 − |V (H)| ≥ 2.

Consider a vertexv ∈ V (H) such thatai(v)(v) ≥ 1. If (n, a) ∈ Ni(v)(v) then it means that
a ≥ ai(v)(v) − 1 ≥ 0 and therefore the ruleS6 has been applied at a stepj ≤ i(v) betweenv and one of
its neighboursw such thatnj(w) = n,Mj(w) = Mi(v)(v) = M0 andaj(w) = a. Consequently,i(w) is
defined andai(w)(w) ≥ aj(w) = a ≥ ai(v)(v) − 1. Therefore,w ∈ V (H) and the homomorphismγ is
locally surjective for every vertexv ∈ V (H) such thatai(v)(v) ≥ 1. Since for every vertexv ∈ V (H),
ai(v)(v) ≥ 1, the graphH is a submersion ofGM0

.
Suppose that there exists a vertexv ∈ V (H) and a stepj such thatMj(v) = M0 ( Mj+1(v).

Consider a vertexv1 ∈ V (H) and a stepj1 such thatMj1(v1) = M0 ( Mj1+1(v1) and for allv ∈ V (H),
there existsj ≥ j1 such thatMj(v) = M0(v).

Sinceaj1(v1) ≥ |V (G)| + 2 − |V (H)|, we can apply Lemma 5.3 to find a sequence of vertices
(v1, . . . , vk) and a decreasing sequence of steps(j1, . . . , jk) such thatk = |V (G)| − |V (H)|+ 1 and for
every1 ≤ p ≤ k, Mjp(vp) = M0 ( Mjp+1(vp) andajp(vp) ≥ k + 1 − p. From the definition ofv1 we
know that for everyp ≥ 2, vp /∈ V (H). Thus, sincek = |V (G)| − |V (H)| + 1, there existsp > q such
thatvp = vq. But it implies thatM0 = Mjp(vp) ( Mjp+1(vp) ⊆ Mjq(vq) = M0, which is impossible.
Then, for every stepi ≥ i0 for every vertexv ∈ V (H), Mi(v) = M0.

We will now show that the ruleS10 can be applied on a vertexv ∈ V (H) at a stepi1 ≥ i0. Clearly,
if for eachv ∈ V (H), a(v) = |V (G)| + 2, then there exists one vertexv ∈ V (H) such thatn(v) =
max{n ∈ CGM

(G)} and we can apply the ruleS10 on this vertex.
Suppose now that for each stepi > i0, there exists somev ∈ V (H) such thata(v) < |V (G)| + 2.

Since the execution ofS ′ terminates onG, we will now consider the final labelling(λ, nρ,Nρ,Mρ, aρ,
Hρ). In the final configuration,Mρ(v0) = Mi0(v0), andaρ(v0) = ai0(v0) = |V (G)| + 2. We can
therefore redefine the graphH as before by considering the final computation step instead of i0.

Consider now a vertexv ∈ V (H) such that for each vertexv′ ∈ V (H), aρ(v) ≤ aρ(v
′). Since the

rule S5 cannot be applied onv, it implies that there exists some(n, aρ(v) − 1) ∈ Nρ(v). Consider the



J. Chalopin et al. / Election, Naming and Cellular Edge LocalComputations 111

last stepj such that the ruleS6 has been applied betweenv and a vertexv′ such thatnj(v
′) = n. As

explained before,v′ ∈ V (H) and{v, v′} ∈ E(H). Consequently,aj(v
′) = aρ(v) − 1 andMρ(v) =

Mj(v) = Mj(v
′) = Mρ(v

′). Thereforenρ(v
′) = nj(v

′) andaρ(v
′) ≥ aρ(v) > aρ(v) − 1. The ruleS6

can then be applied byv according to the label ofv′: the computation is not terminated.
This implies that there exists a stepi1 > i0 such that one can apply the ruleS10 on some vertex and

this vertex gets the labelelected.
⊓⊔

From Proposition 5.3, if a vertexv0 has a level of confidence greater than|V (G)| + 2 at a stepi0,
there exists a subgraphH of G that is a submersion ofGMi0

(v0) ∈ SG such that for everyv ∈ V (H)
and for every stepi > i0, GMi(v) = GMi0

(v0) andai(v) ≥ 1.
We know that there do not exist two disjoint subgraphsG1 andG2 of G such thatG1 (resp.G2) is

a submersion of a graphH1 ∈ SG (resp.H2 ∈ SG). And so we can choose to elect one candidate inH,
which is possible asCH(G) 6= ∅ : there will be at most one vertex that will take the labelelectedby the
ruleS10 and therefore the algorithmS is an election algorithm forG.

Consequently, for each graphG that satisfies the necessary conditions of Proposition 5.1 there exists
an algorithm that solves the election problem overG:

Theorem 5.1. There exists an election algorithm over a given graphG using cellular edge local compu-
tations if and only if the following conditions are satisfied:

1. for everyH ∈ SG, CH(G) 6= ∅,

2. there do not exist two disjoint subgraphsG1 andG2 of G such thatG1 (resp.G2) is a submersion
of a graphH1 ∈ SG (resp.H2 ∈ SG).

6. Examples

If we assume that each vertex of a graphG has a unique identifier thenG is a submersion-minimal and
the knowledge of its size allows the election.

6.1. Trees, Grids and Complete graphs

Consider a graphG with at least three vertices that can be coloured with two colours. Such a colouring
yields a submersion ofG onto the graphK2 with two vertices and one edge between them. Such a
submersion is non trivial ifG has at least three vertices and therefore there does not exist a naming
algorithm using cellular edge local computations forG.

Moreover, ifϕ1 : G → K2 is a submersion (colouring) ofG then exchanging the two colours we
get another submersionϕ2 and if G has at least three vertices then for each vertexk ∈ V (K2) at least
one of the setsϕ−1

i (k), i = 1, 2, has cardinality≥ 2. Thus, the election problem cannot be solved with
cellular edge local computations for graphs with at least three vertices that admit a 2-coloring.

In particular, in our model, we cannot solve either naming orelection for trees or grids that have at
least three vertices, as they can be coloured with only two colors.

But complete graphs, since they are submersion-minimal, admit both naming and election algorithms
in our model.
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6.2. Rings with a Prime Size

It is well known that it is impossible to solve the naming and the election problems on a ring in the
asynchronous message passing model [18]. And consequentlyto solve these problems on rings, we need
synchronization. Unfortunately, even in the powerful model of Mazurkiewicz, we cannot solve these
problems if the size of the ring is not a prime number (except for the ring with four vertices). In the
following we will show that in our model, even if it is much more weaker than Mazurkiewicz’s model,
we can still solve both problems for the rings of prime size.

First note the following fact:

Proposition 6.1. An unlabelled ring of sizep is submersion-minimal if and only ifp is prime.

Proof:
Consider a ringRp of sizep: V (Rp) = {0, 1, . . . , p − 1}, E(Rp) = {(i, i + 1 mod p) | 0 ≤ i < p}.

If u dividesp then the mappingϕ(i) = i mod u is obviously a submersion fromRp onto the ring
Ru of sizeu. To be more precise, for the particular case ofu = 2, R2 will denote here the graph with
two vertices0, 1 and an edge{0, 1} rather than a ring.

On the other hand, suppose now thatϕ : R → H is a non trivial submersion. Since the image of any
vertex of degree2 under a submersion has either degree1 or 2 the graphH is either a ring or a chainCl

(Cl hasl verticesV (Cl) = {c0, . . . , cl−1} andl− 1 edgesE(Cl) = {(ci, ci+1) | 0 ≤ i < l− 1}). In the
first case the size ofH divides the size ofRp and the corresponding submersion is essentially the one
described already in the first part of the proof. In the secondcaseϕ maps one vertex, sayv, of Rp into
c0 and next the two vertices at the distancei from v are mapped toci, 1 ≤ i < p/2. At the distancep/2
from v there can be only one vertex inRp that is mapped tocl−1. Therefore in this casep is a multiple
of 2. ⊓⊔

Therefore, prime size rings allow both naming and election.This is a quite interesting corollary of
our general conditions since our model is the weakest among graph relabelling systems, with the bare
minimal synchronization power. Moreover, contrary to someother algorithms on rings, our enumeration
algorithm does not need any sense of direction.

7. Conclusion

In this work, we have characterized the graphs where we can solve the naming and the election problems.
As for message passing systems, unique identities and the knowledge of the size of the networks enable
both election and naming in our model.

The characterization of graphs that admit a naming algorithm is a nice characterization of the same
kind as other results existing for different models [3, 4, 5,15]. For all these models, one can find a
particular type of locally constrained homomorphisms (here we deal with submersions) such that the
graphs where we can solve the naming problem are the graphs that are minimal according to this type of
locally constrained homomorphisms.

Moreover, one can note that for every submersion-minimal graph, our algorithmM terminates. If
the vertices know the size of the network, then they can detect the termination of the algorithm. We have
a naming algorithm (without termination detection) for theclass of submersion-minimal graphs, and a
naming algorithm with termination detection for the class of submersion-minimal graphs of sizen.
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The characterization of graphs that admit an election algorithm is quite involved, and one can note
that the processes have to know the graphG in order to computeSG: for two different graphs, one need
a different initial knowledge. In the model of Mazurkiewicz, there exists a characterization of classes of
graph that admits an election algorithm [11, 12], an interesting problem is to find such a characterization
in our model.

In Section 6, we have proved that there is no election algorithm for trees or grids with cellular edge
local computations. A natural problem is to know what minimal initial knowledge enables election for
these graphs. More generally, another interesting problemis to compare the power of cellular edge local
computations with initial knowledge (the degree of the vertices, the size of the network, a bound on the
size of the network, . . . ) with the different models of local computations.
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