
Eletion, Naming and Cellular Edge LoalComputations(Extended Abstrat)J�er�emie Chalopin1, Yves M�etivier1, and Wies law Zielonka21 LaBRI, Universit�e Bordeaux I, ENSEIRB,351 ours de la Lib�eration, 33405 Talene, Franefhalopin,metivierg�labri.fr2 LIAFA, Universit�e Paris 72, plae Jussieu, ase 7014, 75251 Paris Cedex 05, Franezielonka�liafa.jussieu.frAbstrat. We examine the power and limitations of the weakest vertexrelabelling system whih allows to hange a label of a vertex in funtionof its own label and of the label of one of its neighbours. We haraterisethe graphs for whih two important distributed algorithmi problems aresolvable in this model: naming and eletion.1 IntrodutionThe role of the loal omputation mehanisms is fundamental for delimitingthe borderline between positive and negative results in distributed omputation.Understanding the power of loal omputations in di�erent models enhanesour understanding of basi distributed algorithms. Yamashita and Kameda [11℄,Boldi and al. [3℄, Mazurkiewiz [8℄ and Chalopin and M�etivier [4℄ haraterisefamilies of graphs in whih eletion is possible under di�erent models of dis-tributed omputations. Even if these results over a broad lass of models thereare still a few natural models whih were not yet examined. We onsider hereone of suh models where an elementary omputation step modi�es the stateof one network vertex and this modi�ation depends on its urrent state andon the state of one of its neighbours. We solve, in this model, two importantalgorithmi problems: the eletion problem and the naming problem, whih turnout to be not equivalent. We give the haraterisation of graphs whih admitdistributed solutions for both problems in this model.To this end we �nd suitable graph morphisms that enable to formulate on-veniently the neessary onditions in the spirit of Angluin [1℄. It turns out thatin our ase the relevant morphisms are graph submersions. The presented ondi-tions are also suÆient: algorithms, inspired by Mazurkiewiz [8℄, are given, thatenable to solve the naming and the eletion problems for orresponding graphs.



1.1 Our ModelA network of proessors will be represented as a onneted undireted graphG = (V (G); E(G)) without self-loop and multiple edges. As usual the vertiesrepresent proessors and edges diret ommuniation links. The state of eahproessor is represented by the label �(v) of the orresponding vertex. An ele-mentary omputation step will be represented by relabelling rules of the formgiven shematially in Figure 1. The omputations using uniquely this type ofrelabelling rules are alled in our paper ellular edge loal omputations. Thusan algorithm in our model is simply given by some (possibly in�nite but alwaysreursive) set of rules of the type presented in Figure 1. A run of the algorithmonsists in applying the relabelling rules spei�ed by the algorithm until no ruleis appliable, whih terminates the exeution. The relabelling rules are appliedasynhronously and in any order, whih means that given the initial labellingusually many di�erent runs are possible.X Y X 0 YFig. 1. Graphial form of a rule for ellular edge loal omputations. If in a graph Gthere is a vertex labelled X with a neighbour labelled Y then applying this rule wereplae X by a new label X 0. The labels of all other graph verties are irrelevant forsuh a omputation step and remain unhanged. The vertex of G hanging the labelwill be alled ative and �lled with blak, the neighbour vertex used to math the ruleis alled passive and marked as un�lled on the �gure. All the other verties of G notpartiipating in suh elementary relabelling step are alled idle.1.2 Eletion, Naming and EnumerationThe eletion problem is one of the paradigms of the theory of distributed om-puting. It was �rst posed by LeLann [6℄. A distributed algorithm solves theeletion problem if it always terminates and in the �nal on�guration exatlyone proessor is marked as eleted and all the other proessors are non eleted.Moreover, it is supposed that one a proessor beomes eleted or non eletedthen it remains in suh a state until the end of the algorithm. Eletions on-stitute a building blok of many other distributed algorithms sine the eletedvertex an be subsequently used to make some entralised deisions, to initialisesome other ativity, to entralise or to broadast information et.The generi onditions listed above, required for an eletion algorithm, havea diret translation in our model: we are looking for a relabelling system whereeah run terminates with exatly one vertex labelled eleted and all the otherverties labelled as non eleted. Again we require that no rule allows to hangeeither an eleted or a non-eleted label.The naming problem is another important problem in the theory of dis-tributed omputing. The aim of a naming algorithm is to arrive at a �nal on�g-2



uration where all proessors have unique identities. To be able to give dynami-ally and in a distributed way unique identities to all proessors is very importantsine many distributed algorithm work orretly only under the assumption thatall proessors an be unambiguously identi�ed.The enumeration problem is a variant of the naming problem. The aim ofa distributed enumeration algorithm is to attribute to eah network vertex aunique integer in suh a way that this yields a bijetion between the set V (G)of verties and f1; 2; : : : ; jV (G)jg.We also distinguish two kinds of termination: the impliit one that simplymeans that the algorithm always terminates, and the expliit one that meansthat at least one node an detet that the algorithm has terminated. Obviously,if we an solve the naming problem with an expliit termination then we analso elet, for example the vertex with the smallest or the greatest identity.The naming and the eletion problems are often equivalent for various om-putational models [8, 4℄, however this is not the ase for our model. It turnsout that in our model the lass of graphs for whih naming is solvable admits asimple and elegant haraterisation; unfortunately a similar haraterisation forthe eletion problem is quite involved.1.3 Overview of our ResultsUnder the model of ellular edge loal omputations, we present a omplete har-aterisation of graphs for whih naming and eletion are possible: Theorems 7and 11. The problems are solved onstrutively, we present naming and eletionalgorithms that work orretly for all graphs where these problems are solvable.Imposed spae limitations do not allow to present the orretness proofs for ouralgorithms.1.4 Related WorksThe eletion problem was already studied in a great variety of models [2, 7, 10℄.The proposed algorithms depend on the type of the basi omputation steps,they work orretly only for a partiular type of a network topology (tree, grid,torus, ring with a known prime number of verties et.) or it is assumed thatsome initial extra knowledge is available to proessors.Yamashita and Kameda [11℄ onsider the model where, in eah step, oneof the verties, depending on its urrent label, either hanges the label, orsends/reeives a message via one of its ports. They proved that there existsan eletion algorithm for G if and only if the symmetriity of G is equal to 1,where the symmetriity depends on the number of labelled trees isomorphi toa ertain tree assoiated with G ([11℄, Theorem 1 p. 75).Mazurkiewiz [8℄ onsiders the asynhronous omputation model presentedin Figure 2. His haraterisation of the graphs where enumeration/eletion arepossible is based on the notion of non ambiguous graphs and may be formu-lated equivalently using overings [5℄. He gives a nie and simple enumerationalgorithm for the graphs minimal for the overing relation.3



XX5X6 X7 X8X1X2X3X4 X 0X 05X 06 X 07 X 08X 01X 02X 03X 04Fig. 2. In the model of Mazurkiewiz [8℄ a hosen vertex an hange its label togetherwith all its neighbours. The relabelling rules have therefore the form presented on this�gure. Note that this involves a muh greater degree of synhronisation than in thesystems that we examine in our paper.Boldi and al. [3℄ onsider a model where the network is a direted multigraphG and ontrary to our model they allow also ar labellings. When a proessor isativated, it hanges its state depending on its previous state and on the statesof its ingoing neighbours; the outgoing neighbours do not partiipate in suh anelementary omputation step. They investigate two modes of omputation: syn-hronous and asynhronous while in our paper only asynhronous omputationsare examined. In their study, they use �brations whih are generalisations ofoverings. Boldi and al. [3℄ prove that there exists an eletion algorithm in theirmodel for a graph G if and only if G is not properly �bred over another graphH (for the asynhronous ase, they only onsider disrete �brations). To obtainthis haraterisation, they use the same mehanism as Yamashita and Kameda:eah node omputes its own view and next the node with the weakest view iseleted.In [4℄, three di�erent asynhronous models are examined. Shematially, therules of all three models are presented in Figure 3. Note that, ontrary to themodel we examine in the present paper, all these models allow edge labelling.It turns out that for all models desribed in Figure 3 naming and eletion areequivalent. In [4℄, it is proved that for all models desribed in Figure 3 theeletion and naming problems an be solved on a graph G if and only if G isnot a overing of any graph H not isomorphi to G, where H an have multipleedges but no self-loop.We an note that, although the model studied in this paper and model Ain Figure 3 seem to be very lose, the haraterisations of graphs for whih thenaming problem and the eletion problem an be solved in these models are verydi�erent. The intuitive reason is that if we allow to label the edges then eahproessor an subsequently onsistently identify the neighbours. On the otherhand, in the model that we examine here, sine edges are no more labelled, avertex an never know if it synhronises with the same neighbour or anotherone. 4



Model A: X ZY X 0 Z0Y 0Model B: X ZY X 0 ZY 0Model C: XXd X1 X2X3Yd Y1 Y2Y3 X 0Xd X1 X2X3Y 0d Y 01 Y 02Y 03Fig. 3. Elementary relabelling steps for the three models examined in [4℄.2 PreliminariesWe onsider �nite, undireted, onneted graphsG = (V (G); E(G)) with vertiesV (G) and edges E(G) without multiple edges or self-loop. Two verties u andv are said to be adjaent or neighbours if fu; vg is an edge of G (thus u and vare neessarily distint sine no self-loop is admitted) and NG(v) will stand forthe set of neighbours of v. An edge e is inident to a vertex v if v 2 e and IG(v)will stand for the set of all the edges of G inident to v. The degree of a vertexv, denoted dG(v), is the number of edges inident with v.A homomorphism between graphs G and H is a mapping  : V (G) ! V (H)suh that if fu; vg 2 E(G) then f(u); (v)g 2 E(H). Sine our graphs do nothave self-loop, this implies that (u) 6= (v) whenever u and v are adjaent.We say that  is an isomorphism if  is bijetive and �1 is a homomorphism.A lass of graphs will be any set of graphs ontaining all graphs isomorphi tosome of its elements. A graph H is a subgraph of G, noted H � G, if V (H) �V (G) and E(H) � E(G). An ourrene of H in G is an isomorphism  betweenH and a subgraph H 0 of G.For any set S, jSj denotes the ardinality of S while P�n(S) is the set of �nitesubsets of S. For any integer q, we denote by [1; q℄ the set of integers f1; 2; : : : ; qg:Throughout the paper we will onsider graphs where verties are labelledwith labels from a reursive label set L. A graph labelled over L is a oupleG = (G; �), where G is an underlying non labelled graph and � : V (G) ! L isa (vertex) labelling funtion. The lass of graphs labelled by L will be denotedby GL.Let H be a subgraph of G and �H the restrition of a labelling � : V (G) ! Lto V (H). Then the labelled graph H = (H;�H ) is alled a subgraph of G =(G; �); we note this fat by H � G. A homomorphism of labelled graphs is justa labelling-preserving homomorphism of underlying unlabelled graphs.Submersions are loally surjetive graph morphisms:De�nition 1. A graph G is a submersion of a graph H via a morphism  : G!H if 8v 2 V (G),  is surjetive on the neighbourhood NG(v), that is (NG(v)) =NH((v)). The graph G is a proper submersion of H if  is not an isomorphism;G is submersion-minimal if G is not a proper submersion of any other graph.Naturally, submersions of labelled graphs are just submersions of underlyingunlabelled graphs preserving the labelling.5



123 3G 12 3HFig. 4. The labelled graph G is a submersion of H via the mapping  whih maps eahvertex of G labelled i to the unique vertex of H with the same label i. This submersionis proper and the graph H is itself submersion-minimal.For any set R of edge loal relabelling rules of the type desribed in Figure 1we shall write G R G0 if G0 an be obtained from G by applying a rule of R onsome edge of G. Obviously, G and G0 have the same underlying graph G, onlythe labelling hanges for exatly one (ative) vertex. Thus, slightly abusing thenotation, R will stand both for a set of rules and the indued relabelling relationover labelled graphs. The transitive losure of suh a relabelling relation is notedR�.The relation R is alled noetherian on a graph G if there is no in�niterelabelling sequeneG0 R G1 R : : : ; with G0 = G: The relation R is noetherianon a set of graphs if it is noetherian on eah graph of the set. Finally, the relationR is alled noetherian if it is noetherian on eah graph.Clearly noetherian relations ode always terminating algorithms.The following simple observation exhibits a strong link between submersionsand ellular edge loal relabellings. This is a ounterpart of the lifting lemma ofAngluin [1℄ adapted to submersions.Lemma 2 (Lifting Lemma). Let R be a ellular edge loally generated rela-belling relation and let G be a submersion of H. If H R� H0 then there existsG0 suh that G R� G0 and G0 is a submersion of H0.Proof. It is suÆient to prove the lemma for one step of the relabelling. Let' : G ! H be a submersion, G = (G; �);H = (H; �). Suppose that a ellularedge rule is applied to an ative vertex v 2 V (H) yielding a new labelling �0 onH . Then, sine ' is a submersion, all verties of '�1(v) are pairwise non adjaentand therefore we an apply the same relabelling rule to all verties of '�1(v) inG, in any order. This yields a labelling �0 on G suh that ' : (G; �0) ! (H; �0)remains a submersion. Note that we have simulated here one step relabelling inH by several relabellings in G that use the same rule. ut3 Enumeration and Naming ProblemsWe prove that there exists no naming algorithm and no enumeration algo-rithm on a graph G using ellular edge loal omputations if the graph is notsubmersion-minimal. The proof is analogous to that of Angluin [1℄.6



Proposition 3. Let G be a labelled graph whih is not submersion-minimal.There is no naming algorithm for G and no enumeration algorithm for G usingellular edge loal omputations.Proof. Let H be a labelled graph not isomorphi to G suh that G is a submer-sion of H via '. For every ellular edge loal algorithm R, onsider an exeutionof R on H that leads to a �nal on�guration H0. From Lemma 2, there exists anexeution of R on G suh that the �nal on�guration G0 = (G; �0) is a submer-sion of H0. Sine G0 is not isomorphi to H0, there exist distint v; v0 2 V (G)suh that �0(v) = �0(v0). Consequently, R does not solve either the naming orthe enumeration problem on G. ut3.1 An Enumeration AlgorithmIn this setion, we desribe a Mazurkiewiz-like algorithm M using ellularedge loal omputations that solves the enumeration problem on a submersion-minimal graph G.Eah vertex v attempts to get its own number between 1 and jV (G)j. Avertex hooses a number and exhanges its number with its neighbours. If avertex u disovers the existene of another vertex v with the same number, thenit ompares its loal view (the numbers of its neighbours) with the loal view of v.If the label of u or the loal view of u is \weaker", then u hooses another numberand broadasts it again with its loal view. At the end of the omputation, everyvertex will have a unique number if the graph is submersion-minimal.We onsider a graph G = (G; �) with an initial labelling � : V (G) ! L.During the omputation eah vertex v 2 V (G) will aquire new labels of theform (�(v); n(v); N(v);M(v)), where:{ the �rst omponent �(v) is just the initial label (and thus remains �xedduring the omputation),{ n(v) 2 N is the urrent identity number of v omputed by the algorithm,{ N(v) 2 P�n(N) is the loal view of v. Intuitively, the algorithm will try toupdate the urrent view in suh a way that N(v) will onsist of urrentidentities of the neighbours of v. Therefore N(v) will be always a �nite(possibly empty) set of integers,{ M(v) � N � L � P�n(N) is the urrent mailbox of v. It ontains the wholeinformation reeived by v during the omputation.The fundamental property of the algorithm is based on a total order on theset P�n(N) of loal views, as de�ned by Mazurkiewiz [8℄.Let N1; N2 2 P�n(N), N1 6= N2. Then N1 � N2 if the maximal element ofthe symmetri di�erene N14N2 = (N1 nN2) [ (N2 nN1) belongs to N2. Notethat in partiular the empty set is minimal for �.It an be helpful to note that the order � is just a reinarnation of the usuallexiographi order. Let n1; n2; : : : ; nk and m1;m2; : : : ;ml be all elements of N1and N2 respetively listed in the dereasing order (dereasing for the usual orderover integers): n1 > n2 > � � � > nk and m1 > m2 > � � � > ml. Then N1 � N2 i�7



either (i) k � l and for all i, 1 � i � k, ni = mi or (ii) ni < mi where i is thesmallest index suh that ni 6= mi.If N(u) � N(v) then we say that the loal view N(v) of v is stronger thanthe one of u (and N(u) is weaker than N(v)).We assume for the rest of this paper that the set of labels L is totally orderedby <L.Finally, we extend � to a total order on L � P�n(N) : (l; N) � (l0; N 0) ifeither l <L l0 or ( l = l0 and N � N 0 ).Oasionally we shall use the reexive losure � of �.We desribe here the relabelling rules that de�ne the enumeration algorithm.First of all, to launh the algorithm there is a speial initial rule M0 that justextends the initial label �(v) of eah vertex v to (�(v); 0; ;; ;). The rules M1 andM2 are lose to the rules used by Mazurkiewiz [8℄. The �rst rule M1 enablesa vertex to update its mailbox by looking at the mailbox of one of its neighbours:M1 :(l1; n1; N1;M1) (l2; n2; N2;M2) (l1; n1; N1;M 01) (l2; n2; N2;M2)If M2 nM1 6= ; then M 01 := M1 [M2.The seond rule M2 does not involve any synhronisation with a neighbourvertex. It enables a vertex v to hange its identity if the urrent identity numbern(v) is 0 or if the mailbox of v ontains a message from a vertex with the sameidentity but with a stronger label or a stronger loal view.M2 : (l; n;N;M) (l; k;N;M 0)If n = 0 or there exists (n; `0; N 0) 2 M suh that (`;N) � (`0; N 0) thenk := 1 + maxfn0 j 9(n0; `0; N 0) 2Mg and M 0 := M [ f(k; `;N)g.(In the formula above we assume that max of an empty set is 0.)The third rule M3 allows to hange the urrent identity for a vertex vhaving a neighbour v0 with exatly the same urrent label (all four ompo-nents should be idential). Moreover, at the same step, the identity n(v0) of theneighbour v0 of v is inserted into the loal view N(v) and at the same timeall the elements m of N(v) suh that m < n(v0) are deleted from the loalview. The rationale behind this deletion step is explained in the rule M4 below.M3 :(l; n;N;M) (l; n;N;M) (l; k;N 0;M 0) (l; n;N;M)If n > 0 and 8(n; `0; N 0) 2 M , (`0; N 0) � (`;N) then k := 1 + maxfn0 j9(n0; `0; N 0) 2 Mg, N 0 := N n fm 2 N j m < ng [ fng and M 0 := M [f(k; `;N 0)g.The fourth rule M4 enables a vertex v to add the urrent identity numbern(v0) of one of its neighbours to its loal view N(v). As for the preeding rule,all the elements m belonging to N(v) suh that m < n(v0) are deleted from theurrent view. 8



The intuitive justi�ation for the deletion of all suh m is the following. Letus suppose that the vertex v synhronises with a neighbour v0 and observesthat the urrent identity number n(v0) of v0 does not belong to his urrent viewN(v). Then, sine the very purpose of the view N(v) is to stok the identitynumbers of all the neighbours, we should add n(v0) to the view N(v) of v. Butnow two ases arise. If v synhronises with v0 for the �rst time then addingn(v0) to the view of v is suÆient. However, it an also be the ase that vsynhronised with v0 in the past and in the meantime v0 has hanged its iden-tity number. Then v should not only add the new identity number n(v0) toits view but, to remain in a onsistent state, we should delete the old identitynumber of v0 from the loal view of v. The trouble is that v has no means toknow whih of the numbers present in its view N(v) should be deleted andit is even unable to deide whih of the two ases holds (�rst synhronisationwith v0 or not). However, sine our algorithm assures the monotoniity of sub-sequent identity numbers of eah vertex, we know that the eventual old identitynumber of v0 is less than the urrent identity n(v0). Therefore, by deleting allm < n(v0) from the loal view N(v) we are sure to delete all invalid information.Of ourse, in this way we risk to delete also the legitimate urrent identities ofother neighbours of v from its view N(v). However, this is not a problem sinev an reover this information just by (re)synhronising all suh neighbours.M4 :(l1; n1; N1;M) (l2; n2; N2;M) (l1; n1; N 01;M 0) (l2; n2; N2;M)If n1 > 0, n2 > 0, n1 6= n2, 8(n1; `01; N 01) 2 M , (`01; N 01) � (`1; N1)8(n2; `02; N 02) 2M , (`02; N 02) � (`2; N2), and n2 =2 N1 thenN 01 := N1 n fn0 2 N1 j n0 < n2g [ fn2g and M 0 := M [ f(n1; `1; N 01)g.In the following (�(v); ni(v); Ni(v);Mi(v)) will denote the label of a vertex vafter the ith omputation step of the algorithm M given above.The algorithm has some remarkable monotoniity properties:Lemma 4. For eah step i and eah vertex v: (A) ni(v) � ni+1(v), (B) Ni(v) �Ni+1(v), and (C) Mi(v) �Mi+1(v). Moreover, there exists at least one vertex vsuh that at least one of these inequalities/inlusions is strit for v.The loal knowledge of a vertex v reets to some extent some real propertiesof the urrent on�guration:Lemma 5. Let v 2 V (G). If (m; `;N) 2Mi(v) then for some vertex w 2 V (G),ni(w) = m. If ni(v) 6= 0 and (m0; `0; N 0) 2 Mi(v) then, for every 1 � m � m0,there exist ` and N suh that (m; `;N) 2Mi(v).This fat allows to dedue the following properties of the �nal labelling:Lemma 6. Any run � of the enumeration algorithm on a onneted labelledgraph G = (G; �) terminates and yields a �nal labelling (�; n�; N�;M�) satisfyingthe following onditions: 9



(1) Let m be the maximal number in the �nal labelling, m = maxfn�(v) j v 2V (G)g. Then for every 1 � p � m there is some v 2 V (G) with n�(v) = p,and for all verties v; v0:(2) M�(v) = M�(v0),(3) (�(v); n�(v); N�(v)) 2M�(v0),(4) n�(v) = n�(v0) implies that �(v) = �(v0) and N(v) = N(v0),(5) n 2 N�(v) if and only if there exists w 2 NG(v) suh that n�(w) = n; inthis ase, n�(v) 2 N�(w).Under the notation of Lemma 6 we an onstrut the labelled graph H�: theverties of H� are integers n�(v), i.e. �nal identity numbers, eah n�(v) labelledby �(v) (this labelling is well de�ned by Lemma 6 (4)) and with edges naturallyinherited from G. In fat, the mapping n� is a submersion from G to H�. Thisobservation yields:Theorem 7. For every graph G, the following statements are equivalent:(i) there exists a naming algorithm on G using ellular edge loal omputa-tions,(ii) there exists a naming algorithm with termination detetion on G usingellular edge loal omputations,(iii) there exists an enumeration algorithm on G using ellular edge loal om-putations,(iv) there exists an enumeration algorithm with termination detetion on Gusing ellular edge loal omputations,(v) the graph G is a submersion-minimal graph.4 Eletion ProblemIf we an solve the enumeration problem then we an solve the eletion problem;one a vertex gets the identity number jV (G)j we delare it eleted.Nevertheless, in our model, the enumeration and the eletion problems arenot equivalent. The graph G in Figure 5 is not submersion-minimal, sine themorphism from G to H indued by the labelling of G is loally surjetive andtherefore neither the enumeration nor the naming problem an be solved on G.But let us exeute the preeding algorithm on G. At the end, the vertex labelled3 in G will know that it is unique with at least three di�erent neighbours andtherefore an delare itself as eleted.We would like to give here neessary onditions haraterising the graphswith solvable eletion problem. Given a graph G, we denote by SG the set ofgraphs H suh that there exists a submersion from G onto H. From Lemma 2,any algorithm A that solves the eletion problem on G using ellular edge loalomputations will solve the eletion problem on every graph H 2 SG.10



12 3 44G 12 3 4HFig. 5. A graph for whih we an solve the eletion problem but not the enumerationproblem.Remark 8. Consider an algorithm A that solves the eletion problem on G.Suppose that there exists a subgraph G0 of G that is a submersion of a graphH 2 SG via a morphism '. If there exists an exeution of A on H that elets avertex v 2 V (H) suh that j'�1(v)j > 1, then there exists an exeution of A onG0 suh that the label eleted appears at least twie. Sine eah exeution ofA onG0 an be extended to an exeution ofA onG, there exists an exeution ofA overG that leads to the eletion of at least two verties, this is in ontradition withthe hoie of A. We an therefore de�ne PH(G0; ') = fv 2 V (H) j j'�1(v)j > 1gand eah exeution of A on H annot elet a vertex v 2 PH(G0; ').Consider a graph H 2 SG. Let PH(G) be the union of all PH(G0; ') for 'ranging over all submersions of subgraphs G0 of G to H and CH(G) = V (H) nPH(G) (the elements of this set are alled the andidates of H for G). FromRemark 8, every eletion algorithm A over G must be suh that eah exeutionof A over H should elet a vertex in CH(G). Consequently, if there exists aneletion algorithm A on G then for every graph H 2 SG, CH(G) 6= ;.Suppose that there exist two disjoint subgraphs G1 and G2 of G suh thatG1 (resp. G2) is a submersion of a graph H1 2 SG (resp. H2 2 SG). Then theredoes not exist any eletion algorithm using ellular edge loal omputations.Indeed, otherwise, there exists an exeution of the algorithm on G suh thatthe label eleted appears one in G1 and one in G2, whih is impossible for aneletion algorithm. Reapitulating:Proposition 9. Let G be a labelled graph suh that there exists an eletion algo-rithm for G using ellular edge loal omputations. Then the following onditionsare satis�ed:1. for every H 2 SG, CH(G) 6= ;,2. there do not exist two disjoint subgraphs G1 and G2 of G suh that G1(resp. G2) is a submersion of a graph H1 2 SG (resp. H2 2 SG).4.1 An Eletion AlgorithmWe now onsider a graph G satisfying the onditions of Proposition 9.Our aim is to present an algorithm suh that eah exeution over G willdetet a graph H 2 SG suh that there exists a subgraph G0 of G that is asubmersion of H. 11



To this end we adapt the enumeration algorithm from the preeding setionand the termination detetion algorithm of Szymansky, Shi and Prywes [9℄.The idea is to exeute the enumeration algorithm given for a graph and toreonstrut a graph from the mailboxes of the nodes. If the reonstruted graphis an element of SG, the nodes hek if they all agree on this graph.As in Setion 3.1, we start with a labelled graph G = (G; �). During theomputation verties v will get new labels of the form (�(v); n(v); N(v);M(v);a(v); H(v)) representing the following information (again the �rst omponent�(v) remains �xed) :{ n(v) 2 N is the identity number of the vertex v omputed by the algorithm,{ a(v) 2 N is the on�dene level of the vertex v,{ N(v) is the loal view of v. If the vertex v has a neighbour v0, relabelling ruleswill allow v to add the ouple (n(v0); a(v0)) to N(v). Thus N(v) is alwaysa �nite set of ouples of integers. For N 2 P�n(N2 ), we note �1(N) = fn j9(n; a) 2 Ng the projetion on the �rst omponent.{ M(v) � N � L � P�n(N) is the mailbox of v and ontains the informationreeived by v about the identity numbers existing in the graph and the loalviews assoiated with these numbers.{ H(v) is the history of the vertex v. If at some omputation step (n;N;M; a) 2H(v) then it means that at some previous step the vertex v had a on�denelevel equal to a for the value M .The �rst omputation step S0 replaes just the initial label �(v) by(�(v); 0; ;; ;;�1; ;). The following four rules mimi the rules of the enumerationalgorithm:S1 :(l1; n1; N1;M1;�1;H1) (l2; n2; N2;M2;�1;H2) (l1; n1; N1;M 01;�1;H1) (l2; n2; N2;M2;�1;H2)If M2 nM1 6= ; then M 01 := M1 [M2.S2 : (l; n;N;M;�1;H) (l; k; N;M 0;�1;H)If n = 0 or there exists (n; `0;K 0) 2 M suh that (`;�1(N)) � (`0;K 0) thenk := 1 + maxfn0 j 9(n0; `0;K 0) 2Mg and M 0 := M [ f(k; `;�1(N))g.S3 :(l; n;N1;M;�1;H1) (l; n;N2;M;�1;H2) (l; k; N 01;M 0;�1;H1) (l; n;N2;M;�1;H2)If n > 0, �1(N1) = �1(N2) and 8(n; `0;K 0) 2 M , (`0;K 0) � (`;�1(N1))then k := 1 + maxfn0 j 9(n0; `0;K 0) 2 Mg, N 01 := N1 n f(n1; a) 2 N1 j n1 <ng [ f(n;�1)g and M 0 := M [ f(k; `;�1(N 01))g.12



S4 :(l1; n1; N1;M;�1;H1) (l2; n2; N2;M;�1;H2) (l1; n1; N 01;M 0;�1;H1) (l2; n2; N2;M;�1;H2)If n1 > 0, n2 > 0, n1 6= n2, 8(n1; `01;K 01) 2 M , (`01;K 01) � (`1; �1(N1)),8(n2; `02;K 02) 2M , (`02;K 02) � (`2; �1(N2)), and (n2;�1) =2 N1 thenN 01 := N1 n f(n0;�1) 2 N1 j n0 < n2g [ f(n2;�1)g and M 0 := M [f(n1; `1; N 01)g.The �fth rule says that if a vertex v detets that all the neighbours it knowshave a on�dene level a � a(v) then it an inrement its own on�dene level.To de�ne this rule we need some additional notations. Given a mailbox on-tent M , for eah n > 0 we de�ne �n(M) as the set of all triples (n; `;N) 2 Mwith the �rst omponent n. For eah non empty set �n(M) we onserve in themailbox only the triple (n; `;N) with the greatest ouple (n;N) for the order �.This operation gives a new mailbox ontent that we shall note u(M).The next step onsists in de�ning a graph GM . If there exist(n1; `1; N1); (n2; `2; N2) 2 u(M) suh that (n2; `2) 2 N1 and (n1; `1) =2 N2then we set GM = (;; ;). Otherwise, GM is the graph suh that V (GM ) =fn j (n; `;N) 2 u(M)g and E(GM ) = ffn1; n2g j 9(n1; `1; N1); (n2; `2; N2) 2u(M); (n2; `2) 2 N1 and (n1; `1) 2 N2g. The labelling of GM is inherited fromthe set M : for (n; `;N) 2 u(M), �M (n) = `. We will denote by GM = (GM ; �M )the orresponding labelled graph.S5 : (l; n;N;M; a;H) (l; n;N;M; a+ 1;H)This rule applies whenever 8(n; `0; N 0) 2M; (`0; N 0) � (`;�1(N)), GM 2 SG,and 8(n0; a0) 2 N; a � a0, and a � jV (G)j+ 1.The sixth rule enables a node v to update its knowledge of the on�denelevel of one of its neighbour if the on�dene level of this neighbour has inreased.S6 :(l1; n1; N1;M; a1;H1) (l2; n2; N2;M; a2;H2) (l1; n1; N 01;M; a1;H1) (l2; n2; N2;M; a2;H2)If a1 � 0, 8(n2; `02; N 02) 2 M; (`02; N 02) � (`2; �1(N2)), and there exists(n2; a) 2 N1 suh that a2 > a then N 01 := N1 n f(n2; a)g [ f(n2; a2)g.The rule S7 enables a vertex v to hange the value of its mailbox M wheneverthere exists a neighbour v0 that used to have a on�dene level a aording toM suh that a � a(v) � 1 and suh that its mailbox has hanged. If a vertexhanges its mailbox, then it modi�es also its history H(v), so as to rememberits former on�dene level.S7 :(l1; n1; N1;M1; a1;H1) (l2; n2; N2;M2; a2;H2) (l1; n1; N 01;M 0;�1;H1) (l2; n2; N2;M2; a2;H2)If 9(n; l;N) 2 M2 nM1 and either a1 = 0 or (a1 � 0 and 9(n;N;M1; a) 2H2; 9(n; a0) 2 N1; a � a0) then N 01 := f(n0;�1) j 9(n; a) 2 N1g, M 0 :=M1 [M2 and H 01 := H1 [ f(n1; N1;M1; a1)g.13



4.2 Corretness of the Eletion AlgorithmIn the following (�(v); ni(v); Ni(v);Mi(v); ai(v); Hi(v)) will stand for the labelof the vertex v after the ith omputation step of the eletion algorithm. Themost important property of the algorithm is given in the following proposition.Roughly speaking it states that if the on�dene level of vertex v is jV (G)j + 2then G ontains a submersion of GM(v).Proposition 10. If there exists a vertex v0 2 V (G) and a step i0 suh thatai0(v0) = jV (G)j + 2, G ontains a submersion H of GMi0 (v0) and for everystep i � i0 and for every vertex v 2 V (H), Mi(v) = Mi0(v0).From Proposition 10 we dedue that if the onditions of Proposition 9 aresatis�ed then adding the following rule S8 allows to elet a unique vertex ofG: S8:the label (`; n;N;M; a;H) suh that n = maxfn 2 CGM (G)g and a = jV (G)j+2is replaed by eleted. The last two rules serve to propagate the information thatthere is an eleted vertex: S9 allows to transform a label of a vertex with aneleted neighbour to non-eleted and S10 propagates the non-eleted label to allneighbours whih are neither eleted nor non-eleted.Summarising we get:Theorem 11. There exists an eletion algorithm over a given graph G usingellular edge loal omputations if and only if the following onditions are satis-�ed:1. for every H 2 SG, CH(G) 6= ;,2. there do not exist two disjoint subgraphs G1 and G2 of G suh that G1(resp. G2) is a submersion of a graph H1 2 SG (resp. H2 2 SG).5 ExamplesIf we assume that nodes of a graph G have unique identi�ers then G is asubmersion-minimal graph and the knowledge of its size allows an eletion.5.1 Trees, Grids and Complete graphsConsider an unlabelled tree T . Sine we an olour eah tree T with just twoolours, if T has at least 2 verties suh olouring yields a submersion of T intothe graph K2 with two verties and one edge between them. Suh a submersionis non trivial if T has at least 3 verties. Therefore for suh trees there does notexist a naming algorithm using ellular edge loal omputations.If '1 : T ! K2 is a submersion (olouring) of T then exhanging the twoolours we get another submersion '2 and if T has at least three verties thenfor eah olour k 2 V (K2) at least one of the sets 'i(k), i = 1; 2, has ardinality� 2. Consequently, the eletion problem annot be solved for trees with morethan 2 verties. 14



For the same reasons, square grids, whih are also onneted and olourablewith two olours, do not admit either naming or eletion algorithms in our model.Complete graphs are submersion-minimal and therefore admit both namingand eletion in our model.5.2 Rings with a Prime SizeFirst note the following fat:Proposition 12. An unlabelled ring of size p is submersion-minimal if and onlyif p is prime.Therefore prime size rings allow both naming and eletion. This is a quiteinteresting orollary of our general onditions sine our model is the weakestamong graph relabelling systems, with the bare minimal synhronisation power.Moreover, ontrary to some other algorithms on rings, our enumeration algo-rithm does not need any sense of diretion for omputing agents.Referenes1. D. Angluin. Loal and global properties in networks of proessors. In Proeedingsof the 12th Symposium on Theory of Computing, pages 82{93, 1980.2. H. Attiya and J. Welh. Distributed omputing: fundamentals, simulations, andadvaned topis. MGraw-Hill, 1998.3. Paolo Boldi, Bruno Codenotti, Peter Gemmell, Shella Shammah, Janos Simon, andSebastiano Vigna. Symmetry breaking in anonymous networks: Charaterizations.In Pro. 4th Israeli Symposium on Theory of Computing and Systems, pages 16{26.IEEE Press, 1996.4. J. Chalopin and Y. M�etivier. Eletion and loal omputations on edges (extendedabstrat). In Pro. of Foundations of Software Siene and Computation Strutures,FOSSACS'04, number 2987 in LNCS, pages 90{104, 2004.5. E. Godard, Y. M�etivier, and A. Musholl. Charaterization of Classes of GraphsReognizable by Loal Computations. Theory of Computing Systems, (37):249{293, 2004.6. G. LeLann. Distributed systems: Towards a formal approah. In B. Gilhrist,editor, Information proessing'77, pages 155{160. North-Holland, 1977.7. N. A. Lynh. Distributed algorithms. Morgan Kaufman, 1996.8. A. Mazurkiewiz. Distributed enumeration. Inf. Proessing Letters, 61:233{239,1997.9. B. Szymanski, Y. Shy, and N. Prywes. Terminating iterative solutions of simul-taneous equations in distributed message passing systems. In Pro. of the 4thSymposium of Distributed Computing, pages 287{292, 1985.10. G. Tel. Introdution to distributed algorithms. Cambridge University Press, 2000.11. M. Yamashita and T. Kameda. Computing on anonymous networks: Part i -haraterizing the solvable ases. IEEE Transations on parallel and distributedsystems, 7(1):69{89, 1996. 15


