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t. We examine the power and limitations of the weakest vertexrelabelling system whi
h allows to 
hange a label of a vertex in fun
tionof its own label and of the label of one of its neighbours. We 
hara
terisethe graphs for whi
h two important distributed algorithmi
 problems aresolvable in this model: naming and ele
tion.1 Introdu
tionThe role of the lo
al 
omputation me
hanisms is fundamental for delimitingthe borderline between positive and negative results in distributed 
omputation.Understanding the power of lo
al 
omputations in di�erent models enhan
esour understanding of basi
 distributed algorithms. Yamashita and Kameda [11℄,Boldi and al. [3℄, Mazurkiewi
z [8℄ and Chalopin and M�etivier [4℄ 
hara
terisefamilies of graphs in whi
h ele
tion is possible under di�erent models of dis-tributed 
omputations. Even if these results 
over a broad 
lass of models thereare still a few natural models whi
h were not yet examined. We 
onsider hereone of su
h models where an elementary 
omputation step modi�es the stateof one network vertex and this modi�
ation depends on its 
urrent state andon the state of one of its neighbours. We solve, in this model, two importantalgorithmi
 problems: the ele
tion problem and the naming problem, whi
h turnout to be not equivalent. We give the 
hara
terisation of graphs whi
h admitdistributed solutions for both problems in this model.To this end we �nd suitable graph morphisms that enable to formulate 
on-veniently the ne
essary 
onditions in the spirit of Angluin [1℄. It turns out thatin our 
ase the relevant morphisms are graph submersions. The presented 
ondi-tions are also suÆ
ient: algorithms, inspired by Mazurkiewi
z [8℄, are given, thatenable to solve the naming and the ele
tion problems for 
orresponding graphs.



1.1 Our ModelA network of pro
essors will be represented as a 
onne
ted undire
ted graphG = (V (G); E(G)) without self-loop and multiple edges. As usual the verti
esrepresent pro
essors and edges dire
t 
ommuni
ation links. The state of ea
hpro
essor is represented by the label �(v) of the 
orresponding vertex. An ele-mentary 
omputation step will be represented by relabelling rules of the formgiven s
hemati
ally in Figure 1. The 
omputations using uniquely this type ofrelabelling rules are 
alled in our paper 
ellular edge lo
al 
omputations. Thusan algorithm in our model is simply given by some (possibly in�nite but alwaysre
ursive) set of rules of the type presented in Figure 1. A run of the algorithm
onsists in applying the relabelling rules spe
i�ed by the algorithm until no ruleis appli
able, whi
h terminates the exe
ution. The relabelling rules are appliedasyn
hronously and in any order, whi
h means that given the initial labellingusually many di�erent runs are possible.X Y X 0 YFig. 1. Graphi
al form of a rule for 
ellular edge lo
al 
omputations. If in a graph Gthere is a vertex labelled X with a neighbour labelled Y then applying this rule werepla
e X by a new label X 0. The labels of all other graph verti
es are irrelevant forsu
h a 
omputation step and remain un
hanged. The vertex of G 
hanging the labelwill be 
alled a
tive and �lled with bla
k, the neighbour vertex used to mat
h the ruleis 
alled passive and marked as un�lled on the �gure. All the other verti
es of G notparti
ipating in su
h elementary relabelling step are 
alled idle.1.2 Ele
tion, Naming and EnumerationThe ele
tion problem is one of the paradigms of the theory of distributed 
om-puting. It was �rst posed by LeLann [6℄. A distributed algorithm solves theele
tion problem if it always terminates and in the �nal 
on�guration exa
tlyone pro
essor is marked as ele
ted and all the other pro
essors are non ele
ted.Moreover, it is supposed that on
e a pro
essor be
omes ele
ted or non ele
tedthen it remains in su
h a state until the end of the algorithm. Ele
tions 
on-stitute a building blo
k of many other distributed algorithms sin
e the ele
tedvertex 
an be subsequently used to make some 
entralised de
isions, to initialisesome other a
tivity, to 
entralise or to broad
ast information et
.The generi
 
onditions listed above, required for an ele
tion algorithm, havea dire
t translation in our model: we are looking for a relabelling system whereea
h run terminates with exa
tly one vertex labelled ele
ted and all the otherverti
es labelled as non ele
ted. Again we require that no rule allows to 
hangeeither an ele
ted or a non-ele
ted label.The naming problem is another important problem in the theory of dis-tributed 
omputing. The aim of a naming algorithm is to arrive at a �nal 
on�g-2



uration where all pro
essors have unique identities. To be able to give dynami-
ally and in a distributed way unique identities to all pro
essors is very importantsin
e many distributed algorithm work 
orre
tly only under the assumption thatall pro
essors 
an be unambiguously identi�ed.The enumeration problem is a variant of the naming problem. The aim ofa distributed enumeration algorithm is to attribute to ea
h network vertex aunique integer in su
h a way that this yields a bije
tion between the set V (G)of verti
es and f1; 2; : : : ; jV (G)jg.We also distinguish two kinds of termination: the impli
it one that simplymeans that the algorithm always terminates, and the expli
it one that meansthat at least one node 
an dete
t that the algorithm has terminated. Obviously,if we 
an solve the naming problem with an expli
it termination then we 
analso ele
t, for example the vertex with the smallest or the greatest identity.The naming and the ele
tion problems are often equivalent for various 
om-putational models [8, 4℄, however this is not the 
ase for our model. It turnsout that in our model the 
lass of graphs for whi
h naming is solvable admits asimple and elegant 
hara
terisation; unfortunately a similar 
hara
terisation forthe ele
tion problem is quite involved.1.3 Overview of our ResultsUnder the model of 
ellular edge lo
al 
omputations, we present a 
omplete 
har-a
terisation of graphs for whi
h naming and ele
tion are possible: Theorems 7and 11. The problems are solved 
onstru
tively, we present naming and ele
tionalgorithms that work 
orre
tly for all graphs where these problems are solvable.Imposed spa
e limitations do not allow to present the 
orre
tness proofs for ouralgorithms.1.4 Related WorksThe ele
tion problem was already studied in a great variety of models [2, 7, 10℄.The proposed algorithms depend on the type of the basi
 
omputation steps,they work 
orre
tly only for a parti
ular type of a network topology (tree, grid,torus, ring with a known prime number of verti
es et
.) or it is assumed thatsome initial extra knowledge is available to pro
essors.Yamashita and Kameda [11℄ 
onsider the model where, in ea
h step, oneof the verti
es, depending on its 
urrent label, either 
hanges the label, orsends/re
eives a message via one of its ports. They proved that there existsan ele
tion algorithm for G if and only if the symmetri
ity of G is equal to 1,where the symmetri
ity depends on the number of labelled trees isomorphi
 toa 
ertain tree asso
iated with G ([11℄, Theorem 1 p. 75).Mazurkiewi
z [8℄ 
onsiders the asyn
hronous 
omputation model presentedin Figure 2. His 
hara
terisation of the graphs where enumeration/ele
tion arepossible is based on the notion of non ambiguous graphs and may be formu-lated equivalently using 
overings [5℄. He gives a ni
e and simple enumerationalgorithm for the graphs minimal for the 
overing relation.3



XX5X6 X7 X8X1X2X3X4 X 0X 05X 06 X 07 X 08X 01X 02X 03X 04Fig. 2. In the model of Mazurkiewi
z [8℄ a 
hosen vertex 
an 
hange its label togetherwith all its neighbours. The relabelling rules have therefore the form presented on this�gure. Note that this involves a mu
h greater degree of syn
hronisation than in thesystems that we examine in our paper.Boldi and al. [3℄ 
onsider a model where the network is a dire
ted multigraphG and 
ontrary to our model they allow also ar
 labellings. When a pro
essor isa
tivated, it 
hanges its state depending on its previous state and on the statesof its ingoing neighbours; the outgoing neighbours do not parti
ipate in su
h anelementary 
omputation step. They investigate two modes of 
omputation: syn-
hronous and asyn
hronous while in our paper only asyn
hronous 
omputationsare examined. In their study, they use �brations whi
h are generalisations of
overings. Boldi and al. [3℄ prove that there exists an ele
tion algorithm in theirmodel for a graph G if and only if G is not properly �bred over another graphH (for the asyn
hronous 
ase, they only 
onsider dis
rete �brations). To obtainthis 
hara
terisation, they use the same me
hanism as Yamashita and Kameda:ea
h node 
omputes its own view and next the node with the weakest view isele
ted.In [4℄, three di�erent asyn
hronous models are examined. S
hemati
ally, therules of all three models are presented in Figure 3. Note that, 
ontrary to themodel we examine in the present paper, all these models allow edge labelling.It turns out that for all models des
ribed in Figure 3 naming and ele
tion areequivalent. In [4℄, it is proved that for all models des
ribed in Figure 3 theele
tion and naming problems 
an be solved on a graph G if and only if G isnot a 
overing of any graph H not isomorphi
 to G, where H 
an have multipleedges but no self-loop.We 
an note that, although the model studied in this paper and model Ain Figure 3 seem to be very 
lose, the 
hara
terisations of graphs for whi
h thenaming problem and the ele
tion problem 
an be solved in these models are verydi�erent. The intuitive reason is that if we allow to label the edges then ea
hpro
essor 
an subsequently 
onsistently identify the neighbours. On the otherhand, in the model that we examine here, sin
e edges are no more labelled, avertex 
an never know if it syn
hronises with the same neighbour or anotherone. 4



Model A: X ZY X 0 Z0Y 0Model B: X ZY X 0 ZY 0Model C: XXd X1 X2X3Yd Y1 Y2Y3 X 0Xd X1 X2X3Y 0d Y 01 Y 02Y 03Fig. 3. Elementary relabelling steps for the three models examined in [4℄.2 PreliminariesWe 
onsider �nite, undire
ted, 
onne
ted graphsG = (V (G); E(G)) with verti
esV (G) and edges E(G) without multiple edges or self-loop. Two verti
es u andv are said to be adja
ent or neighbours if fu; vg is an edge of G (thus u and vare ne
essarily distin
t sin
e no self-loop is admitted) and NG(v) will stand forthe set of neighbours of v. An edge e is in
ident to a vertex v if v 2 e and IG(v)will stand for the set of all the edges of G in
ident to v. The degree of a vertexv, denoted dG(v), is the number of edges in
ident with v.A homomorphism between graphs G and H is a mapping 
 : V (G) ! V (H)su
h that if fu; vg 2 E(G) then f
(u); 
(v)g 2 E(H). Sin
e our graphs do nothave self-loop, this implies that 
(u) 6= 
(v) whenever u and v are adja
ent.We say that 
 is an isomorphism if 
 is bije
tive and 
�1 is a homomorphism.A 
lass of graphs will be any set of graphs 
ontaining all graphs isomorphi
 tosome of its elements. A graph H is a subgraph of G, noted H � G, if V (H) �V (G) and E(H) � E(G). An o

urren
e of H in G is an isomorphism 
 betweenH and a subgraph H 0 of G.For any set S, jSj denotes the 
ardinality of S while P�n(S) is the set of �nitesubsets of S. For any integer q, we denote by [1; q℄ the set of integers f1; 2; : : : ; qg:Throughout the paper we will 
onsider graphs where verti
es are labelledwith labels from a re
ursive label set L. A graph labelled over L is a 
oupleG = (G; �), where G is an underlying non labelled graph and � : V (G) ! L isa (vertex) labelling fun
tion. The 
lass of graphs labelled by L will be denotedby GL.Let H be a subgraph of G and �H the restri
tion of a labelling � : V (G) ! Lto V (H). Then the labelled graph H = (H;�H ) is 
alled a subgraph of G =(G; �); we note this fa
t by H � G. A homomorphism of labelled graphs is justa labelling-preserving homomorphism of underlying unlabelled graphs.Submersions are lo
ally surje
tive graph morphisms:De�nition 1. A graph G is a submersion of a graph H via a morphism 
 : G!H if 8v 2 V (G), 
 is surje
tive on the neighbourhood NG(v), that is 
(NG(v)) =NH(
(v)). The graph G is a proper submersion of H if 
 is not an isomorphism;G is submersion-minimal if G is not a proper submersion of any other graph.Naturally, submersions of labelled graphs are just submersions of underlyingunlabelled graphs preserving the labelling.5



123 3G 12 3HFig. 4. The labelled graph G is a submersion of H via the mapping 
 whi
h maps ea
hvertex of G labelled i to the unique vertex of H with the same label i. This submersionis proper and the graph H is itself submersion-minimal.For any set R of edge lo
al relabelling rules of the type des
ribed in Figure 1we shall write G R G0 if G0 
an be obtained from G by applying a rule of R onsome edge of G. Obviously, G and G0 have the same underlying graph G, onlythe labelling 
hanges for exa
tly one (a
tive) vertex. Thus, slightly abusing thenotation, R will stand both for a set of rules and the indu
ed relabelling relationover labelled graphs. The transitive 
losure of su
h a relabelling relation is notedR�.The relation R is 
alled noetherian on a graph G if there is no in�niterelabelling sequen
eG0 R G1 R : : : ; with G0 = G: The relation R is noetherianon a set of graphs if it is noetherian on ea
h graph of the set. Finally, the relationR is 
alled noetherian if it is noetherian on ea
h graph.Clearly noetherian relations 
ode always terminating algorithms.The following simple observation exhibits a strong link between submersionsand 
ellular edge lo
al relabellings. This is a 
ounterpart of the lifting lemma ofAngluin [1℄ adapted to submersions.Lemma 2 (Lifting Lemma). Let R be a 
ellular edge lo
ally generated rela-belling relation and let G be a submersion of H. If H R� H0 then there existsG0 su
h that G R� G0 and G0 is a submersion of H0.Proof. It is suÆ
ient to prove the lemma for one step of the relabelling. Let' : G ! H be a submersion, G = (G; �);H = (H; �). Suppose that a 
ellularedge rule is applied to an a
tive vertex v 2 V (H) yielding a new labelling �0 onH . Then, sin
e ' is a submersion, all verti
es of '�1(v) are pairwise non adja
entand therefore we 
an apply the same relabelling rule to all verti
es of '�1(v) inG, in any order. This yields a labelling �0 on G su
h that ' : (G; �0) ! (H; �0)remains a submersion. Note that we have simulated here one step relabelling inH by several relabellings in G that use the same rule. ut3 Enumeration and Naming ProblemsWe prove that there exists no naming algorithm and no enumeration algo-rithm on a graph G using 
ellular edge lo
al 
omputations if the graph is notsubmersion-minimal. The proof is analogous to that of Angluin [1℄.6



Proposition 3. Let G be a labelled graph whi
h is not submersion-minimal.There is no naming algorithm for G and no enumeration algorithm for G using
ellular edge lo
al 
omputations.Proof. Let H be a labelled graph not isomorphi
 to G su
h that G is a submer-sion of H via '. For every 
ellular edge lo
al algorithm R, 
onsider an exe
utionof R on H that leads to a �nal 
on�guration H0. From Lemma 2, there exists anexe
ution of R on G su
h that the �nal 
on�guration G0 = (G; �0) is a submer-sion of H0. Sin
e G0 is not isomorphi
 to H0, there exist distin
t v; v0 2 V (G)su
h that �0(v) = �0(v0). Consequently, R does not solve either the naming orthe enumeration problem on G. ut3.1 An Enumeration AlgorithmIn this se
tion, we des
ribe a Mazurkiewi
z-like algorithm M using 
ellularedge lo
al 
omputations that solves the enumeration problem on a submersion-minimal graph G.Ea
h vertex v attempts to get its own number between 1 and jV (G)j. Avertex 
hooses a number and ex
hanges its number with its neighbours. If avertex u dis
overs the existen
e of another vertex v with the same number, thenit 
ompares its lo
al view (the numbers of its neighbours) with the lo
al view of v.If the label of u or the lo
al view of u is \weaker", then u 
hooses another numberand broad
asts it again with its lo
al view. At the end of the 
omputation, everyvertex will have a unique number if the graph is submersion-minimal.We 
onsider a graph G = (G; �) with an initial labelling � : V (G) ! L.During the 
omputation ea
h vertex v 2 V (G) will a
quire new labels of theform (�(v); n(v); N(v);M(v)), where:{ the �rst 
omponent �(v) is just the initial label (and thus remains �xedduring the 
omputation),{ n(v) 2 N is the 
urrent identity number of v 
omputed by the algorithm,{ N(v) 2 P�n(N) is the lo
al view of v. Intuitively, the algorithm will try toupdate the 
urrent view in su
h a way that N(v) will 
onsist of 
urrentidentities of the neighbours of v. Therefore N(v) will be always a �nite(possibly empty) set of integers,{ M(v) � N � L � P�n(N) is the 
urrent mailbox of v. It 
ontains the wholeinformation re
eived by v during the 
omputation.The fundamental property of the algorithm is based on a total order on theset P�n(N) of lo
al views, as de�ned by Mazurkiewi
z [8℄.Let N1; N2 2 P�n(N), N1 6= N2. Then N1 � N2 if the maximal element ofthe symmetri
 di�eren
e N14N2 = (N1 nN2) [ (N2 nN1) belongs to N2. Notethat in parti
ular the empty set is minimal for �.It 
an be helpful to note that the order � is just a rein
arnation of the usuallexi
ographi
 order. Let n1; n2; : : : ; nk and m1;m2; : : : ;ml be all elements of N1and N2 respe
tively listed in the de
reasing order (de
reasing for the usual orderover integers): n1 > n2 > � � � > nk and m1 > m2 > � � � > ml. Then N1 � N2 i�7



either (i) k � l and for all i, 1 � i � k, ni = mi or (ii) ni < mi where i is thesmallest index su
h that ni 6= mi.If N(u) � N(v) then we say that the lo
al view N(v) of v is stronger thanthe one of u (and N(u) is weaker than N(v)).We assume for the rest of this paper that the set of labels L is totally orderedby <L.Finally, we extend � to a total order on L � P�n(N) : (l; N) � (l0; N 0) ifeither l <L l0 or ( l = l0 and N � N 0 ).O

asionally we shall use the re
exive 
losure � of �.We des
ribe here the relabelling rules that de�ne the enumeration algorithm.First of all, to laun
h the algorithm there is a spe
ial initial rule M0 that justextends the initial label �(v) of ea
h vertex v to (�(v); 0; ;; ;). The rules M1 andM2 are 
lose to the rules used by Mazurkiewi
z [8℄. The �rst rule M1 enablesa vertex to update its mailbox by looking at the mailbox of one of its neighbours:M1 :(l1; n1; N1;M1) (l2; n2; N2;M2) (l1; n1; N1;M 01) (l2; n2; N2;M2)If M2 nM1 6= ; then M 01 := M1 [M2.The se
ond rule M2 does not involve any syn
hronisation with a neighbourvertex. It enables a vertex v to 
hange its identity if the 
urrent identity numbern(v) is 0 or if the mailbox of v 
ontains a message from a vertex with the sameidentity but with a stronger label or a stronger lo
al view.M2 : (l; n;N;M) (l; k;N;M 0)If n = 0 or there exists (n; `0; N 0) 2 M su
h that (`;N) � (`0; N 0) thenk := 1 + maxfn0 j 9(n0; `0; N 0) 2Mg and M 0 := M [ f(k; `;N)g.(In the formula above we assume that max of an empty set is 0.)The third rule M3 allows to 
hange the 
urrent identity for a vertex vhaving a neighbour v0 with exa
tly the same 
urrent label (all four 
ompo-nents should be identi
al). Moreover, at the same step, the identity n(v0) of theneighbour v0 of v is inserted into the lo
al view N(v) and at the same timeall the elements m of N(v) su
h that m < n(v0) are deleted from the lo
alview. The rationale behind this deletion step is explained in the rule M4 below.M3 :(l; n;N;M) (l; n;N;M) (l; k;N 0;M 0) (l; n;N;M)If n > 0 and 8(n; `0; N 0) 2 M , (`0; N 0) � (`;N) then k := 1 + maxfn0 j9(n0; `0; N 0) 2 Mg, N 0 := N n fm 2 N j m < ng [ fng and M 0 := M [f(k; `;N 0)g.The fourth rule M4 enables a vertex v to add the 
urrent identity numbern(v0) of one of its neighbours to its lo
al view N(v). As for the pre
eding rule,all the elements m belonging to N(v) su
h that m < n(v0) are deleted from the
urrent view. 8



The intuitive justi�
ation for the deletion of all su
h m is the following. Letus suppose that the vertex v syn
hronises with a neighbour v0 and observesthat the 
urrent identity number n(v0) of v0 does not belong to his 
urrent viewN(v). Then, sin
e the very purpose of the view N(v) is to sto
k the identitynumbers of all the neighbours, we should add n(v0) to the view N(v) of v. Butnow two 
ases arise. If v syn
hronises with v0 for the �rst time then addingn(v0) to the view of v is suÆ
ient. However, it 
an also be the 
ase that vsyn
hronised with v0 in the past and in the meantime v0 has 
hanged its iden-tity number. Then v should not only add the new identity number n(v0) toits view but, to remain in a 
onsistent state, we should delete the old identitynumber of v0 from the lo
al view of v. The trouble is that v has no means toknow whi
h of the numbers present in its view N(v) should be deleted andit is even unable to de
ide whi
h of the two 
ases holds (�rst syn
hronisationwith v0 or not). However, sin
e our algorithm assures the monotoni
ity of sub-sequent identity numbers of ea
h vertex, we know that the eventual old identitynumber of v0 is less than the 
urrent identity n(v0). Therefore, by deleting allm < n(v0) from the lo
al view N(v) we are sure to delete all invalid information.Of 
ourse, in this way we risk to delete also the legitimate 
urrent identities ofother neighbours of v from its view N(v). However, this is not a problem sin
ev 
an re
over this information just by (re)syn
hronising all su
h neighbours.M4 :(l1; n1; N1;M) (l2; n2; N2;M) (l1; n1; N 01;M 0) (l2; n2; N2;M)If n1 > 0, n2 > 0, n1 6= n2, 8(n1; `01; N 01) 2 M , (`01; N 01) � (`1; N1)8(n2; `02; N 02) 2M , (`02; N 02) � (`2; N2), and n2 =2 N1 thenN 01 := N1 n fn0 2 N1 j n0 < n2g [ fn2g and M 0 := M [ f(n1; `1; N 01)g.In the following (�(v); ni(v); Ni(v);Mi(v)) will denote the label of a vertex vafter the ith 
omputation step of the algorithm M given above.The algorithm has some remarkable monotoni
ity properties:Lemma 4. For ea
h step i and ea
h vertex v: (A) ni(v) � ni+1(v), (B) Ni(v) �Ni+1(v), and (C) Mi(v) �Mi+1(v). Moreover, there exists at least one vertex vsu
h that at least one of these inequalities/in
lusions is stri
t for v.The lo
al knowledge of a vertex v re
e
ts to some extent some real propertiesof the 
urrent 
on�guration:Lemma 5. Let v 2 V (G). If (m; `;N) 2Mi(v) then for some vertex w 2 V (G),ni(w) = m. If ni(v) 6= 0 and (m0; `0; N 0) 2 Mi(v) then, for every 1 � m � m0,there exist ` and N su
h that (m; `;N) 2Mi(v).This fa
t allows to dedu
e the following properties of the �nal labelling:Lemma 6. Any run � of the enumeration algorithm on a 
onne
ted labelledgraph G = (G; �) terminates and yields a �nal labelling (�; n�; N�;M�) satisfyingthe following 
onditions: 9



(1) Let m be the maximal number in the �nal labelling, m = maxfn�(v) j v 2V (G)g. Then for every 1 � p � m there is some v 2 V (G) with n�(v) = p,and for all verti
es v; v0:(2) M�(v) = M�(v0),(3) (�(v); n�(v); N�(v)) 2M�(v0),(4) n�(v) = n�(v0) implies that �(v) = �(v0) and N(v) = N(v0),(5) n 2 N�(v) if and only if there exists w 2 NG(v) su
h that n�(w) = n; inthis 
ase, n�(v) 2 N�(w).Under the notation of Lemma 6 we 
an 
onstru
t the labelled graph H�: theverti
es of H� are integers n�(v), i.e. �nal identity numbers, ea
h n�(v) labelledby �(v) (this labelling is well de�ned by Lemma 6 (4)) and with edges naturallyinherited from G. In fa
t, the mapping n� is a submersion from G to H�. Thisobservation yields:Theorem 7. For every graph G, the following statements are equivalent:(i) there exists a naming algorithm on G using 
ellular edge lo
al 
omputa-tions,(ii) there exists a naming algorithm with termination dete
tion on G using
ellular edge lo
al 
omputations,(iii) there exists an enumeration algorithm on G using 
ellular edge lo
al 
om-putations,(iv) there exists an enumeration algorithm with termination dete
tion on Gusing 
ellular edge lo
al 
omputations,(v) the graph G is a submersion-minimal graph.4 Ele
tion ProblemIf we 
an solve the enumeration problem then we 
an solve the ele
tion problem;on
e a vertex gets the identity number jV (G)j we de
lare it ele
ted.Nevertheless, in our model, the enumeration and the ele
tion problems arenot equivalent. The graph G in Figure 5 is not submersion-minimal, sin
e themorphism from G to H indu
ed by the labelling of G is lo
ally surje
tive andtherefore neither the enumeration nor the naming problem 
an be solved on G.But let us exe
ute the pre
eding algorithm on G. At the end, the vertex labelled3 in G will know that it is unique with at least three di�erent neighbours andtherefore 
an de
lare itself as ele
ted.We would like to give here ne
essary 
onditions 
hara
terising the graphswith solvable ele
tion problem. Given a graph G, we denote by SG the set ofgraphs H su
h that there exists a submersion from G onto H. From Lemma 2,any algorithm A that solves the ele
tion problem on G using 
ellular edge lo
al
omputations will solve the ele
tion problem on every graph H 2 SG.10



12 3 44G 12 3 4HFig. 5. A graph for whi
h we 
an solve the ele
tion problem but not the enumerationproblem.Remark 8. Consider an algorithm A that solves the ele
tion problem on G.Suppose that there exists a subgraph G0 of G that is a submersion of a graphH 2 SG via a morphism '. If there exists an exe
ution of A on H that ele
ts avertex v 2 V (H) su
h that j'�1(v)j > 1, then there exists an exe
ution of A onG0 su
h that the label ele
ted appears at least twi
e. Sin
e ea
h exe
ution ofA onG0 
an be extended to an exe
ution ofA onG, there exists an exe
ution ofA overG that leads to the ele
tion of at least two verti
es, this is in 
ontradi
tion withthe 
hoi
e of A. We 
an therefore de�ne PH(G0; ') = fv 2 V (H) j j'�1(v)j > 1gand ea
h exe
ution of A on H 
annot ele
t a vertex v 2 PH(G0; ').Consider a graph H 2 SG. Let PH(G) be the union of all PH(G0; ') for 'ranging over all submersions of subgraphs G0 of G to H and CH(G) = V (H) nPH(G) (the elements of this set are 
alled the 
andidates of H for G). FromRemark 8, every ele
tion algorithm A over G must be su
h that ea
h exe
utionof A over H should ele
t a vertex in CH(G). Consequently, if there exists anele
tion algorithm A on G then for every graph H 2 SG, CH(G) 6= ;.Suppose that there exist two disjoint subgraphs G1 and G2 of G su
h thatG1 (resp. G2) is a submersion of a graph H1 2 SG (resp. H2 2 SG). Then theredoes not exist any ele
tion algorithm using 
ellular edge lo
al 
omputations.Indeed, otherwise, there exists an exe
ution of the algorithm on G su
h thatthe label ele
ted appears on
e in G1 and on
e in G2, whi
h is impossible for anele
tion algorithm. Re
apitulating:Proposition 9. Let G be a labelled graph su
h that there exists an ele
tion algo-rithm for G using 
ellular edge lo
al 
omputations. Then the following 
onditionsare satis�ed:1. for every H 2 SG, CH(G) 6= ;,2. there do not exist two disjoint subgraphs G1 and G2 of G su
h that G1(resp. G2) is a submersion of a graph H1 2 SG (resp. H2 2 SG).4.1 An Ele
tion AlgorithmWe now 
onsider a graph G satisfying the 
onditions of Proposition 9.Our aim is to present an algorithm su
h that ea
h exe
ution over G willdete
t a graph H 2 SG su
h that there exists a subgraph G0 of G that is asubmersion of H. 11



To this end we adapt the enumeration algorithm from the pre
eding se
tionand the termination dete
tion algorithm of Szymansky, Shi and Prywes [9℄.The idea is to exe
ute the enumeration algorithm given for a graph and tore
onstru
t a graph from the mailboxes of the nodes. If the re
onstru
ted graphis an element of SG, the nodes 
he
k if they all agree on this graph.As in Se
tion 3.1, we start with a labelled graph G = (G; �). During the
omputation verti
es v will get new labels of the form (�(v); n(v); N(v);M(v);a(v); H(v)) representing the following information (again the �rst 
omponent�(v) remains �xed) :{ n(v) 2 N is the identity number of the vertex v 
omputed by the algorithm,{ a(v) 2 N is the 
on�den
e level of the vertex v,{ N(v) is the lo
al view of v. If the vertex v has a neighbour v0, relabelling ruleswill allow v to add the 
ouple (n(v0); a(v0)) to N(v). Thus N(v) is alwaysa �nite set of 
ouples of integers. For N 2 P�n(N2 ), we note �1(N) = fn j9(n; a) 2 Ng the proje
tion on the �rst 
omponent.{ M(v) � N � L � P�n(N) is the mailbox of v and 
ontains the informationre
eived by v about the identity numbers existing in the graph and the lo
alviews asso
iated with these numbers.{ H(v) is the history of the vertex v. If at some 
omputation step (n;N;M; a) 2H(v) then it means that at some previous step the vertex v had a 
on�den
elevel equal to a for the value M .The �rst 
omputation step S0 repla
es just the initial label �(v) by(�(v); 0; ;; ;;�1; ;). The following four rules mimi
 the rules of the enumerationalgorithm:S1 :(l1; n1; N1;M1;�1;H1) (l2; n2; N2;M2;�1;H2) (l1; n1; N1;M 01;�1;H1) (l2; n2; N2;M2;�1;H2)If M2 nM1 6= ; then M 01 := M1 [M2.S2 : (l; n;N;M;�1;H) (l; k; N;M 0;�1;H)If n = 0 or there exists (n; `0;K 0) 2 M su
h that (`;�1(N)) � (`0;K 0) thenk := 1 + maxfn0 j 9(n0; `0;K 0) 2Mg and M 0 := M [ f(k; `;�1(N))g.S3 :(l; n;N1;M;�1;H1) (l; n;N2;M;�1;H2) (l; k; N 01;M 0;�1;H1) (l; n;N2;M;�1;H2)If n > 0, �1(N1) = �1(N2) and 8(n; `0;K 0) 2 M , (`0;K 0) � (`;�1(N1))then k := 1 + maxfn0 j 9(n0; `0;K 0) 2 Mg, N 01 := N1 n f(n1; a) 2 N1 j n1 <ng [ f(n;�1)g and M 0 := M [ f(k; `;�1(N 01))g.12



S4 :(l1; n1; N1;M;�1;H1) (l2; n2; N2;M;�1;H2) (l1; n1; N 01;M 0;�1;H1) (l2; n2; N2;M;�1;H2)If n1 > 0, n2 > 0, n1 6= n2, 8(n1; `01;K 01) 2 M , (`01;K 01) � (`1; �1(N1)),8(n2; `02;K 02) 2M , (`02;K 02) � (`2; �1(N2)), and (n2;�1) =2 N1 thenN 01 := N1 n f(n0;�1) 2 N1 j n0 < n2g [ f(n2;�1)g and M 0 := M [f(n1; `1; N 01)g.The �fth rule says that if a vertex v dete
ts that all the neighbours it knowshave a 
on�den
e level a � a(v) then it 
an in
rement its own 
on�den
e level.To de�ne this rule we need some additional notations. Given a mailbox 
on-tent M , for ea
h n > 0 we de�ne �n(M) as the set of all triples (n; `;N) 2 Mwith the �rst 
omponent n. For ea
h non empty set �n(M) we 
onserve in themailbox only the triple (n; `;N) with the greatest 
ouple (n;N) for the order �.This operation gives a new mailbox 
ontent that we shall note u(M).The next step 
onsists in de�ning a graph GM . If there exist(n1; `1; N1); (n2; `2; N2) 2 u(M) su
h that (n2; `2) 2 N1 and (n1; `1) =2 N2then we set GM = (;; ;). Otherwise, GM is the graph su
h that V (GM ) =fn j (n; `;N) 2 u(M)g and E(GM ) = ffn1; n2g j 9(n1; `1; N1); (n2; `2; N2) 2u(M); (n2; `2) 2 N1 and (n1; `1) 2 N2g. The labelling of GM is inherited fromthe set M : for (n; `;N) 2 u(M), �M (n) = `. We will denote by GM = (GM ; �M )the 
orresponding labelled graph.S5 : (l; n;N;M; a;H) (l; n;N;M; a+ 1;H)This rule applies whenever 8(n; `0; N 0) 2M; (`0; N 0) � (`;�1(N)), GM 2 SG,and 8(n0; a0) 2 N; a � a0, and a � jV (G)j+ 1.The sixth rule enables a node v to update its knowledge of the 
on�den
elevel of one of its neighbour if the 
on�den
e level of this neighbour has in
reased.S6 :(l1; n1; N1;M; a1;H1) (l2; n2; N2;M; a2;H2) (l1; n1; N 01;M; a1;H1) (l2; n2; N2;M; a2;H2)If a1 � 0, 8(n2; `02; N 02) 2 M; (`02; N 02) � (`2; �1(N2)), and there exists(n2; a) 2 N1 su
h that a2 > a then N 01 := N1 n f(n2; a)g [ f(n2; a2)g.The rule S7 enables a vertex v to 
hange the value of its mailbox M wheneverthere exists a neighbour v0 that used to have a 
on�den
e level a a

ording toM su
h that a � a(v) � 1 and su
h that its mailbox has 
hanged. If a vertex
hanges its mailbox, then it modi�es also its history H(v), so as to rememberits former 
on�den
e level.S7 :(l1; n1; N1;M1; a1;H1) (l2; n2; N2;M2; a2;H2) (l1; n1; N 01;M 0;�1;H1) (l2; n2; N2;M2; a2;H2)If 9(n; l;N) 2 M2 nM1 and either a1 = 0 or (a1 � 0 and 9(n;N;M1; a) 2H2; 9(n; a0) 2 N1; a � a0) then N 01 := f(n0;�1) j 9(n; a) 2 N1g, M 0 :=M1 [M2 and H 01 := H1 [ f(n1; N1;M1; a1)g.13



4.2 Corre
tness of the Ele
tion AlgorithmIn the following (�(v); ni(v); Ni(v);Mi(v); ai(v); Hi(v)) will stand for the labelof the vertex v after the ith 
omputation step of the ele
tion algorithm. Themost important property of the algorithm is given in the following proposition.Roughly speaking it states that if the 
on�den
e level of vertex v is jV (G)j + 2then G 
ontains a submersion of GM(v).Proposition 10. If there exists a vertex v0 2 V (G) and a step i0 su
h thatai0(v0) = jV (G)j + 2, G 
ontains a submersion H of GMi0 (v0) and for everystep i � i0 and for every vertex v 2 V (H), Mi(v) = Mi0(v0).From Proposition 10 we dedu
e that if the 
onditions of Proposition 9 aresatis�ed then adding the following rule S8 allows to ele
t a unique vertex ofG: S8:the label (`; n;N;M; a;H) su
h that n = maxfn 2 CGM (G)g and a = jV (G)j+2is repla
ed by ele
ted. The last two rules serve to propagate the information thatthere is an ele
ted vertex: S9 allows to transform a label of a vertex with anele
ted neighbour to non-ele
ted and S10 propagates the non-ele
ted label to allneighbours whi
h are neither ele
ted nor non-ele
ted.Summarising we get:Theorem 11. There exists an ele
tion algorithm over a given graph G using
ellular edge lo
al 
omputations if and only if the following 
onditions are satis-�ed:1. for every H 2 SG, CH(G) 6= ;,2. there do not exist two disjoint subgraphs G1 and G2 of G su
h that G1(resp. G2) is a submersion of a graph H1 2 SG (resp. H2 2 SG).5 ExamplesIf we assume that nodes of a graph G have unique identi�ers then G is asubmersion-minimal graph and the knowledge of its size allows an ele
tion.5.1 Trees, Grids and Complete graphsConsider an unlabelled tree T . Sin
e we 
an 
olour ea
h tree T with just two
olours, if T has at least 2 verti
es su
h 
olouring yields a submersion of T intothe graph K2 with two verti
es and one edge between them. Su
h a submersionis non trivial if T has at least 3 verti
es. Therefore for su
h trees there does notexist a naming algorithm using 
ellular edge lo
al 
omputations.If '1 : T ! K2 is a submersion (
olouring) of T then ex
hanging the two
olours we get another submersion '2 and if T has at least three verti
es thenfor ea
h 
olour k 2 V (K2) at least one of the sets 'i(k), i = 1; 2, has 
ardinality� 2. Consequently, the ele
tion problem 
annot be solved for trees with morethan 2 verti
es. 14



For the same reasons, square grids, whi
h are also 
onne
ted and 
olourablewith two 
olours, do not admit either naming or ele
tion algorithms in our model.Complete graphs are submersion-minimal and therefore admit both namingand ele
tion in our model.5.2 Rings with a Prime SizeFirst note the following fa
t:Proposition 12. An unlabelled ring of size p is submersion-minimal if and onlyif p is prime.Therefore prime size rings allow both naming and ele
tion. This is a quiteinteresting 
orollary of our general 
onditions sin
e our model is the weakestamong graph relabelling systems, with the bare minimal syn
hronisation power.Moreover, 
ontrary to some other algorithms on rings, our enumeration algo-rithm does not need any sense of dire
tion for 
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