
Eletion and Loal Computations on Edges(Extended Abstrat)J�er�emie ChalopinYves M�etivierhalopin,metivier�labri.frLaBRI,Universit�e Bordeaux I, ENSEIRB,351 ours de la Lib�eration33405 Talene, Frane1 IntrodutionThe point of departure and the motivation for this paper are the results ofAngluin [1℄ whih has introdued a tool to analyze the eletion algorithm: theoverings, Yamashita and Kameda [21℄ and Mazurkiewiz [15℄ whih have ob-tained haraterizations of graphs in whih eletion is possible under two dif-ferent models of distributed omputations. Our aim is twofold. First it is toobtain haraterizations of graphs in whih eletion is possible under intermedi-ate models between the models of Yamashita-Kameda and of Mazurkiewiz. Ourseond aim is to understand the impliations of the models for the borderlinebetween positive and negative results for distributed omputations. In this work,haraterizations are obtained under three di�erent models.1.1 The ModelWe onsider networks of proessors with arbitrary topology. A network is rep-resented as a onneted, undireted graph where verties denote proessors andedges denote diret ommuniation links. Labels are attahed to verties andedges. The identities of the verties, a distinguished vertex, the number of pro-essors, the diameter of the graph or the topology are examples of labels attahedto verties; weights, marks that enode a spanning tree or the sense of diretionare examples of labels attahed to edges.At eah step of omputation labels are modi�ed on exatly one edge and itsendverties of the given graph, aording to ertain rules depending on the labelof this edge and the labels of its endverties only. Thus rules are of the form:R : XÆ Y ZÆ �!�!�! X0Æ Y0 Z0ÆSuh loal omputations are alled loal omputations on losed edges in thispaper. The relabelling is performed until no more transformation is possible, i.e.,until a normal form is obtained.



1.2 The Eletion ProblemThe eletion problem is one of the paradigms of the theory of distributed om-puting. It was �rst posed by LeLann [10℄. Considering a network of proessors,the eletion problem is to arrive at a on�guration where exatly one proes-sor is in the state eleted and all other proessors are in the state non-eleted.The eleted vertex is used to make deisions, to entralize or to broadast someinformation.Known Results about the Eletion Problem. Graphs where eletion ispossible were already studied, the algorithms usually involved some partiularknowledge and some partiular basi omputation steps. Solving the problemfor di�erent knowledge has been investigated for some partiular ases (see [2,12, 19℄ for details) inluding : the network is known to be a tree, the network isknown to be omplete, the network is known to be a grid or a torus, the nodeshave di�erent identi�ation numbers, the network is known to be a ring and hasa known prime number of verties. Charaterizations of graphs where eletion ispossible have been given under two models of omputations.{ In [21℄, Yamashita and Kameda onsider the following asynhronous model.In eah step, a vertex, depending on its urrent label, either hanges its label,sends a message via one of its ports, or reeives a message via a port. Thetopology of the graph is assumed to be known. They proved that, knowingthe topology or the size of the network, there exists an eletion algorithm forG if and only if the symmetriity of G is equal to 1 (where the symmetriitydepends on the number of labelled trees isomorph to a ertain tree assoiatedto G) ([21℄, Theorem 1 p. 75).{ In [15℄, Mazurkiewiz onsiders the following asynhronous model. In eahstep, labels are modi�ed on a subgraph onsisting of a node and its neigh-bours, aording to ertain rules depending on this subgraph only. He provesthat, given a graph G; there exists an eletion algorithm for G if and only ifG is minimal for the overing relation (a graph H is a overing of a graphK if there exists a surjetive morphism ' from H onto K whih maps bije-tively the neighbours of any vertex v onto the neighbours of '(v); a graph His minimal if whenever H overs a graph K then H and K are isomorphi.).1.3 The Main ResultsWe reall that at eah step of omputation, labels are modi�ed on exatly twoverties linked by an edge and on this edge of the given graph, aording toertain rules depending on the labels of this edge and on the labels of the twoverties only. Under this hypothesis, we give a haraterization of graphs forwhih there exists an eletion algorithm. More preisely, we prove that, givena simple graph G (graph without self-loop or multiple edges) there exists aneletion algorithm for G if and only if G is minimal for the overing relation.Where the notion of overing is a generalization of the previous one. First weonsider multigraphs: graphs having possibly multiple edges without self-loops.



For this lass of graphs, a graph H is a overing of a graph K if there existsa surjetive morphism ' from H onto K suh that, for every vertex v; therestrition of ' to the set of edges inident to v is a bijetion between this setof edges and the set of edges inident to '(v):This ondition is not equivalent to the ondition of Mazurkiewiz. If weonsider the ring with 4 verties, denoted R4; then it is minimal for the �rstnotion of overing but it is not minimal for the generalization. Indeed, for thegeneralization it overs the graph H de�ned by 2 verties having a double edge(see Fig.1).
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Fig. 1. The graph R4 overs the graph H:Thus there exists an eletion algorithm for R4 in the model of Mazurkiewizand there does not exist an eletion algorithm for R4 in the model studied inthis paper.In fat, the Mazurkiewiz algorithm is a distributed enumeration algorithm:it is a distributed algorithm suh that the result of any omputation, in a graphGminimal for the overing relation, is a labelling of the verties that is a bijetionfrom V (G) to f1; 2; : : : ; jV (G)jg: For a given graph G; the eletion problem andthe enumeration problem with termination detetion are equivalent in the modelof Mazurkiewiz; we prove that under the same hypothesis the two problems arealso equivalent in the model studied in this paper. This property is no more trueif we have no information on the graph like the size or the topology.In the seond part of this paper, we onsider the following model of om-putation: at eah step of omputation labels are modi�ed on exatly one edgeand one endvertex of this edge of the given graph, aording to ertain rulesdepending on the label of this edge and the labels of its endverties only (loalomputations on open edges). Thus the form of the rules is:R : XÆ Y ZÆ �!�!�! X0Æ Y0 ZÆWe prove that this model is equivalent to the model studied in the �rst partby using a simulation algorithm. Thus we obtain also a haraterization of graphswhere eletion is possible. This result is not immediate: for example, using the�rst model, it is easy to give a name to eah edge of a given graph suh thatfor a given vertex v, all the edges inident to v have a di�erent name; if we do



not use the simulation algorithm this result is not trivial in the ontext of theseond model. Finally, we extend the haraterization onerning the eletion tothe model where at eah step of omputation labels are modi�ed on a subgraphonsisting of a node and the inident edges, aording to ertain rules dependingon the vertex, the inident edges and the endverties (loal omputations onopen star graphs). The end of the paper proves that models using labels onedges are stritly stronger than models without labels on edges.1.4 Related Works and ResultsIn [21℄ the eletion problem is studied under other initial knowledges: the size ofthe graph, an upper bound of the number of verties; in some ases multigraphsare neessary. In addition of the works of [1, 15, 21, 22℄ and [20, 23℄, one anite the results of Boldi and Vigna who use direted graphs [4, 3, 5, 6℄. Theyonsider direted graphs oloured on their ars. Eah vertex hanges its statedepending on its previous state and on the states of its in-neighbours; ativationof proessors may be synhronous, asynhronous or interleaved. A generalizationof overings, alled �brations, is studied and properties whih found appliationsin the distributed omputing setting are emphasized. In [7, 16, 9, 8℄ the model ofMazurkiewiz is onsidered and a haraterization of families of graphs in whiheletion is possible is given; in [8℄ haraterizations of reognizable lasses ofgraphs by means of loal omputations are given.2 Basi Notions and Notation2.1 Graphs, Labelled Graphs and CoveringsThe notations used here are essentially standard [18℄. We onsider �nite, undi-reted, onneted graphs without self-loop having possibly multiple edges. IfG = (V (G); E(G);Ends) is a graph, then V (G) denotes the set of verties, E(G)denotes the set of edges and Ends denotes a map assigning to every edge twoverties: its ends. Two verties u and v are said to be adjaent or neighboursif there exists an edge e suh that Ends(e) = fu; vg: In this paper, graphs mayhave several edges between the same two verties; suh edges are alled multipleedges. A simple graph G = (V (G); E(G)) is a graph with no self-loop or multi-ple edges: E(G) an be seen as a set of pairs of V (G). Let e be an edge, if thevertex v belongs to Ends(e) then we say that e is inident to v: The set of allthe edges of G inident with v is denoted IG(v): The set of neighbours of v inG; denoted NG(v); is the set of all verties of G adjaent to v: For a vertex v;we denote by BG(v) the ball of radius 1 with enter v; that is the graph withverties NG(v)[fvg and edges IG(v). For an edge e, we denote AG(e) the singleedge graph (Ends(e); feg); we all losed edge an edge with the two endverties,if we onsider the edge with only one endvertex it is an open edge.Throughout the paper we will onsider graphs where verties and edges arelabelled with labels from a reursive alphabet L. A graph labelled over L will be



denoted by (G; �), where G is a graph and � : V (G)[E(G)! L is the labellingfuntion. The graph G is alled the underlying graph and the mapping � is alabelling of G. For a labelled graph (G; �), lab((G; �)) is the set of labels thatour in (G; �): The lass of labelled graphs over some �xed alphabet L will bedenoted by GL. Let (G; �) and (G0; �0) be two labelled graphs. Then (G; �) is asubgraph of (G0; �0), denoted by (G; �) � (G0; �0), if G is a subgraph of G0 and� is the restrition of the labelling �0 to V (G) [ E(G).Labelled graphs will be designated by bold letters like G; H; : : : If G is alabelled graph, then G denotes the underlying graph.2.2 CoveringsWe say that a graph G is a overing of a graph H via  if  is a surjetive homo-morphism from G onto H suh that for every vertex v of V (G) the restrition of to IG(v) is a bijetion onto IH((v)). The overing is proper if G and H arenot isomorphi.The notion of overing extends to labelled graphs in an obvious way. Thelabelled graph (H;�0) is overed by (G; �) via ; if  is a homomorphism from(G; �) to (H;�0) suh that for every vertex v of V (G) the restrition of  to IG(v)is a bijetion onto IH((v)). Note that a graph overing is exatly a overing inthe lassial sense of algebrai topology, see [13℄.Remark 1. We use a di�erent de�nition for overings than Angluin's one. Infat, if we onsider only simple graphs these two de�nitions are equivalent. ForAngluin, (H;�0) is overed by (G; �) via ; if  is a homomorphism from (G; �)to (H;�0) suh that for every vertex v of V (G) the restrition of  to NG(v) isa bijetion onto NH((v)). Given a simple graph G, for eah vertex u 2 V (G),there is a natural bijetion between IG(u) and NG(u) and therefore it is easy tosee the equivalene.We work with graphs that an have multiple edges and in this ase the twode�nitions are not equivalent. Consider the graphs G and H from Fig. 2, if weonsider the morphism ' de�ned from G to H by the letters a; b; �; �, we easilysee that G is a overing of H . But if we use Angluin's de�nition of overing, G isnot a overing of H sine for eah u 2 G, jNG(u)j = 2, whereas for eah v 2 H ,jNH(v)j = 1.A graphG is alledminimal if every overing fromG to someH is a bijetion.A simple graph G is alled S-minimal if every overing G to some simple graphH is a bijetion. The graphs G0 and H from Fig. 2 are minimal graphs, whereasG is a proper overing of H and therefore G is not minimal. Moreover, G or G0are not a proper overing of any simple graph: G and G0 are S-minimal.We have the following basi property of overings [17℄:Lemma 1. For every overing  from G to H there exists an integer q suhthat ard(�1(v)) = q, for all v 2 V (H):The integer q in the previous lemma is alled the number of sheets of theovering. We also refer to  as a q-sheeted overing.
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Fig. 2. First Examples.Lemma 2. Let G be a overing of H via  and let e1; e2 2 E(G) be suhthat e1 6= e2. If (e1) = (e2) then AG(e1) \ AG(e2) = ;, i.e., Ends(e1)\Ends(e2) = ;.3 Loal Computations on Closed EdgesIn this setion we give the de�nition of loal omputations on losed edges andtheir relation with overings. They model networks of proessors of arbitrarytopology. The network is represented as a onneted, undireted graph whereverties denote proessors and edges denote diret ommuniation links. Labels(or states) are attahed to verties and edges. Loal omputations as onsid-ered here an be desribed in the following general framework. Let GL be thelass of L-labelled graphs and let R � GL � GL be a binary relation on GL.Then R is alled a graph rewriting relation. We assume that R is losed un-der isomorphism, i.e., if G R G0 and H ' G then H R H0 for some labelledgraph H0 ' G0. In the remainder of the paper R� stands for the reexive-transitive losure of R : The labelled graph G is R-irreduible (or just ir-reduible if R is �xed) if there is no G0 suh that G R G0: For G 2 GL;IrredR(G) denotes the set of R-irreduible graphs obtained from G using R;i.e., IrredR(G) = fH j GR�H and H is R-irreduibleg:De�nition 1. Let R � GL � GL be a graph rewriting relation.



1. R is a relabelling relation if whenever two labelled graphs are in relationthen the underlying graphs are equal, i.e.:G R H implies that G = H:2. R is loal on losed edges if it an only modify an edge and its endverties,i.e., (G; �) R (G; �0) implies that there exists an edge e 2 E(G) suh that�(x) = �0(x) for every x =2 Ends(e) [ feg:The labelled single edge graph (AG(e); �) is a support of the relabelling relation.The next de�nition states that a loal relabelling relation R is loally gener-ated on losed edges if the appliability of any relabelling depends only on thesingle edge subgraphs.De�nition 2. Let R be a relabelling relation. Then R is loally generated onlosed edges if it is loal on losed edges and the following is satis�ed: For alllabelled graphs (G; �), (G; �0), (H; �), (H; �0) and all edges e 2 E(G), f 2 E(H)suh that the AG(e) and AH(f) are isomorphi via ' : V (AG(e))[E(AG(e)) �!V (AH(f)) [ E(AH (f)), the following three onditions:1. �(x) = �('(x)) and �0(x) = �0('(x)) for all x 2 V (AG(e)) [ E(AG(e))2. �(x) = �0(x), for all x =2 V (AG(e)) [ E(AG(e))3. �(x) = �0(x), for all x =2 V (AH (f)) [ E(AH (f))imply that (G; �) R (G; �0) if and only if (H; �) R (H; �0).By de�nition, loal omputations on losed edges on graphs are omputa-tions on graphs orresponding to loally generated relabelling relations on losededges.We now present the fundamental lemma onneting overings and loallygenerated relabelling relations on losed edges [1℄. It states that, whenever G isa overing ofH, every relabelling step inH an be lifted to a relabelling sequenein G, whih is ompatible with the overing relation.Lemma 3 (Lifting Lemma). Let R be a loally generated relabelling relationon losed edges and let G be a overing of H via : If H R� H0 then there existsG0 suh that G R� G0 and G0 is a overing of H0 via :4 Eletion and EnumerationThe main result of this part is that for every graphG, there exists an eletion al-gorithm using loal omputations on losed edges onG if and only if there existsan enumeration algorithm with termination detetion using loal omputationson losed edges on G.



4.1 De�nitionsA distributed eletion algorithm on a graph G is a distributed algorithm suhthat the result of any omputation is a labelling of the verties suh that exatlyone vertex has the label eleted and all other verties have the label non-eleted.The labels eleted and non-eleted are terminal, i.e., when they appear on avertex they remain until the end of the omputation. A distributed enumera-tion algorithm on a graph G is a distributed algorithm suh that the result ofany omputation is a labelling of the verties that is a bijetion from V (G) tof1; 2; : : : ; jV (G)jg. It is easy to see that if we have an enumeration algorithm ona graph G where verties an detet whether the algorithm has terminated, wehave an eletion algorithm on G by eleting the vertex labelled by 1.4.2 Impossibility resultsUsing the same method as in the Lifting Lemma [1℄, we obtain:Proposition 1. Let G be a labelled graph whih is not minimal, there is noenumeration algorithm for G.Consequently, there is no eletion algorithm for a graph G, if G is not minimal.Otherwise, we ould �nd an enumeration algorithm for G, as it will be shownin the next setion. Furthermore, we an prove that:Proposition 2. Given a graph G, there is an algorithm using loal omputa-tions on losed edges that solves the eletion problem on G if and only if thereis an algorithm using loal omputations on losed edges that solves the enumer-ation problem with detetion termination on G.5 An Enumeration AlgorithmIn this setion, we desribe an algorithmM using loal omputations on losededges that solve the enumeration problem on a minimal graphG. This algorithmuses some ideas developed in [15℄. Eah vertex v attempts to get its own numberbetween 1 and jV (G)j. A vertex hooses a number and broadasts it with its labeland its labelled neighbourhood all over the network. If a vertex u disovers theexistene of another vertex v with the same number, then it ompares its loalview, i.e., the labels and numbers of its neighbours, with the loal view of v. Ifthe label of u or the loal view of u is \weaker", then u hooses another numberand broadasts it again with its loal view. At the end of the omputation, everyvertex will have a unique number if the graph is overing-minimal.5.1 LabelsLet G = (G; �) and onsider a vertex v0 2 G, and the set fe1; : : : ; edg of edgesthat are inident to v0:



For eah edge e 2 E(G) suh that Ends(e) = fv1; v2g, a number p(e) will beassoiated to e suh that for eah e0 2 IG(v1) [ IG(v2), p(e) 6= p(e0). The labelof an edge e is the pair (�(e); p(e)) and the initial labelling is (�(e); 0).For eah vertex v 2 V (G), the label of v is the pair (�(v); (v)) where (v)is a triple (n(v); N(v); M(v)) representing the following information obtainedduring the omputation (formal de�nitions are given below):{ n(v) 2 N is the number of the vertex v omputed by the algorithm;{ N(v) 2 N is the loal view of v, and it is a set de�ned by:f(p(e); �(e); n(v0); �(v0)) j e 2 IG(v); Ends(e) = fv; v0g and p(e) 6= 0g;{ M(v) � L� N �N is the mailbox of v and ontains the whole informationreeived by v at any step of the omputation.The initial labelling of any vertex v is (�(v); (0; ;; ;)).5.2 An Order on Loal ViewsThe fundamental property of the algorithm is based on a total order on loalviews, as de�ned in [15℄, suh that the loal view of any vertex annot dereaseduring the omputation. We assume for the rest of this paper that the set oflabels L is totally ordered by <L : Consider a vertex v suh that the loal viewN(v) is the set f(p(e1); �(e1); n(v1); �(v1)); (p(e2); �(e2); n(v2); �(v2)); : : : ;(p(ed); �(ed); n(vd); �(vd))g, we assume that:{ p(e1) � p(e2) � ::: � p(ed),{ if p(ei) = p(ei+1) then �(ei) �L �(ei+1),{ if p(ei) = p(ei+1) and �(ei) = �(ei+1) then n(vi) � n(vi+1){ if p(ei) = p(ei+1), �(ei) = �(ei+1) and n(vi) = n(vi+1) then �(vi) �L�(vi+1).Let N> be the set of all suh ordered tuples. We de�ne a total order � on N>by omparing the numbers, then the vertex labels and �nally the edge labels.Formally, for two elements((p1; e1; n1; l1); :::; (pd; ed; nd; ld)) and ((p01; e01; n01; l01); :::; (p0d0 ; e0d0 ; n0d0 ; l0d0)of N> we de�ne((p1; e1; n1; l1); :::; (pd; ed; nd; ld)) � ((p01; e01; n01; l01); :::; (p0d0 ; e0d0 ; n0d0 ; l0d0)if there exists i suh that (p1; e1; n1; l1) = (p01; e01; n01; l01); :::; (pi�1; ei�1; ni�1; li�1) =(p0i�1; e0i�1; n0i�1; l0i�1) and suh that one of the following holds1. pi < p0i,2. pi = p0i and ei < e0i,3. pi = p0i, ei = e0i and ni < n0i,4. pi = p0i, ei = e0i and ni = n0i and li = l0i,5. i = d+ 1 and d < d0.If N(u) � N(v), then we say that the loal view N(v) of v is stronger thanthe one of u and that N(u) is weaker than N(v). The order � is a total orderon N = N> [ f;g; with, by de�nition, ; � N for every N 2 N>.



5.3 Relabelling RulesWe now desribe the �ve relabelling rules; the rules M2 and M3 are very losefrom the rules of the Mazurkiewiz algorithm. The �rst rule gives a name to eahedge : two neighbours v and v0 inident to a ommon edge e suh that p(e) = 0hoose a value for p(e) suh that eah node does not have two inident edgeswith the same label. This rule an only be applied one to eah edge, sine onean edge e has a number p(e), this number does not hange any more.M1 :(l1; (n1; N1;M1))Æ(l1; (n1; N 01;M 01))Æ (le; 0)#(le; p) (l2; (n2; N2;M2))Æ(l2; (n2; N 02;M 02))Æwith p = 1 +maxfp0; (p0; l0e; n0; l0) 2 N1 [N2gN 01 = N 01 [ f(p; le; 0; l2)gN 02 = N 02 [ f(p; le; 0; l1)gM 01 =M1 [ f(l1; n1; N 01)gM 02 =M2 [ f(l2; n2; N 02)gThe seond rule enables two neighbours v and v0 having di�erent mailboxesto share the information they have about the labels present in the graphs.M2 :(l1; (n1; N1;M1))Æ(l1; (n1; N1;M 0))Æ (le; p)#(le; p) (l2; (n2; N2;M2))Æ(l2; (n2; N2;M 0))Æif p > 0 and M1 6=M2withM 0 =M1 [M2The third rule enables a vertex v to hange its number if n(v) = 0 or if thereexists a vertex v0 suh that n(v) = n(v0) and v has a weaker loal view than v0.M3 :(l; (n;N;M))Æ �! (l; (k;N;M 0))Æif n = 0 or 9(n; l0; N0) 2M suh that l <L l0 or l = l0 and N � N0with k = 1 +maxfn1; (l1; n1; N1) 2MgM 0 =M [ f(l; k;N)gThe fourth rule enables a node having a neighbour with exatly the samelabel to hange its number. If this rule an be applied, it means that the twoverties have never exhange their number along this edge.



M4 :(l; (n;N;M))Æ(l; (k;N1;M 0))Æ (le; p)#(le; p) (l; (n;N;M))Æ(l; (n;N2;M 0))Æif p > 0 and n > 0with k = 1 +maxfn1; (l1; n1; N1) 2MgN1 = N n f(p; le; 0; l)g [ f(p; le; n; l)gN2 = N n f(p; le; 0; l)g [ f(p; le; k; l)gM 0 =M [ f(l; k;N1); (l; n;N2)gThe �fth rule enables a vertex v to get information about the number of aneighbour v0, either beause v has no information about n(v0), or beause n(v0)has hanged sine v got information about n(v0).M5 :(l1; (n1; N1;M))Æ(l1; (n1; N 01;M 0))Æ (le; p)#(le; p) (l2; (n2; N2;M))Æ(l2; (n2; N 02;M 0))Æif p > 0; n1 > 0; n2 > 0; n1 6= n2(p; le; i; l2) 2 N1; (p; le; j; l1) 2 N2and i 6= n2 or j 6= n1with N 01 = N1 n f(p; le; i; l2)g [ f(p; le; n2; l2)gN 02 = N2 n f(p; le; j; l1)g [ f(p; le; n1; l1)gM 0 =M [ f(l1; n1; N 01); (l2; n2; N 02)gFor eah run of this algorithm on a minimal graphG eah vertex has a uniquenumber. Finally:Theorem 1. For every graph G, there exists an enumeration algorithm withtermination detetion on G and an eletion algorithm on G using loal ompu-tations on losed edges if and only if G is a minimal graph.6 Two other Models of Loal ComputationsWe onsider now a di�erent kind of loal omputations: we still onsider loallygenerated relabelling relations, but during a relabelling step, the label of onlyone vertex and an inident edge an be modi�ed, i.e., the form of the rules is :R : XÆ Y ZÆ �!�!�! X0Æ Y0 ZÆTo make a distintion between this model and the former one, we will say thatmodel desribe loal omputations on open edges. Sine loal omputations on



open edges are also loal omputations on losed edges, eah algorithm usingloal omputations on open edges is also an algorithm using loal omputationson losed edges. We wonder if the power of omputation of this new model isweaker or is the same as the preedent one. In fat, by a non trivial proof wehave:Proposition 3. Given a problem P and a graph G, there exists an algorithmusing loal omputations on losed edges on G with termination detetion if andonly if there exists an algorithm using loal omputations on open edges thatsolves P on G with termination detetion.We have already given a haraterization of graphs in whih we an solve theeletion problem and the enumeration problem with termination detetion andwe an therefore give the following orollary:Corollary 1. For every graph G, there exists an enumeration algorithm withtermination detetion on G and an eletion algorithm on G using loal ompu-tations on open edges if and only if G is a minimal graph.We now onsider a model of loal omputations suh that at eah omputa-tion step, a vertex looks at the labels of its neighbours and its inident edgesand modify its label and the labels of its inident edges. We say that at eahstep a star graph is relabelled and we talk about loal omputations on openstar graphs. The relabelling rule are therefore triples (S; �; �0) suh that S is astar graph whose enter is a node v0 and �; �0 are two labellings of S suh thatfor every node v 2 V (G) n fv0g; �(v) = �0(v).Theorem 2. For every graph G, there exists an enumeration algorithm withtermination detetion on G and an eletion algorithm on G using loal ompu-tations on open star graphs if and only if G is a minimal graph.7 Is it Important to Have Labels on Edges ?The power of the model of Mazurkiewiz does not hange if we onsider edgeswith or without labels.In our models, we have onsidered labelled graphs suh that the edges anhave labels and this property has been used to desribe the di�erent algorithmswe present. We wonder if the results remain true when we onsider models wherethe edges annot be labelled. We will present a minimal graph in whih we annot�nd an eletion algorithm using loal omputations on losed edges when theedges are not labelled and another minimal graph in whih there does not existany eletion algorithm using loal omputations on open star graphs if the edgesannot be labelled.Loal Computations on Closed Edges.Consider the graph G desribed in Figure 3 whih is a minimal graph andtherefore we an solve the eletion problem with loal omputations on losed



v1 v2 v3 v4A B A B GFig. 3. A graph in whih we annot �nd an eletion algorithm using loal omputationson losed edges without labelling edges.v1 v2 v3 v4A B A Bv1 v2 v3 v4A0 B0 A Bv1 v2 v3 v4A0 B0 A0 B0Fig. 4. Appliation of a relabelling ruleedges. Consider a noetherian relabelling relation R assoiated to an algorithminvolving loal omputations on losed edges suh that there is not any rule thatlabels the edges.We prove by indution that there exist an exeution of R suh that theverties v1 and v3 (resp. v2 and v4) have the same labels. Initially, the result istrue and if at a step i+ 1, a rule R is applied, this rule has the following form:R : AÆ BÆ �!�!�! A0Æ B0Æ :As desribed in Figure 4, the rule R an be applied to the nodes v1 and v2 andthen to the nodes v3 and v4: the property holds.Loal Computations on Open Star Graphs.Consider the graph G desribed in Figure 5 whih is a minimal graph and forwhih there exists an eletion algorithm using loal omputations on open stargraphs. Suppose now that we an �nd an enumeration algorithm A using loalomputations on open star graphs suh that the rules involved do not label theedges, i.e., the only label that hanges in a relabelling step is the label of theenter of the star graph involved.Eah time a rule is applied to v1 or v2, the same rule an also be applied tothe other one and eah time a rule is applied to v3; v4 or v5, the same rule an beapplied to the other ones. Therefore, we an �nd an exeution of A suh that theverties v1 and v2 (resp. v3; v4 and v5) have the same labels and onsequently,we annot �nd an eletion algorithm on G.
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