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e1 Introdu
tionThe point of departure and the motivation for this paper are the results ofAngluin [1℄ whi
h has introdu
ed a tool to analyze the ele
tion algorithm: the
overings, Yamashita and Kameda [21℄ and Mazurkiewi
z [15℄ whi
h have ob-tained 
hara
terizations of graphs in whi
h ele
tion is possible under two dif-ferent models of distributed 
omputations. Our aim is twofold. First it is toobtain 
hara
terizations of graphs in whi
h ele
tion is possible under intermedi-ate models between the models of Yamashita-Kameda and of Mazurkiewi
z. Ourse
ond aim is to understand the impli
ations of the models for the borderlinebetween positive and negative results for distributed 
omputations. In this work,
hara
terizations are obtained under three di�erent models.1.1 The ModelWe 
onsider networks of pro
essors with arbitrary topology. A network is rep-resented as a 
onne
ted, undire
ted graph where verti
es denote pro
essors andedges denote dire
t 
ommuni
ation links. Labels are atta
hed to verti
es andedges. The identities of the verti
es, a distinguished vertex, the number of pro-
essors, the diameter of the graph or the topology are examples of labels atta
hedto verti
es; weights, marks that en
ode a spanning tree or the sense of dire
tionare examples of labels atta
hed to edges.At ea
h step of 
omputation labels are modi�ed on exa
tly one edge and itsendverti
es of the given graph, a

ording to 
ertain rules depending on the labelof this edge and the labels of its endverti
es only. Thus rules are of the form:R : XÆ Y ZÆ �!�!�! X0Æ Y0 Z0ÆSu
h lo
al 
omputations are 
alled lo
al 
omputations on 
losed edges in thispaper. The relabelling is performed until no more transformation is possible, i.e.,until a normal form is obtained.



1.2 The Ele
tion ProblemThe ele
tion problem is one of the paradigms of the theory of distributed 
om-puting. It was �rst posed by LeLann [10℄. Considering a network of pro
essors,the ele
tion problem is to arrive at a 
on�guration where exa
tly one pro
es-sor is in the state ele
ted and all other pro
essors are in the state non-ele
ted.The ele
ted vertex is used to make de
isions, to 
entralize or to broad
ast someinformation.Known Results about the Ele
tion Problem. Graphs where ele
tion ispossible were already studied, the algorithms usually involved some parti
ularknowledge and some parti
ular basi
 
omputation steps. Solving the problemfor di�erent knowledge has been investigated for some parti
ular 
ases (see [2,12, 19℄ for details) in
luding : the network is known to be a tree, the network isknown to be 
omplete, the network is known to be a grid or a torus, the nodeshave di�erent identi�
ation numbers, the network is known to be a ring and hasa known prime number of verti
es. Chara
terizations of graphs where ele
tion ispossible have been given under two models of 
omputations.{ In [21℄, Yamashita and Kameda 
onsider the following asyn
hronous model.In ea
h step, a vertex, depending on its 
urrent label, either 
hanges its label,sends a message via one of its ports, or re
eives a message via a port. Thetopology of the graph is assumed to be known. They proved that, knowingthe topology or the size of the network, there exists an ele
tion algorithm forG if and only if the symmetri
ity of G is equal to 1 (where the symmetri
itydepends on the number of labelled trees isomorph to a 
ertain tree asso
iatedto G) ([21℄, Theorem 1 p. 75).{ In [15℄, Mazurkiewi
z 
onsiders the following asyn
hronous model. In ea
hstep, labels are modi�ed on a subgraph 
onsisting of a node and its neigh-bours, a

ording to 
ertain rules depending on this subgraph only. He provesthat, given a graph G; there exists an ele
tion algorithm for G if and only ifG is minimal for the 
overing relation (a graph H is a 
overing of a graphK if there exists a surje
tive morphism ' from H onto K whi
h maps bije
-tively the neighbours of any vertex v onto the neighbours of '(v); a graph His minimal if whenever H 
overs a graph K then H and K are isomorphi
.).1.3 The Main ResultsWe re
all that at ea
h step of 
omputation, labels are modi�ed on exa
tly twoverti
es linked by an edge and on this edge of the given graph, a

ording to
ertain rules depending on the labels of this edge and on the labels of the twoverti
es only. Under this hypothesis, we give a 
hara
terization of graphs forwhi
h there exists an ele
tion algorithm. More pre
isely, we prove that, givena simple graph G (graph without self-loop or multiple edges) there exists anele
tion algorithm for G if and only if G is minimal for the 
overing relation.Where the notion of 
overing is a generalization of the previous one. First we
onsider multigraphs: graphs having possibly multiple edges without self-loops.



For this 
lass of graphs, a graph H is a 
overing of a graph K if there existsa surje
tive morphism ' from H onto K su
h that, for every vertex v; therestri
tion of ' to the set of edges in
ident to v is a bije
tion between this setof edges and the set of edges in
ident to '(v):This 
ondition is not equivalent to the 
ondition of Mazurkiewi
z. If we
onsider the ring with 4 verti
es, denoted R4; then it is minimal for the �rstnotion of 
overing but it is not minimal for the generalization. Indeed, for thegeneralization it 
overs the graph H de�ned by 2 verti
es having a double edge(see Fig.1).
R4 H

Fig. 1. The graph R4 
overs the graph H:Thus there exists an ele
tion algorithm for R4 in the model of Mazurkiewi
zand there does not exist an ele
tion algorithm for R4 in the model studied inthis paper.In fa
t, the Mazurkiewi
z algorithm is a distributed enumeration algorithm:it is a distributed algorithm su
h that the result of any 
omputation, in a graphGminimal for the 
overing relation, is a labelling of the verti
es that is a bije
tionfrom V (G) to f1; 2; : : : ; jV (G)jg: For a given graph G; the ele
tion problem andthe enumeration problem with termination dete
tion are equivalent in the modelof Mazurkiewi
z; we prove that under the same hypothesis the two problems arealso equivalent in the model studied in this paper. This property is no more trueif we have no information on the graph like the size or the topology.In the se
ond part of this paper, we 
onsider the following model of 
om-putation: at ea
h step of 
omputation labels are modi�ed on exa
tly one edgeand one endvertex of this edge of the given graph, a

ording to 
ertain rulesdepending on the label of this edge and the labels of its endverti
es only (lo
al
omputations on open edges). Thus the form of the rules is:R : XÆ Y ZÆ �!�!�! X0Æ Y0 ZÆWe prove that this model is equivalent to the model studied in the �rst partby using a simulation algorithm. Thus we obtain also a 
hara
terization of graphswhere ele
tion is possible. This result is not immediate: for example, using the�rst model, it is easy to give a name to ea
h edge of a given graph su
h thatfor a given vertex v, all the edges in
ident to v have a di�erent name; if we do



not use the simulation algorithm this result is not trivial in the 
ontext of these
ond model. Finally, we extend the 
hara
terization 
on
erning the ele
tion tothe model where at ea
h step of 
omputation labels are modi�ed on a subgraph
onsisting of a node and the in
ident edges, a

ording to 
ertain rules dependingon the vertex, the in
ident edges and the endverti
es (lo
al 
omputations onopen star graphs). The end of the paper proves that models using labels onedges are stri
tly stronger than models without labels on edges.1.4 Related Works and ResultsIn [21℄ the ele
tion problem is studied under other initial knowledges: the size ofthe graph, an upper bound of the number of verti
es; in some 
ases multigraphsare ne
essary. In addition of the works of [1, 15, 21, 22℄ and [20, 23℄, one 
an
ite the results of Boldi and Vigna who use dire
ted graphs [4, 3, 5, 6℄. They
onsider dire
ted graphs 
oloured on their ar
s. Ea
h vertex 
hanges its statedepending on its previous state and on the states of its in-neighbours; a
tivationof pro
essors may be syn
hronous, asyn
hronous or interleaved. A generalizationof 
overings, 
alled �brations, is studied and properties whi
h found appli
ationsin the distributed 
omputing setting are emphasized. In [7, 16, 9, 8℄ the model ofMazurkiewi
z is 
onsidered and a 
hara
terization of families of graphs in whi
hele
tion is possible is given; in [8℄ 
hara
terizations of re
ognizable 
lasses ofgraphs by means of lo
al 
omputations are given.2 Basi
 Notions and Notation2.1 Graphs, Labelled Graphs and CoveringsThe notations used here are essentially standard [18℄. We 
onsider �nite, undi-re
ted, 
onne
ted graphs without self-loop having possibly multiple edges. IfG = (V (G); E(G);Ends) is a graph, then V (G) denotes the set of verti
es, E(G)denotes the set of edges and Ends denotes a map assigning to every edge twoverti
es: its ends. Two verti
es u and v are said to be adja
ent or neighboursif there exists an edge e su
h that Ends(e) = fu; vg: In this paper, graphs mayhave several edges between the same two verti
es; su
h edges are 
alled multipleedges. A simple graph G = (V (G); E(G)) is a graph with no self-loop or multi-ple edges: E(G) 
an be seen as a set of pairs of V (G). Let e be an edge, if thevertex v belongs to Ends(e) then we say that e is in
ident to v: The set of allthe edges of G in
ident with v is denoted IG(v): The set of neighbours of v inG; denoted NG(v); is the set of all verti
es of G adja
ent to v: For a vertex v;we denote by BG(v) the ball of radius 1 with 
enter v; that is the graph withverti
es NG(v)[fvg and edges IG(v). For an edge e, we denote AG(e) the singleedge graph (Ends(e); feg); we 
all 
losed edge an edge with the two endverti
es,if we 
onsider the edge with only one endvertex it is an open edge.Throughout the paper we will 
onsider graphs where verti
es and edges arelabelled with labels from a re
ursive alphabet L. A graph labelled over L will be



denoted by (G; �), where G is a graph and � : V (G)[E(G)! L is the labellingfun
tion. The graph G is 
alled the underlying graph and the mapping � is alabelling of G. For a labelled graph (G; �), lab((G; �)) is the set of labels thato

ur in (G; �): The 
lass of labelled graphs over some �xed alphabet L will bedenoted by GL. Let (G; �) and (G0; �0) be two labelled graphs. Then (G; �) is asubgraph of (G0; �0), denoted by (G; �) � (G0; �0), if G is a subgraph of G0 and� is the restri
tion of the labelling �0 to V (G) [ E(G).Labelled graphs will be designated by bold letters like G; H; : : : If G is alabelled graph, then G denotes the underlying graph.2.2 CoveringsWe say that a graph G is a 
overing of a graph H via 
 if 
 is a surje
tive homo-morphism from G onto H su
h that for every vertex v of V (G) the restri
tion of
 to IG(v) is a bije
tion onto IH(
(v)). The 
overing is proper if G and H arenot isomorphi
.The notion of 
overing extends to labelled graphs in an obvious way. Thelabelled graph (H;�0) is 
overed by (G; �) via 
; if 
 is a homomorphism from(G; �) to (H;�0) su
h that for every vertex v of V (G) the restri
tion of 
 to IG(v)is a bije
tion onto IH(
(v)). Note that a graph 
overing is exa
tly a 
overing inthe 
lassi
al sense of algebrai
 topology, see [13℄.Remark 1. We use a di�erent de�nition for 
overings than Angluin's one. Infa
t, if we 
onsider only simple graphs these two de�nitions are equivalent. ForAngluin, (H;�0) is 
overed by (G; �) via 
; if 
 is a homomorphism from (G; �)to (H;�0) su
h that for every vertex v of V (G) the restri
tion of 
 to NG(v) isa bije
tion onto NH(
(v)). Given a simple graph G, for ea
h vertex u 2 V (G),there is a natural bije
tion between IG(u) and NG(u) and therefore it is easy tosee the equivalen
e.We work with graphs that 
an have multiple edges and in this 
ase the twode�nitions are not equivalent. Consider the graphs G and H from Fig. 2, if we
onsider the morphism ' de�ned from G to H by the letters a; b; �; �, we easilysee that G is a 
overing of H . But if we use Angluin's de�nition of 
overing, G isnot a 
overing of H sin
e for ea
h u 2 G, jNG(u)j = 2, whereas for ea
h v 2 H ,jNH(v)j = 1.A graphG is 
alledminimal if every 
overing fromG to someH is a bije
tion.A simple graph G is 
alled S-minimal if every 
overing G to some simple graphH is a bije
tion. The graphs G0 and H from Fig. 2 are minimal graphs, whereasG is a proper 
overing of H and therefore G is not minimal. Moreover, G or G0are not a proper 
overing of any simple graph: G and G0 are S-minimal.We have the following basi
 property of 
overings [17℄:Lemma 1. For every 
overing 
 from G to H there exists an integer q su
hthat 
ard(
�1(v)) = q, for all v 2 V (H):The integer q in the previous lemma is 
alled the number of sheets of the
overing. We also refer to 
 as a q-sheeted 
overing.



a bab
a b

'
G
H

� ���
��

G0

Fig. 2. First Examples.Lemma 2. Let G be a 
overing of H via 
 and let e1; e2 2 E(G) be su
hthat e1 6= e2. If 
(e1) = 
(e2) then AG(e1) \ AG(e2) = ;, i.e., Ends(e1)\Ends(e2) = ;.3 Lo
al Computations on Closed EdgesIn this se
tion we give the de�nition of lo
al 
omputations on 
losed edges andtheir relation with 
overings. They model networks of pro
essors of arbitrarytopology. The network is represented as a 
onne
ted, undire
ted graph whereverti
es denote pro
essors and edges denote dire
t 
ommuni
ation links. Labels(or states) are atta
hed to verti
es and edges. Lo
al 
omputations as 
onsid-ered here 
an be des
ribed in the following general framework. Let GL be the
lass of L-labelled graphs and let R � GL � GL be a binary relation on GL.Then R is 
alled a graph rewriting relation. We assume that R is 
losed un-der isomorphism, i.e., if G R G0 and H ' G then H R H0 for some labelledgraph H0 ' G0. In the remainder of the paper R� stands for the re
exive-transitive 
losure of R : The labelled graph G is R-irredu
ible (or just ir-redu
ible if R is �xed) if there is no G0 su
h that G R G0: For G 2 GL;IrredR(G) denotes the set of R-irredu
ible graphs obtained from G using R;i.e., IrredR(G) = fH j GR�H and H is R-irredu
ibleg:De�nition 1. Let R � GL � GL be a graph rewriting relation.



1. R is a relabelling relation if whenever two labelled graphs are in relationthen the underlying graphs are equal, i.e.:G R H implies that G = H:2. R is lo
al on 
losed edges if it 
an only modify an edge and its endverti
es,i.e., (G; �) R (G; �0) implies that there exists an edge e 2 E(G) su
h that�(x) = �0(x) for every x =2 Ends(e) [ feg:The labelled single edge graph (AG(e); �) is a support of the relabelling relation.The next de�nition states that a lo
al relabelling relation R is lo
ally gener-ated on 
losed edges if the appli
ability of any relabelling depends only on thesingle edge subgraphs.De�nition 2. Let R be a relabelling relation. Then R is lo
ally generated on
losed edges if it is lo
al on 
losed edges and the following is satis�ed: For alllabelled graphs (G; �), (G; �0), (H; �), (H; �0) and all edges e 2 E(G), f 2 E(H)su
h that the AG(e) and AH(f) are isomorphi
 via ' : V (AG(e))[E(AG(e)) �!V (AH(f)) [ E(AH (f)), the following three 
onditions:1. �(x) = �('(x)) and �0(x) = �0('(x)) for all x 2 V (AG(e)) [ E(AG(e))2. �(x) = �0(x), for all x =2 V (AG(e)) [ E(AG(e))3. �(x) = �0(x), for all x =2 V (AH (f)) [ E(AH (f))imply that (G; �) R (G; �0) if and only if (H; �) R (H; �0).By de�nition, lo
al 
omputations on 
losed edges on graphs are 
omputa-tions on graphs 
orresponding to lo
ally generated relabelling relations on 
losededges.We now present the fundamental lemma 
onne
ting 
overings and lo
allygenerated relabelling relations on 
losed edges [1℄. It states that, whenever G isa 
overing ofH, every relabelling step inH 
an be lifted to a relabelling sequen
ein G, whi
h is 
ompatible with the 
overing relation.Lemma 3 (Lifting Lemma). Let R be a lo
ally generated relabelling relationon 
losed edges and let G be a 
overing of H via 
: If H R� H0 then there existsG0 su
h that G R� G0 and G0 is a 
overing of H0 via 
:4 Ele
tion and EnumerationThe main result of this part is that for every graphG, there exists an ele
tion al-gorithm using lo
al 
omputations on 
losed edges onG if and only if there existsan enumeration algorithm with termination dete
tion using lo
al 
omputationson 
losed edges on G.



4.1 De�nitionsA distributed ele
tion algorithm on a graph G is a distributed algorithm su
hthat the result of any 
omputation is a labelling of the verti
es su
h that exa
tlyone vertex has the label ele
ted and all other verti
es have the label non-ele
ted.The labels ele
ted and non-ele
ted are terminal, i.e., when they appear on avertex they remain until the end of the 
omputation. A distributed enumera-tion algorithm on a graph G is a distributed algorithm su
h that the result ofany 
omputation is a labelling of the verti
es that is a bije
tion from V (G) tof1; 2; : : : ; jV (G)jg. It is easy to see that if we have an enumeration algorithm ona graph G where verti
es 
an dete
t whether the algorithm has terminated, wehave an ele
tion algorithm on G by ele
ting the vertex labelled by 1.4.2 Impossibility resultsUsing the same method as in the Lifting Lemma [1℄, we obtain:Proposition 1. Let G be a labelled graph whi
h is not minimal, there is noenumeration algorithm for G.Consequently, there is no ele
tion algorithm for a graph G, if G is not minimal.Otherwise, we 
ould �nd an enumeration algorithm for G, as it will be shownin the next se
tion. Furthermore, we 
an prove that:Proposition 2. Given a graph G, there is an algorithm using lo
al 
omputa-tions on 
losed edges that solves the ele
tion problem on G if and only if thereis an algorithm using lo
al 
omputations on 
losed edges that solves the enumer-ation problem with dete
tion termination on G.5 An Enumeration AlgorithmIn this se
tion, we des
ribe an algorithmM using lo
al 
omputations on 
losededges that solve the enumeration problem on a minimal graphG. This algorithmuses some ideas developed in [15℄. Ea
h vertex v attempts to get its own numberbetween 1 and jV (G)j. A vertex 
hooses a number and broad
asts it with its labeland its labelled neighbourhood all over the network. If a vertex u dis
overs theexisten
e of another vertex v with the same number, then it 
ompares its lo
alview, i.e., the labels and numbers of its neighbours, with the lo
al view of v. Ifthe label of u or the lo
al view of u is \weaker", then u 
hooses another numberand broad
asts it again with its lo
al view. At the end of the 
omputation, everyvertex will have a unique number if the graph is 
overing-minimal.5.1 LabelsLet G = (G; �) and 
onsider a vertex v0 2 G, and the set fe1; : : : ; edg of edgesthat are in
ident to v0:



For ea
h edge e 2 E(G) su
h that Ends(e) = fv1; v2g, a number p(e) will beasso
iated to e su
h that for ea
h e0 2 IG(v1) [ IG(v2), p(e) 6= p(e0). The labelof an edge e is the pair (�(e); p(e)) and the initial labelling is (�(e); 0).For ea
h vertex v 2 V (G), the label of v is the pair (�(v); 
(v)) where 
(v)is a triple (n(v); N(v); M(v)) representing the following information obtainedduring the 
omputation (formal de�nitions are given below):{ n(v) 2 N is the number of the vertex v 
omputed by the algorithm;{ N(v) 2 N is the lo
al view of v, and it is a set de�ned by:f(p(e); �(e); n(v0); �(v0)) j e 2 IG(v); Ends(e) = fv; v0g and p(e) 6= 0g;{ M(v) � L� N �N is the mailbox of v and 
ontains the whole informationre
eived by v at any step of the 
omputation.The initial labelling of any vertex v is (�(v); (0; ;; ;)).5.2 An Order on Lo
al ViewsThe fundamental property of the algorithm is based on a total order on lo
alviews, as de�ned in [15℄, su
h that the lo
al view of any vertex 
annot de
reaseduring the 
omputation. We assume for the rest of this paper that the set oflabels L is totally ordered by <L : Consider a vertex v su
h that the lo
al viewN(v) is the set f(p(e1); �(e1); n(v1); �(v1)); (p(e2); �(e2); n(v2); �(v2)); : : : ;(p(ed); �(ed); n(vd); �(vd))g, we assume that:{ p(e1) � p(e2) � ::: � p(ed),{ if p(ei) = p(ei+1) then �(ei) �L �(ei+1),{ if p(ei) = p(ei+1) and �(ei) = �(ei+1) then n(vi) � n(vi+1){ if p(ei) = p(ei+1), �(ei) = �(ei+1) and n(vi) = n(vi+1) then �(vi) �L�(vi+1).Let N> be the set of all su
h ordered tuples. We de�ne a total order � on N>by 
omparing the numbers, then the vertex labels and �nally the edge labels.Formally, for two elements((p1; e1; n1; l1); :::; (pd; ed; nd; ld)) and ((p01; e01; n01; l01); :::; (p0d0 ; e0d0 ; n0d0 ; l0d0)of N> we de�ne((p1; e1; n1; l1); :::; (pd; ed; nd; ld)) � ((p01; e01; n01; l01); :::; (p0d0 ; e0d0 ; n0d0 ; l0d0)if there exists i su
h that (p1; e1; n1; l1) = (p01; e01; n01; l01); :::; (pi�1; ei�1; ni�1; li�1) =(p0i�1; e0i�1; n0i�1; l0i�1) and su
h that one of the following holds1. pi < p0i,2. pi = p0i and ei < e0i,3. pi = p0i, ei = e0i and ni < n0i,4. pi = p0i, ei = e0i and ni = n0i and li = l0i,5. i = d+ 1 and d < d0.If N(u) � N(v), then we say that the lo
al view N(v) of v is stronger thanthe one of u and that N(u) is weaker than N(v). The order � is a total orderon N = N> [ f;g; with, by de�nition, ; � N for every N 2 N>.



5.3 Relabelling RulesWe now des
ribe the �ve relabelling rules; the rules M2 and M3 are very 
losefrom the rules of the Mazurkiewi
z algorithm. The �rst rule gives a name to ea
hedge : two neighbours v and v0 in
ident to a 
ommon edge e su
h that p(e) = 0
hoose a value for p(e) su
h that ea
h node does not have two in
ident edgeswith the same label. This rule 
an only be applied on
e to ea
h edge, sin
e on
ean edge e has a number p(e), this number does not 
hange any more.M1 :(l1; (n1; N1;M1))Æ(l1; (n1; N 01;M 01))Æ (le; 0)#(le; p) (l2; (n2; N2;M2))Æ(l2; (n2; N 02;M 02))Æwith p = 1 +maxfp0; (p0; l0e; n0; l0) 2 N1 [N2gN 01 = N 01 [ f(p; le; 0; l2)gN 02 = N 02 [ f(p; le; 0; l1)gM 01 =M1 [ f(l1; n1; N 01)gM 02 =M2 [ f(l2; n2; N 02)gThe se
ond rule enables two neighbours v and v0 having di�erent mailboxesto share the information they have about the labels present in the graphs.M2 :(l1; (n1; N1;M1))Æ(l1; (n1; N1;M 0))Æ (le; p)#(le; p) (l2; (n2; N2;M2))Æ(l2; (n2; N2;M 0))Æif p > 0 and M1 6=M2withM 0 =M1 [M2The third rule enables a vertex v to 
hange its number if n(v) = 0 or if thereexists a vertex v0 su
h that n(v) = n(v0) and v has a weaker lo
al view than v0.M3 :(l; (n;N;M))Æ �! (l; (k;N;M 0))Æif n = 0 or 9(n; l0; N0) 2M su
h that l <L l0 or l = l0 and N � N0with k = 1 +maxfn1; (l1; n1; N1) 2MgM 0 =M [ f(l; k;N)gThe fourth rule enables a node having a neighbour with exa
tly the samelabel to 
hange its number. If this rule 
an be applied, it means that the twoverti
es have never ex
hange their number along this edge.



M4 :(l; (n;N;M))Æ(l; (k;N1;M 0))Æ (le; p)#(le; p) (l; (n;N;M))Æ(l; (n;N2;M 0))Æif p > 0 and n > 0with k = 1 +maxfn1; (l1; n1; N1) 2MgN1 = N n f(p; le; 0; l)g [ f(p; le; n; l)gN2 = N n f(p; le; 0; l)g [ f(p; le; k; l)gM 0 =M [ f(l; k;N1); (l; n;N2)gThe �fth rule enables a vertex v to get information about the number of aneighbour v0, either be
ause v has no information about n(v0), or be
ause n(v0)has 
hanged sin
e v got information about n(v0).M5 :(l1; (n1; N1;M))Æ(l1; (n1; N 01;M 0))Æ (le; p)#(le; p) (l2; (n2; N2;M))Æ(l2; (n2; N 02;M 0))Æif p > 0; n1 > 0; n2 > 0; n1 6= n2(p; le; i; l2) 2 N1; (p; le; j; l1) 2 N2and i 6= n2 or j 6= n1with N 01 = N1 n f(p; le; i; l2)g [ f(p; le; n2; l2)gN 02 = N2 n f(p; le; j; l1)g [ f(p; le; n1; l1)gM 0 =M [ f(l1; n1; N 01); (l2; n2; N 02)gFor ea
h run of this algorithm on a minimal graphG ea
h vertex has a uniquenumber. Finally:Theorem 1. For every graph G, there exists an enumeration algorithm withtermination dete
tion on G and an ele
tion algorithm on G using lo
al 
ompu-tations on 
losed edges if and only if G is a minimal graph.6 Two other Models of Lo
al ComputationsWe 
onsider now a di�erent kind of lo
al 
omputations: we still 
onsider lo
allygenerated relabelling relations, but during a relabelling step, the label of onlyone vertex and an in
ident edge 
an be modi�ed, i.e., the form of the rules is :R : XÆ Y ZÆ �!�!�! X0Æ Y0 ZÆTo make a distin
tion between this model and the former one, we will say thatmodel des
ribe lo
al 
omputations on open edges. Sin
e lo
al 
omputations on



open edges are also lo
al 
omputations on 
losed edges, ea
h algorithm usinglo
al 
omputations on open edges is also an algorithm using lo
al 
omputationson 
losed edges. We wonder if the power of 
omputation of this new model isweaker or is the same as the pre
edent one. In fa
t, by a non trivial proof wehave:Proposition 3. Given a problem P and a graph G, there exists an algorithmusing lo
al 
omputations on 
losed edges on G with termination dete
tion if andonly if there exists an algorithm using lo
al 
omputations on open edges thatsolves P on G with termination dete
tion.We have already given a 
hara
terization of graphs in whi
h we 
an solve theele
tion problem and the enumeration problem with termination dete
tion andwe 
an therefore give the following 
orollary:Corollary 1. For every graph G, there exists an enumeration algorithm withtermination dete
tion on G and an ele
tion algorithm on G using lo
al 
ompu-tations on open edges if and only if G is a minimal graph.We now 
onsider a model of lo
al 
omputations su
h that at ea
h 
omputa-tion step, a vertex looks at the labels of its neighbours and its in
ident edgesand modify its label and the labels of its in
ident edges. We say that at ea
hstep a star graph is relabelled and we talk about lo
al 
omputations on openstar graphs. The relabelling rule are therefore triples (S; �; �0) su
h that S is astar graph whose 
enter is a node v0 and �; �0 are two labellings of S su
h thatfor every node v 2 V (G) n fv0g; �(v) = �0(v).Theorem 2. For every graph G, there exists an enumeration algorithm withtermination dete
tion on G and an ele
tion algorithm on G using lo
al 
ompu-tations on open star graphs if and only if G is a minimal graph.7 Is it Important to Have Labels on Edges ?The power of the model of Mazurkiewi
z does not 
hange if we 
onsider edgeswith or without labels.In our models, we have 
onsidered labelled graphs su
h that the edges 
anhave labels and this property has been used to des
ribe the di�erent algorithmswe present. We wonder if the results remain true when we 
onsider models wherethe edges 
annot be labelled. We will present a minimal graph in whi
h we 
annot�nd an ele
tion algorithm using lo
al 
omputations on 
losed edges when theedges are not labelled and another minimal graph in whi
h there does not existany ele
tion algorithm using lo
al 
omputations on open star graphs if the edges
annot be labelled.Lo
al Computations on Closed Edges.Consider the graph G des
ribed in Figure 3 whi
h is a minimal graph andtherefore we 
an solve the ele
tion problem with lo
al 
omputations on 
losed



v1 v2 v3 v4A B A B GFig. 3. A graph in whi
h we 
annot �nd an ele
tion algorithm using lo
al 
omputationson 
losed edges without labelling edges.v1 v2 v3 v4A B A Bv1 v2 v3 v4A0 B0 A Bv1 v2 v3 v4A0 B0 A0 B0Fig. 4. Appli
ation of a relabelling ruleedges. Consider a noetherian relabelling relation R asso
iated to an algorithminvolving lo
al 
omputations on 
losed edges su
h that there is not any rule thatlabels the edges.We prove by indu
tion that there exist an exe
ution of R su
h that theverti
es v1 and v3 (resp. v2 and v4) have the same labels. Initially, the result istrue and if at a step i+ 1, a rule R is applied, this rule has the following form:R : AÆ BÆ �!�!�! A0Æ B0Æ :As des
ribed in Figure 4, the rule R 
an be applied to the nodes v1 and v2 andthen to the nodes v3 and v4: the property holds.Lo
al Computations on Open Star Graphs.Consider the graph G des
ribed in Figure 5 whi
h is a minimal graph and forwhi
h there exists an ele
tion algorithm using lo
al 
omputations on open stargraphs. Suppose now that we 
an �nd an enumeration algorithm A using lo
al
omputations on open star graphs su
h that the rules involved do not label theedges, i.e., the only label that 
hanges in a relabelling step is the label of the
enter of the star graph involved.Ea
h time a rule is applied to v1 or v2, the same rule 
an also be applied tothe other one and ea
h time a rule is applied to v3; v4 or v5, the same rule 
an beapplied to the other ones. Therefore, we 
an �nd an exe
ution of A su
h that theverti
es v1 and v2 (resp. v3; v4 and v5) have the same labels and 
onsequently,we 
annot �nd an ele
tion algorithm on G.



v1 v2v3v4
v5

A ABB
B G

Fig. 5. A graph in whi
h we 
annot �nd an ele
tion algorithm using lo
al 
omputationson open star graphs without labelling edges.Referen
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