
What Do We Need to Know to Elect in
Networks with Unknown Participants?

Jérémie Chalopin, Emmanuel Godard and Antoine Naudin?

LIF, Université Aix-Marseille and CNRS

Abstract. A network with unknown participants is a communication
network where the processes have very partial knowledge of the system.
Nodes do not know the full set of participating nodes and some nodes do
not even know the full set of nodes they can communicate directly with.
It is a “contact list” like network where the initial communication is pos-
sibly asymmetric and one can communicate with an unknown neighbour
only if one has been first contacted by this neighbour. This model is quite
natural and of important theoretical interest. It has also proved useful
for the study of bootstrapping mobile ad hoc networks. In this paper,
we investigate the classical Leader Election problem in general networks
with unknown participants.
We give the first necessary and sufficient condition on global knowledge
that nodes should be provided in order to solve Election problem. Since
Election problem is a useful benchmark in distributed computability in-
vestigations, this result could lead to a complete characterisation of what
is solvable in networks with unknown participants.
Keywords: Distributed Algorithm, Message Passing, Leader Election,
Distributed Computability, Unknown Participants, Structural Knowl-
edge

1 Introduction

A Natural Model for Distributed Computations. Distributed systems are
pervasive and recently more and more interest has been in studying systems
that range from dynamic to highly dynamic. Surprisingly there have been few
studies of some models that are static but where the local connectivity evolves
in a light way during the computation. The following “contact list model” is a
fairly natural model related to the communication namespace necessitated by
distributed computing.

Consider a set of participants that communicate with phones. Initially, ev-
erybody knows a subset of the phone numbers of other people via its personal
contact list. It could even be not symmetric. Namely Alice could have the phone
number of Bob, whereas Bob would not know the one of Alice. In this situation,
Bob cannot call Alice, he does not even know that Alice is participating. Only
when Alice has first contacted Bob (and the phone number of Alice is registered
? Work partially supported by Macaron project (ANR JCJC 13-JS02-0002-01)

by the phone of Bob), then Bob can possibly call Alice. In this setting, the con-
tact list (that is the set of neighbours) of Bob increases during the computation.
This is a fairly natural model that exhibit general and interesting properties :
connectivity is directed, adjacency is initially limited but increases over time,
this increase is not automatic and depends of the communications that take
place, everybody calling at its own pace. That is the system is asynchronous.

This model is natural and realistic, it is a slight variation of the model in-
troduced in [CSS04] to investigate the self-organized bootstrapping of mobile ad
hoc networks (MANETs). Conjointly with the fact that this model has not been
very much studied, such systems exhibit new interesting properties related to
the theory of distributed computability. We describe them more precisely later.
The Formal Model. The underlying communication graph is an arbitrary
undirected graph denoted by G. Nodes are endowed with identities, they com-
municate by messages. Their neighbours are addressed with port numbers but
this port numbering is not explicitly available to the nodes. Initially, a node can
send messages only to a (possibly strict) subset of its actual neighbours in G: its
contact list of neighbours, this defines the initial directed graph G0. This con-
tact list of neighbours will be extended whenever a message is received from an
”unknown” in-neighbour. Therefore, at the end of the computation, the possible
communication graph corresponds to G, as G is the undirected version of the
initial digraph G0. Note that the network is reliable but asynchronous: messages
are always delivered but they can have unpredictable delays. In particular, a
neighbour in G can be unpredictably long to appear in the contact list.
Solving the Leader Election Problem. We aim at a general distributed
computability study of this model. We therefore introduce partial global knowl-
edge in order to overcome the single sink condition of [CSS04] and we look for
necessary and sufficient knowledge to solve a given problem. The leader elec-
tion problem is a fundamental problem in distributed programming. It has also
proved to be a good benchmark for distributed computability characterisation
[YK89,YK96b,BCG+96,BV99,GM02,CGM08].
Our Results. In this paper, we give a simple characterisation of the partial
knowledge that enables to solve Election problem in networks with unknown par-
ticipants. From our results, it appears that in the unknown participants model,
the partial knowledge that a node can have initially about the structure of the
underlying network has a dramatic impact.

As a consequence, we prove that knowing the size of the network enables
to solve Election problem on every network whereas knowing only an upper
bound on the size is not enough. We also prove that knowing the number of sink
components in the initial graph is also a sufficient condition to solve it.
Related Work. The network with unknown participants model presented here
is a slight variation of a model that has been formally introduced and studied in
[CSS04]. In [CSS04], processes are endowed with a participant detector returning
a set of initial out-neighbours. Initial values from such a participant detector
determines the initial communication network G0. Moreover, the communication
networks end up being a complete graph by allowing direct communication as

2

soon as the network name of a node is learnt from a received message. In the
model of this paper, the communication graph G becomes at most the undirected
version of the initial graph G0, but, computability is equivalent. Indeed, it is
always possible to add a ”routing layer” to build an end-to-end communication
overlay in order to address a process which is not a neighbour. The meaning of
“knowledge” is also different. In [CSS04], it is meant to correspond to the initial
contact lists, that is G0 with our notations. In this paper “knowledge” denotes
the partial information that a node can have about the global structure.

In [CSS04], Cavin, Sasson and Schiper have investigated the Consensus Prob-
lem and showed a necessary and sufficient condition for computability of Con-
sensus. They do not assume any partial knowledge about the initial graph and
they show that the existence of at most one sink in the strongly connected com-
ponents of the initial graph is both necessary and sufficient in order to solve
Consensus. From a computability point of view, in this model, to the best of our
knowledge, only the solvability of the Consensus Problem has been considered so
far [CSS04]. Fault-tolerant versions of the Consensus problem were considered :
in [GT07], the precise link in the unknown participant model between synchrony
and fault-tolerance is given; in [ABFG08], byzantine faults are investigated; in
[GSAS12], an eventually strong failure detector is presented.

So only [CSS04] seems to consider reliable networks with unknown partic-
ipants. But going further in history, such studies for reliable communication
networks, but with a partial knowledge, were actually introduced by Angluin
[Ang80] in her seminal work for anonymous networks. The precise impact of
some specific knowledge on distributed computability in anonymous networks
has been thoroughly investigated by Yamashita and Kameda [YK96b,YK96a].
Boldi and Vigna have presented general computability results in [BV99].

We show here that, for Election problem, even without failure and with iden-
tities, there are still impossibility results. Our principal lemma used in proof for
impossibility is a ”Angluin’s like” lemma called Isolation Lemma. It is extended
to get a complete characterisation of which partial knowledge are sufficient and
necessary to solve Election problem. It seems very likely that it is possible to
leverage this lemma to get full computability results.

The problem of describing which arbitrary knowledge enables to solve the
Election Problem was introduced in [GM02], where it is solved for a specific
model. It has been solved for the standard message passing model in [CGM12].
These papers use quasi-simulation techniques introduced in [MMW97] but con-
trary to the model investigated in [YK96b,BV99,CGM12], it should be noted
that unknown participants networks are communication networks where the
difficulty arises from asynchrony and not from synchronous executions. It is
therefore a qualitatively different model where computability mostly relates to
termination detection and not to symmetry breaking.

The paper is organized as follows. First we present standard graph notation
that we will use to describe formally the unknown participant model. We first
present an algorithm that enables every node to compute the set of vertices one
can reach from this node in the initial digraph. We then present the general

3

Isolation Lemma and derive our necessary condition on knowledge. Building on
our first algorithm, we give an Election algorithm that proves that the necessary
condition is actually sufficient. We conclude with some applications of our main
theorem.

2 Graphs Properties and Reachable Vertices

Definitions are standard [RM00]. Let G be a directed graph (resp. undirected),
where V (G) is its set of vertices, and E(G) is its set of arcs denoted (u, v)
(resp. edges denoted {u, v}). A directed graph is called a digraph. We identify
undirected graphs with symmetric digraphs and use graph and digraph inter-
changeably. Let deg(v), the degree of the vertex v. We denote by pred(v) =
{u|(u, v) ∈ E(G)} (resp. next(v) = {w|(v, w) ∈ E(G)}) the set of predecessors
(resp. successors) of v. A directed path c (resp. an undirected path c) linking u
and v is a sequence of disjoint vertices {s1, ...sk} ⊆ V (G) where for all i < k,
(si, si+1) ∈ E(G) (resp. (si, si+1) ∈ E(G) or (si+1, si) ∈ E(G)), s1 = u and
sk = v. The length of a path c, denoted by |c|, is equal to the numbers of arcs
composing it and the directed distance d (resp. undirected distance d) between
vertices is the length of the smallest directed (resp. undirected) path in G be-
tween u and v. A strongly connected (resp. connected) digraph is a digraph where
the directed (resp. undirected) distance between any two vertices is always de-
fined. We will consider only connected digraphs. Any digraph can be decomposed
in strongly connected subgraphs (called components). A component that has no
successor is called a sink. A vertex v is reachable from u in G if there is a directed
path from u to v. We denote by ReachG(v), the set of vertices reachable from v
in G.
Remark 2.1. The following propositions are equivalent:
(i) G is strongly connected.
(ii) ∀v, v′ ∈ V,ReachG(v) = ReachG(v′)
(iii) ∀v, v′ ∈ V, v′ ∈ ReachG(v)
(iv) ∀v ∈ V,ReachG(v) = V

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
A labelled graph G = (G,λ) is a graph G endowed with a labelling λ : V → Λ
on its vertices or edges where Λ, is the set of labels. Note that if H = (H,λH)
is a subgraph of G = (G,λG), then each node v ∈ V (H) has the same label in
H and in G.

A homomorphism ϕ from H to G is a function ϕ : V (H)→ V (G) such that
for every (u, v) ∈ E(H), there is (ϕ(u), ϕ(v)) ∈ E(G). An isomorphism ϕ is a
bijective homomorphism such that ϕ−1 is a homomorphism. A homomorphism
(resp. isomorphism) ϕ from G = (G,λG) to H = (H,λH) is a homomorphism
(resp. isomorphism) from G to H such that for each v ∈ V (G), v and ϕ(v) have
the same label, i.e., λG(v) = λH(ϕ(v)).
Definition 2.2. A subgraph H of G is a subgraph closed by successors of G,
denoted by H v↓ G, if for every (u, v) ∈ E(G), if u ∈ V (H) then v ∈ V (H)
and (u, v) ∈ E(H).

4

u v w u v w

(a) v sends a message. w receives it. After
the reception, w can talk to v

u v w u v w

(b) u sends a message. v receives it. After
the reception, v can talk to both u and its
initial neighbour w

Fig. 1: Different executions for the same initial graph.

This relation v↓ is extended for two arbitrary graphs H′ and G where H′
is isomorphic to a graph H and H v↓ G. Note that if H v↓ G then for every
v ∈ V (H), ReachH(v) = ReachG(v).

3 Model
The message passing model. A network is defined by a (possibly symmetric)
digraph G, where V (G) is the set of processes, and E(G) is the set of communi-
cation channels. Processes communicate by sending and receiving messages via
some ports. The communication channels linking ports between processes are
asynchronous but reliable and FIFO.
Processes identities. Each process v is endowed with a unique label, idG(v),
the identity of the process. We denote it by idv if the context permits it. As there
are several such labellings for a same graph (permutation, renaming), we consider
all of them using an injective function idG : V → N giving a unique identity to
every process. We denote by (G, idG) such a graph and let Gid be the set of all
connected graphs and their assignations of possible identities. For every family
of graphs F , we denote the family Fid = {(G, idG)|G ∈ F ∧ (G, idG) ∈ Gid}.
Port labelling. Each process v can address its different neighbours using a
bijective port numbering function δv : V → N giving a unique number to every
port of v. When v receives a message from a neighbour w, it receives the message
via the port δv(w). Since a process does not initially know all its neighbours,
processes have access to a local variable denoted by contacts containing the
port numbers corresponding to their known neighbours. We explain its usage
later. In order to ease notation, we consider a port labelling such that for all
neighbours u, v in G, the port δu(v) corresponding to the channel linking u to
v is denoted by idG(v), the identity of v. Therefore, contacts contains the
identities of known neighbours.
Graph labelling. The state of each process is represented by a label λ(v) as-
sociated to the corresponding vertex v ∈ V (G). Note that λ(v) initially contains
the identity of v and its known neighbours list contactsv cited above. Let
G = (G,λ), such a labelled graph. For all arcs (u, v) ∈ E(G), let B(u, v) be the
queue containing the messages in transit from u to v. Initially, B(u, v) is empty
for all arcs (u, v).

5

Distributed algorithm. We use the definition given by Tel in [Tel00] for dis-
tributed algorithms and executions. A distributed algorithm is a set of state
transition rules. Such transition rules are function of the current local state of
the system. In our setting, three kinds of transitions are possible for a process v:
it can modify its state, it can receive a message from a neighbour or it can send
a message to all its known neighbours. See Figure 1.

Let (λv, in,m) ` (λ′v, send,m′), denote a recursive relation on state transition
of a process v (the current state is function of the previous), with λv, the state
of v before transition and λ′v, its state after, m and m′ are messages, in is the
incoming port number (or ⊥) and send is either ⊥ or all. When v modify its
state, in = send =⊥ and m = m′ =⊥; the state of v becomes λ′v after this
transition. When v receives a message m sent by u, in = idu, send =⊥, m 6=⊥
and m′ =⊥; the message m is in B(u, v) and v receives m via the port idu. If
idu is not known, v updates contactsv, the list of the neighbours it knows.
The state of v becomes λ′v after this transition. When v sends a message m′, it
sends the same message to all its known neighbours using a primitive SendAll.
In this case, in =⊥, send = all, m =⊥ and m′ 6=⊥; the message m′ is added to
all queues B(v, w) such that idw ∈ contactsv, and the state of v becomes λ′v
after this transition.

A distributed algorithm A in the message passing model is a set of algo-
rithms (Av)v∈V (G) distributed over the nodes of the network. A transition of the
algorithm is a transition of a process v according to its local algorithm Av.
Distributed algorithm execution representation. An execution ρ of a dis-
tributed algorithm A is a sequence of changes on vertices state. An execution is
represented by a sequence of couples [(λ0, B0), (λ1, B1), ..., (λn, Bn)]ρ where, at
step i, λi is the state of the system and Bi, the set of messages in transit. Let λiv,
the state of vertex v at step i. The initial state λ0

v is the state of process v before
the execution. A transition from step i to step i+1 is performed by one and only
one process which executes a transition cited above in its local algorithm. This
transition leads to the next state of v: λi+1

v and Bi+1 and all other processes
keep the same state as in λi. Note that any asynchronous execution (including
the synchronous execution) can be represented this way.
Problem Specification. A specification of a problem has to describe the ex-
pected relations on the initial and final labelling of the graph where the problem
has to be solved. As processes have to take a decision or compute some val-
ues in order to address a problem, we use a dedicated label. Let outG(v) be
the label indicating the decision computed by a process v in G, denoted by
out(v) if the context permits. Note that a final labelling of a graph, denoted
by Gout = (G,λout) contains, for every process v, its final decision out(v) (⊥ if
the process has not decided any value). We define a specification as a relabelling
relation S between initial labelled graphs and final labelled graphs.
Execution and Algorithm Properties. An execution stabilises if there is a
step i0 where no process can progress in its local algorithm and no message is
in transit. In an execution, a process v decides if it eventually writes a value in
out and if it does it only once during the execution. An execution terminates if

6

it stabilises and if every process decides. An algorithm terminates on (G,λin)
with if every execution of the algorithm on (G,λin) terminates. In an execution
ρ that terminates, each process v has an output value outv 6=⊥; in this case, we
say that outv is the final label of v in ρ.

Let S be the specification of a problem. An execution ρ of A in a graph
(G,λin) ∈ Gin satisfies the Correction Property if ρ terminates and (G,λout),
the final labelling computed by ρ satisfies (G,λin)S(G,λout). An algorithm A is
valid for a specification S in a graph (G,λin) ∈ Gin if every execution ρ satisfies
the Correction Property. We will say that A solves S on (G,λin) in such a case.
Knowledge and Family. As we will see, some problems need additional global
information or knowledge to be solved. This information about the underlying
network (e.g. a bound on the size of the system) is inserted in the initial label.
Consider a function κ that encodes an arbitrary knowledge. An algorithm A

solves S with knowledge κ, if for all G, A solves S on (G, κ(G)). Equivalently
we have that, for any α ∈ κ−1(Gid), there exists an algorithm Aα that solves S
on the family F = κ−1(α).

Solving a problem with partial knowledge is simply, for any possible value α of
knowledge, solving the problem within the family of networks whose knowledge
value is α. Considering arbitrary families of labelled graphs enables to represent
any initial knowledge: e.g. if the processes initially know the size n of the network,
then in the corresponding family F (n) , for each G ∈ F (n) and each v ∈ V (G),
n = |V (G)| is a component of the initial label of v.
Universal Algorithm. We say that an algorithm solving a specification on
all graphs of Gid is a universal algorithm. An algorithm is F−universal if the
algorithm solves S for all graphs of the family F . Abusively, We will say that an
algorithm A is F − universal if A is Fid − universal.

An algorithm is not universal when it is not correct for all graphs but it can
be F −universal. So, for every problem without a universal algorithm, we look
for the necessary and sufficient condition on the knowledge, i.e. on the family
F , such that the problem can be solved with a F − universal algorithm.

4 Cartography of Reachable Vertices

Reach or ”Cartography of Reachable Vertices Problem” is the problem con-
sisting, for every vertex v in the digraph G0, to compute a graph isomorphic
to subgraph induced by the network initially accessible from v. We denote by
G|Reach(v) such a subgraph of G0. This problem is investigated because its so-
lution will be used as the basis of our main Election Algorithm. Interestingly, it
also admits a universal algorithm (Algorithm 1).
Description of the algorithm. We first introduce the variables used by the al-
gorithm. Each process v initially knows idv, its identity and Succv = {idv′ | v′ ∈
next(v)}, the set of the ids of its neighbours in the network it initially knows.
These variables are not modified during the execution of the algorithm. Our al-
gorithm is a flooding algorithm where each node v eventually collects the value
of (idu, Succu) for every process u.

7

Algorithm 1: Reach Algorithm.
Output: out, Graph induced by Mv

1 I:(Initial Procedure) begin
2 Send <id,M> to all identities of vertices into contacts;

3 R:(Receiving a message <idu,Mu> from u:) begin
4 if idu /∈ contacts or Mu \M 6= ∅ then
5 M ←M ∪Mu;
6 contacts← contacts ∪ {idu} if idu /∈ contacts;
7 Send <id,M> to all identities of vertices into contacts;
8 if V iew(M) = Covered(M) ∧ out =⊥ then
9 out← C(M)|Reach(idv);

Each process v has also a variable contactsv containing the list of the ids
of its neighbours it knows, either because it initially knows them, or because it
receives a message from them. Initially contactsv = Succv and contactsv
is updated each time v receives a message from a neighbour u such that idu /∈
contactsv. Finally, each process v has a mailbox Mv containing pairs of the
form (id, Succ). Intuitively, the mailbox contains all the information v has about
the network. Initially, Mv = {(idv, Succv)}. When a vertex v sends a message to
its neighbours, it always sends a message of the form < idv,Mv >, i.e., it sends
all the information it has on the network.

Our algorithm is a flooding algorithm described by two rules. Initially, each
process applies the rule I to send its initial mailbox (containing only (idv, Succv))
to all its neighbours. The rule R is executed whenever a process receives a mes-
sage < idu,Mu > from a neighbour u. If the received mailbox provides new
entries, then the process learns new information about the network and it up-
dates its mailbox. Moreover, if idu is not in contacts, then idu is added to
contacts. Then, if the process has learned new information (i.e., if its mail-
box or contacts has changed), it sends a copy of its new mailbox to all its
neighbours.
Computing a map from a mailbox. In order to explain the rule allowing a
process v to writes a value in outv, we need to first explain how to use the content
of a mailbox to construct a digraph similar to the network communication graph.
To do so, we define three functions: V iew, Covered and C as follows.
– Covered(M) = {idv|(idv, Succv) ∈M}
– V iew(M) = {idv|∃(idu, Succu) ∈M ∧ idv ∈ Succu} ∪ Covered(M)
– C(M) = (VC , EC) is a digraph such that VC = V iew(M) and
EC = {(id, id′) | (id, Succ) ∈M and id′ ∈ Succ}
With those functions, we can prove that if Mv contains the list of successors

of every node in the network, the reconstructed graph is isomorphic to the initial
communication graph. By construction, the following lemma is proved.
Lemma 4.1. C ({(idv, Succv) | v ∈ V (G)}) ' G

8

During the execution of the algorithm, as long as Covered(Mv) 6= V iew(Mv),
v can detect that it has not yet received the initial information from all the
processes. When Covered(Mv) = V iew(Mv), v can reconstruct a graph fromMv

and it is possible that C(Mv) is isomorphic to G but it is not necessary. However,
we will show that in this case, G|Reach(v) v↓ C(Mv), and consequently, v can
compute G|Reach(v) by performing a depth-first traversal of C(Mv) from idv and v
can decide this value. Note that a mailbox can satisfy the constraint V iew(M) =
Covered(M) several times; this is due to the asynchrony of communications. We
will elaborate on this interesting property later.
Properties of the algorithm. In order to prove the termination property and
the correction of the algorithm, we start by some lemmas on the properties about
the content of the mailbox. First, since processes have unique identities, we get
the following lemma.
Lemma 4.2 (bounded content). For every step i and process v, C(M i

v) is a
subgraph of C ({(idv, Succv) | v ∈ V (G)}) .

The next lemma shows that there exists an increasing order on the mailbox
content during an execution.
Lemma 4.3. For every execution ρ of an algorithm, for every process v that
executes a transition at step i, M i

v ⊆M i+1
v , contactsiv ⊆ contactsi+1

v and v
sends a message if and only if M i

v ⊂M i+1
v or contactsiv ⊂ contactsiv.

Proof. Processes update their local state only when a message is received. Let
m =< idu,Mu >, the message received by v from u at step i. If idu /∈ contactsiv,
then idu is added to contactsi+1

v (line 6). So, contactsiv ⊂ contactsi+1
v and

v sends messages to its neighbours. IfMu\M i
v 6= ∅, then an update ofM i

v is oper-
ated by v, andM i

v ⊂M i+1
v . After this update (procedure R at line 5), v will send

messages to its neighbours. Otherwise, we get Mu ⊆M i
v and idu ∈ contactsiv.

Thus, v performs no action during this step.
By Lemma 4.2, the mailbox’s content can only take a finite number of values,

and by Lemma 4.3, it is increasing during any execution. Since, by Lemma 4.3,
messages are only sent when the content of a mailbox is modified, there is a step
i where the algorithm stabilises. We show in the next lemma that eventually
each process gathers all available information.
Lemma 4.4 (Reception). For all v, v′, there is a step i where (idv′ , Succv′) ∈
M i
v.

Proof. We prove this lemma by an induction hypothesis on d(v, v′). First, assume
that d(v, v′) = 1. Consider a step h ≤ i such that Mh

v = M i
v and Mh−1

v 6= Mh
v .

At step h, v sends its mailbox Mh
v to its neighbourhood. We distinguish two

cases: either v knows v′ at step h or not.
Case 1: idv′ ∈ contactsh(idv). Since idv′ ∈ contactsh(idv), v sends a mes-
sage < idv,M

h
v > to v′ at step h. Since the channel are reliables, there exists a

step j > h where v′ receives < idv,M
h
v > and thus, M i

v = Mh
v ⊆M

j
v′ .

Case 2: idv′ /∈ contactsh(idv). Since idv′ /∈ contactsi(idv) and d(v, v′), idv ∈
contacts0(idv′). Since v′ applies eventually the rule I of the algorithm, and

9

since the channels are reliable, there is a step j > 0 where v receives a message
from v′. Since idv′ /∈ contactshv , it implies that j > h. Thus, M i

v = Mh
v ⊆M j

v .
At step j, when v receives the message from v′, the algorithm ensures that v′ is
added to contactsv and that a message < idv,M

j
v > is sent to all the known

neighbours of v including v’. By the previous case, there exists a step j′ such
that M j

v ⊆M
j′

v′ and since M i
v ⊆M j

v , we are done.
Suppose now that d(v, v′) > 1. Let w be a neighbour of v such that d(w, v′) =

d(v, v′)− 1. From the case where d(v, v′) = 1, we know that there exists a step
j such that M i

v ⊆M j
w. By induction hypothesis, there exists a step j′ such that

M j
w ⊆M

j′

v′ . So M i
v ⊆M

j′

v′ .
From Lemmas 4.3 and 4.4, there exists a step i such that for all v, v′,

(idv′ , Succv′) ∈M i
v. Thus, the condition on line 8 is eventually satisfied for every

process, proving that every execution of the algorithm terminates. It remains to
prove that when v decides a value outv isomorphic to G|Reach(v).
Lemma 4.5 (Correction). For every process v, if V iew(Mv) = Covered(Mv)
then for every w ∈ ReachG(v), idw ∈ Covered(Mv). Consequently, C(Mv) v↓
G.

Proof. By contradiction, let w ∈ ReachG(v) be the closest process to v in
ReachG(v) such that idw /∈ Covered(Mv). Let w′ ∈ ReachG(v) be a prede-
cessor of w belonging to a shortest path from v to w. By the choice of w, idw′ ∈
Covered(Mv). Thus, idw ∈ Succw′ , we get idw ∈ Covered(Mv) = V iew(Mv), a
contradiction.

Now, from Lemmas 4.4 and 4.5 which prove that every process v decides
G|Reach(v), we can give a first theorem on the computability of the Reach
Problem:

Theorem 1. There is an universal algorithm for Reach.

5 Isolation Lemma

In this section, we present an isolation lemma to prove impossibility results
caused by isolated executions in a subset of the network. As it has proved for
anonymous network to be the basis for all impossibility proofs [Ang80,Cha06],
the isolation lemma is presented like a lifting lemma. Initially, a process v knows
only its outgoing neighbourhood. Any other neighbour u of v cannot receive
a message from v before v received a message from u. If H v↓ G and if all
messages sent from processes in V (G)\V (H) to processes in V (H) are arbitrary
delayed (the communication is asynchronous), the processes of H are isolated
from the rest of the network and execute the algorithm as if they were only in
H, without discovering their neighbours outside H before deciding. If such an
execution terminates, isolated processes decide a final value for an execution in
H and not in G.

We introduce a new notation in order to represent an extended labelled graph
with messages in transit. Let H = (H, λH , BH) where (H,λH) is a labelled

10

graph and BH , its queues of messages. The relation v↓ is extended between
such graphs as follow, (H, λH , BH) v↓ (G, λG, BG) if (H,λH) v↓ (G,λG)
and for every (u, v) ∈ E(H), BH(u, v) = BG(u, v). First, we remark that by
isomorphism, a labelling of a graph G induces a labelling for every subgraph H
of G. Such initial labellings are independent of the algorithm used and satisfies
the relation v↓ between H and G.
Remark 5.1 (Initialisation). For every digraphs G and H such that H v↓
G, for every initial labelling λ0

G of G, there is a labelling λ0
H of H, such that

(H,λ0
H , ∅) v↓ (G,λ0

G, ∅).

Next, we prove that any step of an execution on a graph H can be executed
on every graph G satisfying H v↓ G.
Lemma 5.2 (One step of execution). For all H = (H, λH , BH) and G =
(G, λG, BG), if H v↓ G then every transition (λH , in,m) ` (λ′H , send,m′)
executed on H can be executed on G. The graphs H′ = (H ′, λ′H , B′H) and G′ =
(G′, λ′G, B′G) obtained after the transition satisfy H′ v↓ G′.

Proof. We prove this lemma by constructing a similar execution in H and G
which preserves the relation v↓. A step of the execution corresponds to a local
transition of a process v. If a process v sends a message m′ to its neighbours
in H, since for all v ∈ V (H), contactsH(v) = contactsG(v), v can send
the same message to the same nodes in G, and consequently, for all (v, v′) ∈
E(H), BG(v, v′) = BH(v, v′). Since v ends up in the same state in H and in G,
H′ v↓ G′. Suppose now that a message m ∈ BH(v′, v) is received from a process
v′ ∈ V (H) via a port in in H. Since (v′, v) ∈ E(H); BG(v′, v) = BH(v′, v) and
thus v can also receive the message m from v′ in G. Since m is removed from
both queues, BG(v′, v) = BH(v′, v). Note that v ends up in the same state in H
and in G. In particular, if v′ was not known by v, then v can now communicate
with v′ in H and in G. Consequently, (H ′, λ′H , B′H) v↓ (G′, λ′G, B′G).

For any graphs G and H such that H v↓ G, for any algorithm A and any
execution ρH on H, we can apply the previous lemma iteratively to construct
an execution ρG on G such that only the vertices in V (H) are active in ρG and
they behave exactly like in ρH . In such a case, we say that ρH is v↓ −lifted on
G. When considering executions that terminate, we get the following lemma.
Lemma 5.3 (Isolation Lemma). For all G,H such that H v↓ G, for every
execution ρH of any algorithm A on H which terminates, there is an execution
ρG of A on G such that ∀v ∈ V (H), outρH

(v) = outρG
(v).

6 Election Algorithm

In this section, we study the classical election problem, denoted by Elec: one and
only one process has to decide leader and all others should decide follower.

We prove that contrary to the classical model, even if nodes have identities,
it is not possible to solve Elec with a universal algorithm. Therefore, we give a
necessary and sufficient condition that determines which additional knowledge

11

enables to solve Elec. The impossibility proof uses a standard simulation tech-
nique, based on the Isolation Lemma. To show that it is a sufficient condition,
we show how processes can avoid v↓-lifted executions by delaying their decision
when they are provided some additional knowledge satisfying this condition.
A Necessary and Sufficient Condition. If we have isolated executions, we
might get more than one processes elected. So the condition on knowledge below
enables to somehow forbid disjoint isolated executions.
Definition 6.1 (CElec). A family of graphs F satisfies CElec if for every graphs
G,H1,H2 ∈ F such that H1,H2 v↓ G, we have V (H1) ∩ V (H2) 6= ∅.

We first prove that CElec is necessary,
Lemma 6.2. If there is an F-universal algorithm solving Elec then F satisfies
CElec.

Proof. Let F a family of labelled graphs that does not satisfy CElec and A, a
F-universal algorithm solving Elec. There are three graphs H1, H2 and G in
F such that H1,H2 v↓ G and V (H1) ∩ V (H2) = ∅. We build an execution ρG
on G as follows: the Isolation Lemma can be applied for H1 and G, thus ρG can
begin by a v↓ −lifted execution on H1. Since A is F-universal and H1 ∈ F ,
there is one elected process v1. As H1 and H2 are vertex-disjoint and Isolation
Lemma can also be applied for H2 and G, we can extend ρG by taking a second
v↓ −lifted execution on H2. Since A is F-universal and H2 ∈ F , there is one
elected process v2 with v2 6= v1 because V (H1) ∩ V (H2) = ∅. At this step, the
labelling of G is not valid for Elec because there are two elected vertices and
their decisions are final for the execution.

To prove that CElec is a sufficient condition, we propose a F-universal algo-
rithm for any family F satisfying CElec. The algorithm presented below is an
extension of Algorithm 1.
Description of the algorithm. In the algorithm, a process v does not only
broadcast Succv, but it also broadcasts the tuple (idv,Mv, statusv) where statusv ∈
{leader, follower,⊥} is the content of outv. In such a way, a process u can
detect whether v has been elected or not and it can learn what v knows about
the other processes. To do so, each process v has now a ”super” mailbox, de-
noted Vv, containing tuples of the form (id,M, status). When a process v sends
a message to its neighbours, it always sends a message of the form < idv,Vv >
(i.e., it sends its super mailbox instead of its mailbox). This structure gives, to
processes, a view of the local states of the known processes. In order to avoid
some v↓ −lifted executions, we have to delay the decisions of the processes for
a sufficiently long period using an additional knowledge. Before a process writes
in out, it checks that the reconstructed graph is in F ; to do so, we assume that
each process knows the characteristic function χF of the family F (the addi-
tional knowledge). When called on C(M), this function returns true if C(M) ∈ F
and false otherwise. To prevent two processes to be elected at the same time, we
add an additional condition related to the supermailbox of all known processes
at line 9. This condition ensures that two processes that want to decide leader
have to actually know the state of each other. Changes between the previous and

12

Algorithm 2: A F-universal Election Algorithm
Input: χF , Characteristic function of F

1 I:(Initial Procedure) begin
2 SendAll <id,V> ;
3 R:(Receiving a message <idu,Vu> from u) begin
4 if idu /∈ contacts or Vu \ V 6= ∅ then
5 M ←M ∪

⋃
{Mw|∃(idw,Mw,statusw)∈Vu} Mw;

6 V← V ∪ Vu ∪ {(id,M, out)};
7 contacts← contacts ∪ {idu} if idu /∈ contacts ;
8 if out =⊥ ∧χF (C(M)) ∧ V iew(M) = Covered(M) ∧ ∀idw ∈

V iew(M), ∃(idw,M, statusw) ∈ V then
9 if id = min{id′ | id′ ∈ V iew(M)} ∧ @(idw,Mw, leader) ∈ V then

10 out← leader;
11 else
12 out← follower;
13 V← V ∪ {(id,M, out)};
14 if V or contacts have changed then
15 SendAll <id,V> ;

the next algorithm are the content of the messages (line 2), the manipulation of
the new structure (lines 5 and 6) and the condition of termination (lines 8 and
9) as seen above.
Properties of the algorithm. Consider an execution ρG of the algorithm on
G. Note that as in the previous algorithm Mv can only take a finite number of
values and can only increase during the execution of the algorithm. Consequently,
as before, there exists a step i where all processes have the same mailbox M =
{(idv, Succv) | v ∈ V (G)}.

The following lemma is immediate and ensures that for each process v, Vv
can only take a finite number of values.
Lemma 6.3. For every process v, for every step i, for every (idw,M, status) ∈
Viv, there is a step i′ ≤ i such that M i′

w = M and outi′w = status.
Similarly as for mailboxes in the previous algorithm, we can show that for

each step i, Viv ⊆ Vi+1
v and v sends some messages at step i if and only if Viv (

Vi+1
v . Since for every v, the content of Vv is increasing and can only take a finite

number of values, the execution stabilises. An eventually, each process knows
the state of all other processes. The proof is similar to the proof of Lemma 4.4.

Lemma 6.4. For every processes v, v′, for every step i, there is a step i′ > i
such that (idv,M i

v, out
i
v) ∈ Vi

′

v′ .
Consequently, there exists a step where all processes have the same super-

mailbox. Note that in such a step, all processes have the same mailbox M =
{(idv, Succv) | v ∈ V (G)}, and for all v, w ∈ V (G), there exists (idv,M, status) ∈

13

Vw. Note that in this case, the condition on line 8 is satisfied and thus, eventually,
each process decides a value. Therefore, the execution terminates. It remains to
show that in each execution, there is always one and only one elected process.

Lemma 6.5. For every execution, there is at least one elected process.

Proof. Let idmin be the minimum identity present in the network and let v
be the unique process such that idv = idmin. Since every process eventually
decides, there is a step i where the state of v satisfies the condition on line 8.
We consider two cases. Either there exists some (idw,Mv, leader) ∈ Viv and
by Lemma 6.3, w has been elected and the lemma is proved. Or, there is no
(idw,Mv, leader) ∈ Viv and then v writes leader in out(v). In both cases,
there is always at least one elected process.

Lemma 6.6. For every execution ρ, there is at most one elected process.

Proof. Suppose that there are two processes u and v elected at step i and j in
an execution ρ. Wlog, we assume that i ≤ j. Let Hu = C(M i

u) and Hv = C(M j
v).

Since u and v are elected respectively at step i and j, V iew(M i
u) = Covered(M i

u),
Hu ∈ F , V iew(M j

v) = Covered(M j
v) and Hv ∈ F . Consequently, Hu v↓ G and

Hv v↓ G. Two cases are possible when u is elected at step i: either idv ∈
V iew(M i

u), or not.
Case 1: idv ∈ View(Mi

u). In this case, line 9 ensures that idu < idv. Moreover,
lines 8 and 9 and Lemma 6.3 ensure that there is a step h < i such that Mh

v =
M i
u and outhv =⊥. Since idu ∈ V iew(M i

u) = V iew(Mh
v), and since Mv can

only increase during the execution (recall that h < i < j), idu ∈ V iew(M j
v).

Consequently, the condition on line 9 is not satisfied by the state of v at step j,
and v is not elected in this case.
Case 2: idv /∈ View(Mi

u). Since Hu v↓ G and Hv v↓ G and since F satisfies
CElec, there exists w such that idw ∈ V (Hu)∩ V (Hv). By Lemma 6.3 and since
idw ∈ V (Hu), we know that there is a step i′ ≤ i whereM i′

w = M i
u. Similarly, we

know there exists a step j′ ≤ j where M j′

w = M j
v . Note that idv /∈ V iew(M i′

w)
and that idv ∈ V iew(M j′

w). By Lemma 4.3, it implies that i′ < j′ and that
M i
u = M i′

w (M j′

w = M j
v . Therefore idu ∈ V iew(M j

v) and since v is elected
at step j, there is some (idu,M j

v , status) ∈ Vjv. By Lemma 6.3, it implies that
there exists a step i′′ < j such that M i′′

u = M j
v and outi

′′

u = status. Since
idv ∈ V iew(M i′′

u) and idv /∈ V iew(M i
u), Lemma 4.3 implies that i < i′′. Since

outi
′′

u = outi+1
u = leader, (idu,M j

v , leader) ∈ Vjv. Thus, the condition on line
9 is not satisfied by the state of v at step j, and v is not elected in this case.

Consequently, any execution of Algorithm 2 terminates and leads to one
elected process if F satisfies CElec. Together with Lemma 6.2, we get

Theorem 2. There is an F-universal algorithm for Elec if and only if F
satisfies CElec.

14

Applications. As first example, given n ∈ N, consider the family of graphs with
n vertices, denoted by G(n). As every strict subgraph H of a graph G ∈ G(n) has
strictly less than n vertices, H /∈ G(n) and G(n) trivially satisfies CElec. It is also
possible to directly design an Election algorithm by simply waiting until Covered
is of size n. Another, maybe less obvious, example where Elec is possible is the
family of graphs with n sink components, denoted by P(n). This family satisfies
CElec because every two subgraphs H,H ′ of a graph G ∈ P(n) have to share
the n sink components if they also belong to P(n). Thus, H and H ′ can not be
disjoint.

Note that in [CSS04], the authors consider only families that are closed by
v↓. Such families satisfy CElec if and only if their graphs have only one sink. In
this case, we obtain for Elec a ”one sink” condition similar to the one given in
[CSS04].

Families defined by having a bound on the size are also closed by v↓. The
corresponding families contains graphs with two sinks and it is therefore im-
possible to elect knowing a bound. An integer k is a tight bound for the size
of G if |V (G)| ≤ k < 2|V (G)|. Given k ∈ N, the family B(k) of graphs with a
tight bound k admits an Election algorithm because B(k) satisfies CElec. Indeed,
consider G,H,H′ ∈ B(k), k being a tight bound for H, H′, and G implies that
|V (H)| + |V (H ′)| > |V (G)|. So when H v↓ G,H′ v↓ G, we get H ∩H′ 6= ∅.
This majority argument also applies to the family of graphs where a tight bound
is known for the number of sinks, so Elec is also solvable in this case.

One major consequence of Theorem 2 is that Elec cannot be solved on Gid,
and, furthermore, there is no maximum family, i.e. maximum knowledge, for
which Elec is solvable. Given any graph G with subgraphs H1,H2 such that
H1,H2 v↓ G, and V (H1) ∩ V (H2) = ∅, the families {G,H1} and {G,H2}
are incomparable and Elec is solvable on both, whereas this problem has no
solution on their union {G,H1,H2}.

7 Conclusion

We investigated the computability of Election problem in the unknown partici-
pants model introduced in [CSS04]. Our result gives a simple condition on the
partial knowledge that has to be provided to processes in order to solve this
problem. This condition extends and improves the previous results known for
the model of reliable unknown participants.

Before obtaining a general computability result, it is already possible to see
that some other problems can be investigated with the same tools. For example,
the k−Consensus can be solved with a similar algorithm. We do not give a
proof but the condition on knowledge would be to forbid more than k disjoint
v↓ −subgraphs having the same knowledge value as the whole graph.

An interesting open problem is to consider unknown participants in anony-
mous networks. The conditions given in this paper would remain true. But, from
[BV01], it is expected that additional conditions will be necessary to overcome
specific impossibilities related to anonymous networks.

15

References

[ABFG08] E. A. P. Alchieri, A. N. Bessani, J. Fraga, and F. Greve. Byzantine consen-
sus with unknown participants. In OPODIS, page 22–40, 2008.

[Ang80] D. Angluin. Local and global properties in networks of processors. STOC,
pages 82–93, 1980.

[BCG+96] P. Boldi, B. Codenotti, P. Gemmell, S. Shammah, J. Simon, and S. Vigna.
Symmetry breaking in anonymous networks: Characterizations. In Proc. 4th
Israeli Symp. on Theory of Computing and Systems, pages 16–26, 1996.

[BV99] P. Boldi and S. Vigna. Computing anonymously with arbitrary knowledge.
In PODC, pages 181–188, 1999.

[BV01] P. Boldi and S. Vigna. An effective characterization of computability in
anonymous networks. In DISC, 2001.

[CGM08] J. Chalopin, E. Godard, and Y. Métivier. Local terminations and distributed
computability in anonymous networks. In DISC, 2008.

[CGM12] J. Chalopin, E. Godard, and Y. Métivier. Election in partially anonymous
networks with arbitrary knowledge in message passing systems. Distrib.
Comput., 2012.

[Cha06] J. Chalopin. Algorithmique distribuée, calculs locaux et homorphismes de
graphes. PhD thesis, Université Bordeaux 1, 2006.

[CSS04] D. Cavin, Y. Sasson, and A. Schiper. Consensus with unknown participants
or fundamental self-organization. Proc. of 3rd ADHOC-NOW, July 2004.

[GM02] E. Godard and Y. Métivier. A characterization of families of graphs in which
election is possible (ext. abstract). In FOSSACS, 2002.

[GSAS12] F. Greve, P. Sens, L. Arantes, and V. Simon. Eventually strong failure detec-
tor with unknown membership. The Computer Journal, 55(12):1507–1524,
2012.

[GT07] F. Greve and S. Tixeuil. Knowledge connectivity vs. synchrony requirements
for fault-tolerant agreement in unknown networks. In DSN 2007, pages 82–
91, 2007.

[MMW97] Y. Métivier, A. Muscholl, and P. A. Wacrenier. About the local detection
of termination of local computations in graphs. In SIROCCO, 1997.

[RM00] K.H. Rosen and J.G. Michaels. Handbook of Discrete and Combinatorial
Mathematics. 2000.

[Tel00] G. Tel. Introduction to Distributed Algorithms. Cambridge U.P., 2000.
[YK89] M. Yamashita and T. Kameda. Electing a leader when processor identity

numbers are not distinct. In WDAG, volume 392, pages 303–314, 1989.
[YK96a] M. Yamashita and T. Kameda. Computing on anonymous networks. I.

characterizing the solvable cases. IEEE TPDS, 7:69–89, Jan 1996.
[YK96b] M. Yamashita and T. Kameda. Computing on anonymous networks. II.

decision and membership problems. IEEE TPDS, 7:90–96, Jan 1996.

16

