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1 Introduction

The mobile agent paradigm has been developed to solve problems in dynamic and
heterogeneous environment [8]. The agent model of this paper is quite general.
It is based on the concepts of agents, communication links and places. An agent
is an entity which executes an algorithm: it can move from place to place (with
some data and its algorithm) through communication links and it can make
local computations on a place (a place provides tools for local computations:
data, memories and process). Thus a mobile agent system is defined:

– by a network or equivalently by an undirected labelled graph (the vertices
correspond to the places) with a port numbering function,

– by a set of agents, and
– by an initial placement of the agents on the graph.

As a particular case of our model the network and the mobile agents may be
anonymous: identities are available neither for the vertices of the network nor
for the agents. A mobile agent (based) algorithm is defined by a mobile agent
system where each agent is endowed with its proper algorithm.

Classical problems for mobile agents include: election, naming, locating agents,
rendez-vous, stabilisation, termination detection of agents, exploring, topology
recognition. There exist a lot of results for these problems assuming different
properties of the environment [2, 4–6, 10–12].

A message passing system is a set of processes and a communication subsys-
tem. It corresponds to the standard models given in [1, 16]. The communication
model is a point-to-point communication network which is represented as a sim-
ple connected undirected graph where the vertices represent processes and two



vertices are linked by an edge if the corresponding processes have a direct com-
munication link. Processes communicate by message passing, and each process
knows from which channel it receives a message or it sends a message. We con-
sider the asynchronous message passing model: processes cannot access a global
clock and a message sent from a process to a neighbor arrives within some fi-
nite but unpredictable time. A message passing algorithm is a collection of local
algorithms, one for each process. The anonymous case corresponds to the case
where all local algorithms are the same.

In this paper we are interested in the computational power of a mobile agent
system and, more particularly, in the comparison with a message passing system.
It is easy to verify that a message passing system can simulate a mobile agent
system (Section 4); it has been already indicated in [3]. But, given a mobile
agent system, can mobile agents be used to implement arbitrary message passing
algorithms? We give a positive answer in Section 5; and we obtain a theorem
stating the equivalency of the two models (Theorem 10).

Our result establishes a useful bridge between message passing systems and
mobile agent systems. In Section 6, we give an example of consequence of this
result with a translation of known results in message passing computing for the
election problem into the mobile agents setting. In [10], it is proved that a leader
can be elected among k agents on a graph having n vertices if k and n are co-
prime; this result becomes a consequence of the characterisation given in [17] and
of Theorem 10. Theorem 2 and Theorem 3 of [5] become corollaries of results
presented in [13]. The same method can be applied for other classical problems
such as the naming, the topology recognition, the spanning tree construction,
etc.

2 Graphs and Labelled Graphs

We consider finite undirected connected graphs. A graph G = (V (G), E(G)) (or
G = (V, E) for short) is defined by a set V (G) of vertices and a set E(G) of
edges; in this paper graphs are without multiple edges or self-loop. Two vertices
u and v are said to be adjacent or neighbors if {u, v} is an edge of G (thus
u and v are necessarily distinct since no self-loop is admitted) and NG(v) will
stand for the set of neighbors of v; u and v are the endvertices of e. An edge
e is incident to a vertex v if v ∈ e and IG(v) will stand for the set of all the
edges incident to v. A homomorphism between graphs G and H is a mapping
γ : V (G) → V (H) such that if {u, v} ∈ E(G) then {γ(u), γ(v)} ∈ E(H). We say
that γ is an isomorphism if γ is bijective and γ−1 is a homomorphism.

Throughout the rest of this paper we will consider graphs whose vertices
are labelled with labels from a recursive set L. A graph labelled over L will be
denoted by (G, λ), where G is a graph and λ : V (G) → L is the vertex labelling
function. The graph G is called the underlying graph and the mapping λ is a
labelling of G. Labelled graphs will be designated by bold letters like G, H, . . .

If G is a labelled graph, then G denotes the underlying graph.
A mapping γ : V (G) → V (G′) is a homomorphism from (G, λ) to (G′, λ′) if γ

is a graph homomorphism from G to G′ which preserves the labelling, i.e., such
that λ′(γ(v)) = λ(v) holds for every v ∈ V (G).
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3 The Formal Models

3.1 The Message Passing Model

Definitions given in this subsection follow [16] (p. 45-47) or [1] (p. 10-12).

Message Passing System. A message passing system (P, C) consists of a
collection P of processes and a communication subsystem C. It is described by
a simple connected undirected graph G = (V, E), where the vertices represent
the processes and the edges represent the bidirectional channels. The system
is asynchronous: no global time is available; messages can arrive at arbitrary
times and processes can take steps at arbitrary speeds. Processes communicate
by asynchronous message passing and each process knows from which channel it
receives a message or it sends a message: an edge between two processes p1 and
p2 (or vertices v1 and v2) represents a channel connecting a port i of p1 (or v1) to
a port j of p2 (or v2). Let δ be the port numbering function, we assume that for
each vertex u (or process p) and each adjacent vertex v (or process q), δu(v) (or
δp(q)) is a unique integer belonging to [1, deg(u)]. Finally, the communication
subsystem is described by C = (V, E, δ). Each process has an initial state defined
by a labelling function λ. Thus the message passing system is defined by (P, C, λ)
or equivalently by (V, E, δ, λ).

Remark 1. The labelling λ of processes may encode anonymous network (all the
vertices have the same label) or any initial process knowledge. Examples of such
knowledge include: (a bound on) the number of processes, (a bound on) the
diameter of the communication subsystem, the topology of the communication
subsystem, identities or partial identities of processes, distinguished processes,
sense of direction.

Message Passing Algorithm. To each process is associated a transition sys-
tem which can interact with the communication subsystem. The events which
are associated with a process are internal events, send events and receive events.
In a send (resp. receive) event a message is produced (resp. consumed). This
definition contains the particular case where every processor executes the same
algorithm.

Remark 2. In general, names are not available to the processes themselves. Nev-
ertheless, for ease of exposition, a message m in transit is denoted by (p, m, p′)
where p is the sending process and p′ is the receiving process.

Let M be the set of possible messages. Let p be a process. The local algorithm
of the process p, denoted by Dp, is defined by:

– the (recursive) set Q of possible states of p,

– the subset I of Q of initial states,
– the initial state of p equals to λ(p),
– a relation ⊢p of events (internal events, send events or receive events).
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Let p be a process. Let M be the multiset of messages in transit (initially M

is empty). The state associated to p is denoted by state(p). The transition
associated to the process p is denoted by:

(c, in, m) ⊢p (d, out, m′),

(where c and d are states, in and out are integers, and m and m′ are messages)
means that:

– if in = out = 0 then m = m′ = ⊥ (m and m′ are undefined): it is an internal
event, the new state of the process p is d (it was c before);

– if in 6= 0 then out = 0 and m′ = ⊥ (m′ is undefined): it is a receive event,
the state of the process p was c, p has received the message m through the
port in and its new state is d; an occurence of m (of the form (p′, m, p) where
δp(p

′) = in) is removed from M ;
– if out 6= 0 then in = 0 and m = ⊥ (m is undefined): it is a send event,

initially the state of the process p is equal to c; after the transition it is
equal to d and the message m′ is sent via the port out; an occurence of m′

(of the form (p, m′, p′) where δp(p
′) = out) is added to M.

A message passing algorithm D for the message passing system (P, C, λ) is
a collection of local algorithms Dp, one for each process p ∈ P. It is denoted by
D = (Dp)p∈P . An event of the message passing algorithm is defined by an event
on a process.

Execution of a Message Passing Algorithm. An execution E of the message
passing algorithm is defined by a sequence (state0, M0), (state1, M1), . . . ,
(statei, Mi), . . . such that:

– for each i, Mi is the multiset of messages in transit,
– M0 = ∅,
– for each i and for each process p, statei(p) denotes the state of the process

p,

– for each process p, state0(p) = λ(p) ∈ I,

– for each i, there exists a unique process p such that:
• if p′ 6= p then statei+1(p

′) = statei(p
′),

• statei+1(p) and Mi+1 are obtained from statei(p) and Mi by an event
on the process p.

By definition, (statei, Mi) is a configuration. The execution E of the message
passing algorithm is defined by:

E = (statei, Mi)i≥0.

A terminal configuration is a configuration for which no more event is appli-
cable. We can note that in a terminal configuration the multiset M of messages
in transit is empty. In this case the length of the execution is the length of the
sequence.
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Termination Detection. Definitions given in this section are in [16] (Chapter
8). A state q of a process p is active if an internal or send event of p is applicable
in q, and passive otherwise. In a passive state q only receipts are applicable, or
no event is applicable at all, in which case q is a terminal state of p. Process p

is said to be active if it is in an active state, and process p is said to be passive
otherwise.

As it is explained in [16] (p. 270), some assumptions are made in order to
simplify the description (any process can be easily modified to satisfy these
assumptions) : an active process becomes passive only in an internal event, a
process always becomes active when a message is received, the internal events
in which p becomes passive are the only internal events of p (internal events in
which p moves from one active state to another active state are ignored).

A message passing algorithm has terminated when all processes are passive
and no message is in transit. In this case, termination is said to be implicit if
the processes are not aware that the algorithm has terminated.

Termination is said to be explicit if at least one process detects the termi-
nation of the message passing algorithm in the sense that all processes have
computed their final values. It then can call an algorithm which floods a termi-
nation message to all processes. Only after explicit termination can the result
of a computation be regarded as final and variables used in the computation
discarded.

3.2 The Mobile Agent Model

Mobile Agent System. A mobile agent system consists of :

– a collection P of execution places (or places for short),
– a navigation subsystem S,

– a collection A of mobile agents,
– an injection π0 : A −→ P describing the initial placement of the agents,
– an initial labelling λ of the places and the agents.

Remark 3. The labelling λ of the places and of the agents may encode anony-
mous places (all the places have the same label), anonymous agents (all the
agents have the same label) or any initial agent knowledge. Examples of such
knowledge include: (a bound on) the number of places, (a bound on) the number
of agents, (a bound on) the diameter of the navigation subsystem, the topology
of the navigation subsystem, the topology of the placement of the agents, identi-
ties or partial identities of places or agents, distinguished places or agents, sense
of direction.

The navigation subsystem is described by a simple undirected connected
graph G = (V, E), where the vertices V represent execution places and the
edges represent bidirectionnal navigation channels operating between them. In
the sequel, we identify the places and the corresponding vertices, and we identify
the edges and the corresponding channels.
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Each agent which migrates from a place to another place knows through
which channel it migrates, that is, for each place port numbers are assigned to
its ports : let u be a vertex, let δu be the port numbering function which assigns
to each adjacent vertex v of u a unique integer δu(v) belonging to [1, deg(u)].
Thus the navigation subsystem is defined by S = (G, δ).

The system is asynchronous: no global clock is accessible; a migration is asyn-
chronous: an agent which migrates arrives within some finite but unpredictable
time on a place.

Mobile Agent Algorithm. Given a mobile agent system, we define a mobile
agent algorithm. To each mobile agent is associated a transition system that can
interact with the execution places and the navigation subsystem.

Let QP be a (recursive) set of states associated to the execution places, and
let QA be a (recursive) set of states associated to the mobile agents. The initial
state of each mobile agent a is λ(a) and the initial state of each execution place
p is λ(p).

Let p be a place. We denote by state(p) the state associated to p. Let a be
an agent. We denote by state(a) the state associated to a.

The transition associated to the mobile agent a in the state s on the place
p in the state q, transforms s into s′, q into q′ and either a does not move or it
migrates on an adjacent place through the port out. We denote the transition
by :

(s, q, in) ⊢a
p (s′, q′, out),

it means that the mobile agent a has migrated on the place p through the port
in or after the transition it leaves the place p through the port out, with the
convention that if the agent was already on the place and it does not move
after the transition then in = 0 and out = 0; furthermore in and out cannot be
simultaneously different from 0.

Remark 4. In general, names are not available to the places themselves. Never-
theless, for ease of exposition, an agent a in transit is denoted by (p, a, p′) where
p is the place of departure and p′ is the place of arrival.

A configuration of the mobile agent system consists of the state of each place, the
state of each agent, the collection M of agents in transit (initially M is empty)
and a mapping π describing the placement of the agents which are not in a
channel (several agents can be on the same place).

An event in the mobile agent system is defined by a transition associated to
an agent a on a place p, it has the form :

(s, q, in) ⊢a
p (s′, q′, out),

the state of each agent different from a is not affected, the state of each place
different from p is not affected, the new state of a is s′ (it was s before the
event), the new state of p is q′ (it was q before the event), and:

– if in = 0 and out = 0 then π and M are not affected by the event,
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– if in = 0 and out 6= 0 then the set of agents in transit after the event is
M ∪ {(p,a,p′)} (where p′ is the adjacent place of p corresponding to the
port out,) and π is no more defined for a and unchanged for the other agents,

– if in 6= 0 and out = 0 then the set of agents in transit after the event is
M \ {(p′,a,p)} (where p′ is the adjacent place of p corresponding to the
port in), π(a) = p and π is unchanged for the other agents.

Execution. An execution of the mobile agent algorithm is defined by a sequence
(state0, M0, π0), (state1, M1, π1), ..., (statei, Mi, πi), ... such that :

– M0 = ∅,
– for each agent a, state0(a) = λ(a) is an initial state,
– for each place p, state0(p) = λ(p) is an initial state,
– π0 is the initial placement of agents,
– for each i there exists a unique place p and a unique agent a such that:

• if p′ 6= p then statei+1(p
′) = statei(p

′),
• if a′ 6= a then statei+1(a

′) = statei(a
′),

• (statei+1(a), statei+1(p), Mi+1, πi+1) is obtained from
(statei(a), statei(p), Mi, πi) by an event of the form :

(s, q, in) ⊢a
p (s′, q′, out).

A configuration is defined by (statei, Mi, πi). A terminal configuration is a
configuration for which no more event can appear; we can note that in this
case the collection of agents in transit is empty. By definition, the length of the
sequence is the length of the execution.

A place which is the initial place of an agent is called an homebase. The
initial placement of the agents can be encoded in the state of the place (it can
be the first action of each mobile agent) thus we assume that the state of a place
enables to know whether it is a homebase or not. Nevertheless, in general, an
agent cannot know whether a homebase is its own homebase.

Finally, the mobile agent system is defined by:

(A, P, S, π0, λ),

the mobile agent algorithm is defined by:

A = (⊢a
p)a∈A,p∈P,

and an execution E is defined by :

E = (statei, Mi, πi)i≥0.

Termination Detection. An agent a in state s on the place p in state q is
said passive if no transition is associated to this configuration. In a terminal
configuration all the agents are passive. Termination is said implicit if no agent
is aware that the mobile agent algorithm has terminated. Termination is said
explicit if at least one agent detects the termination of the mobile agent algorithm
in the sense that all places have their final values. If at least one agent detects the
termination then a termination annoucement algorithm using the agents which
have detected termination can be activated.
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3.3 Equivalent Executions

We consider mobile agent algorithms and message passing algorithms such that
the graph corresponding to the navigation subsystem and the graph correspond-
ing to the communication subsystem are equal.

Various kinds of equivalences between mobile agent algorithms and message
passing algorithms can be defined. In this work, we consider algorithms which
always terminate.

A mobile agent algorithm and a message passing algorithm are equivalent for
the terminal configurations if the set of graphs corresponding to the navigation
subsystem labelled by the final states of places and the set of graphs correspond-
ing to the communication subsystem labelled by the final states of processes are
equal and if the termination of the two algorithms is implicit or the termination
of the two algorithms is explicit.

4 Simulating a Mobile Agent Algorithm through a

Message Passing Algorithm

The purpose of this section is to verify that, given a mobile agent algorithm, it is
possible to implement the same algorithm through a message passing algorithm.
To reach this goal, we intend to prove that all the agents basic computation
steps can be effectively simulated in the asynchronous message passing system.
The main idea of this proof appears in [3].

Let (A, P, S, π0, λ) be a mobile agent system and let A = (⊢a
p)a∈A,p∈P be

a mobile agent algorithm implemented on this system. Let S = (V, E, δ) be
the corresponding navigation subsystem. We assume that the system contains
k agents. We define an additional labelling χπ0

of the vertices of G such that
χπ0

(v) = 1 if there exists an agent a such that π0(a) = v, and χπ0
(v) = 0

otherwise. Starting from the mobile agent system we build up a message pass-
ing system (P, C, λ′) = (V, E, δ, λ′). On each vertex v which corresponds to an
execution place p we install a process p. Let ♯ be a new label. The labelling
function λ′ encodes on each process p the label of the corresponding place p,
whether the place is a homebase and, in the case of a homebase, the label of
the corresponding mobile agent a, i.e., if v corresponds to the homebase of a
λ′(v) = (λ(v), 1, λ(a)) and if not λ′(v) = (λ(v), 0, ♯)).

Now we build a message passing algorithm D such that each execution E of
A can be simulated by an execution E ′ of D. A state of a process is defined by: -
the state of the corresponding place, - the presence of a mobile agent is encoded
by a token and the state of the corresponding mobile agent is encoded by the
value of the token. Finally, the set of possible states of the processes is the set
of possible states defined by the places, the presence of the token and if there is
a token by the state of the corresponding agent.

The presence of an agent a at a given vertex u is represented by the token
t(a) located at u. Each token has a homebase that corresponds to the initial
location of the corresponding mobile agent. To each token is associated a state:
the current state of the token t(a) is equal to the state of the agent a.
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The translation of the event:

(s, q, in) ⊢a
p (s′, q′, out)

of the mobile agent algorithm into an event of the message passing algorithm is
done according to the following rules.

The state of each token different from the token which is associated to a is
not affected, the state of each process different from p is not affected, the new
state of the token associated to a, i.e., t(a), is s′ (it was s before the event), the
new state of p is q′ (it was q before the event), and

– if in = 0 and out = 0 then the token t(a) does not move,
– if in = 0 and out 6= 0 then the token t(a) is sent via the port out,
– if in 6= 0 and out = 0 then the token t(a) is received by the process p via

the port in.

Let Dp be the algorithm induced by this construction on the process p. Let D =
(Dp)p∈P . By an induction on the length of the executions, we prove that if the
mobile agent algorithm has the termination property then the message passing
algorithm defined above has also the termination property. The message passing
algorithm D terminates explicitly if and only if A terminates explicitly. A graph
corresponding to the navigation subsystem labelled by the final states of places
is obtained with A if and only if it can be obtained as a graph corresponding to
the communication subsystem labelled by the final states of processes with D.

Finally:

Proposition 5. Let (A, P, S, π0, λ) be a mobile agent system.
Let A = (⊢a

p)a∈A,p∈P be a mobile agent algorithm implemented on this system.
Let (P, C, λ′) be the message passing system built above. Let D = (Dp)p∈P be the
message passing algorithm defined above. Then the executions of D are equivalent
to the executions of A.

5 Simulating a Message Passing Algorithm through a

Mobile Agent Algorithm

As it is mentionned by Tel ([16] p. 46), the transition systems serve as a theo-
retical model and algorithms are not necessarily described by an enumeration of
their states and events but by means of variables and a convenient pseudocode
(see [16], Appendix A).

In this section we turn our attention to the presentation of a procedure that,
given a message passing algorithm D over the message passing system (V, E, δ, λ)
and a number k ≥ 1 , generates an equivalent mobile agent algorithm A with k

agents over a mobile agent system.
Our procedure works as follows. The navigation subsystem corresponds to

(V, E, δ). The state of the place p which corresponds to the process p and (which
is identified to the vertex v) is defined by the state of the process p (with the
same initialisation) and by the values of the variables defined below. The states
and the algorithms associated to the mobile agents are defined in the sequel.
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Procedure 1

Step 1: On wake-up, an agent a constructs a tree Ta using a partial traversal
of the graph. This leads to a spanning forest of k trees where each tree is
constructed by exactly one agent.

Step 2: The agent a executes the algorithm D on the vertices of Ta. This exe-
cution is performed in rounds, where, in each round, Ta is traversed and, if
possible, d (d ≥ 1) computation steps of D are executed at each vertex of Ta.
Thus, a is responsible for the computation steps performed on the vertices
that belong to its constructed tree.

Due to the fact that the vertices and the agents are possibly anonymous and
because of a lack of global orientation in the network, it may be difficult for an
agent to find its way through the graph. To overcome this problem, the agents
have to make use of the local edge labelling informations in order to keep track
of their way. Therefore, we must keep in mind that each edge e = {u, v} has two
labels δu(v) and δv(u) that respectively correspond to the labels of e at u and
v. Whenever an agent traverses the graph, it stores in its memory the ordered
sequence of the labels of the traversed edges. In the rest of this section ePath
(exploration path) will refer to this sequence. When the edge e is traversed by
an agent a from u to v, then the label δv(u) is appended to the path associated
to the agent a. This enables a to return back to the previously visited vertex
(i.e., u) whenever it wants to. When it does so, the label δv(u) is deleted from
ePath. Thus, at any time during the computation, ePath contains the sequence
of the labels of the edges that a has to traverse (in reverse order) to return to
its homebase from the current vertex.
The Tree Computation by an Agent Each agent a computes its tree Ta

by executing the following. Starting from its homebase, a performs a partial
traversal of the graph. During this traversal, it marks all the unmarked vertices
that are visited for the first time. At each vertex w marked by a, a arbitrarily
chooses an unexplored link incident to w and traverses it. This technique has
been employed in [10]. Whenever a traverses an edge e to reach an unmarked
vertex v, it marks v as visited and marks e as a T edge. On the other hand, when
it reaches a vertex u that is already visited (the vertex u is already marked),
the edge leading to u is marked as an NT edge and the agent immediately
backtracks to the previous vertex (marked by it) and tries the other unexplored
edges incident to that vertex. When there is no more unexplored edges, the agent
backtracks to the previous visited vertex (by taking the last link in the ePath

sequence) and then tries to explore any unexplored link at that vertex. Finally,
when the agent has returned to its homebase and there is no more unexplored
link at the current vertex, it stops the tree computation.

Remark 6. A mark on an edge can be done with marks on the corresponding
ports on the endvertices of the edge.

The tree computation procedure executed by each agent is given in Algorithm
1.
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Mark the homebase;
Set ePath to empty;

3: while there is an unexplored edge e = (u, v) at the current vertex u, do

traverse e to reach vertex v;
if v is already marked or v contains an agent a1, then

6: return back to u and mark the link e with the label NT ;
else

mark the link e as T and mark v as explored;
9: end if

end while

if there are no more unexplored links at the current vertex, then

12: if ePath is not empty, then

remove the last link from ePath, traverse that link and go to line 3;
else

15: Stop the tree computation;
end if

end if

Algorithm 1: The tree construction by a mobile agent

Fact 1 Every vertex in the graph is marked by exactly one agent. If two vertices
u1 and u2 are marked by the same agent then there exists exactly one simple path
of T edges joining them. If two vertices u1 and u2 are marked by two different
agents, then each path joining them contains at least one NT edge. There is no
cycle consisting of only T edges.

Encoding Message Passing Actions Among the computation steps inherent
to the message passing system, the operations send a message via the port j
and receive a message from the port j are surely the most important. To encode
these operations, we require that at each place there is a variable called in-buf,
where received messages are stored. In this framework, the first part of a message
always contains the port from which it was received.

Send message m via port j. Let e = {u, v} and let a be an agent located at
u with δu(v) = j. The execution of the operation Send message m via port j
by the agent a consists in traversing the edge e, writing the composed message
〈δv(u), m〉 in the in-buf of v and backtracking the edge e.

Receive message m from port j. Let e = {u, v} and let a be an agent located at
u with δu(v) = j. The execution of the operation Receive message m from port
j by the agent a consists in looking for the first message arrived from port j in
the in-buf of u (if the initial algorithm needs the FIFO property of channels,
i.e., it requires that messages are received in the same order as they have been
sent; if it is not the case then we take any message in in-buf ). Once this message
is found, it is deleted from the in-buf and stored in a temporary variable for
purpose of computation.
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Internal events. It suffices to apply the transformation corresponding to the
transformation of the state of the process to the state of the place.

Remark 7. The execution of the send and receive operations allows an agent a
to write informations in the in-buf of vertices that do not necessary belong to Ta.
Moreover, the simulation executed by Procedure 1 can be viewed as a distributed
computation in a network whose processes are decomposed in clusters, and where
processes, of the same cluster, execute their computation steps in turn.

Remark 8. Suppose that at each round of Step 2 of Procedure 1, we ask that
each time a computation step can be performed on a vertex belonging to the tree
of an agent, it simulates it within a finite number of rounds. Then any global
state of the message passing system obtained by the message passing algorithm
can be obtained by the mobile agents simulation.

Transforming a Terminating Message Passing Algorithm into a Mobile
Agent Algorithm that Terminates We are now interested in showing that
if D is a terminating algorithm, then the mobile agent algorithm A has also
the termination property. For this reason, we have adapted the behavior of each
agent to this new goal. In fact, we add on each place two variables fatherLink and
fState. The fatherLink of a vertex u, contains the port number through which
an agent a, located at u, can reach the father of u in the tree that contains
u. Let u be the homebase of the agent a, the fState of u indicates to a that
it has to perform one more computation round on the tree Ta. The fState is
either the token Finished or the token NotFinished. Initially the fatherLink of
each homebase contains 0 and the fState of each homebase is set to NotFinished.
The fatherLink of the other vertices is 0 and the fState of the other vertices is
Finished. All these changes lead to the following adapted version of Procedure
1.

Procedure 2

Step 1: On wake-up, each agent a constructs a tree Ta using a partial traversal
of the graph. This leads to a spanning forest of k trees where each tree is con-
structed by exactly one agent. During this construction, the fatherLinks of all
the vertices, other than the homebase, that were marked by a are actualized.

Step 2: The agent a executes the events of D on the vertices of Ta. This execu-
tion is performed in rounds. The agent a is allowed to execute round r if and
only if at the beginning of the round r the fState of its homebase has the value
NotFinished and it has simulated all the possible steps in the former round
otherwise it falls asleep. In each round, a sets the fState of its homebase to
Finished, afterward Ta is traversed and, if possible, d (d ≥ 1) computation
steps of D are executed at each vertex of Ta. If an agent mimics the fact of
sending a message to a vertex u, the agent takes advantage of the fatherLink
to find the homebase w of the agent that has constructed the tree containing
u. Once it arrives at w, it sets the fState of w to NotFinished (if there is a
sleeping agent, it wakes it up) and goes back to u.
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One has to take notice of the fact that if the algorithm D terminates, then there
exists a time t1 such that no more computation step is performed after the time
t1 in D. Let St1

D be the state of the network at time t1. Due to Lemma 9, there
also exists a time t2, during the execution of A, such that St1

D = St2
A . It is then

quite simple to see that there exists a time t3 ≥ t2 such that at time t3 the
fState of any homebase is empty. Thus Procedure 2 and A stop. Furthermore,
the algorithm D terminates explicitly if and only the mobile agent algorithm A
constructed as defined by the Procedure 2 terminates explicitly. Finally:

Lemma 9. The mobile agent algorithm A, constructed as defined by Procedure
2, is equivalent to the algorithm D.

¿From these two kinds of equivalences, we can give our main theorem, stating
the equivalency of the two models considered in this paper.

Theorem 10. There exists a mobile agent algorithm A that solves a problem
P on a mobile agent system (G, δ, λ) with an initial placement π0 if and only if
there exists a message passing algorithm D that solves the problem P on (G, δ, λ′)
(λ′ is defined in Section 4).

6 Applications

In this section, we will use our main theorem to give a characterisation of the mo-
bile agent systems where we can solve two equivalent problems that are election
and rendez-vous. The same method can be applied for other classical problems
such as the topology recognition, the naming, the spanning tree construction,
etc.
Election and Rendez-vous The election problem is one of the paradigms of
the theory of distributed computing. It was first posed by LeLann [14]. A mes-
sage algorithm solves the election problem if it always terminates and in the
final configuration exactly one process is marked as elected and all the other
processes are non-elected. Moreover, it is supposed that once a process becomes
elected or non-elected then it remains in such a state until the end of the al-
gorithm. Yamashita and Kameda [17] characterise the graphs for which there
exists an election algorithm in the message passing model (see also [7, 9]). In
the mobile agents setting, the aim of a mobile agent election algorithm is to
elect one agent. The elected agent enters a final state leader, whereas all other
agents enter a final state follower. Another important problem in this setting is
the rendez-vous problem. The aim of a rendez-vous algorithm is to arrive in a
configuration where all the mobile agents gather in a same vertex of the graph.
Another interpretation of a rendez-vous algorithm A is that the aim of A is to
elect a vertex of the network. These two problems are equivalent, since once an
agent has been elected, all the agents can gather in the homebase of the elected
agent. Reversely, once all the agents gather in some node, the first agent on
this node becomes the leader, whereas all the others become followers. Agent
election and rendez-vous have been studied in [5, 3, 10]. Consequently, from our

13



main theorem, there exists an algorithm that solves the rendez-vous and the
mobile agent election in a mobile agent system (A, P, S, π0, λ) with S = (V, E, δ)
if and only if there exists an election algorithm in the message passing system
(V, E, δ, λ′) (λ′ is defined in Section 4).

From Message Passing Computations to Mobile Agent Computations
The characterization of Yamashita and Kameda given in [17] is based on the
notion of view. Given a labelled graph G = (V, E, δ, λ) and an integer d, the
d-view Td

G(v0) of a node v0 ∈ V (G) is a tree of height d that can be defined
recursively as follows.

– T0
G(v0) is a single-vertex graph whose node is denoted x0 and λ′(x0) = λ(v0),

– To define Td+1

G (v0), we take a copy of Td
G(vi) for each neighbor vi of v0 in G.

The root of the new tree is a vertex x0 labelled by λ(v0) and there is an edge
between x0 and the root xi of each tree Td

G(vi), such that δx0
(xi) = δv0

(vi)
and δxi

(x0) = δvi
(v0).

The view TG(v0) of a node v0 is an infinite rooted labelled tree that can
be defined recursively in the same way. The root of the tree is a vertex x0

that corresponds to v0 and is labelled by λ(v0). For each neighbor vi of v0 in
G, there is an edge between x0 and the root xi of the tree TG(vi), such that
δx0

(xi) = δv0
(vi) and δxi

(x0) = δvi
(v0). The view of a vertex v in a graph G can

also be obtained by considering all labelled walks in G starting from v. Clearly,
the d-view of a vertex v is its view truncated at distance d. In [17], the following
theorem is given:

Theorem 11 ([17]). There exists an election algorithm over a graph (G, δ, λ)
if and only if ∀v, v′ ∈ V (G) (v 6= v′), the labelled trees TG(v) and TG(v′) are
not isomorphic.

Norris shows in [15] that TG(v) and TG(v′) are isomorphic if and only if
Tn

G(v) and Tn
G(v′) are isomorphic, where n = |V (G)|. Each vertex can compute

its 2n-view, and then it will know all the n-views of the other vertices. Once each
vertex knows the views of all the other nodes, the vertex with the weaker view
is elected. ¿From our main result, we can therefore give the following corollary
for the mobile agent election problem. Let λ′ the labelling function defined at
the beginning of Section 4.

Corollary 12. There exists an agent election algorithm or a rendez-vous algo-
rithm in a mobile agent system (A, P, S, π0, λ) with S = (V, E, δ) if and only
if for all vertices v, v′ ∈ V (G), the labelled trees Tn

G′(v) and Tn
G′(v′) are not

isomorphic, where G′ = (G, δ, λ′) and n = |V (G)|.

In the same way, using the results of Flocchini et al. [13], we can obtain
similar characterizations for these problems in the mobile agent system where
there is a sense of direction, and the results of [5] become corollaries of these
characterizations.
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