
Local Terminations and Distributed

Computability in Anonymous Networks ⋆

Jérémie Chalopin1, Emmanuel Godard1, and Yves Métivier2

1 Laboratoire d’Informatique Fondamentale de Marseille
CNRS & Aix-Marseille Université
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Abstract. We investigate the computability of distributed tasks in re-
liable anonymous networks with arbitrary knowledge. More precisely,
we consider tasks computable with local termination, i.e., a node knows
when to stop to participate in a distributed algorithm, even though the
algorithm is not necessarily terminated elsewhere. We also study weak

local termination, that is when a node knows its final value but con-
tinues to execute the distributed algorithm, usually in order to provide
information to other nodes.
We give the first characterization of distributed tasks that can be com-
puted with weak local termination and we present a new characterization
of tasks computed with local termination. For both terminations, we also
characterize tasks computable by polynomial algorithms.

1 Introduction

We investigate the computability of distributed tasks in reliable anonymous net-
works with arbitrary knowledge. Impossibility results in anonymous networks
have been investigated for a long time [Ang80]. Among the notable results are
the ones of Boldi and Vigna [BV99,BV01], following works of Angluin [Ang80]
and of Yamashita and Kameda [YK96a,YK96b]. In [BV99], a characterization
of what is computable with arbitrary knowledge is presented. In a following pa-
per [BV01], another characterization is presented but the processes have to know
a bound on the number of nodes in the network. To quote the introduction of
[BV99], “in a sense the whole issue becomes trivial, as one of the main problems
– termination – is factored out a priori”. That’s why we focus in this paper not
only on the way to solve a distributed task, but also on what is exactly at stake
when one talks about termination in a distributed context.

About Terminations of Distributed Algorithms. Contrary to sequential
algorithms, what is the termination of a distributed algorithm is not so intuitively
obvious. If we take a global perspective, termination occurs when there is not
anything left to do in the network: no message is in transit and no process
can modify its state. But if we are interested in the local point of view of a
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node executing a distributed algorithm, it is generally not obvious to detect
when it can stop waiting for incoming messages. And as usual in the local-global
relationship, this is not always possible, or it involves more computation.

Moreover, if we look carefully at what the distributed algorithm is aimed at,
we have to begin to distinguish between the termination of the task we want
to achieve (the associated computed values) and the termination of our tool,
the distributed algorithm. Indeed, a node does not necessarily need to detect
that the algorithm has globally terminated, but it is interesting if it can detect
it has computed its final value (local termination). For example, in the case of
composition of algorithms, or for local garbage collecting purpose, there is, a
priori, no special need to wait that everyone in the network has computed its
final value. One can define a hierarchy of termination for distributed tasks:

– implicit termination: the algorithm is globally terminated but no node is, or
can be aware of this termination;

– weak local termination : every node knows when it has its final value, but
does not immediately halt in order to transmit information needed by some
other nodes;

– local termination: every node knows when it has its final value and stops
participating in the algorithm;

– global termination detection: at least one node knows when every other node
has computed its final value.

Related Works. In the seminal work of Angluin [Ang80], the first impossibility
results for distributed computability in anonymous networks were established.
Using the notion of coverings we also use in this paper, she prove that it is
impossible to elect a leader in a wide class of “symmetric” networks. She also
shows that it is impossible to have a universal termination detection algorithm
for any class of graphs that strictly contains the family of all trees.

Distributed computability on asynchronous anonymous rings have been first
investigated by Attiya, Snir and Warmuth [ASW88]. They show that any func-
tion can be computed with a quadratic number of messages. Some results have
been presented when processes initially have ids (or inputs) but they are not
assumed to be unique. In this setting, Flocchini et al. [FKK+04] consider Elec-
tion and Multiset Sorting. Mavronicolas, Michael and Spirakis [MMS06] present
efficient algorithms for computing functions on some special classes of rings. In
all these works, it is assumed that processes initially know the size of the ring.
In [DP04], Dobrev and Pelc consider Leader Election on a ring assuming the
processes initially know a lower and an upper bound on its size.

Yamashita and Kameda have investigated computability on anonymous ar-
bitrary graphs in [YK96a]. They assume either that the topology of the network
or a bound on the size is initially known by the processes. They use the notion of
views to characterize computable functions. In [BV02b], Boldi and Vigna char-
acterize what can be computed in a self-stabilizing way in a synchronous setting.
This result enables them to characterize what can be computed in anonymous
networks with an implicit termination. This characterization is based on fibra-
tions and coverings, that are some tools we use in this paper. In [BV01], Boldi



and Vigna characterize what can be computed on an anonymous networks with
local termination provided the processes initially know a bound on the size of
the network. This characterization is the same as for implicit termination.

In [BV99], Boldi and Vigna consider tasks computable with local termination
with arbitrary knowledge. Their characterization is based on partial views and is
really different from the one given in [BV01]. As explained by Boldi and Vigna in
[BV99], in all these works (except [BV99]), the processes initially know at least
a bound on the size of the network. In this case, all kinds of terminations are
equivalent: what can be computed with implicit termination can be computed
with global termination detection. In the literature, one can found different al-
gorithms to detect global termination provided that there exists a leader [DS80],
that processes have unique ids [Mat87], or that processes know a bound on the
diameter of the network [SSP85]. A characterization of tasks computable with
global termination detection is presented in [CGMT07].

Our Results. In this regard where termination appears as a natural and key
parameter for unification of distributed computability results – the link made
by Boldi and Vigna in [BV02b] between computability with implicit termination
on anonymous network and self-stabilization is very enlightening –, we present
here two characterizations of computability with local and weak local termina-
tions on asynchronous message passing networks where there is no failure in the
communication system. By considering arbitrary families of labelled graphs, one
can model arbitrary initial knowledge and arbitrary level of anonymity (from
completely anonymous to unique ids).

We characterize the tasks that are computable with weak local termination
(Theorem 5.2). Such tasks are interesting, because weak local termination is a
good notion to compose distributed algorithms. Indeed, it is not necessary to en-
sure that all processes have terminated executing the first algorithm before start-
ing the second one. We show that the following intuitive idea is necessary and
sufficient for computability with weak local termination: if the k-neighbourhoods
of two processes v, w cannot be distinguished locally, then if v computes its final
value in k steps, w computes the same final value in k steps.

Then, we present a new characterization of the tasks that are computable
with local termination (Theorem 8.3). Our characterization is built upon the
one for weak local termination. When we deal with local termination, one has
also to take into account that the subgraph induced by the processes that have
not terminated may become disconnected during the execution. In some cases,
it is impossible to avoid such a situation to occur (see Section 3 for examples).

With the results from [BV02b,CGMT07], we now get characterizations of
computability for each kind of termination we discussed. What is interesting is
that all of them can be expressed using the same combinatorial tools.

Moreover, the complexity of our universal algorithms is better than the view-
based algorithms of Boldi and Vigna and of Yamashita and Kameda that necessi-
tate exchanges of messages of exponential size. It enables us to characterize tasks
that are computable with (weak) local termination by polynomial algorithms,
i.e., algorithms where for each execution, the number of rounds, the number and
the size of the messages are polynomial in the size of the network.



2 Definitions

The Model. Our model corresponds to the usual asynchronous message passing
model [Tel00,AW04]. A network is represented by a simple connected graph
G where vertices correspond to processes and edges to direct communication
links. The state of each process is represented by a label λ(v) associated to
the corresponding vertex v ∈ V (G); we denote by G = (G, λ) such a labelled
graph. We assume that each process can distinguish the different edges that are
incident to it, i.e., for each u ∈ V (G) there exists a bijection δu between the
neighbours of u in G and [1, degG(u)] (thus, u knows degG(u)). We denote by δ

the set of functions {δu | u ∈ V (G)}. The numbers associated by each vertex to
its neigbours are called port-numbers and δ is called a port-numbering of G. A
network is a labelled graph G with a port-numbering δ and is denoted by (G, δ).

Each processor v in the network represents an entity that is capable of per-
forming computation steps, sending messages via some port and receiving any
message via some port that was sent by the corresponding neighbour. We con-
sider asynchronous systems, i.e., each of the steps of execution may take an
unpredictable (but finite) amount of time. Note that we consider only reliable
systems: no fault can occur on processes or communication links. We also assume
that the channels are FIFO, i.e., for each channel, the messages are delivered in
the order they have been sent. In this model, a distributed algorithm is given by a
local algorithm that all processes should execute (note that all the processes have
the same algorithm). A local algorithm consists of a sequence of computation
steps interspersed with instructions to send and to receive messages.

In the paper, we sometimes refer to the synchronous execution of an algo-
rithm. Such an execution is a particular execution of the algorithm that can be
divided in rounds. In each round, each process receives all the messages that
have been sent to it by its neighbours in the previous round; then according to
the information it gets, it can modify its state and send messages to its neigh-
bours before entering the next round. Note that the synchronous execution of
an algorithm is just a special execution of the algorithm and thus it belongs to
the set of asynchronous executions of this algorithm.

Distributed Tasks and Terminations. As mentioned earlier, when we are
interested in computing a task in a distributed way, we have to distinguish what
kind of termination we want to compute the task with. Given a family F of net-
works, a network (G, δ) ∈ F and a process v in (G, δ), we assume that the state of
v during the execution of any algorithm is of the form (mem(v), out(v), term(v)):
mem(v) is the memory of v, out(v) is its output value and term(v) is a flag in
{Term,⊥} mentioning whether v has computed its final value or not. The initial
state of v is (in(v),⊥,⊥) where the input in(v) is the label of v in (G, δ).

A distributed task is a couple (F ,S) where F is a family of labelled graphs
and S is a vertex-relabelling relation (i.e., if ((G, λ), δ) S ((G′, λ′), δ′), then
G = G′ and δ = δ′) such that for every (G, δ) ∈ F , there exists (G′, δ) such
that (G, δ) S (G′, δ). The set F is the domain of the task, S is the specifi-
cation of the task. The classical leader election problem on some family F of
networks is described in our settings by a task (F ,S) where for each (G, δ) ∈ F ,



(G, δ) S (G′, δ) for any G′ = (G, λ′) such that there is a unique v ∈ V (G)
with λ′(v) = leader. Considering arbitrary families of labelled graphs enables
to represent any initial knowledge: e.g. if the processes initially know the size of
the network, then in the corresponding family F , for each (G, δ) ∈ F and each
v ∈ V (G), |V (G)| is a component of the initial label of v.

We say that an algorithm A has an implicit termination on F if for any
execution of A on any graph (G, δ) ∈ F , the network reaches a global state where
no messages are in transit and the states of the processes are not modified any
more. Such a global final state is called the final configuration of the execution.

Given a task (F ,S), an algorithm A is normalized for (F ,S) if A has an
implicit termination on F and in the final configuration of any execution of A
on some (G, δ) ∈ F , for each v ∈ V (G), term(v) = Term, out(v) is defined and
((G, in), δ) S ((G, out), δ) (i.e., the output of the algorithm solves the task S).

A task (F ,S) is computable with local termination (Lt) if there exists a
normalized algorithm A for (F ,S) such that for each v ∈ V (G), once term(v) =
Term, (mem(v), out(v), term(v)) is not modified any more. A task (F ,S) is
computable with weak local termination (wLt) if there exists a normalized al-
gorithm A for (F ,S) such that for each v ∈ V (G), once term(v) = Term,
(out(v), term(v)) is not modified any more.

For both terminations, one can show that we can restrict ourselves to tasks
where F is recursively enumerable. A vertex v is active if it has not stopped the
execution of the algorithm, i.e., v can still modify the value of mem(v). When we
consider weak local termination, all vertices always remain active, whereas when
we consider local termination, a vertex is active if and only if term(v) 6= Term.
If a vertex is not active anymore, we say that it is inactive.

3 Examples of Tasks with Different Kinds of Terminations

We present here three simple examples that demonstrate the hierarchy of ter-
minations. We consider the family F containing all networks ((G, in), δ) where
for each vertex v, its input value has the form in(v) = (val(v), d(v)) where
val(v) ∈ N and d(v) ∈ N∪{∞}. The specification we are interested in is the fol-
lowing: in the final configuration, for each (G, δ) and for each vertex v ∈ V (G),
out(v) = max{val(u) | distG(u, v) ≤ d(v)}1.

We add some restrictions on the possible initial value for d(v) in order to
define three different tasks. In the general case (no restriction on the values
of d(v)), the task we just described is called the Maximum Problem. If we
consider the same task on the family F ′ containing all networks such that for
each v ∈ V (G), d(v) 6= ∞, the corresponding task is called the Local Maximum

Problem. If we consider the same task on the family F ′′ containing all networks
such that for each edge {v, w}, |d(v) − d(w)| ≤ 1, then we obtain a different
problem that is called the Locally Bounded Maximum Problem.

The Maximum Problem can be solved with implicit termination by a flood-
ing algorithm. Suppose now that there exists an algorithm A that can solve the
Maximum Problem with wLt. Consider the synchronous execution of A over

1 when d(v) = ∞, out(v) is the maximum value val(u) on the entire graph.
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Fig. 1. Networks highlighting differences between the different kinds of termination.

the graph (C3, δ) of Figure 1 where d = ∞ and let r be the number of rounds
of this execution; after r rounds, term(v) = Term and out(v) = 2, for each
v ∈ V (C3). Consider now the path (P3r+4, δ

′) on 3r + 4 vertices of Figure 1
where d = d1 = ∞ and val2 > 2. After r synchronous rounds over (P3r+4, δ

′),
v0 gets exactly the same information as any v ∈ V (C3) and thus after r rounds,
term(v0) = Term and out(v0) = 2 whereas the correct output is out(v0) = val2.
Thus A does not solve the Maximum Problem with wLt.

The Local Maximum Problem can be solved with weak local termination
by a flooding algorithm running in waves. Suppose now that there exists an al-
gorithm A that can solve the Local Maximum Problem with Lt. Consider
the synchronous execution of A over the graph (C3, δ) of Figure 1 where d = 1
and let r be the number of rounds of this execution. Consider now the path
(P3r+4, δ

′) of Figure 1 where d = 1, val2 > 2 and d1 ≥ 2r + 2. After r syn-
chronous rounds on P3r+4, for the same reasons as before, term(v0) = Term.
Since v0 has stopped before it knows val2 and since after v0 has stopped, no
information can be transmitted through v0, out(v1) cannot possibly be val2,
but the correct output is out(v1) = val2. Thus A does not solve the Local

Maximum Problem with wLt.
The Locally Bounded Maximum Problem can be solved with local ter-

mination by the previous wave-based flooding algorithm. Suppose now that there
exists an algorithm A that can solve the Locally Bounded Maximum Prob-

lem with global termination detection. Consider the synchronous execution of
A over the graph (C3, δ) of Figure 1 where d = 1 and let r be the number
of rounds of this execution; after r rounds, a vertex v ∈ V (C3) is in a state
S indicating that all processes have computed their final values. Consider now
the path (P3r+4, δ

′) of Figure 1 where d1 = d = 1, val2 > 2 and on the path
v2 = w0, w1, . . . , wr+1 = v3 between v2 and v3, for each i ∈ [1, r], d(wi) = i.
After r synchronous rounds on P3r+4, for the same reasons as before v is in the
state S indicating that all processes have computed their final values. However,
since dist(v2, v3) = r + 1, after r rounds, the vertex v3 does not know the value
of val2 and thus out(v3) cannot possibly be val2. Thus A does not solve the
Locally Bounded Maximum Problem with global termination detection.

4 Digraphs and Coverings

Labelled Digraphs. In the following, we will consider directed graphs (di-
graphs) with multiple arcs and self-loops. A digraph D = (V (D), A(D), s, t) is
defined by a set V (D) of vertices, a set A(D) of arcs and by two maps s and
t that assign to each arc two elements of V (D): a source and a target. If a is
an arc, we say that a is incident to s(a) and t(a). A symmetric digraph D is a



digraph endowed with a symmetry, that is, an involution Sym : A(D) → A(D)
such that for every a ∈ A(D), s(a) = t(Sym(a)). In a symmetric digraph D, the
degree of a vertex v is degD(v) = |{a | s(a) = v}| = |{a | t(a) = v}| and we
denote by ND(v) the set of neighbours of v. Given two vertices u, v ∈ V (D), a
path π of length p from u to v in D is a sequence of arcs a1, a2, . . . ap such that
s(a1) = u, ∀i ∈ [1, p − 1], t(ai) = s(ai+1) and t(ap) = v. If for each i ∈ [1, p − 1],
ai+1 6= Sym(ai), π is non-stuttering. A digraph D is strongly connected if for
all vertices u, v ∈ V (D), there exists a path from u to v in D. In a symmetric
digraph D, the distance between two vertices u and v, denoted distD(u, v) is the
length of the shortest path from u to v in D.

A homomorphism γ between the digraph D and the digraph D′ is a mapping
γ : V (D) ∪ A(D) → V (D′) ∪ A(D′) such that for each arc a ∈ A(D), γ(s(a)) =
s(γ(a)) and γ(t(a)) = t(γ(a)). An homomorphism γ : D → D′ is an isomorphism
if γ is bijective.

Throughout the paper we will consider digraphs where the vertices and the
arcs are labelled with labels from a recursive label set L. A digraph D labelled
over L will be denoted by (D, λ), where λ : V (D) ∪ A(D) → L is the labelling
function. A mapping γ : V (D)∪A(D) → V (D′)∪A(D′) is a homomorphism from
(D, λ) to (D′, λ′) if γ is a digraph homomorphism from D to D′ which preserves
the labelling, i.e., such that λ′(γ(x)) = λ(x) for every x ∈ V (D)∪A(D). Labelled
digraphs will be designated by bold letters like D,G, . . .

In a symmetric digraph D, we denote by BD(v0, r), the labelled ball of center
v0 ∈ V (D) and of radius r that contains all vertices at distance at most r of v0

and all arcs whose source or target is at distance at most r − 1 of v0.
Given a simple connected labelled graph G = (G, λ) with a port-numbering

δ, we will denote by (Dir(G), δ) the labelled digraph (Dir(G), (λ, δ)) constructed
in the following way. The vertices of Dir(G) are the vertices of G and they have
the same labels as in G. Each edge {u, v} is replaced by two arcs a(u,v), a(v,u) ∈
A(Dir(G)) such that s(a(u,v)) = t(a(v,u)) = u, t(a(u,v)) = s(a(v,u)) = v, δ(a(u,v)) =
(δu(v), δv(u)), δ(a(v,u)) = (δv(u), δu(v)) and Sym(a(u,v)) = a(v,u). This construc-
tion encodes that a process can answer to a neighbour, i.e., “pong” any message.

Given a set L, we denote by DL the set of all symmetric digraphs D = (D, λ)
where for each a ∈ A(D), there exist p, q ∈ N such that λ(a) = (p, q) and
λ(Sym(a)) = (q, p) and for each v ∈ V (D), λ(v) ∈ L and {p | ∃a, λ(a) =
(p, q) and s(a) = v} = [1, degD(v)]. In other words, DL is the set of digraphs
that locally look like some digraph obtained from a simple labelled graph G.

Symmetric Coverings, Quasi-Coverings. The notion of symmetric cover-
ings is fundamental in this work; definitions and main properties are presented
in [BV02a]. This notion enables to express “similarity” between two digraphs.

A (labelled) digraph D is a covering of a digraph D′ via ϕ if ϕ is a ho-
momorphism from D to D′ such that each arc a′ ∈ A(D′) and for each vertex
v ∈ ϕ−1(t(a′)) (resp. v ∈ ϕ−1(s(a′)), there exists a unique arc a ∈ A(D) such
that t(a) = v (resp. s(a) = v) and ϕ(a) = a′. A symmetric digraph D is a
symmetric covering of a symmetric digraph D′ via ϕ if D is a covering of D′ via
ϕ and if for each arc a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)).



The following lemma shows the importance of symmetric coverings when we
deal with anonymous networks. This is the counterpart of the lifting lemma that
Angluin gives for coverings of simple graphs [Ang80] and the proof can be found
in [BCG+96,CM07].

Lemma 4.1 (Lifting Lemma [BCG+96]). If D is a symmetric covering of
D′ via ϕ, then any execution of an algorithm A on D′ can be lifted up to an
execution on D, such that at the end of the execution, for any v ∈ V (D), v is in
the same state as ϕ(v).

In the following, one also needs to express similarity between two digraphs up
to a certain distance. The notion of quasi-coverings was introduced in [MMW97]
for this purpose. The next definition is an adaptation of this tool to digraphs.

Definition 4.2. Given two symmetric labelled digraphs D0,D1, an integer r, a
vertex v1 ∈ V (D1) and a homomorphism γ from BD1

(v1, r) to D0, the digraph
D1 is a quasi-covering of D0 of center v1 and of radius r via γ if there exists a fi-
nite or infinite symmetric labelled digraph D2 that is a symmetric covering of D0

via a homomorphism ϕ and if there exist v2 ∈ V (D2) and an isomorphism δ from
BD1

(v1, r) to BD2
(v2, r) such that for any x ∈ V (BD1

(v1, r)) ∪ A(BD1
(v1, r)),

γ(x) = ϕ(δ(x)).

If a digraph D1 is a symmetric covering of D0, then for any v ∈ V (D1) and
for any r ∈ N, D1 is a quasi-covering of D0, of center v and of radius r. Reversely,
if D1 is a quasi-covering of D0 of radius r strictly greater than the diameter of
D1, then D1 is a covering of D0. The following lemma is the counterpart of the
lifting lemma for quasi-coverings.

Lemma 4.3 (Quasi-Lifting Lemma). Consider a digraph D1 that is a quasi-
covering of D0 of center v1 and of radius r via γ. For any algorithm A, after r

rounds of the synchronous execution of an algorithm A on D1, v1 is in the same
state as γ(v1) after r rounds of the synchronous execution of A on D′.

5 Characterization for Weak Local Termination

We note V the set {(D, v) | D ∈ DL, v ∈ V (D)}. In other words, the set V is
the disjoint union of all symmetric labelled digraphs in DL. Given a family of
networks F , we denote by VF the set {((Dir(G), δ), v) | (G, δ) ∈ F , v ∈ V (G)}.

A function f : V −→ L ∪ {⊥} is an output function for a task (F ,S) if
for each network (G, δ) ∈ F , the labelling obtained by applying f on each
v ∈ V (G) satisfies the specification S, i.e., (G, δ) S (G′, δ) where G′ = (G, λ′)
and λ′(v) = f((Dir(G), δ), v) for all v ∈ V (G).

In order to give our characterization, we need to formalize the following idea.
When the neighbourhood at distance k of two processes v, v′ in two digraphs
D,D′ cannot be distinguished (this is captured by the notion of quasi-coverings
and Lemma 4.3), and if v computes its final value in less than k rounds, then v′

computes the same final value in the same number of rounds. In the following
definition, the value of r(D, v) can be understood as the number of rounds needed
by v to compute in a synchronous execution its final value in D.



Definition 5.1. Given a function r : V −→ N∪{∞} and a function f : V −→ L′

for some set L′, the function f is r-lifting closed if for all D,D′ ∈ DL such that
D is a quasi-covering of D′, of center v0 ∈ V (G) and of radius R via γ with
R ≥ min{r(D, v0), r(D

′, γ(v0))}, then f(D, v0) = f(D′, γ(v0)).

Using the previous definition, we now give the characterization of tasks com-
putable with wLt. We also characterize distributed tasks computable with wLt

by polynomial algorithms (using a polynomial number of messages of polynomial
size). We denote by |G| the size of V (G) plus the maximum over the sizes (in
bits) of the initial labels that appear on G.

Theorem 5.2. A task (F ,S) where F is recursively enumerable is computable
with wLt if and only if there exist a function r : V −→ N ∪ {∞} and an output
function f : V −→ L ∪ {⊥} for (F ,S) such that

(i) for all D ∈ DL, for all v ∈ V (D), r(D, v) 6= ∞ if and only if f(D, v) 6= ⊥,
(ii) f|VF

and r|VF
are recursive functions,

(iii) f and r are r-lifting-closed.

The task (F ,S) is computable by a polynomial algorithm with wLt if and only
if there exist such f and r and a polynomial p such that for each (G, δ) ∈ F and
each v ∈ V (G), r((Dir(G), δ), v) ≤ p(|G|).

Proof (of the necessary condition). Assume A is a distributed algorithm that
computes the task (F ,S) with weak local termination. We define r and f by
considering the synchronous execution of A on any digraph D ∈ DL. For any
v ∈ V (D), if term(v) = ⊥ during the whole execution, then f(D, v) = ⊥ and
r(D, v) = ∞. Otherwise, let rv be the first round after which term(v) = Term;
in this case, f(D, v) = out(v) and r(D, v) = rv. Since A computes (F ,S), it is
easy to see that f is an output function and that f and r satisfy (i) and (ii).

Consider two digraphs D,D′ ∈ DL such that D is a quasi-covering of D′, of
center v0 ∈ V (G) and of radius R via γ with R ≥ r0 = min{r(D, v0), r(D

′, γ(v0))}.
If r0 = ∞, then r(D, v0) = r(D′, γ(v0)) = ∞ and f(D, v0) = f(D′, γ(v0)) = ⊥.
Otherwise, from Lemma 4.3, we know that after r0 rounds, out(v0) = out(γ(v0))
and term(v0) = term(γ(v0)) = Term. Thus r0 = r(D, v0) = r(D′, γ(v0)) and
f(D, v0) = f(D′, γ(v0)). Consequently, f and r are r-lifting closed. ⊓⊔

The sufficient condition is proved in Section 7 and relies on a general algo-
rithm described in Section 6. Using this theorem, one can show that there is
no universal election algorithm for the family of networks with non-unique ids
where at least one id is unique, but that there exists such an algorithm for such
a family where a bound on the multiplicity of each id in any network is known.

6 A General Algorithm

In this section, we present a general algorithm that we parameterize by the task
and the termination we are interested in, in order to obtain our sufficient con-
ditions. This algorithm is a combination of an election algorithm for symmetric
minimal graphs presented in [CM07] and a generalization of an algorithm of



Szymanski, Shy and Prywes (the SSP algorithm for short) [SSP85]. The algo-
rithm described in [CM07] is based on an enumeration algorithm presented by
Mazurkiewicz in a different model [Maz97] where each computation step involves
some synchronization between adjacent processes. The SSP algorithm enables
to detect the global termination of an algorithm with local termination provided
the processes know a bound on the diameter of the graph. The Mazurkiewicz-like
algorithm always terminates (implicitly) on any network (G, δ) and during its
execution, each process v can reconstruct at some computation step i a digraph
Di(v) such that (Dir(G), δ) is a quasi-covering of Di(v). However, this algorithm
does not enable v to compute the radius of this quasi-covering. We use a gen-
eralization of the SSP algorithm to compute a lower bound on this radius, as it
has already be done in Mazurkiewicz’s model [GMT06].

We consider a network (G, δ) where G = (G, λ) is a simple labelled graph
and where δ is a port-numbering of G. The function λ : V (G) → L is the initial
labelling. We assume there exists a total order <L on L and we assume that if
the label λ(v) is modified during the execution, then it can only increase for <L.

The state of each v is a tuple (λ(v), n(v), N(v), M(v), a(v), A(v)) where:

– λ(v) ∈ L is the initial label of v and if it is modified during the execution, it
will necessarily increase for <L.

– n(v) ∈ N is the number of v computed by the algorithm; initially n(v) = 0.

– N(v) ∈ Pfin(N×L×N
2)2 is the local view of v. At the end of the execution, if

(m, ℓ, p, q) ∈ N(v), then v has a neighbour u whose number is m, whose label
is ℓ and the arc from u to v is labelled (p, q). Initially N(v) = {(0,⊥, 0, q) |
q ∈ [1, degG(v)]}.

– M(v) ⊆ N × L ×Pfin(N × L× N
2) is the mailbox of v; initially M(v) = ∅. It

contains all information received by v during the execution of the algorithm.
If (m, ℓ, N) ∈ M(v), it means that at some previous step of the execution,
there was a vertex u such that n(u) = m, λ(u) = ℓ and N(u) = N .

– a(v) ∈ Z ∪ {∞} is a counter and initially a(v) = −1. In some sense, a(v)
represent the distance up to which all vertices have the same mailbox as v. If
a(v) = ∞, it means that v has terminated the algorithm (local termination).

– A(v) ∈ Pfin(N × (Z ∪ {∞})) encodes the information v has about the values
of a(u) for each neighbour u. Initially, A(v) = {(q,−1) | q ∈ [1, degG(v)]}.

In our algorithm, processes exchange messages of the form < (n, ℓ, M, a), p >.
If a vertex u sends a message < (n, ℓ, M, a), p > to one of its neighbour v, then
the message contains following information: n is the current number n(u) of u, ℓ

is the label λ(u) of u, M is the mailbox of u, a is the value of a(u) and p = δu(v).

As in Mazurkiewicz’s algorithm [Maz97], the nice properties of the algorithm
rely on a total order on local views, i.e., on finite subsets of N

3 × L. Given two
distinct sets N1, N2 ∈ Pfin(N × L × N

2), we define N1 ≺ N2 if the maximum of
the symmetric difference N1 △N2 = (N1 \N2)∪ (N2 \N1) for the lexicographic
order belongs to N2. One also says that (ℓ, N) ≺ (ℓ′, N ′) if either ℓ <L ℓ′, or
ℓ = ℓ′ and N ≺ N ′. We denote by � the reflexive closure of ≺.

2 for any set S, Pfin(S) denotes the set of finite subsets of S



Our algorithm Agen(ϕ) is described in Algorithm 1. The algorithm for the
vertex v0 is expressed in an event-driven description. The first rule I can be
applied by a process v on wake-up only if it has not received any message: it takes
the number 1, updates its mailbox and informs its neighbours. The second rule R
describes the instructions a process v has to follow when it receives a message m

from a neighbour. It updates its mailbox M(v) and its local view N(v) according
to m. Then, if it discovers the existence of another vertex with the same number
and a stronger local view, it takes a new number. Then, if its mailbox has not
changed, it updates A(v) and increases a(v) if possible (according to a function
ϕ). Finally, if M(v) or a(v) has been modified, it informs its neighbours.

Later, we will add rules that enable a process to compute its final value and
we will define the function ϕ(v) depending on the termination we are interested
in. Using the information stored in its mailbox, each v will be able to reconstruct
a digraph D such that (Dir(G), δ) locally looks like D up to distance a(v).

Algorithm 1: The general algorithm Agen(ϕ).

I : {n(v0) = 0 and no message has arrived at v0}
begin

n(v0) := 1 ;
M(v0) := {(n(v0), λ(v0), ∅)} ;
a(v0) := 0 ;
for i := 1 to deg(v0) do

send < (n(v0), λ(v),M(v0), a(v0)), i > through i ;

end

R : {A message < (n1, ℓ1, M1, a1), p1 > has arrived at v0 through port q1}
begin

Mold := M(v0) ;
aold := a(v0) ;
M(v0) := M(v0) ∪ M1 ;
if n(v0) = 0 or ∃(n(v0), ℓ

′, N ′) ∈ M(v0) such that (λ(v0), N(v0)) ≺ (ℓ′, N ′)
then

n(v0) := 1 + max{n′ | ∃(n′, ℓ′, N ′) ∈ M(v0)} ;

N(v0) := N(v0) \ {(n
′, ℓ′, p′, q1) | ∃(n′, ℓ′, p′, q1) ∈ N(v0)} ∪ {(n1, ℓ1, p1, q1)} ;

M(v0) := M(v0) ∪ {(n(v0), λ(v0), N(v0))} ;
if M(v0) 6= Mold then

a(v0) := −1 ;
A(v0) := {(q′,−1) | ∃(q′, a′) ∈ A(v0) with a′ 6= ∞} ;

if M(v0) = M1 then

A(v0) := A(v0) \ {(q1, a
′) | ∃(q1, a

′) ∈ A(v0)} ∪ {(q1, a1)} ;

if ∀(q′, a′) ∈ A(v0), a(v0) ≤ a′ and (ϕ(v) = True or ∃(q′, a′) ∈ A(v) such

that a(v0) < a′ and a′ 6= ∞) then a(v0) := a(v0) + 1 ;
if M(v0) 6= Mold or a(v0) 6= aold then

for q := 1 to deg(v0) do

if (q,∞) /∈ A(v) then
send < (n(v0), λ(v), M(v0), a(v0)), q > through port q ;

end



Properties of the Algorithm. We consider a graph G with a port number-
ing δ and an execution of Algorithm 1 on (G, δ). For each vertex v ∈ V (G), we
note (λi(v), ni(v), Ni(v), Mi(v), ai(v), Ai(v)) the state of v after the ith compu-
tation step. The following proposition summarizes some nice properties that are
satisfied during any execution of Algorithm 1 on (G, δ).

Proposition 6.1 ([CM07,Cha06]). Consider a vertex v and a step i ≥ 1.
Then, λi−1(v) ≤L λi(v), ni−1(v) ≤ ni(v), Ni−1(v) � Ni(v), Mi−1(v) ⊆ Mi(v).

If Mi−1(v) = Mi(v) and if v is active at step i, then ai−1(v) ≤ ai(v) ≤
ai−1(v) + 1 and ai(v) ≥ min{a | ∃(q, a) ∈ Ai(v)} if ∃(q, a) ∈ Ai(v) with a 6= ∞.

For each (m, ℓ, N) ∈ Mi(v) and each m′ ∈ [1, m], ∃(m′, ℓ′, N ′) ∈ Mi(v), ∃v′ ∈
V (G) such that ni(v

′) = m′. If m = ni(v), (ℓ, N) ≤ (λi(v), Ni(v)).
If ai(v) ≥ 1, for each w ∈ NG(v), there exists a step j ≤ i− 1 such that w is

inactive at step j, or aj(w) ≥ ai(v) − 1 and Mj(w) = Mi(v).

An interesting corollary of Proposition 6.1 is that if the label λ(v) of each v

is modified only finitely many times, then there exists a step i0 after which for
any v, the value of (λ(v), n(v), N(v), M(v)) is not modified any more.

7 Tasks computable with Weak Local Termination

In order to show that the conditions of Theorem 5.2 are sufficient, we use the
general algorithm presented in Section 6 parameterized by the functions f and
r. In the following, we consider a function enumF that enumerates the elements
of F . During the execution of this algorithm on any graph (G, δ) ∈ F , for any
v ∈ V (G), the value of λ(v) = in(v) is not modified.

Consider the mailbox M = M(v) of a vertex v during the execution of the
algorithm Agen on a graph (G, δ) ∈ F . We say that an element (n, ℓ, N) ∈ M is
maximal in M if there does not exists (n, ℓ′, N ′) ∈ M such that (ℓ, N) ≺ (ℓ′, N ′).
We denote by S(M) be the set of maximal elements of M . From Proposition 6.1,
after each step of Algorithm 1, (n(v), λ(v), N(v)) is maximal in M(v). The set
S(M) is said stable if it is non-empty and if for all (n1, ℓ1, N1) ∈ S(M), for all
(n2, ℓ2, p, q) ∈ N1, p 6= 0, n2 6= 0 and ℓ2 6= ⊥ and for all (n′

2, ℓ
′
2, N

′
2) ∈ S(M),

there exists (n′
2, ℓ

′′
2 , p′, q′) ∈ N1 if and only if ℓ′2 = ℓ′′2 and (n1, ℓ1, q

′, p′) ∈ N ′
2.

From [CM07], we know that once the values of n(v), N(v), M(v) are final, then
S(M(v)) is stable. Thus, if S(M(v)) is not stable, M(v) will be modified.

If the set S(M) is stable, one can construct a labelled symmetric digraph
DM = (DM , λM ) as follows. The set of vertices V (DM ) is the set {n | ∃(n, ℓ, N) ∈
S(M)}. For any (n, ℓ, N) ∈ S(M) and any (n′, ℓ′, p, q) ∈ N , there exists an arc
an,n′,p,q ∈ A(DM ) such that t(a) = n, s(a) = n′, λM (a) = (p, q). Since S(M) is
stable, we can define Sym by Sym(an,n′,p,q) = an′,n,q,p.

Proposition 7.1. If S(M(v)) is stable, (Dir(G), δ) is a quasi-covering of DM(v)

of radius a(v) of center v via a mapping γ where γ(v) = n(v).

Thus, once v has computed DM(v), it can enumerate networks (K′, δ′K) ∈ F
and vertices w′ ∈ V (K ′) until it finds a (K′, δ′K) such that K(v) = (Dir(K′), δK′)
is a quasi-covering of DM(v) of center w(v) ∈ V (K) and of radius a(v) via some
homomorphism γ such that γ(w(v)) = n(v) (this enumeration terminates by
Proposition 7.1). We add a rule to the algorithm, called wLt(enumF , f, r), that



a process v can apply to computes its final value, once it has computed K(v)
and w(v). We also add priorities between rules such that a vertex that can apply
the rule wLt(f, r) cannot apply the rule R of algorithm Agen(ϕ).

Procedure wLt(enumF ,f,r): the rule added to the algorithm for wLt

if term(v0) 6= Term and a(v0) ≥ r(K(v0), w(v0)) then
out(v0) := f(K(v0), w(v0)) ;
term(v0) := Term ;

We now define the function ϕ that enables a vertex v to increase a(v). The
function ϕ is true for v only if term(v) 6= Term and S(M(v)) is stable (otherwise,
v knows that its mailbox will be modified in the future) and r(K(v), w(v)) > a(v)
(otherwise, v can compute its final value).

Correction of the Algorithm. We denote by AwLt(enumF , f, r) the algorithm
defined by Agen(ϕ) and by wLt(enumF , f, r). We consider a network (G, δ) ∈ F
and an execution of AwLt(enumF , f, r) on (G, δ). Let G′ = (Dir(G), δ).

Using Propositions 6.1 and 7.1, one can show that the execution terminates
(implicitly) and that in the final configuration, for any v ∈ V (G), term(v) =
Term. Since f is an output function for (F ,S), the next proposition shows that
AwLt(enumF , f, r) computes the task (F ,S) with weak local termination.

Proposition 7.2. For any v ∈ V (G), if term(v) = Term, out(v) = f(G′, v).

Proof. Consider a process v just after it has applied Procedure wLt(enumF , f, r):
S(M(v)) is stable, r(K(v), w(v)) ≤ a(v) and out(v) = f(K(v), w(v)).

Since K(v) is a quasi-covering of DM(v) of radius a(v) ≥ r(K(v), w(v)) and
of center w(v) via a mapping γ such that γ(w(v)) = n(v) and since f and r are
r-lifting closed, out(v) = f(K(v), w(v)) = f(DM(v), n(v)) and r(K(v), w(v)) =
r(DM(v), n(v)). From Proposition 7.1, since a(v) ≥ r(DM(v) , n(v)) and since f

is r-lifting closed, out(v) = f(DM(v), n(v)) = f(G′, v). ⊓⊔

8 Tasks Computable with Local Termination.

When we consider local termination, one needs to consider the case where some
vertices that terminate quickly disconnect the graph induced by active vertices.

We extend to symmetric digraphs the notion of views that have been intro-
duced to study leader election by Yamashita and Kameda [YK96b] for simple
graphs and by Boldi et al. [BCG+96] for digraphs.

Definition 8.1. Consider a symmetric digraph D = (D, λ) ∈ DL and a vertex
v ∈ V (D). The view of v in D is an infinite rooted tree denoted by TD(v) =
(TD(v), λ′) and defined as follows:

– V (TD(v)) is the set of non-stuttering paths π = a1, . . . , ap in D with s(a1) =
v. For each path π = a1, . . . , ap, λ′(π) = λ(t(ap)).

– for each π, π′ ∈ V (TD(v)), there are two arcs aπ,π′ , aπ′,π ∈ A(TD(v)) such
that Sym(aπ,π′) = aπ′,π if and only if π′ = π, a. In this case, λ′(aπ,π′) = λ(a)
and λ′(aπ′,π) = λ(Sym(a)).



– the root of TD(v) is the vertex corresponding to the empty path and its label
is λ(v).

Consider the view TD(v) of a vertex v in a digraph D ∈ DL and an arc a such
that s(a) = v. We define TD−a(v) be the infinite tree obtained from TD(v) by
removing the subtree rooted in the vertex corresponding to the path a. Given
n ∈ N and an infinite tree T, we note T↾n the truncation of the tree at depth n.
Thus the truncation of the view at depth n of a vertex v in a symmetric digraph
D is denoted by TD(v)↾n. It is easy to see that for any D ∈ DL, any v ∈ V (D)
and any integer n ∈ N, TD(v) ↾n is a quasi-covering of D of center v′ and of
radius n where v′ is the root of TD(v)↾n.

Given a digraph D and a process v0 ∈ V (D) that stops its computation
after n steps, the only information any other process v can get from v0 during
the execution is contained in the n-neighbourhood of v0. In order to take this
property into account, we define an operator split. In split(D, v0, n), we remove
v0 from V (D) and for each neighbour v of v0, we add a new neighbour v′0 to v

that has a n-neighbourhood indistinguishable from the one of v0. Thus, for any
process v 6= v0, in a synchronous execution, both v0 and the vertices we have just
added stop in the same state after n rounds and consequently v should behave
in the same way in the two networks and stop with the same final value after
the same number of rounds. This idea is formalized in Definition 8.2.

Given a digraph D = (D, λ) ∈ DL, a vertex v0 ∈ V (D) and an integer n ∈ N,
split(D, v0, n) = (D′, λ′) is defined as follows. First, we remove v0 and all its
incident arcs from D. Then for each arc a ∈ A(D) such that s(a) = v0, we add a
copy of TD−a(v0)↾

n to the graph. We denote by v(a) the root of this tree and we
add two arcs a0, a1 to the graph such that Sym(a0) = a1, s(a0) = t(a1) = v(a),
s(a1) = t(a2) = t(a), λ′(a0) = λ(a) and λ′(a1) = λ(Sym(a)). Note that for any
vertex v 6= v0 ∈ V (D), v can be seen as a vertex of split(D, v0, n).

Definition 8.2. Given a function r : V −→ N∪{∞}, a function f : V −→ L′ is
r-splitting closed if for any D ∈ DL, for any vertex v0 ∈ V (D) and any vertex
v 6= v0 ∈ V (D), f(D, v) = f(split(D, v0, n), v) where n = r(D, v0).

We now give the characterization of tasks computable with Lt. The proof
is postponed to the journal version. For the necessary condition, we uses the
same ideas as for the necessary condition of Theorem 5.2 and the proof of the
sufficient condition also relies on the general algorithm presented in Section 6.

Theorem 8.3. A task (F , S) where F is recursively enumerable is computable
with Lt if and only if there exist some functions f and r satisfying the conditions
of Theorem 5.2 and such that f and r are r-splitting closed.

The task (F ,S) is computable by a polynomial algorithm with Lt if and only
if there exist such f and r and a polynomial p such that for each (G, δ) ∈ F and
each v ∈ V (G), r((Dir(G), δ), v) ≤ p(|G|).
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