
Chapter 1

Deterministic Symmetric Rendezvous
in Arbitrary Graphs
Overcoming Anonymity, Failures and
Uncertainty

Jérémie Chalopin, Shantanu Das, and Peter Widmayer

Abstract We consider the rendezvous problem of gathering two or more
identical agents that are initially scattered among the nodes of an unknown
graph. We discuss some of the recent results for this problem focusing only
on deterministic algorithms for the general case when the graph topology is
unknown, the nodes of the graph may not be uniquely labeled and the agents
may not be synchronized with each other. In this scenario, the objective is to
solve rendezvous whenever deterministically feasible, while optimizing on the
amount of movement by the agents or the memory required (for the nodes
or the agents) in the worst case. Further we also investigate some special
scenarios such as (i) when the graph contains some dangerous nodes or, (ii)
when there is no consistent ordering on the edges of a node. We present
positive results, complexity analysis and some general techniques for dealing
with such worst case scenarios for the symmetric rendezvous problem.

1.1 Introduction

The problem of rendezvous requires two or more entities (called agents) lo-
cated in distinct vertices of a graph, to meet at one vertex of the graph. This
problem occurs in many natural contexts [3] and requires different strategies
depending on the scenario and the particular objective. In the original def-
inition of the problem [2], the objective was to minimize the expected time
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to meet. If we are restricted to deterministic strategies, the objective may
be to minimize the worst-case time to meet, over all possible starting con-
figurations. Moreover if there is no common notion of time, we may wish to
minimize the total distance traveled by the agents until rendezvous. In some
cases, there are other parameters to consider, for example the size of mem-
ory used by the agents or the number of additional resources (e.g. flags for
marking) used by the agents.

This chapter considers the deterministic rendezvous of two or more agents
in a finite connected graph, placed initially at locations chosen by an ad-
versary. The agents are assumed to be identical and they execute the same
algorithm, without global knowledge about the graph. Other than finiteness
and connectivity, we make no other assumptions about the topology of the
graph. In an arbitrary connected graph, it is not always possible to solve
rendezvous using deterministic means. For instance consider a ring of size n,
where two agents are placed at a distance of n/2 from each other; if each
agent follows the same strategy (any combination of moving clockwise, coun-
terclockwise or remaining stationary) the agents may forever be the same
distance apart from each-other. In most cases, the ability to distinguish ver-
tices in some way allows the agents to rendezvous even if they are using
identical strategies. Given any graph and the starting locations of the agents
in the graph, it is possible to determine whether rendezvous is possible for the
particular instance. Thus, it is possible to characterize the instances where
deterministic rendezvous is feasible. The prior knowledge of certain graph
parameters (such as the size or diameter) or the ability to mark vertices of
the graph also influences the feasibility of rendezvous.

The model considered here is very generic in the sense that we do not
assume any global clock (the agents act asynchronously), nor do we assume
unique identifiers for the nodes of the graph or for the agents (the graph and
the agents may be anonymous); and the graph topology is not known to the
agents (i.e. the topology could be any arbitrary connected graph). In stronger
models, e.g. when the agents have distinct identifiers [12, 17] or, when they
are synchronous [13, 14], or if the environment is restricted to specific topolo-
gies such as the ring [20, 23], grid [4] or tree [14] topologies, then it becomes
easier to solve rendezvous and the set of solvable instances may become rela-
tively larger. For results on rendezvous in such models, please see the recent
survey [24]. Another significant difference between the results in this paper
and those of [24] is that we allow the agents to meet only at a node, whereas
most results from the above paper also allow meeting on an edge when two
agents are traversing it from opposite sides1. The rendezvous problem has
also been studied in a completely different model where the agents move in
a continuous terrain [19] or in a graph [22] but have global visibility. Finally
there exist many results on solving rendezvous using randomized algorithms
(see [3] for a survey).

1 This difference implies that in our model it is not possible to rendezvous even on the

trivial graph consisting of two nodes and a single edge.
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This chapter is organized as follows. The next section defines the model
and the problem and describes some basic properties of graphs which we use
in solving rendezvous. Section 1.3 provides a characterization of those in-
stances where deterministic rendezvous is possible. In the rest of the chapter,
we focus on the problem of Rendezvous-with-Detect where agents solve ren-
dezvous whenever possible and otherwise detect the fact that rendezvous is
not possible. Section 1.4 provides some minimum conditions required for solv-
ing the problem. We present algorithms for solving Rendezvous-with-Detect
both for the model where agents are not allowed to mark nodes (Section 1.5)
and the model where marking is allowed (Section 1.6). In section 1.7, we
consider the model where each agent is provided with a pebble, allowing it to
mark at most one node of the graph. We also discuss how to tolerate failures
and uncertainties in this model. Finally, in section 1.8, we study rendezvous
in dangerous environments where some of the agents may disappear (e.g. they
are devoured by some faulty node), and show how to rendezvous the surviv-
ing agents. Section 1.9 concludes this chapter with a discussion of some open
directions.

1.2 The Model and Basic Properties

The Environment. The environment is represented by a simple undirected
connected graph G = (V (G), E(G)) and a set Q of mobile agents that are
located in the nodes ofG. The initial placement of the agents is denoted by the
function p : Q → V (G). We denote such a distributed mobile environment by
(G,Q, p) or by (G,χp) where χp is a vertex-labeling of G such that χp(v) = 1
if there exists an agent a such that p(a) = v, and χp(v) = 0 otherwise. For
simplicity, we assume the agents to be initially located in distinct nodes, but
the algorithms can be generalized to the case when two or more agents start
from the same location (e.g. if two agents happen to be initially co-located,
they will move together as a single merged agent).

For the rest of this paper, n = |V (G)| andm = |E(G)| denotes the numbers
of vertices and of edges of G, while k = |Q| denotes the number of agents.
We shall use the words vertex and node interchangeably.

In order to enable navigation of the agents in the graph, at each node
v ∈ V (G), the edges incident to v are distinguishable to any agent a at node
v. In other words, there is a bijective function

δa,v : {(v, u) ∈ E(G) : u ∈ V (G)} → {1, 2, . . . d(v)}

which assigns unique labels to the edges incident at node v (where d(v) is
the degree of v). The function δa = {δa,v : v ∈ V (G)} is called the local
orientation or port-numbering 2 and it is usually assumed that all agents have

2 The labels on the edges may correspond to port numbers on a network
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the same consistent port-numbering (i.e. δa = δ, ∀a ∈ Q). In Section 1.7.2, we
shall consider the special case when this is not true. For the rest of the paper,
we assume a common port-numbering δ (and thus remove the subscript a).

The vertices of G are labeled over the set of symbols L by λ : V (G) → L
which is the labeling function. However, note that this labeling is not neces-
sarily injective, i.e. two vertices may have the same label. This means that
we must design algorithms that work for any such labeling, and in particular
for the constant labeling which labels all nodes with the same label c ∈ L (in
this case, the nodes of the graph are said to be anonymous).

The environment is thus represented by the tuple (G,λ,Q, p, δ) or equiv-
alently by (G,λ, χp, δ). In case the nodes of the graph are anonymous, we
shall omit λ.
The Agents. Each agent a starts from the node p(a), called the homebase
of a, and executes a sequence of steps. The agents start from the same initial
state but may not necessarily start at the same time, and every action they
perform (computing, moving, etc.) takes a finite but otherwise unpredictable
amount of time (i.e. the actions of the agents are not synchronized). The
actions that an agent a located at a node v can perform depend on the state
of the agent and the state of the node v (including the degree of v, the label
of v, and the presence of other agents or marks left by other agents). An
agent can see another agent only when they are both located at the same
node. However, an agent may not even detect the presence of another agent
if both are traversing the same edge. Two agents may traverse the same edge
at different speeds; thus if agents a and b start traversing the same edge (u, v)
one after the other, it is possible that agent b arrives at the other end-point
earlier than agent a.
Communication model: Whiteboards and Tokens. As mentioned be-
fore, two agents may communicate (i.e. exchange information) directly only
when they are at the same node. To facilitate the task of rendezvous, some-
times the agents may be allowed to leave marks on a node as a signal for
other agents. In the whiteboard model, the agents communicate by reading
and writing information on public whiteboards locally available at the nodes
of the network. Each node v ∈ G has a whiteboard (which is a shared re-
gion of its memory) and any agent visiting node v can read or write to the
whiteboard. Access to the whiteboard is restricted by fair mutual exclusion,
so that at most one agent can access the whiteboard of a node at the same
time, and any requesting agent will be granted access within finite time.

A more restrictive model is the token model, where no whiteboards are
available but each agent has one or more identical tokens (sometimes called
pebbles) to mark nodes. An agent that contains a token can place it on a
node v before leaving the node; this token will be visible to any agent visiting
node v, i.e. the visiting agent can determine whether or not there is a token
at that node. Similar to the whiteboard model, we assume mutually exclusive
access to node; Thus two agents may not place their tokens at the same node
simultaneously, they must do so sequentially. The tokens are moveable, i.e.
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an agent can pick up a token, carry the token and place it on a different node
that the agent visits.
Cost Measures. The cost of an algorithm can be the time taken until ren-
dezvous is achieved. Since we consider the actions of the agents to be asyn-
chronous, a more useful measure for the efficiency of the algorithm is the
amount of movement made by the agents, called the move complexity. In
other words, whenever an agent traverses an edge of the graph, this incurs
a unit cost and the total cost of the algorithm is the total number of edge-
traversals made by all the agents together, in the worst case execution of the
algorithm.

Other than optimizing on the time or the movement cost, one can consider
the space cost of an algorithm e.g. the memory that needs to be allocated at
each node of the graph, or the memory used by an agent during the algorithm.
Thus, we associate three different cost measures for a rendezvous algorithm:
(i) Movement Cost, (ii) Node Memory, and (iii) Agent Memory.

Problem Definition

Definition 1 (Rendezvous). Given a distributed mobile environment (G,
λ, Q, p, δ), an algorithm A is said to solve rendezvous if for any distributed
execution of the algorithm by the agents, there exists a node v ∈ G such that
all agents in Q eventually reach node v and do not move thereafter.

In the definition above, we do not require the agents to terminate explic-
itly (i.e. an agent may not be aware when rendezvous has been achieved).
Note that even though we consider only deterministic algorithms, the out-
come of the algorithm may depend on the particular sequence of events and
actions during the (asynchronous) execution of the algorithm by the individ-
ual agents. We define a distributed execution of an algorithm as one possible
sequence of actions and events that is consistent with the environment and
the algorithm.

We say that rendezvous is feasible in (G,λ,Q, p, δ), if and only if there
exists a deterministic algorithm that solves rendezvous in (G,λ,Q, p, δ).

Definition 2 (Rendezvous-with-Detect). Given a distributed mobile en-
vironment (G,λ,Q, p, δ), an algorithm is said to solve Rendezvous-with-Detect
if the following holds for any distributed execution of the algorithm. If ren-
dezvous is feasible in (G,λ,Q, p, δ), then all agents in Q must eventually
terminate at one unique node v of G and if not, then each agent must termi-
nate in its homebase and output “Rendezvous is not solvable”.

When there are more than 2 agents, i.e. |Q| > 2, we can define the concept
of partial rendezvous where at least w < |Q| agents are required to gather at
a node of the graph. This will be discussed further in section 1.8.
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Properties of Graphs: Coverings and Universal Exploration
Sequences

The notions presented in this section were introduced in [7]. Any connected
(undirected) graph G can be represented by a strongly connected symmet-
ric digraph D = Dir(G), where each edge of G is represented by a pair of
symmetric arcs in D, one in each direction. In this section, we present some
definitions and results related to directed graphs and their coverings, which
we use to characterize the solvable instances for rendezvous. A directed graph
(digraph) D = (V (D), A(D), sD, tD) possibly having parallel arcs and self-
loops, is defined by a set V (D) of vertices, a set A(D) of arcs and by two maps
sD and tD that assign to each arc two elements of V (D) : a source and a target
(in general, the subscripts will be omitted). A symmetric digraph D is a di-
graph endowed with a symmetry, that is, an involution Sym : A(D)→ A(D)
such that for every a ∈ A(D), s(a) = t(Sym(a)) and Sym(Sym(a)) = a.
Given a simple connected graph G, a vertex labeling function λ, and a
port-numbering δ, we will denote by (Dir(G), λ, δ) the labeled digraph con-
structed in the following way. The vertices of Dir(G) are the vertices of G
and they have the same labels as in (G,λ). Each edge {u, v} is replaced
by two arcs a(u,v), a(v,u) ∈ A(Dir(G)) such that s(a(u,v)) = t(a(v,u)) = u,
t(a(u,v)) = s(a(v,u)) = v, δ(a(u,v)) = (δu(v), δv(u)), δ(a(v,u)) = (δv(u), δu(v))
and Sym(a(u,v)) = a(v,u).

Fig. 1.1 A graph G, the corresponding digraph Dir(G), and its minimum-base H

A covering projection is a homomorphism ϕ from D to D′ satisfying the
following: (i) For each arc a′ of A(D′) and for each vertex v of V (D) such
that ϕ(v) = v′ = t(a′) there exists a unique arc a in A(D) such that t(a) = v
and ϕ(a) = a′. (ii) For each arc a′ of A(D′) and for each vertex v of V (D)
such that ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D) such that
s(a) = v and ϕ(a) = a′. A symmetric digraph D is a symmetric covering of
a symmetric digraph D′ via a homomorphism ϕ if ϕ is a covering projection
from D to D′ such that for each arc a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)).

A digraph D is symmetric-covering-minimal if there does not exist any
graph D′ not isomorphic to D such that D is a symmetric covering of D′.
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The notions of coverings extend to labeled digraphs in an obvious way: the
homomorphisms must preserve the labeling. Given a simple labeled graph
(G,λ) with a port-numbering δ, we say that (G,λ, δ) is symmetric-covering-
minimal if (Dir(G), λ, δ) is symmetric-covering-minimal. For any simple la-
beled graph (G,λ) with a port-numbering δ, there exists a unique digraph
(D,µD) such that (i) (Dir(G), λ, δ) is a symmetric covering of (D,µD) and
(ii) (D,µD) is symmetric-covering-minimal. This labeled digraph (D,µD) is
called the minimum base of (G,λ, δ).

The main result that we will use from the theory of graph coverings is the
following. Given an environment (G,λ, χp, δ), if the corresponding labeled
digraph (Dir(G), µG) is not symmetric-covering-minimal, i.e. (Dir(G), µG)
covers a smaller digraph (H,µH), then the vertices of G can be partitioned
into equivalence classes, each of size q = |V (G)|/|V (H)| such that the vertices
in the same class are symmetric and indistinguishable from each other. This
is also related to the concept of views introduced in [25]. Nodes having the
same view belong to the same equivalence class.

Definition 3. Given a labeled graph (G,λ) with a port numbering δ, the
view of a node v is the infinite rooted tree denoted by TG(v) defined as
follows. The root of TG(v) represents the node v and for each neighbor ui of
v, there is a vertex xi in TG(v) (labeled by λ(ui)) and an edge from the root
to xi with the same labels as the edge from v to ui in (G, δ). The subtree of
TG(v) rooted at xi is again the view TG(ui) of node ui.

For traversal of an unknown graph we will use the notion of a Universal
Exploration Sequence (UXS) [21]. For any node u ∈ G, we define the ith suc-
cessor of u, denoted by succ(u, i) as the node v reached by taking port number
i from node u (where 0 ≤ i < d(u)). Let (a1, a2, . . . , ak) be a sequence of in-
tegers. An application of this sequence to a graph G at node u is the sequence
of nodes (u0, . . . , uk+1) obtained as follows: u0 = u, u1 = succ(u0, 0); for any
1 ≤ i ≤ k, ui+1 = succ(ui, (p + ai) mod d(ui)), where p is the port-number
at ui corresponding to the edge {ui−1, ui}. A sequence (a1, a2, . . . , ak) whose
application to a graph G at any node u contains all nodes of this graph is
called a UXS for this graph. A UXS for a class of graphs is a UXS for all
graphs in this class. For any positive integers n, d, d < n, there exists a UXS
of length O(n3d2 log n) for the family of all graphs with at most n nodes and
maximum degree at most d [1].

1.3 Feasibility of deterministic rendezvous

Deterministic rendezvous is not always possible in arbitrary graphs, as we
have seen before (recall the example of the two agents symmetrically placed
in a ring). Given an environment (G,λ,Q, p, δ), the feasibility of rendezvous
may depend on the structure of G, the labeling λ, the port numbering δ as
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well as the initial placement of the agents. When the agents do not have
the capability of marking nodes, the feasibility of rendezvous depends on the
labeled graph (G,λ, δ) and not on the starting locations. This is equivalent to
the feasibility of electing a leader among the nodes of a graph, a well-studied
problem for which there exists a known characterization of solvable instances.
The following properties are based on the results from [6, 25, 26].

Theorem 1. Rendezvous is solvable in (G,λ, δ) irrespective of the number
of agents and their starting locations if and only if (G,λ, δ) is symmetric-
covering-minimal with respect to any covering projection that preserves the
edge-labeling δ and the node-labeling λ.

On the other hand, if the agents are allowed to mark the nodes of the
graph then the placement p of the agents in G influences the solvability of
rendezvous. In this case, we can assume that the starting locations of the
agents are distinctly labeled by the function χp and thus consider the node-
labeling λ′ = λ× χp.

Theorem 2. Rendezvous is solvable in the environment (G,λ,Q, p, δ) if and
only if (G,λ′, δ) is symmetric-covering-minimal with respect to any label-
preserving covering projection, where λ′ = λ× χp.

We can assume that the edge-labeling and node labeling of the graph
is given by an adversary. Thus, it makes sense to characterize the family
of graphs where rendezvous is possible for any labeling (assuming that the
labeling provides a local orientation at each node).

Theorem 3. Given any connected graph G, the following statements are
equivalent:

1. For any port-numbering δ, and any placement χp of agents in G, ren-
dezvous can be solved in (G,χp, δ);

2. For any port-numbering function δ, each vertex of (G, δ) has a distinct
view ;

3. There is no partition V1, V2, . . . Vk of V (G) with k ∈ [1, |V (G)| − 1] such
that for any distinct i, j ∈ [1, k], the following conditions hold:

(i) G[Vi] is d-regular for some d, and if d is odd, it contains a perfect
matching,

(ii) G[Vi, Vj ] is regular.

4. Dir(G) is symmetric-covering-minimal.

1.4 Impossibility Results

From the results of the previous section, we know rendezvous can be solved
only in an environment (G,λ,Q, p, δ) where the corresponding labelled graph
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(G,λ′, δ) is symmetric-covering minimal. Given such an instance, it is pos-
sible to construct another instance (H,λ′H , δH) such that |V (H)| = 2|V (G)|
and (H,λ′H , δH) covers (G,λ′, δ), and thus, rendezvous is not possible in
(H,λ′H , δH). Any algorithm that solves Rendezvous-with-Detect must be able
to distinguish between these two instances. It is not possible to distinguish
between these two instances unless the agents are provided with some prior
knowledge which allows them to deduce the size of the graph with some accu-
racy. In fact, if the agents know an upper bound B such that B < 2n this is
already sufficient to solve Rendezvous-with-Detect. (Recall that for any graph
H that covers G and is not isomorphic to G, the size of H must be strictly
a multiple of the size of G and thus |V (H)| is at least twice of |V (G)|.)

Theorem 4. The knowledge of only an arbitrary upper bound on n is not suf-
ficient for solving Rendezvous-with-Detect in an environment (G,λ,Q, p, δ).

We now consider the move complexity of Rendezvous-with-Detect. It is
easy to see that each edge of the graph must be traversed by at least one
agent. Moreover, in a symmetric environment (e.g. a ring with agents placed
equidistant apart) each agent may need to make O(n) moves before it can de-
tect the impossibility of rendezvous. This gives us the following lower bound.

Theorem 5. Solving Rendezvous-with-Detect with k agents in an arbitrary
graph of n nodes and m edges requires Ω(m+ nk) moves in the worst case.

1.5 Rendezvous without Marking

In this section we assume that the agents have no means of marking the nodes
of the graph (i.e. no whiteboards or tokens are available). The knowledge
of n (or, at least some upper bound on it) is required to even explore the
graph unless the graph happens to be a tree. In asymmetric trees, rendezvous
is possible without marking and without knowledge of n. It is possible to
traverse an anonymous tree and find the central edge or central node in
the tree (every tree has either a central node or a central edge). The usual
technique for rendezvous is to gather at the central node or at one of the
endpoints of the central edge. In the latter case, the agent needs to do a
comparison of the subtrees at either end of the central edge e, in order to
choose among the two end-points of e. This problem has been studied for
agents having small memory (see Section 1.5.2).

1.5.1 Agents having Unbounded Memory

When an upper bound on n is known a priori, and the agents have sufficient
memory, it is possible to solve rendezvous in an arbitrary graph (G,λ, δ)
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by constructing the minimum-base of the labeled graph and then moving
to a unique node of the minimum-base. Note that according to Theorem 1,
rendezvous is solvable in this case only if (G,λ, δ) is covering minimal. If that
condition is satisfied then the constructed minimum-base is isomorphic to G
and thus all the agents will reach the same node, hence solving rendezvous.

In case the exact value of n is provided, it is possible to use the same algo-
rithm to check for symmetric-covering-minimality and thus, solve Rendezvous-
with-Detect. We now discuss the algorithm (see [9] for more details). The first
part of the algorithm is a traversal of the graph visiting every vertex of G
at least once. The second part is the classification of the visited vertices into
equivalence classes. Initially all vertices are put in the same class and in
subsequent rounds, the algorithm refines the classes until each class corre-
sponds to one vertex of the minimum-base. For the traversal we use a UXS
U(N, d) where N ≥ n is an upper bound on n and d is some upper bound on
the maximum degree of the graph G. We now describe the class refinement
process.

Algorithm 1: Class-Refinement(N)

Let v1, v2, . . . vt be the sequence of nodes visited by U(N, d), possibly containing
duplicate nodes ;

Follow U(N, d) and for each node vi do
Store the labels of each edge incident to vi;

Compute the number of 1-classes and store a distinguishing path for each pair of

distinct classes ;
k := 2;

repeat
Follow U(N, d) and for each node vi do

for each edge (vi, w) incident to vi do
Compute the (k − 1)-class of w (using the distinguishing paths);

Store the label of (vi, w) and the index of the (k − 1)-class of w ;

Compute the number of k-classes and store a distinguishing path for each pair

of distinct k-classes ;

Increment k;

until the number of k-classes is equal to the number of (k − 1)-classes;
Move to a vertex of class one;

Given a graph G and node u of G and a sequence of edge-labels Y =
((p1, q1), (p2, q2), . . . , (pj , qj)), we say that Y is accepted from u if there exists
a path P = (u = u0, u1, . . . , uj) in G such that δ(P ) = Y , i.e. for each i,
1 ≤ i ≤ j, (pi, qi) = δ(ui−1, ui). For any k > 0, two vertices u, v that have the
same view up to depth k are said to be k-equivalent; we denote it by u ∼k v.
The k-class of u is the set of all vertices that are k-equivalent to u and this
set is denoted by [u]k. Given any two k-classes C,C ′, a (C,C ′)-distinguishing
path is a sequence of edge-labels YC,C′ = ((p1, q1), (p2, q2), . . . , (pj , qj)) such
that YC,C′ is accepted from each node u ∈ C and it is not accepted from
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any node v ∈ C ′. Given any two distinct k-classes C,C ′, either there exists
a (C,C ′)-distinguishing path of length at most k, or there exists a (C ′, C)-
distinguishing path of length at most k.

For k = 1, it is easy to determine the k-class of any node v by traversing
each edge incident to v and noting the labels. From this information, one
can find the distinguishing paths for any pair of 1-classes. For k ≥ 2, it is
possible to identify the k-classes and the corresponding distinguishing paths
(from knowledge of the k − 1 classes) using the properties below.

Property 1. For k ≥ 2, two nodes u and v belong to the same k-class, i.e.
[u]k = [v]k, if and only if (i) [u]1 = [v]1 and (ii) for each i, 0 ≤ i ≤ degG(u) =
degG(v), the ith neighbor ui of u and the ith neighbor vi of v belong to the
same (k − 1)-class and δ(u, ui) = δ(v, vi) = (i, j), for some j ≥ 0.

Theorem 6 ([9]). Algorithm 1 builds the quotient graph of any graph of size
n ≤ N in O(|U(N, d)| · n3d) moves and requires O(n3 log n+ |U(N, d)| log d)
memory for each agent.

There exists a UXS for graphs of size at most N and maximum degree
at most d, that is of length O(N3d2 logN) [1]. Using such a sequence for
the traversal gives us an algorithm of move complexity O(N3n3d3 logN) for
solving rendezvous.

1.5.2 Agents having Little Memory

In the algorithms discussed above, the agent needs to have enough mem-
ory to construct and to remember a map of the graph or a part of it. In
this section we consider the effect of limiting the memory of the agent. The
task of rendezvous in tree networks has been studied in synchronous envi-
ronments for agents with small memory and it was shown that logarithmic
memory is required for rendezvous even on the line [14]. Note that this lower
bound does not apply directly in our setting since the set of solvable in-
stances of rendezvous is strictly larger in a synchronous environment than
in an asynchronous one when the agents cannot mark the vertices. However,
it is well known that o(log n) memory is not sufficient for exploration of an
arbitrary graph with termination, if marking is not allowed. Consequently, if
the agents cannot mark the nodes, one can show that Ω(log n) bits of mem-
ory are necessary to solve rendezvous of two agents in an arbitrary graph in
an asynchronous environment.

In a synchronous environment without the ability to mark nodes, it is
known [13] that O(log n) memory is sufficient for rendezvous of two agents
starting on asymmetric positions in an arbitrary graph (even if the agents do
not necessarily start at the same time). The idea of the algorithm in [13] is
to obtain a unique ordering on distinct equivalence classes of nodes (without
having to construct the views of the nodes). Each agent can then use the
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index given to its initial position as its unique identifier and rendezvous can
be achieved using the standard algorithm for agents having distinct identifiers
in synchronous environments.

In the asynchronous setting, when the agent cannot mark nodes, we know
that the starting positions of the agents cannot be used to break symmetry.
Thus, rendezvous is solvable only if (G,λ, δ) is symmetric-covering-minimal.
If each agent initially knows an upper bound on the size of the graph, the
agent can execute the first part of the algorithm of [13] to distinguish be-
tween equivalence classes of nodes and to order them. Thereafter, each agent
could move to a node that belongs to the class appearing first in this order-
ing. If (G,λ, δ) is symmetric-covering-minimal, this node is unique and the
agents would have achieved rendezvous. Consequently, we have the following
theorem.

Theorem 7. Agents with O(log n) memory can solve rendezvous in any envi-
ronment (G,λ, δ) where deterministic rendezvous is feasible without marking.

1.6 Rendezvous with Marking

In this section, we assume that the agents can write on whiteboards present
in the nodes of G. If we assume no bounds on the memory available to the
agent or at a node then there is an optimal algorithm to solve rendezvous (or
Rendezvous-with-Detect) for two agents using Θ(m) moves. For the general
case of k ≥ 2 agents, this generalizes to an algorithm that requires O(mk)
moves to solve Rendezvous-with-Detect and O(m log k) to solve rendezvous.

The algorithm proceeds in two phases. In the first phase, the agents con-
struct a spanning forest of the graph using a distributed DFS-type algorithm
(described below as procedure DDFS). At the end of this procedure there is
exactly one agent in each tree in the forest and each agent a has a map of
the tree that it belongs to (we call this the agent’s territory Ta). The second
phase of the algorithm is a competition between neighboring agents, during
which each losing agent merges its territory with the corresponding winning
agent. This process is repeated with the objective of eventually forming a sin-
gle tree spanning the graph G so that all the agents gather at the root of this
spanning tree. We show that this is always possible whenever the condition
of Theorem 2 is satisfied.

Procedure DDFS: An agent A starts from its homebase a depth-first search
traversal marking the nodes that it visits (unless they are already marked)
and labeling them with numbers 1, 2, 3, . . . etc. Each node marked by the
agent and the edge used to reach it are added to its tree. If the agent reaches
an already marked node, it backtracks to the previous node and tries the other
edges incident to the node. The agent stops when there are no unexplored
edges incident to the nodes of its tree. This tree is the territory TA of the
agent.
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Partial-view (PV): Based on the territory of an agent, we define the
Partial-View PVA of an agent A having territory TA, as the finite rooted
tree, such that: (i) The root corresponds to the homebase v0 of agent A. (ii)
For every other node vi in TA, there is a vertex xi in PVA. (iii) For each edge
(vi, vj) in TA, there is an edge (xi, xj) in PVA. (iv) For each outgoing edge
e = (vi, ui) such that vi ∈ TA but e /∈ TA, PVA contains an extra vertex yi
(called an external vertex) and an edge ê = (xi, yi) that joins xi to it. (v)
Each edge in PVA is marked with two labels, which are same as those of the
corresponding edge in G. (vi) Each vertex xi in PVA is labeled with λ(vi)
and χp(vi), where vi is the node in G corresponding to xi. (vii) Each vertex
is also labeled with the numeric identifier assigned to the corresponding node
during procedure DDFS.
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Fig. 1.2 Territories and Partial-Views: (a) A graph G with 10 nodes and two agents A
and B (whose territories are marked by bold edges). (b) The Partial-View PVA for agent

A

The algorithm proceeds by comparing the partial-views of neighboring
agents (we use a fixed ordering on the partial-views). We say that an agent
A is a neighbor to agent B, if there exists an edge (u, v) such that u ∈
TA, (u, v) /∈ TA and v ∈ TB . By this definition, an agent may be its own
neighbor. The communication between neighbors works as follows. To send
any information w, the agent writes w on each whiteboard of its territory
(function ”WRITE-ALL”). To read the partial-view of neighboring agents,
an agent visits each external node x and reads the contents of the whiteboard
at x (function ”READ-PV”). In any round i, if agent A reads a partial-view
PVi,x greater than its own partial-view PVi,A in this round, then agent A is
defeated (i.e. it becomes passive and does not participate in the algorithm
anymore) and the edge connecting node x to the tree TA is used to merge
the two trees. This process is repeated for k iterations or until the territory
of an agent spans the whole graph.
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The algorithm assumes the prior knowledge of k = |Q|. Alternately if the
value of n is known (but not k) then the algorithm may be modified accord-
ingly to use this information. In this case, the main loop of the algorithm
will be executed for at most n iterations and the agent will terminate the
algorithm successfully if its territory contains n nodes.

Algorithm 2: Make-Tree(k)

Execute procedure DDFS to construct the territory TA;

PV1,A ← COMPUTE-PV(TA) ;
for phase i = 1 to k do

if Number of Agents in TA is k then

Collect all agents to root;
Return(“Success”);

WRITE-ALL(PVi,A, i);

S ← READ-PV (i);
State ← COMPARE-PV(PViA, S);

if State = Passive then
SEND-MERGE(i);

WRITE-ALL(“Defeated”, i);

Return to homebase and execute WAIT();

else
RECEIVE-MERGE(i);

execute UPDATE-PV() and continue;

WRITE-ALL(“Failure”);

Lemma 1 ([15]). Algorithm Make-Tree solves Rendezvous-with-Detect us-
ing O(mk) moves in total and requires O(m log n) whiteboard memory for
each node.

A modified version of the algorithm solves rendezvous for all solvable in-
stances in at most O(m log k) moves. The only modification is during the
comparison of the partial-views; if the agent A finds that all neighboring
agents have the same Partial-view, then agent A returns to its homebase and
waits (instead of continuing with the competition rounds for k iterations).
This algorithm would not have an explicit termination.

Another possible modification to the algorithm is to reduce the memory
required for the whiteboards (see [15]). If the whiteboards at each node are
limited to O(log n) bits, then a modified version of Algorithm Make-Tree
can be used to solve Rendezvous-with-Detect using O(log n) bit whiteboards
and O(m2k) moves in total. The idea of this algorithm is to perform the
comparisons of partial-views by traversing the territories of the neighbors.
Thus the agents have to perform additional moves, but the only information
that we need to write on the whiteboards is the label assigned to the node
and a link to its parent in the tree.
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1.7 Rendezvous using Tokens

In this section we consider the rendezvous problem in the token model where
each agent has a token which they can place on any node they visit. Note
that tokens used by all agents are identical (and thus indistinguishable). As
opposed to the previous section, there are no public whiteboards on the nodes.
If every agent puts its token on its starting location, we have a bicoloring on
the nodes of the graph representing the function χp on V (G). The agent
can now execute Algorithm 1 with the following modification. The initial
classification partitions the nodes into two classes–those that contain a token
and those that do not! The algorithm will succeed in solving rendezvous
whenever the conditions of Theorem 2 are satisfied. Moreover, the algorithm
can solve Rendezvous-with-Detect, if the exact value of n is known. However
this algorithm is not efficient in terms of the moves complexity as we have
seen. We present below a different algorithm which is more efficient [9].

1.7.1 Rendezvous with a single unmovable token

The algorithm for rendezvous presented in this section is for two agents,
though the same idea may be used to rendezvous any k ≥ 2 agents using a
more involved algorithm. We assume that an agent always places the token
at its starting location. First, suppose there is a single agent exploring a
graph G. The fact that the starting node r of the agent is marked and can
be distinguished from other nodes, makes it easier to perform an exploration
of G. The agent can perform a breadth-first traversal building a BFS-tree T
rooted at r. During the traversal, whenever the agent explores a new edge and
reaches a node v, it checks whether v is same as some node u in its tree. This
can be done by successively applying the label-sequences for the back-paths
from each node u ∈ T to the root r, and checking if one of these hits the
marked node. Based on this idea, we have an algorithm for building a map
of G with a single agent starting from a unique marked homebase in G (see
Algorithm 3). The algorithm maintain a BFS-tree T containing the visited
nodes and a data structure called ROOT PATHS that stores the edge-labeled
path P in T from any node v to the homebase r. For such a stored path P ,
Start(P ) refers to the node v. For any path P = (u0, u1, . . . ut) in the tree
T , the label sequence of path P is Λ(P ) = (δ(u0, u1), . . . δ(uk−1, ut)). Other
than the tree T , the algorithm also maintains the cross-edges which together
with T , give the complete map of G.

When two identical agents execute the algorithm 3 from marked home-
bases, it is clear that the agents will not have a map of the complete graph.
However, the following properties are satisfied.

Lemma 2 ([9]). During algorithm BFS-Tree-Construction: (i) The graph T
constructed by each agent will be an acyclic connected subgraph of G, and (ii)
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Algorithm 3: BFS-Tree-Construction

Map := T := {r} ;

Add r to Queue;

ROOT PATHS := {φ};
while Queue is not empty do

Get next node v from Queue and go to v using Map;
while node v has unexplored edges do

Traverse the next unexplored edge e = (v, u);

for each path P ∈ ROOT PATHS do
Apply sequence Λ(P ) at node u ;

if successfully reached a marked node then

Add to Map a cross-edge from v to Start(P );
Update the number of explored edges at the node Start(P );

Return to node v using T and exit Loop;

else
Backtrack to node u ;

if All path sequences failed to reach a marked node then
Add a new node u to T and Map ;
Add edge (v, u) to T and Map ;

Insert u to Queue ;

ROOT PATHS := ROOT PATHS ∪ PathT (u, r) ;
Backtrack to node v ;

if the maps constructed by the two agents are identical then the views from
the two homebases are identical.

The tree constructed by an agent in the above algorithm, is similar to the
territory of an agent as in Section 1.6. Due to the above properties, we know
that when the maps obtained by the two agents are identical, then rendezvous
is not solvable deterministically. So, we only need to consider the case when
the maps are distinct. In this case if we could compare the maps of the agents,
we can elect one of the agents and the agents could rendezvous at the home-
base of the elected agent. This algorithm (called Algorithm RDVwithToken)
was presented in [9] and we have the following result.

Theorem 8 ([9]). Algorithm RDVwithToken solves Rendezvous-with-Detect
for two agents on a graph of size n and maximum degree d, and requires
O(n4d2) moves by each agent. Each agent requires a private memory of size
O(nd log n).

1.7.2 Tolerating Failures and Uncertainty

In this section we consider two special cases. The first scenario is when tokens
placed by the agent are subject to failures (i.e. they may disappear during the



1 Deterministic Symmetric Rendezvous 17

execution). This problem has been studied for the ring [23] and a solution is
provided for f < k failures, assuming certain conditions on the parameters n
and k. A more general solution for arbitrary graphs is provided in [16] which
works if at least one token does not fail (irrespective of the values of n and
k). The idea of the algorithm is the following. If there are no failures then any
standard algorithm (e.g. the one at the beginning of this section) can be used
to determine a unique rendezvous location, whenever (G,χp, δ) is symmetric-
covering-minimal. On the other hand if there are 1 ≤ f < k failures, then the
agents whose tokens failed are distinguished from the agents whose tokens
are still in their homebase. The former agents (called Runners) traverse the
graph and carry information to each marked homebase, while the latter agents
(called Owners) wait at their homebase to receive information from each
Runner agent. Using this information, each Owner agent can determine the
location of the missing tokens and thus reconstruct a map of the original
environment, and solve rendezvous. The challenging part of the algorithm
is to switch from the procedure for the fault-free scenario to the procedure
for the faulty scenario, in case faults do occur at arbitrary times during the
execution of the algorithm.

Another scenario that has been studied recently is the rendezvous of agents
in graphs having no common port-numbering [8]. Note that all the algorithms
considered so far are based on the fact that any two agents have the same
view from any given vertex v ∈ G. If we consider the situation where two
agents a and b may have distinct port-numbering functions δa and δb, then
this assumption is no longer true. In this case, any agent a may navigate in
the graph using its own port-numbering δa and build a map representing the
minimum-base of the environment (G,λ, χp, δa) but the maps built by the
two agents may not necessarily be identical (though they will be isomorphic).
Thus, the agents may not agree on a unique ordering of the vertices and
rendezvous is not possible without any additional assumptions. Surprisingly,
if the agents are provided with an additional token (i.e. each agent now has
2 identical tokens) then it is possible to solve Rendezvous-with-Detect in
all environments that satisfy the conditions of Theorem 3. The algorithm
that achieves this, works as follows. Once an agent a has built a map of
G, the vertices of G are partitioned into automorphism classes (ignoring the
port-numbering δa). The agents then iteratively refine this partitioning by a
process of selective marking of the nodes, eventually obtaining a total order
on the set of nodes. During each phase of this iterative process, an agent uses
one token to mark the selected node and the other token to synchronize with
other agents. The full details of the algorithm can be found in [8] and we
only state the main result here.

Theorem 9 ([8]). Two tokens per agent are necessary and sufficient to solve
Rendezvous-with-Detect in the absence of common port-numbering in any en-
vironment (G,λ,Q, p) such that (Dir(G), λ′) is symmetric-covering minimal
where λ′ = λ× χp.
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1.8 Rendezvous in Dangerous graphs

We now consider the scenario where some of the nodes of the graph may be
dangerous and inaccessible to the agents. This is inspired by communication
networks where some nodes or links between nodes may develop faults. If an
agent attempts to traverse a faulty link or to move to a faulty node it simply
disappears (i.e. the agent is destroyed without leaving a trace). Given a graph
with multiple faulty nodes, we can merge them all into one dangerous node
x, called the black hole. The question of whether rendezvous can be solved in
a graph containing a black hole was first studied in [18] where an algorithm
was provided for ring graphs containing a single black hole. We study the
problem for arbitrary graphs with both faulty nodes and faulty edges, where
the agents do not have prior knowledge of the graph topology or the possible
location of faults. Throughout this section we assume the whiteboard model
of communication, i.e. the agents may write any information on the nodes
they visit.

Since the location of a black hole is unknown and cannot be determined
unless an agent falls into it and is destroyed, this means that rendezvous of
all agents is not possible. Thus, the objective is to achieve rendezvous of as
many agents as possible while avoiding the black hole. It can be shown that
in an unknown arbitrary graph with τ links that lead to a black hole, it is not
possible to solve rendezvous of more than k−τ agents [10]. Note that no agent
starts from the black hole (i.e. the homebases are distinct from the black hole
node). For agents starting from arbitrary locations, rendezvous of any two
agents is possible only if the graph obtained after removing the black hole
is connected. We now present some other conditions that must be satisfied
for feasibility of deterministic rendezvous in an environment (G,λ,Q, p, δ, η)
where the function η : E(G)→ {0, 1} denotes which edges are safe (η(e) = 1)
and which are faulty (η(e) = 0). Given a graph with multiple faulty edges
and faulty nodes, we can replace each faulty edge (u, v) with two edges (u, x)
and (v, y) leading to two distinct (dangerous) nodes x and y respectively. We
denote by τ , the number of faulty links (each faulty edge accounts for two
faulty links).
We define the extended-map of the environment (G,λ,Q, p, δ, η) as the labeled
digraph (H,µH) such that, H consists of two disjoint vertex sets V1 and V2
and a set of arcs A as defined below:

• V1 = V (G);
• µH(v) = (λ(v), χp(v)), ∀v ∈ V1;
• For every safe edge e = (u, v) ∈ E(G), there are two arcs a1, a2 ∈ A such

that s(a1) = t(a2) = u, s(a2) = t(a1) = v, and µH(a1) = (δu(e), δv(e)),
µH(a2) = (δv(e), δu(e)).

• For every faulty edge e = (u, v), there are vertices u′ and v′ ∈ V2 with
µH(u′) = µH(v′) = −1 and arcs (u, u′), (u′, u), (v, v′) and (v′, v) ∈ A with
labels (δe(u), 0), (0, δe(u)), (δe(v), 0), and (0, δe(u)) respectively;
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Fig. 1.3 The extended-map of an environment containing faulty edges (marked in dashed

lines) and black-holes (colored black)

The extended-map can be thought of as a canonical representation of the
environment (see Figure 1.3). It can be shown that any execution of a deter-
ministic algorithm on the environment (G,λ,Q, p, δ, η) can be simulated on
the extended-map (H,µH). Based on this we have the following result from
[10].

Theorem 10. It is not possible to rendezvous k−τ agents in an environment
whose extended-map is not symmetric-covering minimal.

In the following we will briefly discuss an algorithm that solves the ren-
dezvous of k−τ agents in an environment that satisfies the conditions above.
We present below a lower bound on the moves complexity of any algorithm
solving rendezvous of k − τ agents (see [10] for a proof).

Theorem 11. For solving rendezvous of (k − τ) agents in an environment
(G,λ,Q, p, δ, η) without any knowledge other than the size of G, the agents
need to make at least Ω(m(m+ k)) moves in total.

We can ensure that no more than one agent dies while traversing the
same link, using the cautious walk technique as in [18]. At each node, all the
incident edges are considered to be unexplored in the beginning. Whenever
an agent A at a node u has to traverse an unexplored edge e = (u, v), agent
A first marks link δu(e) as “Being Explored” and if it is able to reach the
other end v successfully, it immediately returns to node u and re-marks the
link δu(e) as “safe”. During the algorithm we follow the rule that no agent
ever traverses a link that is marked “Being Explored”. This ensures no more
than τ agents may die during the algorithm.

The algorithm is based on similar ideas as in Algorithm 2. Recall that
the algorithm proceeded with each agent exploring a part of the graph and
marking its territory, followed by comparison between the territories of agents
over multiple rounds. In the present algorithm, several improvisations are
required to account for the fact that some agents may die during the execution
of the algorithm. First of all, rounds of exploration are alternated with rounds
of competition between agents. During an exploration round, an agent may
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fall into a black hole and die, without completing the process of marking its
territory. Thus, during the competition an agent can win over another agent
based on either comparison of territories or comparison of round number
(a dead agent would not be able to increment its round number). When an
agent A wins the territory of another agent (that may have died) there may be
unexplored edges incident to this territory and the agent A needs to expand
the territory during the next exploration round. Recall that it is not possible
to distinguish between a dead agent and an agent that is slow in moving
along an edge. This means that an agent cannot wait for another agent to
complete its exploration. Thus, there could be multiple agents expanding a
given territory simultaneously. Those agents which are in the same territory
need to coordinate with each other in the exploration and competition tasks.
This is done by communicating using messages written on the whiteboard of
the root node. The algorithm ensures that there is always a unique root node
in every territory during the execution of the algorithm.

At any stage of the algorithm, there are teams of agents, each team pos-
sessing a territory which is a connected acyclic subgraph of G (disjoint from
other territories). Each team of agents tries to expand its territory until it
spans a majority of the nodes. Once a team is able to acquire more than
half the nodes of the network, it wins and agents from all other teams join
the winning team to achieve rendezvous. We call this algorithm as Algorithm
RDV BH.

Theorem 12 ([10]). Algorithm RDV BH correctly solves rendezvous for k−
τ agents in any network whose extended-map is symmetric-covering minimal
provided the agents initially knows a bound B such that n ≤ B < 2n. The
moves complexity of algorithm RDV BH is O(m(m+ k)).

The above result implies that the algorithm described in this section is opti-
mal in terms of the moves complexity.

1.9 Conclusion

We considered the problem of symmetric asynchronous rendezvous in graphs
whose nodes are anonymous and whose edges are locally ordered. Since the
agents are identical and follow the same deterministic algorithm, solving the
problem requires breaking the symmetry and finding a unique location to
meet. This is possible only if there is some asymmetry in the structure of the
graph (for agents that cannot mark the graph) or if the agents start from
asymmetric locations within the graph (in the case when agents are allowed
to mark their starting location). It is possible determine for exactly which
instances rendezvous is feasible and then solve rendezvous in those cases. We
presented solutions for rendezvous with detection and also discussed tech-
niques for dealing with exceptional situations involving faulty nodes, token
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failures and inconsistencies in local labelling of the edges. While all solutions
studied here assume that the edges of the graph are bidirectional, some of
the techniques could be extended to work for (strongly connected) directed
graphs (e.g. see [11]). In general, solving rendezvous in directed graphs is
more difficult due to the inability of agents to backtrack and this is one of
directions for future research. Another open problem is solving rendezvous in
dangerous graphs assuming the weaker model of communication when there
are no whiteboards and the agents are only provided with a few pebbles.
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