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Abstract. A group of identical mobile agents moving asynchronously
among the nodes of an anonymous network have to gather together in
a single node of the graph. This problem known as the (asynchronous
anonymous multi-agent) rendezvous problem has been studied exten-
sively but only for networks that are safe or fault-free. In this paper, we
consider the case when some of the edges in the network are dangerous
or faulty such that any agent travelling along one of these edges would
be destroyed. The objective is to minimize the number of agents that are
destroyed and achieve rendezvous of all the surviving agents. We deter-
mine under what conditions this is possible and present algorithms for
achieving rendezvous in such cases. Our algorithms are for arbitrary net-
works with an arbitrary number of dangerous channels; thus our model
is a generalization of the case where all the dangerous channels lead to
single node, called the Black Hole. We do not assume prior knowledge of
the network topology; In fact, we show that knowledge of only a “tight”
bound on the network size is sufficient for solving the problem, whenever
it is solvable.

1 Introduction

1.1 The Problem

Consider a networked environment, modelled as a simple connected graph, in
which operate a set of mobile computational entities, called agents or robots.
A central problem in such systems is the so called rendezvous (or gathering)
problem which requires the agents to meet together in a single node of the net-
work. This problem has been extensively studied in the literature (see, for ex-
ample, [1, 3, 10, 15, 17, 19, 23]) under a variety of models with different assump-
tions on the identity of the network nodes and/or of the agents (anonymous
or distinct labels), the existence of timing bounds on the agents’ actions (syn-
chronous or asynchronous), the intercommunication mechanisms (whiteboards
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or pebbles/tokens), the amount and type of memory, etc. In spite of their widely
different models, the existing studies on the rendezvous problems share the com-
mon assumption that the environment where the agents operate is safe.

Unlike previous studies on the rendezvous problem, we consider the case
when the environment where the rendezvous must take place, is not safe. In our
model, some of the edges in the graph are harmful for the agents; specifically,
any agent that attempts to traverse any such an edge (from either direction)
simply disappears, without leaving any trace. The location of the unsafe links
are initially unknown to the agents; we only assume that the unsafe links do
not disconnect the network. Notice that if all the edges incident to a node u

are unsafe, then node u can never be reached by any agent and is equivalent
to a black hole, i.e., a node that destroys any incoming agent (e.g., [8, 9, 11–13,
18]). In other words, the black hole model is just a specific case of the model
considered in this paper.

We investigate the problem in a very weak (and thus computationally diffi-
cult) setting: the network nodes do not have distinct identities (i.e., the network
is anonymous), the agents are identical, and their actions (computations and
movements) take a finite but otherwise unpredictable amount of time.

The only previous result for rendezvous in faulty networks was in the case of
the ring network containing two unsafe links leading to a single node—the black
hole [13]. Our investigation is thus a generalization of these studies to networks
of arbitrary topology that contain faults at arbitrary locations.

1.2 Our Results

In this paper we provide a full characterization of the rendezvous problem of
asynchronous anonymous agents in anonymous networks with unsafe links. As-
suming that the safe part of the network is connected, any port on a safe node
which leads to an unsafe part of the network, is called a faulty link. We present
the following results in this paper:

– We first show that, if there are τ unsafe links in the network and k agents,
then it is not possible, in general, for k′ agents to rendezvous if k′ > k − τ .

– We then prove that the rendezvous of k−τ agents is deterministically possible
only when the network is covering minimal. Even in this case, rendezvous is
not possible if the agents do not know the size of the network or at least a
tight upper bound. In fact, we prove that a loose upper bound n ≤ Bn ≤ 2n

is not sufficient.
– We then show that this result is tight. In fact, we present an algorithm, RDV

that requires only the knowledge of a tight upper bound B on the number
of nodes n, such that n ≤ B < 2n. This algorithm allows rendezvous of
k−τ agents in networks where such a rendezvous is possible; the rendezvous
occurs with explicit termination for each surviving agent.

– The total number of moves made by the agents during the execution of
algorithm RDV is O(m(m + k)) where m is the number of edges in G. We
prove that this cost is optimal; in fact, we show that solving rendezvous of



k − τ agents in networks where it is solvable, requires at least Ω(m(m + k))
moves, even when the network topology is known a priori.

– Finally we show that, there exists no effective algorithm for maximal ren-
dezvous, i.e. there does not exist an algorithm that when executed on any
arbitrary network achieves the rendezvous of as many agents as determinis-
tically possible on that network.

Due to the limitations of space, the proofs of some lemmas and theorems
have been omitted; These can be found in the full paper.

1.3 Related Work

The problem of Rendezvous has been extensively studied mostly using random-
ized methods (see [1] for a survey). Among deterministic solutions to rendezvous,
Yu and Yung [23] and Dessmark et al. [10] presented algorithms for agents with
distinct labels. In the anonymous setting, the problem has been studied under
different models (synchronous or asynchronous), using either whiteboards [3] or,
pebbles/tokens [19]. Some of the recent studies have focussed on minimizing the
memory required by the agents for rendezvous([15, 17]).

Most of these solutions are designed for anonymous graphs (i.e. graphs where
nodes do not have distinct identities) which present the most challenging (i.e.
computationally difficult) situations. The issue of computability in anonymous
graphs, have been studied by many authors including Angluin [2], Yamashita
and Kameda [22], Mazurkiewicz [20], Sakamoto [21], and Boldi and Vigna [4].
Most of these studies have concentrated on the problem of symmetry-breaking
or leader election which is in fact, closely related (and sometimes equivalent [7])
to the rendezvous problem for mobile agents. However, all the above results are
restricted to safe or fault-free networks.

Recently attention has focused on designing mobile agent protocols for net-
works which are faulty, in particular, where there is a black hole, that is a
harmful network site that destroys any visiting agent. The research on such net-
works have concentrated on locating the black hole. In asynchronous systems,
this has been studied under two different methods—using whiteboards [11, 12]
or using tokens [14] to mark edges. The objective here is minimizing the number
of agents that fall into the black hole and the number of moves. In the case of
synchronous agents, the objective is to minimize the time taken by the surviving
agents to locate the black hole [9, 18]. The general case of multiple black holes
has been considered only by Cooper et al. [8]. All these problems assume that
the team of agents start from the same node, i.e. they are co-located. When the
agents start from distinct nodes, it is very difficult to gather the agents while
avoiding the black hole nodes. This has been studied earlier only in the case of
ring networks containing a single black hole, by Dobrev et al. [13], where the
authors give solutions to rendezvous and near-gathering assuming the knowledge
of topology and the size of the network.



2 The Model and Definitions

2.1 The Model

The environment is modelled by the tuple (G, ξ, p, λ, η) where G is an undirected
connected graph, ξ is a set of agents and p specifies the initial placement of the
agents in the graph G (i.e. ∀A ∈ ξ, p(A) = v : v ∈ V (G) ). The number of
nodes is denoted by n = |V (G)| and the number of agents is denoted by k = |ξ|.
The agents can move from one node to its adjacent node by traversing the edge
connecting them. The edges incident to a node v are locally oriented i.e. they are
labelled as 1, 2, . . . , d(v), where d(v) is the degree of node v. Notice that each edge
e = (u, v) has two labels, one for the link or port at node u and another for the
link at node v. The edge labelling of the graph G is specified by λ = {λv : v ∈ V },
where for each vertex u, λu : {(u, v) ∈ E : v ∈ V } → {1, 2, 3, . . . , d(u)} defines
the labelling on its incident edges. For any edge (u, v) we use λ(u, v) to denote
the pair (λu(u, v), λv(u, v)).

The function η : E(G) → {0, 1} denotes which edges are safe/faulty. An edge
e ∈ E(G) is safe if η(e) = 1 and faulty otherwise. The faults are permanent, so
any edge that is faulty at the start of the algorithm remains so until the end and
no new faulty edge appears during the execution of the algorithm.

The node from where an agent A starts the algorithm (i.e. the initial location)
is called the homebase of agent A. The agents are all identical (i.e. they do
not have distinct names or labels) and they execute the same algorithm. An
agent may enter the system at any time and at any location, and on entry, an
agent immediately starts its individual execution of the algorithm. The system
is totally asynchronous, such that every action performed by an agent takes a
finite but otherwise unpredictable amount of time. As in previous papers on
the subject, we assume that the agents communicate by reading and writing
information on public whiteboards locally available at the nodes of the network.
Thus, each node v ∈ G has a whiteboard (which is a shared region of its memory)
and any agent visiting node v can read or write to the whiteboard. Access to
the whiteboard is restricted by fair mutual exclusion, so that, at most one agent
can access the whiteboard of a node at the same time, and any requesting agent
will be granted access within finite time. An agent that is granted access to the
whiteboard at node v, is allowed to complete its activity at that node before
relinquishing access to the whiteboard (i.e. access control is non preemptive).

Note that it is not necessary for two agents A and B traversing the same edge
e = (u, v) of the graph, to arrive at node v in the same order in which they left
node u. However, using the whiteboards at the nodes, it is easy to implement
a first-in first-out (FIFO) strategy such that agents traversing an edge can be
assumed to have reached their destination in order (i.e. an agent cannot overtake
another while traversing an edge). For the rest of this paper, we shall assume
this FIFO property; this will simplify the description of our algorithms.



2.2 Directed Graphs and Coverings

In this section, we present some definitions and results related to directed graphs
and their coverings, which we use to characterize those network where rendezvous
is possible. A directed graph(digraph) D = (V (D), A(D), sD , tD) possibly having
parallel arcs and self-loops, is defined by a set V (D) of vertices, a set A(D) of
arcs and by two maps sD and tD that assign to each arc two elements of V (D) :
a source and a target (in general, the subscripts will be omitted). A digraph D is
strongly connected if for all vertices u, v ∈ V (D), there exists a path between u

and v. A symmetric digraph D is a digraph endowed with a symmetry, that is, an
involution Sym : A(D) → A(D) such that for every a ∈ A(D), s(a) = t(Sym(a)).
A bidirectional network can be represented by a strongly connected symmetric
digraph, where each edge of the network is represented by a pair of symmetric
arcs. In this paper, we consider digraphs where the vertices and the arcs are
labelled with labels from a recursive label set L and such digraphs will be denoted
by (D, µD), where µD: V (D) ∪ A(D) → L is the labelling function. In general,
the label on an arc a would be a pair (x, y) and the labelling µD should satisfy
the property that if µD(a) = (x, y) then µD(Sym(a)) = (y, x), for every arc
a ∈ D.

A digraph homomorphism γ between the digraph D and the digraph D′ is a
mapping γ: V (D)∪A(D) → V (D′)∪A(D′) such that if u, v are vertices of D and a

is an arc such that u = s(a) and v = t(a) then γ(u) = s(γ(a)) and γ(v) = t(γ(a)).
A homomorphism from (D, µD) to (D′, µ′

D
) is a digraph homomorphism from D

to D′ which preserves the labelling, i.e., such that µ′

D
(γ(x)) = µD(x) for every

x ∈ V (D) ∪ A(D).
We now define the notion of graph coverings, borrowing the terminology of

Boldi and Vigna[5]. A covering projection is a homomorphism ϕ from D to D′

satisfying the following: (i) For each arc a′ of A(D′) and for each vertex v of
V (D) such that ϕ(v) = v′ = t(a′) there exists a unique arc a in A(D) such that
t(a) = v and ϕ(a) = a′. (ii) For each arc a′ of A(D′) and for each vertex v of
V (D) such that ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D) such that
s(a) = v and ϕ(a) = a′.

The fibre over a vertex v′ (resp. an arc a′) of D′ is the set ϕ−1(v′) of vertices
of D (resp. the set ϕ−1(a′) of arcs of D).

If a covering projection ϕ : D → D′ exists, D is said to be a covering of D′ via
ϕ and D′ is called the base of ϕ. A symmetric digraph D is a symmetric covering
of a symmetric digraph D′ via a homomorphism ϕ if D is a covering of D′ via
ϕ such that ∀a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)). A digraph D is symmetric-
covering-minimal if there does not exist any graph D′ not isomorphic to D such
that D is a symmetric covering of D′.

The notions of coverings extend to labelled digraphs in an obvious way:
the homomorphisms must preserve the labelling. Given a labelled symmetric
digraph (H, µH), the minimum base of (H, µH) is defined to be the labelled di-
graph (D, µD) such that (i) (H, µH) is a symmetric covering of (D, µD) and (ii)
(D, µD) is symmetric covering minimal.



The following results on digraph coverings were proved in [5].

Property 1. Given two non-empty strongly connected digraphs D, D′, each cov-
ering projection ϕ from D to D′ is surjective; moreover, all the fibres have the
same cardinality. This cardinality is called the number of sheets of the covering.

Property 2. If the digraph (H, µH) is a covering of (D, µD) via ϕ, then any
execution of an algorithm P on (D, µD) can be lifted up to an execution on
(H, µH), such that at the end of the execution, for any v ∈ V (H), v would be in
the same state as ϕ(v).

2.3 Definitions and Properties

Given any deterministic (distributed) algorithm P and a network (G, ξ, p, λ, η),
the order in which the various actions are performed by the agents defines an ex-
ecution of the algorithm on the network (G, ξ, p, λ, η). We define the synchronous
execution of an algorithm P to be the particular execution where all agents start
executing at exactly the same time and every action taken by any agent takes
exactly one unit of time.

We define the extended-view of the network (G, ξ, p, λ, η) as the labelled digraph
(H, µH) such that, H consists of two disjoint vertex sets V1 and V2 and a set of
arcs A as defined below:

– V1 = V (G);
– µH(v) = |{A ∈ ξ : p(A) = v}|, ∀v ∈ V1;
– For every safe edge e = (u, v) ∈ E(G), there are two arcs a1, a2 ∈ A such

that s(a1) = t(a2) = u, s(a2) = t(a1) = v, and µH(a1) = (λu(e), λv(e)),
µH(a2) = (λv(e), λu(e)).

– For every faulty edge e = (u, v), there are vertices u′ and v′ ∈ V2 with
µH(u′) = µH(v′) = −1 and arcs (u, u′), (u′, u), (v, v′) and (v′, v) ∈ A with
labels (λe(u), 0), (0, λe(u)), (λe(v), 0), and (0, λe(u)) respectively;

Here, the vertices in V1 represent the (safe) nodes of the network and the
vertices in V2 represent (imaginary) Black-Holes. The label on a safe vertex v

denotes the number of agents that started from the corresponding node, whereas
the label on a black-hole vertex is always −1. Intuitively, the extended-view can
be thought of as a canonical representation of the network.

The following results follow from the definition of the extended-view of a
network and the Properties 1 and 2.

Lemma 1. For any deterministic algorithm P, a synchronous execution of P on
the network (G, ξ, p, λ, η) is equivalent to a synchronous execution of algorithm
P on the extended-view (H, µH), such that the final state of any node in G is
exactly same as the state of the corresponding vertex in H.

Lemma 2. If the extended view of two networks have same minimum-base (D, µD)
then all nodes in the two networks which belong to the pre-image of a vertex
v ∈ D would always be in the same state, during a synchronous execution of any
algorithm P.


