
Groupings and Pairings in Anonymous Networks

Jérémie Chalopin1, Shantanu Das2, and Nicola Santoro3

1 LaBRI Université Bordeaux 1, Talence, France,
chalopin@labri.fr,

2 School of Information Technology and Engineering, University of Ottawa, Canada,
shantdas@site.uottawa.ca,

3 School of Computer Science, Carleton University, Canada,
santoro@scs.carleton.ca

Abstract. We consider a network of processors in the absence of unique
identities, and study the k-Grouping problem of partitioning the proces-
sors into groups of size k and assigning a distinct identity to each group.
The case k = 1 corresponds to the well known problems of leader elec-
tion and enumeration for which the conditions for solvability are already
known. The grouping problem for k ≥ 2 requires to break the symmetry
between the processors partially, as opposed to problems like leader elec-
tion or enumeration where the symmetry must be broken completely (i.e.
a node has to be distinguishable from all other nodes). We determine
what properties are necessary for solving these problems, characterize
the classes of networks where it is possible to solve these problems, and
provide a solution protocol for solving them.
For the case k = 2 we also consider a stronger version of the problem,
called Pairing where each processor must also determine which other
processor is in its group. Our results show that the solvable class of net-
works in this case varies greatly, depending on the type of prior knowledge
about the network that is available to the processors. In each case, we
characterize the classes of networks where Pairing is solvable and deter-
mine the necessary and sufficient conditions for solving the problem.

1 Introduction

Consider a distributed system consisting of a network of n processors and sup-
pose we want to partition the n nodes of the network into uniquely identified
groups, each consisting of k nodes, where k divides n. This problem, called k-
Grouping, is of simple resolution if the nodes have unique identifiers. However, in
absence of distinct nodes identities (i.e., in an anonymous network), the solution
of the k-Grouping problem becomes difficult, if at all possible. The goal of this
paper is to understand under what conditions this problem is solvable in such a
setting.

Notice that when k = 1, the grouping problem is equivalent to the well
known Node-Labelling and Enumeration problems, where each node has to be
assigned a distinct label (ranging from 1 to n, in case of Enumeration). The
1-Grouping problem is also computationally equivalent to the Leader Election



problem, where one of the nodes has to become distinguished from all others.
Although a natural extension to these problems, the k-Grouping problem for
k > 1 has never been studied before, to the best of our knowledge.

For the leader election problem, it is known that the solvability of the prob-
lem depends on the (presence or absence) of symmetry between the nodes in the
network. However, even if election is not solvable in a given network, it may be
still possible to solve the grouping problem in that same network. In fact, the
k-grouping problem for k ≥ 2 requires to break the symmetry between the nodes
only partially, as opposed to problems like leader election or enumeration where
the symmetry must be broken completely (i.e. a node has to be distinguishable
from all other nodes). Hence our investigation focuses on the computational as-
pects of partial symmetry-breaking; more precisely, our interest is in determining
what conditions are necessary for solving these problems and in characteriz-
ing the solvable instances. A case of particular interest is when k = 2, called
the Matching problem in which the nodes of the network are to be grouped in
pairs4.

It is interesting to note that the solvability of these problems depends not only
on the symmetry of the network but also on what information is initially available
to the nodes of the network, for instance, whether they know the topology or
the size of the network or whether they have a map of the network.

We are also interested in a stronger version of the grouping problem, which
we call k-Relating, where each node must also determine which other nodes have
been grouped with it. Specifically, each node should be able to compute a path
between itself and any other processor in its group. In the case k = 2, this
problem is called Pairing. and each node must know a path to the other node it
is paired with.

Related Results: The study of computability in an anonymous network of pro-
cessors, has been a subject of intense research starting from the pioneering work
of Angluin [1] who studied the problem of establishing a “center” in the network.
This work was extended by Johnson and Schneider [10] and later by Yamashita
and Kameda who gave a complete characterization of graphs where the leader
election problem is solvable [16] and of graphs where any arbitrary function can
be computed [17]. Boldi et al. [2] characterized labelled networks based on the
election problem, whereas Boldi and Vigna [3] have studied the problem of gen-
eral computability in directed graphs using the concepts of graph fibrations [4]
and coverings, (which we also use in the present paper). Others have studied
the computability issues in specific topologies or restricted to special functions
(see [11] for a survey of such results). Sakamoto [15] studied the effects of ini-
tial conditions of the processors on computability in anonymous networks, while
Flocchini et al. [8] investigated the impact of sense of direction on computability
in anonymous networks.

4 This problem is un-related to the distributed client-server match-making problem
studied in the literature [14], where nodes are already divided into clients and servers
and the network is not anonymous.



Mazurkiewicz [13] gave an algorithm (in the local-computation model) for the
distributed enumeration problem, i.e. for numbering the nodes of an undirected
graph G with integers from 1 to |V (G)|. They showed that it is possible to do
this only when the graph G is “unambiguous”. Godard et al. [9] translated this
property in terms of coverings of simple graphs. Chalopin and Métivier [6] later
adapted the Mazurkiewicz algorithm to the message passing model and showed
that the enumeration problem is solvable in a symmetric directed graph G, if
and only if G is symmetric-covering-prime.

Our Results: We first consider the k-Grouping problem and provide a complete
characterization of its solvability. First of all, we show that the knowledge of the
exact size of the network is necessary for solving the problem. Then we determine
the necessary and sufficient condition for solving the k-Grouping problem, when
such knowledge is available. For the case k = 1, this characterization corresponds
precisely (as it should) to that given in [3, 16] for the leader election problem.
We then present an algorithm (Algorithm 1) that solves the k-Grouping problem
using a simple extension to the Mazurkiewicz algorithm. As part of our solution,
we introduce a deterministic procedure with explicit termination, that computes
the minimum base of any given network in the message-passing system. Our
solution is able to detect if k-Grouping is solvable for any given k in any given
network and reports failure when the problem is not solvable in that network.

Building on the above results, in section 4.1, we investigate the Pairing prob-
lem under three different types of prior information that may be available to the
processors in the network, and we provide an almost complete characterization
of its solvability. The types of prior knowledge we consider are: (i) a complete
map of the network5; (ii) just the number of nodes; (iii) only an upper bound on
the number of nodes. We determine sufficient conditions for solving the Pairing
problem under all three different types of knowledge.

Finally, in section 4.2, we determine necessary conditions for solving the
Pairing problem in each of the different cases. We show that when a complete
map is available or, when only an upper-bound on n is known, the sufficient
conditions we have established for these two cases are necessary too; that is, our
characterization is complete in case (i) and (iii). In case (ii), when the nodes have
prior knowledge of the exact size of the network, there is a still gap between the
necessary and sufficient conditions.

2 The Model and the Definitions

2.1 Directed Graphs

A directed graph(digraph) D = (V (D), A(D), sD, tD) possibly having muli-
ple arcs and self-loops, is defined by a set V (D) of vertices, a set A(D) of
arcs and by two maps sD and tD that assign to each arc two elements of
V (D) : a source and a target (in general, the subscripts will be omitted). A
digraph D is strongly connected if for all vertices u, v ∈ V (D), there exists

5 The map is unanchored i.e. a node may not know its location in the map.



a path between u and v. A symmetric digraph D is a digraph endowed with
a symmetry, that is, an involution Sym : A(D) → A(D) such that for every
a ∈ A(D), s(a) = t(Sym(a)). In a symmetric digraph, the mirror of a path
P = (a0, a1, . . . , ap) is the path (Sym(ap), Sym(ap−1), . . . , Sym(a0)). In this
paper, we will only consider strongly connected symmetric digraphs.

A digraph homomorphism γ between the digraph D and the digraph D′ is
a mapping γ : V (D) ∪ A(D) → V (D′) ∪ A(D′) such that if u, v are vertices of
D and a is an arc such that u = s(a) and v = t(a) then γ(u) = s(γ(a)) and
γ(v) = t(γ(a)). We consider digraphs where the vertices and the arcs are labelled
with labels from a recursive label set L and such digraphs will be denoted by
(D,λ), where λ : V (D) ∪ A(D) → L is the labelling function. A homomorphism
from (D,λ) to (D′, λ′) is a digraph homomorphism from D to D′ which preserves
the labelling, i.e., such that λ′(γ(x)) = λ(x) for every x ∈ V (D) ∪ A(D).

2.2 The Message-Passing Network Model

We represent a point-to-point message passing network by a connected sym-
metric digraph G without self-loops and multiple arcs. The vertices represent
processors and if there is a (bidirectional) communication link between proces-
sors corresponding to some vertices u and v, there is an arc auv from u to v,
an arc avu from v to u and Sym(auv) = avu. The initial state of the proces-
sors is encoded by a vertex labelling function λV : V (G) → Σ, where Σ is a
set with a total order <Σ . In particular, if all vertices have the same label i.e.
λV (v) = λV (v′), ∀v, v′ ∈ V (G), then the network is anonymous.

We assume the presence of a local orientation λA on the network: for each
vertex u (of degree d), there exists an injective mapping λA

u that associates a
unique number λA

u (v) ∈ [1, d] to each neighbor v of u. This local orientation
defines a labelling on the arcs of G as follows. For any pair of neighboring nodes
{u, v} in G, λA(auv) = (λA

u (v), λA
v (u)) and λA(avu) = (λA

v (u), λA
u (v)). From this

construction, one can notice that for any arc a ∈ (G, λ), if λA(a) = (p, q), then
λA(Sym(a)) = (q, p).

The labelled digraph (G, λ) would be called a network, if and only if it satisfies
each of the following: (i) There does not exist any arc a ∈ A(G) such that
s(a) = t(a) (i.e. no self loops), (ii) There does not exist two distinct arcs a, a′ ∈
A(G) such that s(a) = s(a′) and t(a) = t(a′) (i.e. no parallel arcs), and (iii)
λ = (λV , λA), where λV : V (G) → Σ and λA is a local orientation on G, as
defined above.

The vertices of the network (G, λ) would be called nodes or, processors.
Each processor v in the network represents an entity that is capable of perform-
ing computation steps, sending messages on any outgoing arcs, and receiving any
message that was sent on any of the incoming arcs. Notice that the entity can
distinguish among the arcs due to the presence of local orientation. The follow-
ing procedure calls are available to the entity at a node v : Send< M, p > and
Receive< M, p >, to send (respectively receive) the message M on the communi-
cation link labelled by p. Every entity executes the same algorithm provided to



it which consists of a sequence of computation steps interspersed with procedure
calls of the two types mentioned above. Each of the steps of execution may take
an unpredictable (but finite) amount of time (i.e. we consider fully asynchronous
systems).

For any path P = (a1, a2, . . . , aj) in the network (G, λ), the sequence of arcs
labels corresponding to it is denoted by Λ(P ) = (λA(a1), λ

A(a2), . . . , λ
A(aj)).

For any sequence of edge-labels α, we define the function Tα for a network (G, λ)
as follows. A node u = Tα(v) if and only if there is path P from v to u in G
whose label-sequence Λ(P ) is α. Notice that if λ is a local orientation then there
can be at most one node of this kind and then Tα(v) is a mapping.

Each processor, at the beginning of computation would have the same knowl-
edge about the network. As in [16] we will focus on three different kinds of initial
knowledge that may be available to the processors:

[UB] Knowledge of an upper bound on n, the size of G,
[ES] Knowledge of the exact value of n, the size of G
[MP] Knowledge of a map (i.e. an isomorphic copy) of the labelled graph (G, λ).

2.3 Problems and Definitions

Informally speaking, the problem of k-GROUPING is to partition the nodes of
the network into groups of k nodes, where nodes in the same group are identified
by a common label assigned to them.

k-GROUPING: Given the network represented by (G, λ), compute at each
node v the value LABEL(v) where LABEL : V (G) → IN satisfies the condition
that for each v ∈ V (G), |{u ∈ V (G) : LABEL(u) = LABEL(v)}| = k.

In the particular case, where k = 1, this problem corresponds to the well-
studied problems of naming/enumeration and election. For the case k = 2, we
call it the MATCHING problem where the nodes of the network are matched-
up in pairs such that nodes in a pair share the same label. Notice that the
nodes matched to each-other may not be adjacent and in general, a node may
not know which other node it has been matched with. A more difficult version
of MATCHING (or, 2-GROUPING) is the PAIRING problem which involves
forming pairs among the nodes of the graph, such that each node v knows a
path leading to the other node it is paired with, denoted by Pair(v). This is
defined formally as:

PAIRING: Given a network represented by (G, λ), compute at each node v
the sequence of edge-labels representing a path from node v to the node pair(v),
where the function pair : V (G) → V (G) is such that (i) pair(v) = u ⇔ pair(u) =
v, (ii) pair(u) = pair(v) ⇔ u = v, and (iii) pair(v) 6= v for any v ∈ V (G).

The generalized version of the Pairing problem, called k-relating, k ≥ 1, is not
considered in the present paper.

Definition 1. For each of the above problems, we say that the problem is solv-
able on a given instance (G, λ), under the knowledge MP(respectively ES or, UB) if



there exists a deterministic (distributed) algorithm A such that every execution of
algorithm A on (G, λ), succeeds in solving the problem (i.e. produces the required
output), when provided with the appropriate input according to MP(respectively
ES or, UB).

We are interested in generic solution protocols for the problems, i.e. algo-
rithms which, when executed on any given instance (G, λ), always terminates
within a finite time, either successfully solving the problem, or reporting failure
to do so.

Definition 2. We say that an algorithm A is effective for a given problem,
under the knowledge MP(respectively ES or, UB) if for every instance (G, λ) of
the problem, the algorithm A succeeds in solving the problem if and only if the
problem is solvable on (G, λ) under the knowledge MP(respectively ES or, UB)

2.4 Fibrations and Coverings

The notions of fibrations and coverings were defined by Boldi and Vigna in [4].
We present the main definitions and properties here, that are going to be used
in this work.

A fibration between the digraphs D and D′ is a homomorphism ϕ from D to
D′ such that for each arc a′ of A(D′) and for each vertex v of V (D) such that
ϕ(v) = v′ = t(a′) there exists a unique arc a in A(D) such that t(a) = v and
ϕ(a) = a′. The fibre over a vertex v (resp. an arc a) of D′ is the set ϕ−1(v) of
vertices of D (resp. the set ϕ−1(a) of arcs of D).

An opfibration between the digraphs D and D′ is a homomorphism ϕ from
D to D′ such that for each arc a′ of A(D′) and for each vertex v of V (D) such
that ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D) such that s(a) = v
and ϕ(a) = a′.

A covering projection is a fibration that is also an opfibration. If a covering
projection ϕ : D → D′ exists, D is said to be a covering of D′ via ϕ and D′

is called the base of ϕ. A symmetric digraph D is a symmetric covering of a
symmetric digraph D′ via a homomorphism ϕ if D is a covering of D′ via ϕ such
that ∀a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)). A digraph D is symmetric-covering-
minimal if there does not exist any graph D′ not isomorphic to D such that D
is a symmetric covering of D′.

Property 1 ([4]). Given two non-empty strongly connected digraphs D,D′, each
covering projection ϕ from D to D′ is surjective; moreover, all the fibres have the
same cardinality. This cardinality is called the number of sheets of the covering.

The notions of fibrations and of coverings extend to labelled digraphs in an ob-
vious way: the homomorphisms must preserve the labelling. Given a labelled
symmetric digraph (G,λ), the minimum base of (G,λ) is defined to be the la-
belled digraph (H,λH) such that (i) (G,λ) is a symmetric covering of (H,λH)
and (ii) (H,λH) is symmetric covering minimal.



The above definition is equivalent to that given in [12, 4] where the minimum
base is defined using the degree refinement technique that is related to techniques
used for minimizing deterministic automata.

Given a labelled digraph (G,λG) and its minimum base (H,λH), the quantity
q = |V (H)|/|V (G)| is called the symmetricity (see [16]) of the labelled digraph
(G,λG). This quantity is same as the number of sheets of the covering projection
ϕ from (G,λG) to (H,λH).

The following property says that if (G,λG) is a covering of (H,λH), then
from any execution of an algorithm on (H,λH), one can build an execution
of the algorithm on (G,λG). This is the counterpart of the lifting lemma that
Angluin gives for coverings of simple graphs [1] and the proof can be found in
[4, 6].

Property 2. If (G,λG) is a covering of (H,λH) via ϕ, then any execution of an
algorithm A on (H,λH) can be lifted up to an execution on (G,λG), such that
at the end of the execution, for any v ∈ V (G), v would be in the same state as
ϕ(v).

In particular, if we consider a synchronous execution of an algorithm A on
(G,λ), then this execution is obtained by lifting up the synchronous execution
of A on the minimum base (H,λ). As a result of the above property we have the
following additional property, which is useful for proving impossibility results.

Property 3. Consider two labelled digraphs (G1, λ1) and (G2, λ2) that both cover
the same labelled digraph (H,λH) via ϕ1 and ϕ2 respectively. For any algorithm
A, there exist executions of A on (G1, λ1) and (G2, λ2) such that at the end
of these executions, any vertex v1 ∈ V (G1) would be in the same state as any
vertex v2 ∈ ϕ−1

2 (ϕ1(v)) ⊂ V (G2) provided that the vertices are given the same
input initially.

3 Solving the k-Grouping problem

3.1 Conditions for solvability

Throughout the rest of this paper, we shall assume that the values of k and n
are such that k divides n, which is a necessary condition for solving the problems
that we consider.

Lemma 1. For solving the k-Grouping problem for a given k in a network
(G, λ), (i) knowledge of the exact size of the network, is necessary (i.e. the
knowledge [UB] is not sufficient) and (ii) q must divide k, where q is the sym-
metricity of (G, λ).

Proof Omitted.



3.2 Solution Protocol

We give below an algorithm Grouping(n, k) for solving the k-Grouping problem
in a network of size n. The algorithm computes the minimum base (H,λH) of the
network (G, λ), using the sub-procedure Enumerate which is based on Chalopin
and Métivier’s version of the Mazurkiewicz enumeration algorithm. However, we
modify the algorithm to obtain a pseudo-synchronous algorithm that labels the
vertices of the network with integers from 1 to |V (H)|, such that all nodes that
map to the same vertex v in H share the same label. This enables us to com-
pute the minimum base (H,λH) based on the labelling. (Note that computing
the minimum-base of a digraph is a fundamental problem which is related to
state-minimization of automata and also to graph-partitioning and isomorphism
detection [5, 7]. However the known solutions are not directly applicable in the
present model.)

Algorithm 1: Grouping(n,k)

(H, num) := Enumerate(n) ;
q := n/|V (H)| ;
x := n/k ;
if q divides k and k divides n then

return (num modulo x) + 1 ;
else

Terminate with failure ;

Procedure Enumerate(n̂) at node v

n(v) := 1 ;
N(v) := ∅ ;
M(v) := {(1, λ(v), ∅} ;
for n̂4 iterations do

for p := 1 to dG(v) do send < (n(v), M(v)), p > via port p ;
for p := 1 to dG(v) do

receive < (x, M), q > via port p ;
N(v) := N(v) \ {( , p, )} ∪ {(x, p, q)} ;
M(v) := M(v) ∪ M ∪ {(n(v), λ(v), N(v))} ;

if ∃(n(v), l, N) ∈ M(v) | (λ(v), N(v)) ≺ (l, N) then
n(v) := 1 + max{x | ∃(x, l, N) ∈ M(v)} ;
M(v) := M(v) ∪ {(n(v), λ(v), N(v))} ;

Map := Construct-Graph(M(v)) ;
return (Map, n(v)) ;

During the procedure Enumerate, the state of each processor vi ∈ V (G) is
represented by (λV (vi), c(vi)), where c(vi) = (n(vi), N(vi),M(vi)) represents
the following information obtained during the computation:

– n(vi) ∈ IN is the number assigned to vi by the algorithm.



– N(vi) is the local view of vi, i.e., the information the vertex vi has about
its neighbours. This contains elements of the form (nj , pj , qj) where nj is
the number assigned to a neighbor vj and the arc from vi to vj is labelled
(pj , qj).

– M(vi) is the mailbox of vi containing all of the information received by v0

at previous computation steps. Formally, it is a set of elements of the form
(nj , lj , Nj) where nj , lj , and Nj are respectively the number, the initial label
and the local view of some node at some previous step of the algorithm.

As in the original algorithm of Mazurkiewicz [13], we need a total order on
the local views. Given two local views N1 and N2, we shall say that N1 ≺ N2

if the maximum element for the lexicographic order of the symmetric difference
N1 △ N2 = N1 ∪ N2 \ N1 ∩ N2 belongs to N2. We will also say that (l1, N1) ≺
(l1, N1) if l1 <Σ l2 or if l1 = l2 and N1 ≺ N2.

Procedure Construct-Graph(M)

nmax := max{x | ∃(x, l, N) ∈ M} ;
V (H) := {vi | 1 ≤ i ≤ nmax} ;
A(H) := ∅ ;
for i := 1 to nmax do

(λH(vi), Ni) := max≺{(l, N) | (i, l, N) ∈ M} ;
foreach (j, p, q) ∈ Ni do

A(H) := A(H) ∪ {aijpq} ;
s(aijpq) = vi ;
t(aijpq) = vj ;
λH(aijpq) = (p, q) ;

return (H, λH) ;

Lemma 2. During the execution of algorithm Enumerate(n̂) on a network (G, λG)
of size ≤ n̂, the map constructed by Procedure Construct-graph represents the
minimum base (H,λH) of (G, λG).

Once the minimum base of (G, λG) has been constructed, it is quite straight-
forward to solve k-Grouping as shown in Algorithm 1. Notice that the algorithm
always succeeds if q divides k which is the necessary condition for solving k-
Grouping. Hence we have the following results:

Theorem 1. Under the knowledge [ES], k-Grouping is solvable (for any k that
divides n) in the network (G, λ) if and only if q divides k, where q is the sym-
metricity of (G, λ).

Corollary 1. When the size of the network is known, Matching is solvable in
(G, λ) if and only if the symmetricity of (G, λ) is either 1 or 2.



4 Solving the Pairing problem

4.1 Sufficiency Conditions and Solutions

Lemma 3. If k-Grouping is solvable in (G, λ) for k = |G|/2, then Pairing is
also solvable in (G, λ).

Combining the results of Lemma 1 and Lemma 3, we know that Pairing is
solvable in (G, λ) if the symmetricity q divides n/2. However, since q always
divides n, the above condition is equivalent to the condition that 2 divides n/q
(i.e. the size of the minimum base). This gives us the following corollary:

Corollary 2. Pairing is solvable in (G, λ) if it is solvable in (H,λH), the min-
imum base of the network (or equivalently, if H has even size).

In the minimum base (H,λH), each vertex is uniquely labelled. Thus, Pairing
is solvable in (H,λH) if and only if H has even number of vertices. From a
solution for Pairing in (H,λH), we can easily construct a corresponding solution
for (G, λG). (We only need to ensure that if a node u is paired to v, using the
label sequence α, then v should be paired to u using the inverse sequence of
α.) In case H has an odd number of vertices, then some node in G should be
paired with another node having the same label (which is possible if there is a
symmetric arc joining them).

Theorem 2. Under the knowledge [UB], Pairing is solvable for (G, λG) having
minimum base (H,λH) and symmetricity q, if any one of the following holds:

(i) (H,λH) has an even number of vertices (i.e. n/q is even) or,
(ii) (H,λH) contains a symmetric self-loop (i.e. an arc a, s.t. Sym(a) = a).

Let us now consider the case when the exact value of the network size is known.

Theorem 3. Under the knowledge [ES], Pairing is solvable for the network
(G, λG) having minimum base (H,λH) and symmetricity q, if one of the fol-
lowing holds:

(i) (H,λH) has an even number of vertices (i.e. n/q is even),
(ii) there exists a symmetric self-loop in (H,λH) (i.e., a self-loop whose label

has the form (p, p)),
(iii) the minimum base has 2|V (H)| arcs , i.e., |A(H)| = 2n/q,
(iv) q = 4 and there exists a self-loop in (H,λH),
(v) q = 2 and there exists two distinct arcs a, a′ ∈ A(H) such that s(a) = s(a′)

and t(a) = t(a′).

Proof. Suppose that the size of (H,λH) is odd and that it does not contain
any symmetric self-loop (otherwise, from Lemma 2, we already know that it is
possible to solve Pairing). Since (H,λH) does not contain any symmetric self-
loop, for each arc a ∈ A(H), there exists a′ 6= a such that Sym(a) = a′.

Suppose that (H,λH) has 2|V (H)| arcs. Then there exists exactly two simple
cycles C,C ′ in (H,λH) where C ′ is the mirror of C. The preimage of a cycle in



(H,λH) is a set of disjoint cycles in (G, λG). If the preimage of C contains at least
two cycles, then (G, λG) would be disconnected. Consequently, the preimage of
C must be a single cycle of length |C|.q in (G, λG). Moreover there does not exist
any other cycle in (G, λG) different from the preimage of C or C ′. Since |V (H)|
is odd, and |V (G)| = q|V (H)| is even, we know that q is even. Let us fix a vertex
v = s(a0) belonging to the cycle C. Then for each vertex x ∈ ϕ−1(v), we use the
label sequence α(x) = Λ(C)q/2 to pair it with another vertex y ∈ ϕ−1(v). Now,
the remaining vertices in G can be easily paired-up.

Suppose there exists a (non-symmetric) self-loop in (H,λH) and q = 4. Let a
be such a self-loop and let v = s(a) = t(a). As explained above, the preimage of a
is a set of cycles and the sum of the lengths of these cycles must be 4. Since (G, λ)
is a network that contains neither self-loop, nor multiple arcs, the preimage of
a cannot contain cycles of length 1 or 2, and then, the preimage of a is a set
of cycles of length 4. Consequently, we can associate to each vertex x ∈ ϕ−1(v)
the label α(x) = Λ(aa). If Tα(x)(x) = x, then it means that there exists a cycle
of length 2 in (G, λG) which is impossible. Let us now consider y = Tα(x)(x).
Since ϕ(y) = v, α(y) = α(x) and consequently Tα(y)(y) = Tα(x)(Tα(x)(x)) =
Tα(x)2(x) = TΛ(aaaa)(x) = x, since the preimage of a consists of cycles of length
4. Consequently all the vertices in ϕ−1(v) will be paired in (G, λG). For all the
other vertices we proceed as before.

Suppose that q = 2 and that there exists two arcs a, a′ ∈ A(H) such that
s(a) = s(a′) and t(a) = t(a′). Let v = s(a) and consider the cycle (a, Sym(a′))
of length 2. The preimage of this cycle in G, λG is a set of cycles and the
sum of the lengths of these cycles must be 4. As before, it implies that the
preimage of this cycle consists of a set of cycles of length 4. Then, one can
associate to each vertex x ∈ ϕ−1(v) the label α(x) = Λ(aSym(a′)). Consider
a vertex x ∈ ϕ−1(v), if Tα(x)(x) = x, then it means that there exists a cycle
of length 2 in (G, λG) which is impossible. Let us now consider y = Tα(x)(x).
Since ϕ(y) = v, α(y) = α(x) and consequently Tα(y)(y) = Tα(x)(Tα(x)(x)) =
Tα(x)2(x) = TΛ(aSym(a′)aSym(a′))(x) = x and consequently all the vertices in
ϕ−1(v) will be paired in (G, λG). For all the other vertices we proceed as before.

⊓⊔

Theorem 4. Under the knowledge [MP], Pairing can be solved for (G, λG) whose
minimum base is (H,λH) if one of the following holds:

(i) (H,λH) has an even number of vertices (i.e. n/q is even),

(ii) there exists a vertex v ∈ V (H) and a closed path P (v, v) in (H,λH) such
that for any vertex u ∈ ϕ−1(v), Tα(u) 6= u and Tα(Tα(u)) = Tα2(u) = u
where α = Λ(P ) is the sequence of labels corresponding to the path P (v, v).

The above result clearly indicates how to solve the Pairing problem, when
provided with a map of the graph. Observe that the condition (ii) in Theorem 2
and the conditions (ii), (iii), (iv), (v) in Theorem 3 are particular cases of the
condition (ii) in Theorem 4.



4.2 Necessary conditions

We now show that most of the sufficient conditions presented in Section 4.1 are
in fact, also necessary. First we state a general result about solving Pairing in
networks whose minimum base has odd number of vertices.

Lemma 4. If (G, λG) is a network whose minimum base (H,λH) has an odd
number of vertices, then for any solution to the Pairing problem in (G, λG), by
some algorithm A, there exists v ∈ V (H) such that each node u ∈ ϕ−1(v) is
paired with another node u′ ∈ ϕ−1(v).

Theorem 5. Under the knowledge [MP], Pairing cannot be solved for any net-
work (G, λG) whose minimum base (H,λH) has the following properties:

(i) (H,λH) has an odd number of vertices, and
(ii) there does not exist a vertex v ∈ V (H) and a closed path P (v, v) in (H,λH)

such that for every vertex u ∈ ϕ−1(v), Tα(u) 6= u and Tα(Tα(u)) =
Tα2(u) = u where α = Λ(P ) is the sequence of labels of the arcs in P (v, v).

Notice that there are indeed networks (of even size) which satisfy the condi-
tions of Theorem 5, and thus, Pairing is unsolvable in such networks even when
a map of the network is available. One such example is shown in Figure 1.

G

1 3

2 4

2

1

2

2

1

1

2

1

H

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Fig. 1. A simple network, G and (its minimum base H) where Pairing is not solvable.
Here each edge between two nodes represents a pair of arcs, one in each direction (For
clarity, the edge labels have been removed from G).

Theorem 6. Under the knowledge [ES], Pairing is not solvable for any network
(G, λG) having minimum base (H,λH) and symmetricity q, if all of the following
hold:

(i) (H,λH) has an odd number of vertices,



(ii) the minimum base has strictly more than 2|V (H)| arcs , i.e., |A(H)| >
2n/q,

(iii) there does not exist any self-loop in (H,λH), and
(iv) there does not exist two distinct arcs a, a′ ∈ A(H) such that s(a) = s(a′)

and t(a) = t(a′).

The above result shows that there is a gap between the necessary and suf-
ficient conditions for the case when the exact network size is known. In fact,
if the minimum base of the network contains asymmetric self-loop and parallel
arcs, then we do not know the exact conditions necessary for solving the Pairing
problem. In these cases, it may be possible to characterize the networks in terms
of the number of self-loops or parallel arcs in their minimum base, and thus
minimize this gap between the necessary and sufficient conditions.

Theorem 7. Under the knowledge [UB], Pairing is not solvable in any network
(G, λG) having minimum base (H,λH), if the following holds:

(i) (H,λH) has an odd number of vertices, and
(ii) there does not exist any symmetric self-loop in (H,λH) (i.e. an arc a such

that Sym(a)=a).

Proof. Let (H,λH) be any symmetric digraph with odd number of vertices and
having no symmetric self-loops. If there is an algorithm A that solves Pair-
ing in (G, λG) under the knowledge [UB] then this algorithm should work for
every network (G′, λ′

G) which covers (H,λH) (the algorithm cannot differenti-
ate between two networks with a common minimum base, when only an upper
bound on the network size is known). We shall now show that the algorithm
A would fail for at least one network (G, λG) that covers (H,λH). First note
that |A(H)| ≥ 2 · |V (H)| because otherwise either G is disconnected or G is an
odd-sized tree (where Pairing is not possible anyway).

If |A(H)| ≥ 2 |V (H)|, then there exists an arc a ∈ A(H) such that H ′ =
H \ {a, Sym(a)} is strongly connected. (a could be either a self-loop or one of
the pair of parallel arcs or, one of the arcs in a cycle). Let u = s(a), v = t(a),
and a′ = Sym(a) 6= a. Consider the connected digraph H ′ that is obtained from
H by removing the arcs a and a′. Suppose (G′, λ′

G) be a network of odd size,
whose minimum base is (H ′, λH). Notice that it is always possible to construct
such a G′, if H ′ has no symmetric self-loops.

We now construct two networks (G1, λG1) and (G2, λG2) defined as fol-
lows. To construct (G1, λG1), we take 4 distinct copies (G′

0, λ
′

0), . . . , (G
′

3, λ
′

3)
of (G′, λ′

G). We will denote by ui1, ui2, ... (resp. vi1, vi2, ...) the vertices that cor-
responds to u (resp. v) in (G′

i, λi). We then add the arc aij with the same label
as a (and the symmetric arc a′

ij with the same label as a′) between uij and vrj ,
r = i+1 mod 4 for all i, j. To construct (G2, λG2), we do the same but we con-
sider 8 distinct copies of (G′, λ′

G). Clearly, the two graphs we have constructed
are symmetric coverings of (H,λH). Thus, due to Lemma 4, there exists a vertex
v ∈ V (H), such that all nodes in ϕ−1(v) are paired among themselves, both in
network (G1, λG1) and network (G2, λG2).



Due to property 2, there exists an execution of A on (G1, λG1) (respectively
(G2, λG2)) where the each node in the pre-image of v computes the same label
sequence α as computed by v in an execution of A on (H,λH). Consider the path
P (v, v) in (H,λH), which corresponds to the sequence α. Let |P |a (resp. |P |a′)
be the number of times the arc a (resp, a′) appears in P and let na = |P |a−|P |a′ .

CLAIM (1): na is of the form 4r1 + 2 for some integer r1.
CLAIM (2): na is of the form 8r2 + 4 for some integer r2.

To see why the first claim is true, consider the subgraph G′

i of G1. There
are an odd number of vertices in G′

i, which belong to the preimage of v. Thus,
at least one of these nodes must be paired with a node in some other subgraph
G′

j , j 6= i of G1. ( Notice that whenever we traverse an arc belonging to the
pre-image of a, we move from one subgraph G′

i to the next G′

i+1 mod 4.) Thus,
in this case, j = i + na mod 4 and also i = j + na mod 4. So, na must be of
the form 4r1 + 2 for some integer r1. This proves the first claim. For the second
claim, we consider the graph (G2, λG2) where, using a similar argument we can
show that na must be of the form 8r2 + 4 for some integer r2.

Note that the two claims above cannot be true simultaneously. This implies
that the algorithm A must fail for one of the networks (G1, λG1) or (G2, λG2).

⊓⊔

Due to the earlier results and Theorem 7, we have a complete characterization
of those networks where Pairing is solvable when provided with an upper bound
on the network size.

5 Conclusions and Open problems

In this paper, we studied the problem of k-Grouping which is a generalization
of the node-enumeration or the election problem, in anonymous networks. In
particular we also studied the problem of Matching or Pairing the nodes of the
network. For the Pairing problem, the solvability depends on the amount of prior
knowledge available. When an upper bound on the network size is known, it is
possible to compute the minimum base for the network. We characterized the
solvable instances of the Pairing problem in terms of the minimum base of the
network. When the exact network size is known, the network can be represented
by its minimum base and its symmetricity. In this case, the characterization pre-
sented in this paper is not complete and there is a gap between the necessary and
sufficient conditions, which needs to be investigated. Another possible extension
of this work would be to study the generalization of the Pairing(or 2-Relating)
problem to other values of k (say for k = 3, 4, 5, . . . ) or for arbitrary values of k.
It would also be interesting to consider the problem of approximate k-groupings
in the case when k does not divide n.

Acknowledgments: The authors would like to thank Paola Flocchini for the many
helpful discussions and comments.



References

1. D. Angluin. Local and global properties in networks of processors. In Proc. 12th
ACM Symp. on Theory of Computing (STOC ’80), 82–93, 1980.

2. P. Boldi, B. Codenotti, P. Gemmell, S. Shammah, J. Simon, and S. Vigna. Sym-
metry breaking in anonymous networks: Characterizations. In Proc. of 4th Israeli
Symposium on Theory of Computing and Systems(ISTCS’96), 16–26, 1996.

3. P. Boldi and S. Vigna. An effective characterization of computability in
anonymous networks. In Proc. 15th Int. Conference on Distributed Computing
(DISC’01), 33–47, 2001.

4. P. Boldi and S. Vigna. Fibrations of graphs. Discrete Math., 243:21–66, 2002.
5. A. Cardon and M. Crochemore. Partitioning a Graph in O(|A|log2|V |). Theoret-

ical Computer Science,19:85–98, 1982.
6. J. Chalopin and Y. Métivier. A bridge between the asynchronous message passing

model and local computations in graphs (extended abstract). In Proc. of Math-
ematical Foundations of Computer Science, MFCS’05, volume 3618 of LNCS,
pages 212–223, 2005.

7. D.G. Corneil and C.C. Gotlieb. An Efficient Algorithm for Graph Isomorphism.
Journal of the ACM, 17(1):51–74, 1970.

8. P. Flocchini, A. Roncato, and N. Santoro. Computing on anonymous networks
with Sense of Direction. Theoretical Computer Science, 301, 355-379, 2003.

9. E. Godard, Y. Métivier, and A. Muscholl. Characterization of classes of graphs
recognizable by local computations. Theory of Computing Systems, 37(2):249–
293, 2004.

10. R.E. Johnson and F.B. Schneider. Symmetry and similarity in distributed sys-
tems. In Proc. 4th Annual ACM Symp. on Principles of Distributed Computing
(PODC ’85), 13–22, 1985.

11. E. Kranakis. Symmetry and computability in anonymous networks: A brief survey.
In Proc. 3rd Int. Conf. on Structural Information and Communication Complexity
(SIROCCO ’97), 1–16, 1997.

12. F. T. Leighton. Finite common coverings of graphs. J. Combin. Theory, Ser. B,
33:231–238, 1982.

13. A. Mazurkiewicz. Distributed enumeration. Inf. Processing Letters, 61(5):233–
239, 1997.

14. S.J. Mullender and P.M.B. Vitanyi. Distributed match-making. Algorithmica, 3:
367–391, 1998.

15. N. Sakamoto. Comparison of initial conditions for distributed algorithms on
anonymous networks. In Proc. 18th ACM Symposium on Principles of Distributed
Computing (PODC ’99), 173–179, 1999.

16. M. Yamashita and T. Kameda. Computing on anonymous networks: Parts I and
II. IEEE Trans. Parallel and Distributed Systems, 7(1):69–96, 1996.

17. M. Yamashita and T. Kameda. Computing functions on asynchronous anonymous
networks. Mathematical Systems Theory, 29:331–356, 1996.


