
Data Delivery by Energy-Constrained
Mobile Agents

Jérémie Chalopin1, Shantanu Das1, Matúš Mihalák2, Paolo Penna2, and
Peter Widmayer2

1 LIF, Aix-Marseille University & CNRS, France
2 Institute of Theoretical Computer Science, ETH Zürich, Switzerland

Abstract. We consider mobile agents of limited energy, which have to
collaboratively deliver data from specified sources of a network to a cen-
tral repository. Every move consumes energy that is proportional to the
travelled distance. Thus, every agent is limited in the total distance it
can travel. We ask whether there is a schedule of agents’ movements that
accomplishes the delivery. We provide hardness results, as well as exact,
approximation, and resource-augmented algorithms for several variants
of the problem. Among others, we show that the decision problem is
NP-hard already for a single source, and we present a 2-approximation
algorithm for the problem of finding the minimum energy that can be
assigned to each agent such that the agents can deliver the data.

Keywords: Mobile agents and robots; data aggregation and delivery;
power-awareness; algorithms

1 Introduction

Recent progress in designing and producing small, simple, and cheap mobile
micro-robots raised new algorithmic challenges in deploying these robots in var-
ious tasks. In this paper, we study the question of whether and how such simple
robots can collaboratively transfer information from specified sources to a sin-
gle repository. Due to their simplistic construction, the robots have only very
limited capabilities, for example, little memory, small computational power, lim-
ited communication capabilities, noisy sensing, or limited battery power. In this
paper, we focus on the last limitation aspect – the limited battery power. In
particular, we study how such a limitation influences collective capabilities of
the robots to accomplish the delivery task. We concentrate on this single aspect
of the robots, and do not limit the other capabilities of the robots. In particular,
we assume the robots to have enough memory to store the data, and we are also
not interested in the amount of time it takes to finish. We study the delivery
task on graphs; for this reason we adapt our terminology to the literature and
refer to the robots as agents.



Model

We consider undirected, connected, edge-weighted graphs. The weight w(e) of
edge e represents the energy required to cross the edge. Therefore, we will some-
times refer to w(e) as the length of the edge. By d(u, v) we denote the distance
between nodes u and v, i.e., the length of the shortest path from u to v (with
respect to the edge weights).

We further consider k mobile agents that are initially placed on vertices of a
given graph. Agent i can move along the edges of G. In total, agent i can move
along a walk of length at most Ri. The agent can stop anywhere on an edge e.
In such a case the travelled distance is proportional to w(e) and to the position
of the stop on e.

Furthermore, there are m distinct sources S = {s1, . . . , sk} ⊂ V , and one
target t ∈ V \ S. Each source contains data that needs to be delivered by the
agents to target t. An agent i collects data from source s by simply visiting s
on its walk. An agent i collects data from agent j by meeting agent j (at some
location). An agent i visiting target t on its walk delivers (or transfers) all data
that it has collected before.

We study the problem of deciding whether all data (from all sources) can
be delivered to the target, i.e., whether there exists a schedule prescribing every
agent how to move such that at the end all data is delivered. We call such a
schedule feasible. In full generality, a schedule describes the movement of an
agent in continuous time, assuming that all agents move at unit speed. We will
see in a moment, however, that we may concentrate on schedules where at any
time at most one agent moves. This then allows us to neglect the travel times and
consider the movements of the agents in discrete time steps, where movements
happen instantaneously.

We refer to the decision problem of finding a feasible schedule as DataDe-
livery. Given just the position of the agents in the network, we also study
the related minimization problem of finding the smallest uniform power R for
which the agents, when assigned the range R each, can deliver the data to t. We
are interested in the computational complexity of the problem, and in approx-
imation and resource-augmented algorithms. We say that an algorithm for the
minimization version of DataDelivery is ρ-approximate, ρ > 1, if it runs in
polynomial-time and always finds a feasible schedule for uniform range R such
that R ≤ ρ · R∗, where R∗ is the minimum uniform power for which a schedule
exists. We say that an algorithm for the decision version of DataDelivery with
agents’ initial ranges Ri is a γ-resource augmented algorithm, γ > 1, if either
the algorithm (correctly) answers that there is no feasible schedule, or it finds a
feasible schedule for the modified (augmented) powers R′i := γ ·Ri.

Related work

On a very high level, our problem can be seen as a special case of data aggre-
gation in (wireless) sensor networks [10]. There, sensor nodes are deployed in an
environment, each possessing some data that they need to route (transmit) over



an underlying communication network such that all data eventually arrives in
a specific aggregation node. Obviously, the nature in which the data “flows” in
the network makes the main difference of data aggregation in sensor networks
to our problem.

There has been little previous work on data-aggregation-like problems by mo-
bile agents. Anaya et al. [5] study the convergecast problem where a set of mobile
agents, deployed in an edge-weighted graph, each possessing certain data and a
uniform power R, need to move such that at the end at least one agent knows
all data (and every agent travels a distance at most R). The main difference to
our problem is that there are no sources and a target where the data need to be
delivered. On contrary, in convergecast the “target agent” can be chosen freely
to suit the given power constraints. Anaya et al. [5] study the convergecast prob-
lem both in the centralized and in the distributed setting. They show that the
decision problem is strongly NP-complete, even if G is a tree, provide a linear-
time algorithm for the case when G is a line, and a 2-approximation algorithm
for the minimization version in general graphs. In the distributed setting, they
provide a 2-approximate algorithm for trees and show that this is best possible
(even if G is a line).

There is little research on general power-aware computation with mobile
agents. A rare example is the study of self-deployment by Heo and Varshney [8].
Arguably, minimizing the total travelled distance (instead of the maximum trav-
eled distance) by any single agent comes close to optimizing individual power-
consumption. There is a rich research history accomplishing various tasks (such
as pattern formation, exploration, or searching) by mobile agents where the
prime optimization goal was the total travelled distance, see e.g. [6, 2, 3].

Power-aware computation is a relatively new research area. Most of the ex-
isting literature focuses on different computational models than mobile robots,
e.g., on routing, tracking, and broadcasting in wireless networks [9, 4], or on
scheduling [1, 7]. However, most of these works focus on minimizing the total
energy consumption (whereas we focus on leveraging the consumed energy per
computational entity).

Important observations and further variants

The nature of the problem allows us to make several crucial observations that
limit the space in which we search for feasible strategies. We will argue about
the single source case, but the very same observations can be made for the
multi-source case as well.

First of all, it is easy to see that no two agents need to move at the same
time. Assume that a given instance has a feasible solution and let us consider
one. Let us consider the “flow” of the data from s to t in the solution, i.e.,
consider for every agent that collected the data the path that the agent made
after the collection, and the union of all paths of the agents after they collected
the information. Thus, this “flow” can be seen as the subgraph of G. It follows
that there has to be an s-t path in the subgraph. Obviously, for completing the
data delivery task, we can ignore all movements of the agents beyond this path.



Scanning this path from s to t and observing the identity of the agents that are
currently active gives a sequence of agents (we do not need to choose more than
one agent per position on the path). It is easy to see that the agents then can
walk sequentially in this order, and thus we can only consider discrete time steps
such that in each time step exactly one agents moves (to an arbitrary position).

It is now also easy to see that without loss of generality, no agent i ap-
pears more than once in this sequence: if yes, we can just ignore all agents that
appeared in-between the two occurrences of agent i on the s-t path.

These considerations motivate the following natural variant of DataDeliv-
ery: Find a feasible schedule such that the data is moved from s to t along a
fixed path (given as part of the input).

Our results

We first consider the single-source case in Section 2, and show that DataDeliv-
ery is NP-complete in this case, even for the case of uniform ranges R. We then
provide a 3-resource augmented algorithm, and a 2-approximation algorithm for
the problem. The combination of the ideas of these two algorithms provides a
min{3, (1 + ∆)}-resource augmented algorithm, where ∆ is the largest ratio of
the agent’s ranges, i.e., ∆ := maxi,j

Ri

Rj
. We also consider the case when the

data needs to be moved along a fixed path P (given as part of the input), and
show that also this problem is NP -complete, and that there exists γ∗ > 1 such
that there is no γ∗-augmented algorithm, unless P = NP . Finding a good ap-
proximation or resource-augmented algorithm for this version is left as an open
problem. We also consider the special case when G is a line or a tree. If G is a
line, we provide a polynomial-time algorithm for the case of uniform ranges. For
the general (non-uniform) ranges, we leave the complexity of the problem open
(and note that the min{3, (1 +∆)}-resource augmented algorithm applies). The
case when G is a tree translates to the case of a line with general (non-uniform)
ranges, and thus remains open as well.

We study the case of multiple sources in Section 3. For the constant number
sources k and for general graphs, the natural adaptation of the results for single
source carry over. For the general number of sources, the problem becomes NP -
complete already for trees and for uniform ranges, by a trivial modification of
the hardness result for convergecast by Anaya et al. [5].

2 Single source

In this section we study DataDelivery with single source node s. We first show
the hardness result.

Theorem 1. Deciding whether k agents can transfer the information from a
given source s to a given target t is (strongly) NP-complete, even for unweighted
graphs and for uniform ranges.



s x1 x2 xz−1 t

v1

L

v2 v3nv3 . . .

Fig. 1. Illustration of the reduction of 3-Partition to our problem. The horizontally
aligned vertices from s to t form the dedicated path P ∗. The shaded boxes along P ∗

are the buckets. Each line connecting v1 with P ∗ stands for a path of length L. For
simplicity, the lines connecting v2, . . . , v3z with P ∗ are omitted.

Proof. A solution to our problem is a set of walks, one for every agent, whose
union forms a subgraph in which s and t are connected. Thus, our problem is
obviously in NP – it is easy to check in polynomial time whether the given set
of walks satisfy all required conditions.

To show the hardness, we will reduce the 3-Partition problem to our prob-
lem: given integers a1, a2, . . . , a3z, for some z ∈ N, and an integer B such that∑

i ai = z × B, the 3-Partition problem asks whether there is a partition
S1, . . . , Sz of the integers such that

∑
x∈Si

x = B. 3-Partition is NP-complete
even if B is polynomially bounded in z, and if for every i, B/4 < ai < B/2.

Given an instance of 3-Partition we construct an unweighted instance of
our problem as follows. The graph contains a dedicated s-t path P ∗ of length
zB + (z − 1). The first B edges on the path are called the first bucket. At the
end of the first bucket, we place an auxiliary agent with range 1. This agent can
thus help to transfer the message only along the adjacent edge on the s-t path.
After this edge, the second bucket starts (containing again B edges), followed by
a second auxiliary agent of range 1, and one edge, and the third bucket and so
on. For every integer ai we create a vertex vi and connect it to every vertex of
the s-t path by a path of length L. We place an agent to every vertex vi and set
its range to be L+ ai, where L = 2B. Figure 1 illustrates the reduction.

We now show that there is a solution to 3-Partition if and only if there is
a solution in the just described instance of our problem. The “if” part is trivial:
Given a solution of Partition, just use the three agents corresponding to the
set Si to move the data within bucket i. Use the auxiliary agents to advance the
data on the edge between the buckets. We now argue about the “only if” part.
We first show that the data needs to be transported along the dedicated path
P ∗. The only alternative is to transfer the data from s to vertex vi, i = 1, . . . , z,
and from there to t. This path Pi has length 2L. Obviously, agent i with range
Ri = L + ai sitting at vi cannot alone transfer the data along this path. Any
other agent j can get to s (by travelling the distance L from vj) and from there
to distance at most aj < B/2 from s on the path Pi. From there, no other agent
but vi can advance the data along the alternative Pi; the agent then can advance
the data further to distance aj + ((L + ai) − (L − aj)) < B/2 + B, i.e., to a
position on Pi that is before vertex vi. It is easy to see that no agent can further
advance the data from there. Thus, the only way to transport the data is to use
the dedicated s-t path P ∗. Now, because the length of P ∗ is zB + (z − 1) and



because every agent i can advance the data on P ∗ by at most ai steps, every
solution to our problem needs to use all agents (including the auxiliary ones)
in their “full power”. Thus, such a solution uses exactly three agents in every
bucket, bringing the data collectively from the beginning of the bucket to the
end of the bucket. This then gives a solution to the 3-Partition.

We can easily modify the reduction for the case of uniform ranges R: just
add a path of length R−Ri to every vertex vi and place the agent i at the end
of the path. ut

In the following we show that the hard part of the problem lies in knowing
the order in which the agent move (and not in routing the agents through the
graph). Namely, we show that given the order in which the agents move, we can
solve in polynomial time whether there is a feasible schedule compatible with
the given order.

Theorem 2. DataDelivery with single source is solvable in polynomial time
if restricted to a fixed order of the agents to move, and if agents can meet only
at vertices.

Proof. For each agent i we can compute a set of feasible “pick-pass” locations,
that is, the set of all pairs (x, y) such that i can move to x (to pick up the
information from another agent) and move to y (to pass the information to
another agent),

Ci := {(x, y)| d(i, x) + d(x, y) ≤ Ri}.
Given an ordered sequence of agents (expressing the order in which they need
to advance the data), where each agent appears at most once, we can compute a
feasible movement of the agents by looking at the following layered graph. Layer
ik contains the edges of Cik and a path from s to t in this graph corresponds to
a feasible movement of the agents (every agent appears at most once and thus
its movement is a single “pick-pass” edge which, by definition, is feasible for its
range). Note that, since agents can only meet at the nodes of the graph, this
layered graph can be computed in polynomial time. ut

We now present a 3-augmented algorithm for DataDelivery with single
source on general graphs and with general ranges. Our algorithm first checks
whether it is (at all) possible that a feasible schedule exists. For this purpose,
consider a ball B(i) of radius Ri centered in the initial location of agent i, i.e.,
the set of all positions (vertices and positions on the edges) at distance at most
Ri from i. If there is a feasible schedule, then there is one such that the data
travels from s to t along a simple path, carried over by a sequence of ` agents
i1, . . . , i` (and where no agent appears more than once in the sequence). Observe
now that (1) s is in the ball of agent i1 (i1 is able to reach s to collect the data),
(2) the balls of ij and ik+1 intersect (agent ij collects data from ij), and (3) t is
in the ball of the last agent i` (agent i` delivers the data to t). These properties
imply the existence of an s-t path in the connectivity graph: the vertices are s,
t and the agents, and there is an edge between i and j, if the balls B(i) and



B(j) intersect, and where we set B(s) := {s} and B(t) := {t}. We can check the
existence of an s-t path in the connectivity graph in polynomial time. If there is
no such path, then there is no solution for DataDelivery. Otherwise, if there
is such a path, we show that there is a feasible schedule for agents with new
ranges R′i = 3 ·Ri.

The feasible schedule for R′i can be found in the following way. We first find
an s-t path in the connectivity graph; recall that every agent appears at most
once in this path. This path induces a natural order on the agents (that appear
on the path), and let i1, . . . , i` be the order of these agents. For every two agents
ij and ij+1, j < `, let xj be an arbitrary vertex in B(i)∩B(i+1). Define further
x0 := s and x` := t. Then, every agent ij moves as follows: it first goes to xj−1,
collects the data there, it goes back to initial position, and from there it goes
to xj . Obviously, with this schedule, the data gets delivered to t. Furthermore,
every agent ij does not travel more than 3 · Rij (as every of its “three” moves
are within its range Ri). We have thus proved the following.

Theorem 3. There is a 3-resource augmented algorithm for DataDelivery
with single source.

The ideas of the 3-resource augmented algorithm can be adapted to give a
2-approximation algorithm for the optimization variant of DataDelivery with
single source. Recall that in the optimization version, we are asked to find the
minimum uniform range R such that there is a feasible schedule.

We will use the following observations. Consider an optimum solution, i.e.,
the smallest R∗ and a corresponding schedule. Let i1 be the first agent from the
optimum solution to move, i.e., the agent that collects the data from s. Without
loss of generality, we may assume that the optimum solution moves agent i1 to s
along a shortest path. This now induces a new instance of the problem: agent i1 is
now located in s, and has range R′ = R∗−d(i1, s), while all other agents remain
in their initial positions and with unchanged ranges R∗. By our construction,
we know that this instance has a feasible schedule. This then implies that there
is a path from i1 (which sits on node s) to t in the connectivity graph of the
modified instance.

The 2-approximation algorithm then works as follows. We first guess the
first agent i1 from the optimum solution that collects the data from s (i.e.,
technically, we try all possible candidate agents, perform the subsequent steps
as explained below, and choose the solution giving the smallest range R among
all the candidates). We move agent i1 to s along a shortest path of length d =
d(i1, s), and compute the smallest Ra such that there is a path from i1 to t in
the connectivity graph of the instance where every agent but i1 has range Ra,
and agent i1 has range Ra − d. By the definition of Ra, we know that R∗ ≥ Ra.
Let i1, i2, . . . , i`, t be an i1-t path in the connectivity graph of the considered
instance. Thus, we know that for any 1 ≤ j < `, the respective balls intersect,
and therefore d(ij , ij+1) ≤ 2 · Ra, and furthermore d(i`, t) ≤ Ra. Observe now
that the schedule where agent ij goes to agent ij+1, j < `, and agent i` goes
to t, is feasible if we add Ra to the range of every agent. This gives a feasible



schedule to the original setting where agent i1 has not been moved to s, with
uniform ranges 2 ·Ra. We can thus return 2 ·Ra as the solution of the algorithm.

Because R∗ ≥ Ra, i.e., 2 · R∗ ≥ 2 · Ra, we obtain that the algorithm is a
2-approximation.

Theorem 4. There is a 2-approximation algorithm for DataDelivery with
single source.

Obviously, we can use the ideas of the 2-approximation algorithm for design-
ing an equivalent 2-resource augmented algorithm for the case when the ranges
are uniform, i.e., when Ri = Rj for every i, j. The very same algorithm is then
(1+∆)-resource augmented algorithm, where ∆ = maxi,j

Ri

Rj
: It can happen that

the algorithm decides for agent i to bring the data (from its initial position) to
the initial position of agent j; For this, Ri needs to be increased by additive Rj

to be able to do it, which gives the claimed ration (1 + ∆). Thus, we have the
following.

Corollary 1. There is a min{3, (1+∆)}-resource augmented algorithm for DataDe-
livery with single source.

We now consider a special case where the delivery of the data needs to happen
along a fixed path in G. This is motivated by security reasons when we do
not want the data to be delivered in dangerous areas of the environment. We
now show that this problem is hard. We present an alternative proof for this
case, since this gives us (additionally to the pure hardness result of Theorem 1)
hardness for providing arbitrary good γ-resource augmented algorithms.

Theorem 5. The variant of DataDelivery in which there is a single source
and the data must travel along a fixed path of the graph is NP-hard.

Proof. We reduce the problem from the restriction of 3-SAT in which every
variable appears at most four times [11].

The idea of the reduction is as follows (see Fig. 2). Each clause consists of a
“gadget” which has some common part with the fixed path. Intuitively speaking,
if a clause is satisfied, then the data can travel from left to right along the portion
of the path “covered” by that clause. The reduction will ensure that there is a
satisfying assignment if and only if the data can travel from left to right through
each of the clauses sub-paths.

More formally, for each clause Cj = {lj1 , lj2 , lj3}, we create a gadget consist-
ing of a graph and an agent with range 5 as shown in Fig. 3 (upper part). For
each variable xi the corresponding gadget is the simple graph plus the agent of
range R shown in Fig. 3 (lower part); We shall set R < 3L so that this agent
is forced to choose between “true or false”. The three edge literals in the clause
gadget are connected to some vertices of the corresponding variable gadget: The
endpoints of an edge for literal xi (resp., literal ¬xi) are connected to the vertex
in the variable gadget of xi corresponding to true (resp., false). The overall
construction (see Fig. 2) consists in a concatenation of all clause gadgets, where



C1 C2 Cm

s t

x1 xi xn

= agent

Fig. 2. Overview of the reduction from 3-Sat.

Cj = {lj1 , lj2 , lj3}

lj1 lj3

xi

true false

5

R

1 1 1

=

lj2

iff lj1 = xi

1

length L

︸︷︷︸
L

Fig. 3. The gadgets for clauses (upper part) and for variables (lower part) and how
they are interconnected. An agent is shown as box with a number inside (its range).
The two edges in the variable gadget have length L. Every other edge has unit length
and the splines represent a chain of L edges with L additional agents of range 1 each.

any two consecutive gadgets are connected via a spline path, that is, a chain of
L edges/agents like the one shown in Fig. 3.

We say that an agent covers and edge of the path if it traverses that edge
from left to right. By setting R = L+ 8 and L = 8 we have that

1. The agent for the clause cannot cover all three literal edges alone, but can
cover any two of them. It is impossible for this agent to cover some edge of
another clause gadget (because of the spline paths between clause gadgets).

2. The agent for a variable xi can either (1) cover one edge in each of the clauses
where xi appears positive or (2) cover one edge in each of the clauses where
xi appears negated. It is impossible for this agent to cover an edge from a
clause where xi is positive and from another clause where xi is negated.

Note that in the second item we use the fact that every variable appears in
at most four clauses and, without loss of generality, it appears both positive
and negated (so, there are at most three positive occurrences and at most three
negated ones).



Claim. For every satisfying truth-assignment there exists a feasible movement
of the agents such that the data travels along the path.

Proof (of Claim). If the assignment sets xi = true (resp., xi = false) then, by
Item 2, the variable agent can cover one literal edge in each of the clauses where
xi appears positive (resp., negated). Since the assignment satisfies all clauses,
each clause has one literal edge covered by a variable agent. The remaining two
literal edges can be covered by the clause agent of the clause (Item 1). The edges
in the spline paths are covered by the corresponding agents. ut

Claim. For every feasible movement of the agents such that the data travels
along the path, there exists a satisfying truth-assignment.

Proof (of Claim). In every feasible movement all edges in the path must be
covered by some agent. In particular, for each clause, there must be one of the
three literal edges that is covered by a variable agent (Item 1). By Item 2 we
can obtain a truth-assignment as follows: If the variable agent for xi covers edge
literals of clauses where xi appears positive, then we set xi = true; Otherwise we
set xi = false. By the previous argument, this assignment satisfies all clauses.

ut

The two claims above imply the NP-hardness. ut

Note that the proof of hardness can be easily extended to the case of identical
ranges. Moreover, with minor modifications, the reduction can be extended to
prove that there is no γ-augmented algorithm for this variant of the problem,
for some constant γ > 1.

Corollary 2. There exists γ > 1 such that there is no γ-augmented algorithm
for DataDelivery with single source and fixed delivery path, unless P=NP.

3 Multiple sources

In this section we consider the version of DataDelivery in which the agents
have to collect the data from more than one source to a common target location.

3.1 A 2-approximation for a constant number of sources with
identical powers

The 2-approximation algorithm from Theorem 4 can be generalized to the case
of a constant number of sources. Intuitively speaking, the algorithm guesses the
set of “pick-up” agents that first reach the sources and, if an agent picks up data
at more than one source, then it also guesses the order in which this is done
(this is possible since there is only a constant number of sources).

More formally, in the optimal solution the piece of data at every source si
travels along some path whose first agent is the pick-up agent of that source.
Note that an agent can be the pick-up agent of several sources. Given the set



P of pick-up agents, each pick-up agent p ∈ P is then matched to an ordered
sequence of sources,

s
(p)
1 → s

(p)
2 → · · · → s

(p)
`p
,

meaning that, in the optimal solution, agent p visits these sources in that partic-
ular order (possibly by visiting other locations in between). After being visiting
the last source, p will move to some location to pass its data to some other agent
ip. Similarly to the case of a single source, we consider a new instance in which

p has moved to its last source s
(p)
`p

and its initial power R has been decreased by
the minimum cost of visiting these sources in that particular order:

d(p, s
(p)
1 ) + d(s

(p)
1 , s

(p)
2 ) + · · ·+ d(s

(p)
`p−1, s

(p)
`p

).

(Visiting other additional locations between two consecutive sources can only
increase this cost.) The new instance is thus feasible and, in particular, the
range of p when starting from the last source allows it to move inside the ball of
ip. Thus it can move directly to ip if provided an extra power of R. Therefore,
any path from s to t in the connectivity graph of the modified instance yields
a 2-approximation: Each pick-up agent visits all of its sources in the specified
order and then moves from the last source to the first agent in the path (by the
previous argument this costs at most 2R). Then the subsequent agents simply
bring the collected data directly to the next agent in the path (again the cost is
at most 2R since these agents have power R also in the modified instance).

The 2-approximation algorithm now suggests itself: Guess the set of pick-up
agents and their ordered sequence of sources (there are only constantly many
since the number of sources is constant), and then check if the connectivity graph
of the modified instance contains a path from s to t (this is indeed the case when
the guess in the first step is correct).

Theorem 6. There is a 2-approximation algorithm for DataDelivery with a
constant number of sources.

3.2 On hardness and approximation of arbitrary number of sources

When there are many sources but each source initially contains an agent, then the
problem is NP-hard even for identical powers. This follows from Theorem 4 in [5],
which study a conceptually different problem, but the proof of hardness applies
also to our problem. We note that one can easily extend the 2-approximation
algorithm from Section 3.1 for this very special case.

4 Conclusions and Open Problems

In this work we have studied several variants of DataDelivery. This problem
concerns how a set of energy-constrained agents can collectively move some data
from a set of given locations to a common target. The problems turn out to
be hard, and the hardness lies (essentially) in finding how and in which order



the agents should move to perform this task. On the positive side, we provide
algorithms that find solutions which guarantee that no agent uses more than a
constant factor the energy required by the optimum. It would be interesting to
close the gap between our approximation and resource augmentation algorithms
and hardness results. Are there any better algorithms? What is the complexity
of DataDelivery on special graphs? The problem is open even for trees and
for the following simple geometric version: the agents lie on a single line with
source and target being the endpoints. We note that if all agents have uniform
ranges, then the problem is solvable on the line (but remains open for trees): start
with the closest agent (to the source); when advancing the data, never overtake a
(previously) unused agent; recursively use the closest agent to advance it further.
Finally, it would be interesting to obtain positive results for the variant in which
the piece of data must travel along a fixed (given graph), or for the case of an
arbitrary number of sources.

References

1. Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time
minimization. ACM Trans. Algorithms, 3(4), 2007.

2. Susanne Albers and Monika R. Henzinger. Exploring unknown environments.
SIAM Journal on Computing, 29(4):1164–1188, 2000.

3. Steve Alpern and Shmuel Gal. The theory of search games and rendezvous, vol-
ume 55. Kluwer Academic Pub, 2002.

4. Christoph Ambühl. An optimal bound for the mst algorithm to compute energy
efficient broadcast trees in wireless networks. In Automata, Languages and Pro-
gramming, ICALP 2005, pages 1139–1150, Berlin, 2005. Springer.

5. Julian Anaya, Jérémie Chalopin, Jurek Czyzowicz, Arnaud Labourel, Andrzej Pelc,
and Yann Vaxès. Collecting information by power-aware mobile agents. In Proc.
26th International Symposium on Distributed Computing (DISC), volume 7611 of
Lecture Notes in Computer Science, pages 46–60, 2012.

6. Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in unfamiliar
geometric terrain. SIAM Journal on Computing, 26(1):110–137, 1997.

7. Ho-Leung Chan, Jeff Edmonds, Tak-Wah Lam, Lap-Kei Lee, Alberto Marchetti-
Spaccamela, and Kirk Pruhs. Nonclairvoyant speed scaling for flow and energy.
Algorithmica, 61(3):507–517, 2011.

8. N. Heo and P. K. Varshney. Energy-efficient deployment of intelligent mobile
sensor networks. IEEE Transactions on Systems, Man, and CyberNetics (Part A),
35(1):78–92, 2005.

9. Qun Li, Javed Aslam, and Daniela Rus. Online power-aware routing in wireless ad-
hoc networks. In Proc. 7th Annual International Conference on Mobile Computing
and Networking, MobiCom 2001, pages 97–107, New York, NY, USA, 2001. ACM.

10. Ramesh Rajagopalan and Pramod K. Varshney. Data-aggregation techniques in
sensor networks: a survey. IEEE Communications Surveys & Tutorials, 8(4):48–63,
2006.

11. Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied
Mathematics, 8(1):85–89, 1984.


