
Tight Bounds for Black Hole Search with Scattered
Agents in Synchronous RingsI

Jérémie Chalopina,1, Shantanu Dasb,1, Arnaud Labourela,1,∗, Euripides
Markouc,2,∗∗

a LIF, CNRS & Aix Marseille University, 39 rue Joliot Curie, 13453 Marseille, France.
b Ben-Gurion University & Technion-Israel Institute of Technology, Israel.

c Department of Computer Science and Biomedical Informatics, University of Central
Greece, Lamia, Greece.

Abstract

We study the problem of locating a particularly dangerous node, the so-called
black hole in a synchronous anonymous ring network with mobile agents. A
black hole is a harmful stationary process residing in a node of the network
and destroying all mobile agents visiting that node without leaving any trace.
Unlike most previous research on the black hole search problem which employed
a colocated team of agents, we consider the more challenging scenario when
the agents are identical and initially scattered within the network. Moreover,
we solve the problem with agents that have constant-sized memory and carry
a constant number of identical tokens, which can be placed at nodes of the
network. In contrast, the only known solutions for the case of scattered agents
searching for a black hole, use stronger models where the agents have non-
constant memory, can write messages in whiteboards located at nodes or are
allowed to mark both the edges and nodes of the network with tokens. This
paper solves the problem for ring networks containing a single black hole. We are
interested in the minimum resources (number of agents and tokens) necessary for
locating all links incident to the black hole. We present deterministic algorithms
for ring topologies and provide matching lower and upper bounds for the number
of agents and the number of tokens required for deterministic solutions to the
black hole search problem, in oriented or unoriented rings, using movable or
unmovable tokens.

Keywords: Distributed Algorithms, Fault Tolerance, Black Hole Search,

IA preliminary version of the paper appeared in the proceedings of SIROCCO 2011 [5].
∗Principal corresponding author

∗∗Corresponding author
Email addresses: jeremie.chalopin@lif.univ-mrs.fr (Jérémie Chalopin),

shantanu@tx.technion.ac.il (Shantanu Das), arnaud.labourel@lif.univ-mrs.fr (Arnaud
Labourel), emarkou@ucg.gr (Euripides Markou)

1Partially supported by ANR projects SHAMAN and ECSPER.
2Part of this work was done while this author was visiting the LIF research laboratory in

Marseille, France.

Preprint submitted to Elsevier September 5, 2013

Mobile Agents, Anonymous Networks, Identical tokens, Finite State Automata

1. Introduction

1.1. Overview

We consider the problem of exploration in unsafe networks which contain
malicious hosts of a highly harmful nature, called black holes. A black hole is a
node which contains a stationary process destroying all mobile agents visiting
this node, without leaving any trace [16]. In the Black Hole Search (BHS)
problem the goal for a team of agents is to locate the black hole within finite
time, with the additional constraint that at least one of the agents must remain
alive. In particular, at least one agent must survive and the surviving agents
must have located (or marked) all edges leading to the black hole. It is usually
assumed that all the agents start from the same location and have distinct
identities. In this paper, we do not make such an assumption and study the
problem for identical agents starting from distinct locations within the network.
We focus on minimizing the resources required to find the black hole.

The only way of locating a black hole is to have at least one agent visiting it.
However, since any agent visiting a black hole is destroyed without leaving any
trace, the location of the black hole must be deduced by some communication
mechanism employed by the agents. Four such mechanisms have been proposed
in the literature: a) the whiteboard model in which there is a whiteboard at each
node of the network where the agents can leave messages (in [2, 3, 13, 15, 16, 17]),
b) the ‘pure’ token model where the agents carry tokens which they can leave
at nodes (in [14, 18, 29]), c) the ‘enhanced’ token model in which the agents can
leave tokens at nodes or edges (in [1]), and d) the time-out mechanism (only for
synchronous networks) in which one agent explores a new node while another
waits for it at a safe node (in [7, 8, 10, 11, 24, 25, 26]).

The most powerful inter-agent communication mechanism is having white-
boards at all nodes. Since access to a whiteboard is provided in mutual exclu-
sion, this model could also provide the agents a symmetry-breaking mechanism:
If the agents start at the same node, they can get distinct identities and then
the distinct agents can assign different labels to all nodes. Hence in this model,
if the agents are initially co-located, both the agents and the nodes can be as-
sumed to be non-anonymous without any loss of generality. The BHS problem
has been studied using whiteboards in asynchronous networks, with the ob-
jective of minimizing the number of agents required to locate the black hole.
Note that in asynchronous networks, it is not possible to answer the question of
whether or not a black hole exists in the network, since there is no bound on the
time taken by an agent to traverse an edge. Assuming the existence of (exactly
one) black hole, the minimum sized team of co-located agents that can locate
the black hole depends on the knowledge available to the agents. If the agents
have a complete map of the network including port numbers and their starting
position, then two agents suffice to locate the black hole [15]. If the agents have
sense of direction, i.e., they can determine if two paths starting from one node

2

lead to the same node, using only the labels of the ports along these paths, then
two agents suffice [15]. If the agents have neither a complete map nor sense of
direction, then ∆ + 1 agents are needed and suffice [15]. In any case, the prior
knowledge of the network size is essential to locate the black hole in finite time.

In the case of synchronous networks two co-located distinct agents can dis-
cover one black hole in any graph by using the time-out mechanism, without the
need of whiteboards or tokens. Furthermore it is possible to detect whether a
black hole actually exists or not in the network. Hence, with co-located distinct
agents, the issue is not the feasibility but the time efficiency of black hole search
(see [7, 8, 10, 11, 24, 25, 26] for example). However when the agents are scat-
tered in the network (as in our case), the time-out mechanism is not sufficient
to solve the problem anymore since the agents need to meet in order to use the
mechanism.

Most of the previous results on black hole search used agents whose memory
is at least logarithmic in the size of the network (e.g. in [18]). This means that
these algorithms are not scalable to networks of arbitrary size. In this paper,
we consider agents modeled as finite automata, i.e., having a constant number
of states. This means that these agents cannot remember or count the nodes
of the network that they have explored. In this model, the agents cannot have
prior knowledge of the size of the network. In our model, the agents can detect
whether there is an agent of a given state, but not how many of them.

For synchronous ring networks of arbitrary size, containing exactly one black
hole, we present deterministic algorithms for locating the black hole using scat-
tered agents each having constant-sized memory. We are interested in minimiz-
ing both the number of agents and the number of tokens required for solving
the BHS problem.

We use the ‘pure’ token model. While the whiteboard model is commonly
used in unsafe networks, the token model has been mostly used for exploration of
safe networks. Note that the ‘pure’ token model can be implemented with O(1)-
bit whiteboards (storing the number of tokens at the whiteboard of the node)
if we assume that only a constant number of tokens may be placed on a node
at the same time, while the ‘enhanced’ token model can be implemented with
O(log ∆)-bit whiteboards (storing the number of tokens at each incident edge
at the whiteboard of the node). In the previous results using the whiteboard
model, the capacity of each whiteboard is always assumed to be of at least
Ω(log n) bits, where n is the number of nodes of the network. Unlike previous
models, we do not require mutually exclusive access to the nodes memory, i.e.,
two agents at the same node are allowed to place tokens simultaneously at that
same node of the network. We distinguish movable tokens (which can be picked
up from a node and placed on another) from unmovable tokens (which cannot
be picked up once they are placed on a node). For both types of tokens, we
provide matching upper and lower bounds on both the number of agents and the
number of tokens per agent, required for solving the black hole search problem
in synchronous rings. Although our algorithms require only a constant size
memory for each agent, the impossibility results presented in this paper hold
even for agents having unbounded memory.

3

1.2. Related Works

The exploration of an unknown graph by one or more mobile agents is a
classical problem initially formulated in 1951 by Shannon [28] and it has been
extensively studied since then (e.g., see [4, 12, 22]). In unsafe networks contain-
ing a single dangerous node (black hole), the problem of searching for it has
been studied in the asynchronous model using whiteboards and given that all
agents initially start at the same safe node (e.g., [2, 3, 13, 15, 16, 17]). It has
also been studied using ‘enhanced’ tokens in [14, 18, 29] and in the ‘pure’ token
model in [1]. It has been proved that the problem can be solved with a minimal
number of agents performing a polynomial number of moves. Notice that in an
asynchronous network the number of the nodes of the network must be known
to the agents otherwise the problem is unsolvable [16]. If the network topology
is unknown, at least ∆ + 1 agents are needed, where ∆ is the maximum node
degree in the graph [15]. It is usually assumed that the network is bi-connected
and the existence of exactly one black hole is common knowledge.

In asynchronous networks, with scattered agents (not initially located at the
same node), the problem has been investigated for arbitrary topologies [6, 21] in
the whiteboard model while in the ‘enhanced’ token model it has been studied
for rings [19, 20] and for some interconnected networks [29].

The issue of efficient black hole search has been studied in synchronous
networks without whiteboards or tokens (only using the time-out mechanism)
in [7, 8, 10, 11, 24, 25, 26] under the condition that all distinct agents start at
the same node.

The problem has also been studied for co-located agents in asynchronous and
synchronous directed graphs with whiteboards in [9, 26]. In [8] they study how
to locate and repair faults (weaker than black holes) using co-located agents in
synchronous known networks with whiteboards and in [23] they study the prob-
lem in asynchronous networks with whiteboards and co-located agents without
the knowledge of incoming link. A different dangerous behavior is studied for
co-located agents in [27], where the authors consider a ring and assume black
holes with Byzantine behavior, which do not always destroy a visiting agent.

In all previous papers (apart from [1]) studying the Black Hole Search prob-
lem using tokens, the ‘enhanced’ token model is used. The weakest ‘pure’ token
model has only been used in [1] for co-located agents in asynchronous networks.
In all previous solutions to the problem using tokens, the agents are assumed
to have non-constant memory.

1.3. Our Contributions

Unlike previous studies on BHS, we consider the scenario of anonymous (i.e.,
identical) agents that are initially scattered in an anonymous ring. We focus our
attention on very simple mobile agents. The agents have constant-size memory,
they carry a constant number of identical tokens which can be placed at nodes
and, apart from using the tokens, they can communicate with other agents
only when they meet at the same node. We consider four different scenarios
depending on whether the tokens are movable or not, and whether the agents

4

agree on a common orientation. We present deterministic optimal algorithms
and provide matching upper and lower bounds for the number of agents and
the number of tokens required for solving BHS (See Table 1 for a summary of
results). Surprisingly, the agreement on the ring orientation does not influence
the number of agents needed in the case of movable tokens but is important in
the case of unmovable tokens.

The lower bounds presented in this paper are very strong in the sense that
they do not allow any trade-off between the number of agents and the number
of tokens for solving the BHS problem. In particular we show that:

• Any constant number of agents, even having unlimited memory, cannot
solve the BHS problem with less tokens than depicted in all cases of Ta-
ble 1.

• Any number of agents less than that depicted in all cases of Table 1 cannot
solve the BHS problem even if the agents are equipped with any constant
number of tokens and they have unlimited memory.

Meanwhile our algorithms match the lower bounds, are asymptotically time-
optimal and since they do not require any knowledge of the size of the ring or
the number of agents, they work in any anonymous synchronous ring, for any
number of anonymous identical agents (respecting the minimal requirements of
Table 1).

Resources necessary
and sufficient

Tokens are Ring is # agents # tokens References in the paper

Movable
Oriented

3 1 Theorem 3.1, 3.2 and 4.1
Unoriented

Unmovable
Oriented 4 2 Theorem 3.1, 3.3 and 5.1

Unoriented 5 2 Theorem 3.1, 3.4 and 5.2

Table 1: Summary of results for BHS in synchronous rings

In Section 2, we formally describe the model and the different settings con-
sidered in the paper. In Section 3, we state impossibly results for all settings
considered in the paper. In Section 4, we give an algorithm for agents with
movable tokens. In Section 5, we give two algorithms for agents with unmov-
able tokens, one for oriented rings and another for unoriented rings. Finally, in
Section 6, we conclude and give some perspectives.

2. Our Model

Our model consists of an anonymous, synchronous ring network with k ≥ 2
identical mobile agents that are initially located at distinct nodes called home-
bases. Each mobile agent owns a constant number t of identical tokens which

5

can be placed at any node visited by the agent. The tokens are indistinguish-
able. Any token or agent at a given node is visible to all agents on the same
node, but not visible to agents on other nodes. The agents follow the same
deterministic algorithm and begin execution at the same time and being in the
same initial state. In all our protocols a node may contain at most two tokens
at the same time. At any node of the ring, the ports leading to the two incident
edges are distinguishable and locally labelled and an agent arriving at a node
knows the port-label of the edge through which it arrived. In the special case
of an oriented ring, the ports are consistently labelled as Left and Right (i.e.,
all ports going in the clockwise direction are labelled Left). In an unoriented
ring, the local port-labeling at a node is arbitrary and each agent in its first
step chooses one direction as Left and in every subsequent step, it translates
the local port-labeling at a node into Left and Right according to its chosen
orientation. In order to make this translation, the agent stores the port-label of
the edge through which it arrived at the current node and the direction of the
last movement (Left or Right). If the direction of the next move is the opposite
of that of the last move, the agent moves using the port-label stored. Otherwise,
the agent moves using the other port-label.

In a single time unit, each mobile agent completes one step which consists
of the Look, Compute and Move stages (in this order). During the Look stage,
an agent obtains information about the configuration of the current node (i.e.,
agents, tokens present at the node) and its own configuration (i.e., the port
through which it arrived and the number of tokens it carries). During the
Compute stage, an agent can perform any number of computations (i.e., com-
putations are instantaneous in our model). During the Move stage, the agent
may put or pick up a token at the current node and then either move to an
adjacent node or remain at the current node. If during the computation stage,
the agent detects that one of neighbors of the current node is the black hole,
then the agent may permanently mark the link as dangerous, during the Move
stage. Since the agents are synchronous they perform each stage of each step at
the same time. We call a token movable if it can be put on a node and picked
up later by any mobile agent visiting the node. Otherwise we call the token
unmovable in the sense that, once released, it can occupy only the node where
it has been released.

Formally we consider a mobile agent as a finite Moore automaton A =
(S, S0,Σ,Λ, δ, φ), where S is a set of σ ≥ 2 states among which there is a
specified state S0 called the initial state; Σ ⊆ D× Cv × CA is the set of possible
configurations an agent can see when it enters a node; Λ ⊆ D×P ×X is the set
of possible actions by the agent; δ : S × Σ → S is the transition function; and
φ : S → Λ is the output function. D = {left, right, none} is the set of possible
directions through which the agent arrives at or leaves a node (none represents
no move by the agent). P = {put, pick, no action} is the action performed by
the agent on the tokens, while X = {mark left, mark right, no action} is the
action performed by the agent on the links incident to the current node. Cv =
{0, 1}σ×{0, 1, 2} is the set of possible configurations at a node, consisting of (i)
a bit string that denotes for each possible state whether there is an agent in that

6

state at that node and (ii) an integer that denotes the number of tokens at that
node (in our protocols at most 2 tokens reside at a node at any time). Finally,
CA = {1, 2} × {0, 1, 2} is the set of possible configurations of an agent, i.e., its
orientation and whether it carries zero, one or two tokens (in our protocols, an
agent cannot carry more than two tokens). Observe that this definition is only
used for our algorithms since our impossibility results works even if agents have
unlimited memory, can carry and see at a node any number of tokens.

Notice that all computations by the agents are independent of the size n of
the network and the number k of agents. The agents have no knowledge of n
or k. The agents only know the number of tokens they have. Since the agents
are identical they face the same limitations on their knowledge of the network.
There is exactly one black hole in the network. An agent can start from any
node other than the black hole and no two agents are initially colocated3. Once
an agent detects a link to the black hole, it marks the link permanently as
dangerous. We require that at the end of a black hole search scheme, all links
incident to the black hole (and only those links) are marked dangerous and that
there is at least one surviving agent. The time complexity of a BHS scheme is
the number of time units needed for completion of the scheme, assuming the
worst-case location of the black hole and the worst-case initial placement of the
scattered agents.

Note that our definition of a successful BHS scheme is slightly different from
the traditional definition. Indeed, in the original definition, it was required that
there is at least one surviving agent, and this agent knows the location of all
edges incident to the black hole. However, since we consider finite state agents,
it is not possible for the agents to remember the location of the edges incident
to the black hole. Thus we need the additional capability of marking these links
as dangerous, for the purpose of reporting the solution. During the execution
of the algorithm, the agents cannot see which edges are marked dangerous (by
other agents). Hence, this capability does not provide any additional power of
communication to the agents.

3. Impossibility Results

3.1. Oriented Rings

We first show that when the tokens are unmovable, a team of any constant
number of agents needs at least two tokens per agent to solve the BHS problem.

Theorem 3.1. For any constant k, there exists no algorithm that solves BHS
in all oriented rings containing one black hole and k or more scattered agents,
when each agent is provided with only one unmovable token. The result holds
even if the agents have unlimited memory.

3Since there is no symmetry breaking mechanism at a node, two agents starting at the
same node and in the same state, would behave as a single (merged) agent.

7

Proof : Suppose there is a correct BHS algorithm that solves the problem with
k or more agents in rings of any size. If the algorithm does not require any agent
to put down its token, such an algorithm should work even if every agent puts its
token on its homebase in the first step. So without loss of generality, we assume
that an agent puts down its token after executing a finite number of steps of
the algorithm (unless it encounters some agents, some tokens or the black hole
within this time). Now consider the behavior of this agent when placed on an
infinite line (with no other agent). Suppose the agent puts down its token at a
distance of x (w.l.o.g. in the left direction) from its homebase. Further let p be
the maximum distance that the agent has travelled from its homebase (in either
direction) before it puts down its token (thus, x ≤ p). Now, consider a ring R1

of size n = 2k(p+ 1) with one black hole and k agents such that the agents are
initially placed at a distance of 2(p+ 1) apart (see Figure 1(a)). The black hole
is located in the middle of a segment between two consecutive agents (i.e., it
is at a distance (p + 1) from the closest agents). Since the agents start in the
same state, they take the same actions and remain in identical states (until they
encounter another agent, or a token or the black hole). As long as the agents
do not travel any further than a distance p from their homebase, they will not
see anything different from the agent on the infinite line. Thus, each agent will
put its token x ≤ p places to the left of its homebase. Each agent will do so at
the same time and in the same state. During the rest of the algorithm, an agent
can only move, observe the tokens and possibly mark some link as dangerous.
Due to the correctness of the algorithm, at some time τ , some agent will mark
one link leading to the black hole as dangerous. Up to time τ , all surviving
agents behave the same since they see at each step the same configuration at
their nodes. If there are more than one surviving agent, all of them are in the
same state β and still at a distance of 2(p + 1) apart. Thus, if one such agent
marks a link as dangerous, the next agent would mark a link at a distance of
2(p + 1) away. So, one of the agents would have incorrectly marked a link—a
contradiction to the correctness of the algorithm.

The remaining case to consider is when the agent that marks a link, is the
last surviving agent. In this case, we can construct another ring R2 of size
n = 2(k + 1)(p+ 1) with one black hole and (k + 1) agents initially placed the
same distance apart as in the ring R1 (see Figure 1(b)). In an execution of
the same algorithm on ring R2, after exactly τ time steps, there will be two
surviving agents both in the same state β and at a distance of 2(p + 1) from
each other. Thus the two agents will mark as dangerous, two distinct links at a
distance of 2(p+ 1) apart. Hence the algorithm fails for the ring R2. �

We now derive some lower bounds on the number of agents necessary to solve
the BHS problem. The following result proves that at least one agent needs to
be sacrificed for detecting each link leading to the black hole.

Lemma 3.1. During any execution of any BHS algorithm, if a link to the black
hole is correctly marked, then at least one agent must have entered the black hole
through this link.

8

2(p+1)

2(p+1)

2(p+1)

2(p+1)

p+1

p+1

R1

2(p+1)

2(p+1)

2(p+1)

2(p+1)

p+1

p+1

R2

2(p+1)

Figure 1: (a) An oriented ring R1 with k agents and a black hole, (b) a larger oriented ring
R2 with k + 1 agents and one black hole.

Proof : Suppose for the sake of contradiction that there exists a correct BHS
algorithm such that during any execution of this algorithm one link incident to
the black hole is marked before any agent traverses this link. Assume without
loss of generality that the link is on the left of the black hole. Consider the ring
of size n which leads to this execution. Now, add a vertex on the left of the
black hole, obtaining a ring of size n+1, while keeping the same initial positions
for the agents. The agents will behave as in the ring of size n since they do not
know the size of the ring and will see exactly the same configuration. Hence
they will mark the left link of the new node as the link leading to the black hole.
This contradicts with the correctness of the BHS algorithm. �

To solve the BHS problem in a ring, both links leading to the black hole
need to be marked as dangerous. Thus, we immediately arrive at the following
result.

Theorem 3.2. Two mobile agents carrying any number of movable (or unmov-
able) tokens each, cannot solve the BHS problem in an oriented ring, even if the
agents have unlimited memory.

When the tokens are unmovable, even three agents are not sufficient to solve
BHS as shown below.

Theorem 3.3. Three mobile agents carrying a constant number of unmovable
tokens each, cannot solve the BHS problem in an oriented ring, even if agents
have unlimited memory.

Proof : Suppose for the sake of contradiction that there exists an algorithm
which solves the BHS problem for three agents each carrying a constant number
t of unmovable tokens. Let x and y be two integers chosen by the adversary,
such that 1 ≤ x, y ≤ 2t. Suppose the three agents are initially placed on a
ring of size 8t+ x+ y such that the distance between the first and second and
between the second and third agent is 4t. The black hole is between the third

9

4t

1≤y≤2t

4t1≤x≤2t

Figure 2: Three agents with t unmovable to-
kens each in an oriented ring.

2t

4t+14t+1

1≤x≤2t1≤x≤2t

2t

Figure 3: Four agents with t unmovable to-
kens each in an unoriented ring.

and the first agent at a distance x from one of them and at distance y from the
other (as in Figure 2). By Lemma 3.1, at least one agent would fall into the
black hole before any link to the black hole is identified. Consider the phase P
of the algorithm from the start until the first time an agent falls into the black
hole. Let us call this agent a. Assume without loss of generality that agent a
enters the black hole by going right (i.e., after traveling a distance of x from its
homebase). First, notice that the agents never meet each other during phase P
since they execute the same algorithm.

Suppose for the sake of contradiction that after agent a has vanished, the
two surviving agents can identify the link used by agent a to enter the black
hole without sacrificing another agent. This is only possible if, whenever agent
a explores a new node to the right, it leaves a message encoding this fact and
the only way to do this is by leaving another token at some node of the ring
that may already have tokens. However, after t explored nodes agent a runs
out of tokens. The adversary may then set x to be any value between t+ 1 and
2t. The remaining agents would not have enough information to determine the
position of the black hole from the left (without the sacrifice of another agent).
However, by Lemma 3.1, at least one agent must enter the black hole from the
other link (on the right). Thus either one of the links to the black hole is never
marked or there are no surviving agents. �

3.2. Unoriented Rings

In an unoriented ring, even four agents do not suffice to solve the BHS
problem with unmovable tokens. In fact we show a stronger result that it is
not even possible to identify just one of the links to the black hole, using four
agents.

10

Theorem 3.4. In an unoriented ring, four agents carrying any constant num-
ber of unmovable tokens each, cannot correctly mark any link incident to the
black hole, even when the agents have unlimited memory.

Proof : Suppose for the sake of contradiction that there exists an algorithm
which marks one of the links incident to the black hole, using four agents each
carrying t unmovable tokens. For some integer x, 1 ≤ x ≤ 2t, chosen by the
adversary, suppose that the four agents and the black hole are initially placed
as in Figure 3. The distance between two consecutive agents is 4t + 1 and the
distance between the black hole and the closest agent on each side is x. Thus,
the initial configuration is symmetric and the axis of symmetry crosses an edge
and the black hole. The adversary can choose the orientations of the agents
in such a way that the two agents closest to the black hole would fall into the
black hole at the same time and before any agent meets another agent. Thus,
the two surviving agents would continue to be in symmetric situation and they
would take similar actions. Using the same argument as in the proof of Theorem
3.3, the information left by the vanished agent is not sufficient for one agent to
correctly identify any link incident to the black hole. Due to the symmetry of
the resulting configuration (and the fact that agents cannot meet on an edge),
the two remaining agents can never meet and will always be in the same state
until they both fall into the black hole (without marking any of the links incident
to the black hole). �

4. BHS Scheme with Movable Tokens

We first consider the case when the agents have movable tokens. If each agent
has a movable token it can perform a cautious walk [16]. The Cautious-Walk

procedure consists of the following actions: Put the token at the current node,
move one step in the specified direction, return to pick up the token, and again
move one step in the specified direction (carrying the token). After each invo-
cation of the Cautious Walk, the agent looks at the configuration of the current
node4 and decides whether to continue performing Cautious Walk.

We show that only three agents are sufficient to solve BHS, when they have
one movable token each. Algorithm 1 achieves this, both for oriented and un-
oriented rings. The procedure Mark-Link permanently marks as dangerous the
specified link.

Theorem 4.1. Algorithm 1 solves the BHS problem in an unoriented ring with
k ≥ 3 agents having constant memory and one movable token each.

Proof : Notice that all agents start at the same time executing Procedure Cau-
tiousWalk(dir) and at each time they are at the same phase of this procedure.

4Recall that only the tokens put on the node are counted, not the tokens carried by the
agent itself.

11

Algorithm 1: BHS-Ring-1

/* BHS in unoriented ring using k ≥ 3 agents having 1 movable token each */

repeat CautiousWalk(Left);
until current node has a token and no agent ;
;
Mark-Link(Left);
repeat CautiousWalk(Right);
until current node has a token and no agent ;
;
Mark-Link(Right);

Procedure CautiousWalk(direction)

Put a token;
Move one step in specified direction;
Move one step back;
Pick a token;
Move one step in specified direction;

Since the only time an agent checks the number of tokens it sees is after com-
pleting an execution of the procedure, if the agent sees at least one token (not
including the one it carries) then, either (i) there is another agent at the current
node (i.e., the two agents arrived from opposite directions) or (ii) there is no
other agent (which means that the token was left by an agent that disappeared).
In case (i) the agent continues executing Procedure CautiousWalk(dir). In case
(ii) it is clear that the black hole resides at the next node in direction dir. In
this case, the agent marks the edge to the black hole, reverses direction and
repeats the process. Since the agents start from distinct locations at the same
time, no two agents can arrive at the black hole at the same time through the
same link. Thus, exactly one agent would fall into the black hole from each
direction (leaving at least one surviving agent) and both links to the black hole
would be eventually marked. �

5. BHS Scheme with Unmovable Tokens

For agents having only unmovable tokens, we use the technique of Paired
Walk (called Probing in [7]) for exploring new nodes. The procedure is executed
by two co-located agents with different roles and the same orientation. One of
the agents called the leader explores an unknown edge while the other agent,
called follower waits for the leader. If the other endpoint of the edge is safe, the
leader immediately returns to the previous node to inform the follower and then
both move to this new node. On the other hand, if the leader does not return
in two time steps, the follower knows that the next node is the black hole. (See
Procedure Paired Walk).

In order to use the Paired Walk technique, we need to gather two agents
at the same node and then break the symmetry between them, so that distinct

12

roles can be assigned to each of them. The basic idea of our algorithms is the
following. We first identify the two homebases that are closest to the black hole
(one on each side). These homebases are called gates. The gates divide the ring
into two segments: one segment contains the black hole (thus, is dangerous);
the other segment contains all other homebases (and is safe). Initially all agents
are in the safe part and an agent can move to the dangerous part only when
it passes through the gate node. We ensure that any agent reaching a gate
node, waits for a partner agent in order to perform the Paired Walk procedure.
We now present two BHS algorithms, one for oriented rings and the other for
unoriented rings.

Procedure PairedWalk(isLeader)

if isLeader then
Move one step in specified direction;
Move one step back;
Move one step in specified direction;

else
WAIT(2);
if there is a leader then

Move one step in specified direction;

5.1. Oriented Rings

In this section, we describe an algorithm using at least four agents with
two unmovable tokens. In an oriented ring, all agents may move in the same
direction (i.e., Left). The algorithm executed by the agents essentially runs in
five phases:

1. Init phase: During this phase, each agent places a token on its homebase
(state START), moves left until the next homebase, i.e., next node with
a token (state CHECK-LEFT), returns to its homebase to put down the
second token (state GO-BACK). The agents may not complete this phase
of the algorithm at the same time. If the agent meets another agent at its
homebase, it forms a pair with it (entering phase Left-exploration) if the
other agent is alone, or it becomes a LEFT-SEARCHER agent otherwise
(entering phase Left-pairing). During this phase, only one agent will fall
into the black hole and there will be a unique homebase with a single
token (we call this node the gate node) and all the other homebases will
eventually contain exactly two tokens each.

2. Left-pairing: During this phase, agents try to meet at the gate node by
moving to the left until they reach a node containing a single token (state
ALONE). The first agent reaching node with one token waits for a partner
agent (state WAITING). When another agent arrives at the node, they
form a pair (LEFT-LEADER, LEFT-FOLLOWER) and proceed to the
next phase. A pair can be formed either by :

13

• a WAITING agent and an ALONE agent,

• or a WAITING agent and a GO-BACK agent,

• or an ALONE agent and a GO-BACK agent.

In all the above cases, the two agents forming a pair have distinct states
and they can be assigned the distinct roles of leader and follower for
the next phase. Among the two agents forming a pair, if there is a
WAITING agent, it becomes LEFT-LEADER, else the ALONE agent
becomes LEFT-LEADER. The algorithm also has some additional rules
to ensure that no two LEFT-LEADERs are created at the same node at
the same time: no agent becomes a LEFT-LEADER if there is already an-
other LEFT-LEADER at the same node (In this case, the agent become
a LEFT-SEARCHER). Another rule is that if a ALONE agent and a
GO-BACK agent arrive at the same time to a node with a WAITING
agent, then only the WAITING and GO-BACK agents form a pair
(LEFT-LEADER, LEFT-FOLLOWER) while the ALONE agent becomes
a LEFT-SEARCHER.

3. Left-exploration: During this phase, the pair formed during the previous
phase performs Paired Walk in the left direction. One of the agents of a
pair (state LEFT-LEADER) eventually falls into the black hole and the
other agent (state LEFT-FOLLOWER) marks the edge leading to the
black hole.

4. Right-pairing: During this phase, the LEFT-FOLLOWER agent of the
previous phase changes state to RIGHT-SEARCHER and returns to the
gate node by moving to the right. On reaching the gate node, this
agent forms a pair with the RIGHT-FOLLOWER or RIGHT-LEADER
agent at the node, if any, otherwise it waits for a partner agent to ar-
rive in order to form a pair. Recall that any additional agent that did
not pair-up during the Left-pairing phase of the algorithm became a
LEFT-SEARCHER. Such a LEFT-SEARCHER agent moves left until
reaching the gate node and waits for a RIGHT-LEADER in order to form
a pair (in state RIGHT-FOLLOWER).

5. Right-exploration: During this phase, the pair formed during the previ-
ous phase performs Paired Walk in the right direction. One of the agents
of a pair (state RIGHT-LEADER) eventually falls into the black hole and
the other agent (state RIGHT-FOLLOWER) marks the edge leading to
the black hole.

The complete formal version of the algorithm is presented in Algorithm 2
and the state transitions during the algorithm are shown in Figure 4.

Lemma 5.1. During the algorithm 2, the following holds, assuming there are
at least 4 agents, each carrying two unmovable tokens

(i) Exactly one CHECK-LEFT agent falls into the black hole.

14

SEARCHER
RIGHT-

SEARCHER
LEFT-

WAITING

FOLLOWER
LEFT-

FOLLOWER
RIGHT-

GO-BACK

CHECK-
LEFT

START

init

left-

left-pairing

right-pairing

exploration

HALT

LEADER
RIGHT-

LEFT-
LEADER

ALONE

right-
exploration

Figure 4: State transitions during the algorithm BHS-Ring-2 with k ≥ 4 agents and 2 unmov-
able tokens per agent. Agents in state CHECK-LEFT, LEFT-LEADER, or RIGHT-LEADER
may fall into the black hole.

(ii) An agent in any state other than CHECK-LEFT, LEFT-LEADER, or
RIGHT-LEADER, never enters the black hole.

(iii) At least one Paired Walk is performed in the left direction starting from
the gate node, marking one edge incident to the black hole as dangerous.

(iv) At least one Paired Walk is performed in the right direction starting from
the gate node, marking one edge incident to the black hole as dangerous.

Proof : (i) After the first step (performed simultaneously by each agent), there
is at least one token at each homebase. A CHECK-LEFT agent moves from
its homebase until the next node on the left that contains a token. Thus, only
the agent whose homebase is the first one on the right starting from the black
hole, may enter the black hole. Any other agent would successfully reach a
node containing a token and at that point, change state and never enter state
CHECK-LEFT again.
(ii)Any agent that is not in state CHECK-LEFT never goes beyond the
gate node in the left direction, unless it is performing a Paired Walk as a
(LEFT-LEADER, LEFT-FOLLOWER) pair. Thus, only a LEFT-LEADER
or a CHECK-LEFT agent may enter the black hole while going left. Now con-
sider an agent that is going in the right direction. If the agent is going back
to the gate node or back to its homebase, it stops before reaching the black
hole. Otherwise an agent going right must be part of a Paired Walk in the right
direction. Thus, only a RIGHT-LEADER may enter the black hole while going
in the right direction.
(iii) An agent that does not enter the black hole in state CHECK-LEFT, returns
to its homebase to put the second token. If the agent meets another agent at its

15

homebase then a Paired Walk (in the left direction) is started at this homebase,
eventually arriving at the gate node; thus the property holds. Otherwise, the
agent is in state ALONE on arriving at its homebase and it moves left until
the next homebase node. Suppose for the sake of contradiction that no Paired
Walk is started in the left direction. This means that all the surviving agents
are in state ALONE or WAITING. An agent can wait only at a homebase node
containing a single token. If an agent is waiting at a node that is not the gate
node, then eventually the owner of the homebase would return to that node to
put the second token. At this point a Paired Walk in the left direction would be
started from this node. Thus, due to the assumption that no Paired Walk has
been started, all agents that are in state ALONE or WAITING would eventually
be at the gate node. Since there are at least three such agents, two of them
would meet at the gate node and thus, start a Paired Walk together.
(iv) Note that an agent may become LEFT-LEADER only if there are no other
LEFT-LEADER agents at the same node. Thus, two LEFT-LEADER agents
cannot enter the black hole at the same time. This means that two agents cannot
become RIGHT-SEARCHER at same time. From (iii), we know that at least
one agent will become a RIGHT-SEARCHER (the LEFT-FOLLOWER agent
of a Paired Walk in the left direction eventually becomes RIGHT-SEARCHER).
The first agent in state RIGHT-SEARCHER to reach the gate node, will be-
come a RIGHT-LEADER. If there is another RIGHT-SEARCHER agent, this
agent will eventually reach the gate node, become a RIGHT-FOLLOWER,
and start a Paired Walk in the right direction with RIGHT-LEADER. Oth-
erwise, if no Paired Walk in the right direction has been started then there are
at least two surviving agents and all surviving agents would eventually be at
the gate node. Any agents in state ALONE or WAITING at the gate node
will become a RIGHT-FOLLOWER and thus join in a Paired Walk with the
RIGHT-LEADER. �

Theorem 5.1. Algorithm BHS-Ring-2 correctly solves the black hole search
problem in any oriented ring with 4 or more agents having constant memory
and carrying two unmovable tokens each.

Proof : Due to Lemma 5.1, we know that at least one Paired Walk is performed
in each direction during the algorithm. Thus, both links to the black hole are
discovered and marked. Further we know that the RIGHT-FOLLOWER agent
in the pair performing the Paired Walk to the left will never enter the black
hole. Thus there is at least one surviving agent. �

5.2. Unoriented Rings

For unoriented rings, we need at least 5 agents with two unmovable tokens
each. The algorithm for unoriented rings with unmovable tokens is similar to the
one for oriented rings, except that each agent initially chooses an orientation.
When two agents meet and one has to follow the other, we assume in our model
that the state of the agent contains information about the orientation of the

16

Algorithm 2: BHS-Ring-2

/* BHS in an Oriented Ring, using k ≥ 4 agents having 2 unmovable tokens

each. All agents have the same initial state START. */

START:
Decide to place a token at homebase; State := CHECK-LEFT;

CHECK-LEFT:
Move Left until the next node that contains a token; State := GO-BACK ;

GO-BACK: /* Go home to put the second token */

Move Right until the next node that contains a token;
Decide to place the second token;
if there is a LEFT-LEADER agent then State := LEFT-SEARCHER;
;
else if there is a ALONE agent or a WAITING agent then

State := LEFT-FOLLOWER;

;
else State := ALONE;
;

ALONE: /* Move alone to the node with single token */
Move Left until a node that contains either only one token or two tokens and a
GO-BACK agent ;
if there is a RIGHT-LEADER agent then State := RIGHT-FOLLOWER;
;
else if there is a LEFT-LEADER agent then State := LEFT-SEARCHER;
;
;
else if there is a GO-BACK agent and no WAITING agent then

State := LEFT-LEADER;

;
else if there is a WAITING agent and no GO-BACK agent then

State := LEFT-FOLLOWER;

;
else if there is a WAITING agent and a GO-BACK agent then

State := LEFT-SEARCHER;

;
else State := WAITING;
;

WAITING: /* Wait for a partner agent */

Wait until other agents arrive at the current node;
if there is a LEFT-LEADER agent then State := LEFT-SEARCHER;
;
else if there is a GO-BACK agent or ALONE agent then
State := LEFT-LEADER;
;
;
else if there is a RIGHT-LEADER agent then State := RIGHT-FOLLOWER;
;
;

LEFT-LEADER: /* Perform Paired walk with Follower agent */

while true do PairedWalk (1) in Left direction;
;

17

Algorithm 2: BHS-Ring-2 (continued)

/* BHS in an Oriented Ring, using k ≥ 4 agents having 2 unmovable tokens

each. All agents have the same initial state START. */

LEFT-FOLLOWER: /* Perform Paired walk with Leader agent */

while there is a LEFT-LEADER agent do
PairedWalk (0) in Left direction;
if the LEFT-LEADER did not return during the last step then

Mark-Link (Left); State := RIGHT-SEARCHER; exit loop;

LEFT-SEARCHER: /* Move Left to become a RIGHT-FOLLOWER */

while there is no RIGHT-LEADER agent do
repeat

Move Left;
until not at a node with one token;
Wait until there is another agent;

State := RIGHT-FOLLOWER;

RIGHT-SEARCHER: /* Move Right to become a RIGHT-LEADER or a

RIGHT-FOLLOWER */

while not at a node with one token do Move Right;
;
if there is a RIGHT-LEADER agent then State := RIGHT-FOLLOWER;
;
else State := RIGHT-LEADER;
;

RIGHT-LEADER: /* Perform Paired walk in the other direction */

Wait until there is another agent;
while true do PairedWalk (1) in Right direction;
;

RIGHT-FOLLOWER: /* Perform Paired walk in the other direction */

while there is a RIGHT-LEADER agent do
PairedWalk (0) in Right direction;
if the RIGHT-LEADER did not return during the last step then

Mark-Link (Right); exit loop;

State := HALT;

18

Algorithm 3: BHS-Ring-3

/* BHS in Unoriented Ring, using k ≥ 5 agents having 2 unmovable tokens

each. All agents have the same initial state START. */

START:
Decide to place a token at homebase; State := CHECK-LEFT;

CHECK-LEFT:
Move Left until the next node that contains a token; State := CHECK-RIGHT;

CHECK-RIGHT:
Move Right until the next node that contains a token;
Move Right again until the next node that contains some token;
State := GO-BACK;

GO-BACK: /* Go home to put the second token */

Move Left until the next node that contains one token;
Decide to place the second token;
if there is a LEFT-LEADER agent then State := SEARCHER;
;
else if there is a ALONE agent or a WAITING agent then

State := LEFT-FOLLOWER;

;
else if there is a RIGHT-LEADER agent then State := RIGHT-FOLLOWER;
;
;
else State := ALONE;
;

WAITING: /* Wait for a partner agent */

Wait until other agents arrive at the current node;
if there is a RIGHT-LEADER agent then State := RIGHT-FOLLOWER;
;
else if there is a GO-BACK or ALONE agent a and no LEFT-LEADER agent
then

if there is another WAITING agent having same orientation as agent a then
State := SEARCHER;

else
State := LEFT-LEADER;

;
else State := SEARCHER;
;

19

Algorithm 3: BHS-Ring-3 (continued)

ALONE: /* Move alone to the node with single token */
Move Left until a node that contains either only one token or two tokens and a
GO-BACK agent ;
if there are no other agents then State := WAITING;
;
if there is a RIGHT-LEADER agent then State := RIGHT-FOLLOWER;
;
else if there is a LEFT-LEADER agent then State := SEARCHER;
;
;
else if there is a WAITING agent and no GO-BACK agent then

if there is another ALONE agent having same orientation as the WAITING
agent then

State := SEARCHER;
else

State := LEFT-FOLLOWER;

;
else if there is a GO-BACK agent and no WAITING agent then

if there is another ALONE agent having same orientation as the GO-BACK
agent then

State := SEARCHER;
else

State := LEFT-LEADER;

;
else State := SEARCHER;
;

LEFT-LEADER:
while true do PairedWalk (1) in Left direction;
;

LEFT-FOLLOWER:
Align orientation with the LEFT-LEADER agent;
while true do

PairedWalk (0) in Left direction;
if the LEFT-LEADER did not return during the last step then

Mark-Link (Left); Exit Loop;

State := RIGHT-LEADER;

CAUTIOUS-SEARCHER: /* Find a RIGHT-LEADER in order to form a pair */

repeat
Move Right;
if there is a RIGHT-LEADER agent then break;
;
Move Left; Move Right;

until there is a RIGHT-LEADER agent or a node with one token;
if there a RIGHT-LEADER agent then State := RIGHT-FOLLOWER;
;
else State := HALT;

20

Algorithm 3: BHS-Ring-3 (Continued)

SEARCHER: /* Go to a gate node to become RIGHT-FOLLOWER */

while not at a node with one token do Move Right;
;
State := RIGHT-FOLLOWER;

RIGHT-LEADER: /* Find a Follower and perform Paired Walk */

while not at a node with one token do
Move Right;

if there is no other agent then
number of homebases := 0;
repeat

Move Right; Wait (2);
if the current node contains two tokens and number of homebases 6= 3
then number of homebases := number of homebases + 1;
;

until the current node contains one token;
if number of homebases ≤ 2 then

Wait until other agents arrive at the current node;
else

if there is no other agent then
repeat

Move Left;
if there is a CAUTIOUS-SEARCHER agent then break;
;
Wait (2);

until the current node contains one token or a
CAUTIOUS-SEARCHER;

if there is another agent then
while true do PairedWalk (1) in Right direction;
;

else
State := CAUTIOUS-SEARCHER;

RIGHT-FOLLOWER:
Wait until there is a RIGHT-LEADER agent;
Align orientation with the RIGHT-LEADER agent;
while true do

PairedWalk (0) in Right direction;
if the RIGHT-LEADER did not return during the last step then

Mark-Link (Right); Exit loop;

State := HALT;

21

WAITING

FOLLOWER
LEFT-

FOLLOWER
RIGHT-

GO-BACK

START

init

right-exploration

left-

left-pairing

right-pairing

exploration

HALT

LEADER
RIGHT-

LEFT-
LEADER

ALONE

CHECK-
LEFT

CHECK-
RIGHT

SEARCHER

SEARCHER
CAUTIOUS-

right-pairing

Figure 5: State transitions during the algorithm BHS-Ring-3 with k ≥ 5 agents and
2 unmovable tokens per agent. Only agents in state CHECK-LEFT, CHECK-RIGHT,
LEFT-LEADER, or RIGHT-LEADER may fall into the black hole.

agent (i.e., the port at the current node considered by the agent to be Left).
Thus, when two agents meet at a node, one agent (e.g. the Follower) can orient
itself according to the direction of the other agent (e.g. the Leader). As in the
algorithm in oriented ring, the algorithm in unoriented ring executed by the
agents essentially runs in five phases:

1. Init phase: During this phase, each agent places a token on its homebase
(state START), moves left until the next homebase, i.e., the next node
with a token (state CHECK-LEFT), returns to its homebase and moves
right until the next homebase (state CHECK-RIGHT). Then the agent
returns again to its homebase (state GO-BACK). The agents may not
complete this phase of the algorithm at the same time. If the GO-BACK
agent meets a single agent on returning to its homebase, the two agents
form a pair (and start phase Left-exploration); otherwise if the GO-BACK
agent meets a pair of agents, it becomes a SEARCHER agent (and starts
phase Right-pairing). During this phase, exactly two agents will fall into
the black hole and there will be two homebases with a single token (we
call these node the gate nodes) and all the other homebases will eventually
contain exactly two tokens each.

2. Left-pairing: During this phase, agents try to meet at the gate nodes
by moving to the left until they reach a node containing a single token
(state ALONE). The first agent reaching node with one token waits for a
partner agent (state WAITING). When another agent arrives at the node,

22

they form a pair and proceed to the next phase. A pair can be formed
either by :

• a WAITING agent and an ALONE agent,

• or a WAITING agent and GO-BACK agent,

• or an ALONE agent and a GO-BACK agent.

In all the above cases, the agents forming a pair have different states and
they are assigned the roles of LEFT-LEADER and LEFT-FOLLOWER re-
spectively. The role of LEFT-LEADER is assigned to the WAITING agent
of the pair if there is one, or to the ALONE agent otherwise. The algorithm
also has some additional rules to ensure that no two LEFT-LEADERs
are created at the same node at the same time: no agent becomes a
LEFT-LEADER if there is already another LEFT-LEADER at the same
node (In this case, the agent become a SEARCHER). Another rule
is that if a ALONE agent and a GO-BACK agent arrive at the same
time to a node with a WAITING agent, then only the WAITING and
GO-BACK agents form a pair (LEFT-LEADER, LEFT-FOLLOWER)
while the ALONE agent changes to state SEARCHER (and starts phase
Right-pairing).

Unlike in the oriented ring, it may happen that two ALONE agents ar-
rive at the same time from opposite directions to a node u with one to-
ken. In this case, both agents wait (in state WAITING) until another
agent arrives. Note that in this case, the ring is safe in both directions
until the next homebase and thus, an agent b (whose homebase is u)
would arrive within a finite time. When agent b arrives, only one of the
WAITING agents (the one having the same orientation as b) changes to
state LEFT-LEADER and pairs-up with agent b. The other agent changes
to state SEARCHER (phase Right-pairing). A similar case occurs when
an agent a is waiting and two agents (both in state ALONE) arrive from
different directions. Among these two agents, the one having the same ori-
entation as agent a pairs up with agent a and starts the Paired Walk pro-
cedure as LEFT-LEADER. The other agent changes to state SEARCHER
(to start phase Right-pairing).

3. Left-exploration: During this phase, the pair formed during the previous
phase performs Paired Walk in the left direction. One of the agents of a
pair (state LEFT-LEADER) eventually falls into the black hole and the
other agent (state LEFT-FOLLOWER) marks the edge leading to the
black hole.

As before there can be multiple leader-follower pairs performing Paired
Walk in different parts of the ring. However the rules of the algorithm
ensure that no two LEFT-LEADER agents may be created at the same
node at the same time. Thus, two LEFT-LEADER agents cannot enter
into the black hole at the same time from the same direction.

23

4. Right-pairing: When a LEFT-LEADER agent falls into the black hole,
the corresponding LEFT-FOLLOWER agent, say agent r, becomes a
RIGHT-LEADER. The RIGHT-LEADER agent r moves in the other
direction (i.e. ”right”) until it reaches a gate node u containing one to-
ken. If the RIGHT-LEADER does not find a RIGHT-FOLLOWER at u
to pair with, the RIGHT-LEADER r performs a slow walk in the same
direction until it reaches a node v with one token. During the slow walk,
an agent moves at one-third the speed of any other agent (i.e., waits
two steps after each move). Agent r also counts (up to a maximum of
3) the number of nodes it sees that have two tokens (i.e. the number
of homebases). If the agent r encounters no more than two homebases
(nodes with two tokens) between u and v, then it knows that v is not
a gate node and thus, the agent whose homebase is node v, will even-
tually come back to this node. In this case, agent r waits and form a
pair (RIGHT-LEADER,RIGHT-FOLLOWER) with the first agent that
arrives. In the other case, when agent r has seen at least 3 homebases, it
is not possible to determine if v is a gate node or not, so agent r cannot
wait. If there is no other agent already at v to form a pair with, the agent
r switches direction and moves back towards u performing a slow walk.
This ensures that it will meet and form a pair with any unpaired agent,
i.e., any agent that did not perform a Paired Walk in the previous phase.
Recall that an agent that did not pair up during the previous phases of the
algorithm, became a SEARCHER. Such a SEARCHER agent moves left
until reaching the gate node and waits for a RIGHT-LEADER in order to
form a pair (state RIGHT-FOLLOWER).

If there is no such unpaired agent, then agent r may not find
any agent on reaching node u. In that case, agent r becomes a
CAUTIOUS-SEARCHER, switches direction again and moves back to v
by repeating the following sequence of three moves: move right, move left,
move right . This ensures that agent r will meet and form a pair with
any RIGHT-LEADER agent that has the same orientation as agent r and
is looking for a partner. Finally, if agent r still did not meet any other
agent during this phase, we can show that there must be a pair of agents
with the opposite orientation (as agent r). Such a pair would have already
detected and marked the other link leading to the black hole. Thus, agent
r terminates.

5. Right-exploration: During this phase, the pair formed during the previ-
ous phase performs Paired Walk in the right direction. One of the agents
of a pair (state RIGHT-LEADER) eventually falls into the black hole and
the other agent (state RIGHT-FOLLOWER) marks the edge leading to
the black hole.

A formal description of the algorithm can be found in Algorithm 3 and the
state transitions during the algorithm are shown in Figure 5.

24

Lemma 5.2. During the algorithm BHS-Ring-3, the following holds, assuming
there are at least 5 agents, each carrying two unmovable tokens

(i) Exactly two agents fall into the black hole before placing their second token.

(ii) An agent that is not in state LEFT-LEADER or RIGHT-LEADER never
enters the black hole after placing its second token.

(iii) There is at least one LEFT-LEADER and each LEFT-LEADER has a
corresponding LEFT-FOLLOWER.

(iv) At least one Paired Walk is performed in each direction, marking the cor-
responding edge incident to the black hole as dangerous.

Proof : (i) This fact follows directly from the description of the algorithm.
Only the two agents whose homebases are closest to the black hole (from either
side) would fall into the black hole before placing the second token.
(ii) After placing its second token on the homebase, an agent is not allowed to
move beyond the gate nodes, unless it is performing a Paired Walk . If an agent
enters the black hole while performing Paired Walk then it must be in state
LEFT-LEADER or RIGHT-LEADER.
(iii) There are at least three agents which do not enter the black hole before
placing their second token. At least two of these must have the same orienta-
tion. Among those surviving agents having same orientation, at least two would
eventually meet at a node containing a single token (note that the agents are
allowed to wait only at nodes with a single token and eventually only the gate
nodes will contain a single token). Whenever multiple agents meet at a node,
no two of them have the same state and the same orientation. According to
the rules of the algorithm exactly one of them becomes LEFT-LEADER and
exactly one of them becomes LEFT-FOLLOWER.
(iv) Due to Property (iii) above, we know that at least one pair
(LEFT-LEADER, LEFT-FOLLOWER) performed a Paired Walk and has
marked one link incident to the black hole. Let us consider the first
LEFT-LEADER agent l fell into the black hole, and the corresponding
LEFT-FOLLOWER agent r that became a RIGHT-LEADER. Agent r goes
back to the gate node u and then goes right until it finds a node v with one
token. If while going right, this agent saw no more than two homebases with
two tokens (i.e. number of homebases ≤ 2 in Algorithm 3), then v is not a gate
node since there must be at least three homebases that are not gate nodes. In
this case, the agent whose homebase is v will eventually come back and form a
pair with the agent r at node v. This pair of agents will perform Paired Walk in
the other direction.

Now, assume that agent r has seen three or more homebases with two tokens
between u and v. Thus, there are one or more agents denoted by a1, a2, . . . that
are distinct from l and r and whose homebases are between u and v. Now we
consider multiple scenarios depending on the orientation of agents ai and how
they have paired.

25

First, we assume that agent a1 is unpaired. In this case, agent a1 will go to
either u or v and wait there. Since agent a1 has already put its second token
in its homebase before agent r reaches that node, agent r will find a1 waiting
either at node v or at u, when agent r returns. This waiting agent becomes a
RIGHT-FOLLOWER and joins the Paired Walk procedure with agent r. Hence,
the second link to the black hole would be discovered by this pair of agents.

The second scenario to consider is when a LEFT-LEADER agent a1 has
paired with a LEFT-FOLLOWER agent a2. If this pair has a different orien-
tation from the pair (l, r) then there was a Paired Walk in each direction and
the lemma holds. Hence, we can assume this pair (a1, a2) has the same orienta-
tion as the pair (l, r). Since no two LEFT-LEADERs are created at the same
node at the same time, l and a1 enter the black hole at different moments in
time. By definition (l, r) is the first pair to reach the black hole. When agent
r becomes a CAUTIOUS-SEARCHER, agent a2 must have already come back
to the gate node u in state RIGHT-LEADER. Indeed, in order to become a
CAUTIOUS-SEARCHER agent r must have moved from u to the black hole
w during the Paired Walk (3d(w, u) steps), returned back to u (d(w, u) steps),
moved to v in a slow walk (3d(u, v) steps), and moved back to u in another
slow walk (3d(u, v) steps), for a total of at least 6d(u, v) + 4d(w, u) steps. Af-
ter at most 5d(u, v) steps from the time the (l, r) pair was formed, agents a1
and a2 must have paired and reached the gate node u. Hence after a total
of 6d(u, v) + 4d(w, u) steps, agent a2 must be already back at the gate node
u. Thus, when agent r becomes a CAUTIOUS-SEARCHER, agent a2 is either
moving from u to v or the other way. In the former case, agents r and a2 move at
the same speed to the right until agent a2 reaches a node with one token. Agent
a2 will eventually turn back and the agents will move in opposite directions.
Assume by contradiction, that agents r and a2 did not meet while moving in
opposite directions. It means that they have passed each other on an edge (t, s).
If this happens when agent r was executing the first movement to the right of
its loop from node t to node s then they meet two steps later since r will come
back to t while a2 is waiting. This cannot happen when r was executing the
second movement to the right of its loop from t to s since r would have met
a2 waiting at s two steps before. Thus, the two agents will meet in all cases.
The CAUTIOUS-SEARCHER agent becomes RIGHT-FOLLOWER and joins
the Paired Walk procedure with the RIGHT-LEADER. Hence, the second link
to the black hole would be discovered by this pair of agents. �

Theorem 5.2. Algorithm BHS-Ring-3 correctly solves the black hole search
problem in an unoriented ring with 5 or more agents having constant memory
and carrying two unmovable tokens each.

Proof : Due to the above lemma, we know that only a leader agent can fall into
the black hole after putting its two tokens. For each leader falling into the black
hole, there is a follower agent that survives. Hence, at least one agent will never
fall into the black hole. Both links to the black hole are actually discovered
and marked as dangerous by property (iv) of the lemma. The pseudo-code of

26

Algorithm 3 can be implemented with a finite state automaton since the only
variable (number of homebases) can only take four different values (0, 1, 2 or
3). �

6. Conclusions

The results of this paper determine the minimum resources necessary for
locating a black hole in synchronous ring networks. We presented algorithms
that use the optimal number of agents and the optimal number of tokens per
agent, while requiring only constant-size memory. Thus, all resources used by
our algorithms are independent of the size of the network. Notice that all the
algorithms presented in the paper have a time complexity of O(n) steps, so,
they are asymptotically optimal for BHS in a ring.

The model introduced in this paper differs from that of the previous stud-
ies, since we consider constant memory agents independent of the size of the
network. Another difference is that the agents were equipped with the capa-
bility of marking as dangerous the links to the black-hole once they have been
detected. The purpose of giving the agents the ability to mark as dangerous the
links which lead to the black-hole is the following: Since the agents have only
constant memory, upon completion of any protocol which solves the problem,
one agent cannot report both incident links to the black-hole. Hence those links
should be only clearly indicated, somehow. It is true that when the agents are
equipped with one movable token each, the final configuration of tokens con-
structed by Algorithm 1 clearly indicates where the black-hole is. However for
the cases with unmovable tokens, it is unclear whether there exist algorithms
which use the same minimum number of tokens and agents as our algorithms,
and at the same time manage to construct configurations with tokens to clearly
indicate the location of each link to the black-hole. We conjecture that such
algorithms do not exist. Nevertheless, in this work we were interested in deter-
mining the minimal resources necessary and sufficient for discovering both links
incident to the black hole. Hence in our algorithms, the agents can mark the
dangerous links only for the purpose of reporting the location of the black hole.
We emphasize here that the agents cannot see such marked links and thus, the
execution of the algorithm is not affected by assuming this additional capability.

The main question answered by the paper is how the limitation on the mem-
ory of the agents influences the resources required for solving BHS. We show
that the constant memory limitation has no influence on the resource require-
ments since the (matching) lower bounds hold even if the agents have unlimited
memory. It would be interesting to investigate if similar tight results hold for
BHS in other network topologies. We would also like to investigate the dif-
ference between ‘pure’ and ‘enhanced’ token model in terms of the minimum
resources necessary for black hole search in higher degree networks.

An interesting extension to our model is the following: Agents do not start at
the same time but take each step synchronously. In other words, what happens
when an adversary introduces arbitrary (but finite) delays before the agents
start executing a protocol. Although our algorithms rely on the fact that the

27

agents start at the same time, we believe that our algorithms could be modified
to work also for the case of agents starting with delays. However this requires
taking care of several technicalities, mainly due to the fact that our algorithms
have been designed to work for any number of agents (as long as this number
of agents is enough for solving the problem) but also due to lack of a mutual
exclusion mechanism for reading and writing at nodes. We thus leave as open
the question of how much resources are necessary to solve the BHS problem
with constant memory in the presence of delays.

Reference

[1] B. Balamohan, P. Flocchini, D. Ilcinkas, and N. Santoro. Ping pong in
dangerous graphs: Optimal black hole search with pebbles. Algorithmica,
62(3-4):1006–1033, 2012.

[2] B. Balamohan, P. Flocchini, A. Miri, and N. Santoro. Improving the op-
timal bounds for black hole search in rings. In SIROCCO 2011, pages
198–209, 2011.

[3] B. Balamohan, P. Flocchini, A. Miri, and N. Santoro. Time optimal al-
gorithms for black hole search in rings. Discrete Mathematics, Algorithms
and Applications, 3(4):457–471, 2011.

[4] M. A. Bender and D. Slonim. The power of team exploration: Two robots
can learn unlabeled directed graphs. In Proceedings of 35th Annual Sym-
posium on Foundations of Computer Science, pages 75–85, 1994.

[5] J. Chalopin, S. Das, A. Labourel, and E. Markou. Tight bounds for scat-
tered black hole search in a ring. In Proceedings of 18th Int. Colloquium
on Structural Information and Communication Complexity (SIROCCO),
volume 6796 of LNCS, pages 186–197, 2011.

[6] J. Chalopin, S. Das, and N. Santoro. Rendezvous of mobile agents in
unknown graphs with faulty links. In Proceedings of 21st International
Conference on Distributed Computing, pages 108–122, 2007.

[7] C. Cooper, R. Klasing, and T. Radzik. Searching for black-hole faults
in a network using multiple agents. In Proceedings of 10th International
Conference on Principles of Distributed Systems, LNCS 4305, pages 320–
332, 2006.

[8] C. Cooper, R. Klasing, and T. Radzik. Locating and repairing faults in
a network with mobile agents. Theoretical Computer Science, 411(14-
15):1638–1647, 2010.

[9] J. Czyzowicz, S. Dobrev, R. Kralovic, S. Miklik, and D. Pardubska. Black
hole search in directed graphs. In Proceedings of 16th International Col-
loquium on Structural Information and Communication Complexity, pages
182–194, 2009.

28

[10] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Complexity of search-
ing for a black hole. Fundamenta Informaticae, 71(2,3):229–242, 2006.

[11] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black
hole in synchronous tree networks. Combinatorics, Probability & Comput-
ing, 16(4):595–619, 2007.

[12] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Journal
of Graph Theory, 32(3):265–297, 1999.

[13] S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, and N. San-
toro. Optimal search for a black hole in common interconnection networks.
Networks, 47(2):61–71, 2006.

[14] S. Dobrev, P. Flocchini, R. Kralovic, and N. Santoro. Exploring a dangerous
unknown graph using tokens. In Proceedings of 5th IFIP International
Conference on Theoretical Computer Science, pages 131–150, 2006.

[15] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black
hole in arbitrary networks: Optimal mobile agents protocols. Distributed
Computing, 19(1):1–19, 2006.

[16] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a
black hole in an anonymous ring. Algorithmica, 48:67–90, 2007.

[17] S. Dobrev, P. Flocchini, and N. Santoro. Improved bounds for optimal
black hole search in a network with a map. In Proceedings of 10th Inter-
national Colloquium on Structural Information and Communication Com-
plexity, pages 111–122, 2004.

[18] S. Dobrev, R. Kralovic, N. Santoro, and W. Shi. Black hole search in
asynchronous rings using tokens. In Proceedings of 6th Conference on Al-
gorithms and Complexity, pages 139–150, 2006.

[19] S. Dobrev, N. Santoro, and W. Shi. Scattered black hole search in an
oriented ring using tokens. In Proceedings of IEEE International Parallel
and Distributed Processing Symposium, pages 1–8, 2007.

[20] S. Dobrev, N. Santoro, and W. Shi. Using scattered mobile agents to locate
a black hole in an un-oriented ring with tokens. International Journal of
Foundations of Computer Science, 19(6):1355–1372, 2008.

[21] P. Flocchini, M. Kellett, P. Mason, and N. Santoro. Map construction
and exploration by mobile agents scattered in a dangerous network. In
Proceedings of IEEE International Symposium on Parallel & Distributed
Processing, pages 1–10, 2009.

[22] P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Collective tree
exploration. Networks, 48:166–177, 2006.

29

[23] P. Glaus. Locating a black hole without the knowledge of incoming link.
In Proceedings of 5th International Workshop on Algorithmic Aspects of
Wireless Sensor Networks, pages 128–138, 2009.

[24] R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and ap-
proximation results for black hole search in arbitrary graphs. Theoretical
Computer Science, 384(2-3):201–221, 2007.

[25] R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Approximation bounds
for black hole search problems. Networks, 52(4):216–226, 2008.

[26] A. Kosowski, A. Navarra, and C. Pinotti. Synchronization helps robots to
detect black holes in directed graphs. In Proceedings of 13th International
Conference on Principles of Distributed Systems, pages 86–98, 2009.

[27] R. Kràlovic and S. Mikl̀ık. Periodic data retrieval problem in rings con-
taining a malicious host. In Proceedings of 17th International Colloquium
on Structural Information and Communication Complexity, pages 156–167,
2010.

[28] C. E. Shannon. Presentation of a maze-solving machine. In Proceedings of
8th Conference of the Josiah Macy Jr. Found. (Cybernetics), pages 173–
180, 1951.

[29] W. Shi. Black hole search with tokens in interconnected networks. In
Proceedings of 11th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, pages 670–682, 2009.

30

