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Abstract. We consider the problem of locating a black hole in synchronous anonymous networks
using finite state agents. A black hole is a harmful node in the network that destroys any agent visiting
that node without leaving any trace. The objective is to locate the black hole without destroying too
many agents. This is difficult to achieve when the agents are initially scattered in the network and
are unaware of the location of each other. Previous studies for black hole search used more powerful
models where the agents had non-constant memory, were labelled with distinct identifiers and could
either write messages on the nodes of the network or mark the edges of the network. In contrast,
we solve the problem using a small team of finite-state agents each carrying a constant number of
identical tokens that could be placed on the nodes of the network. Thus, all resources used in our
algorithms are independent of the network size.

We restrict our attention to oriented torus networks and first show that no finite team of finite state
agents can solve the problem in such networks, when the tokens are not movable. In case the agents
are equipped with movable tokens, we determine lower bounds on the number of agents and tokens
required for solving the problem in torus networks of arbitrary size. Further, we present a deterministic
solution to the black hole search problem for oriented torus networks, using the minimum number of
agents and tokens, thus providing matching upper bounds for the problem.
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bile Agents, Identical Tokens, Finite State Automata

1 Introduction

The exploration of an unknown graph by one or more mobile agents is a classical problem initially formu-
lated in 1951 by Shannon [28] and it has been extensively studied since then (e.g., see [1, 9, 21]). Recently,
the exploration problem has also been studied in unsafe networks which contain malicious hosts of a highly
harmful nature, called black holes. A black hole is a node which contains a stationary process destroying
all mobile agents visiting this node, without leaving any trace. In the Black Hole Search problem the goal
for the agents is to locate the black hole within finite time. In particular, at least one agent has to survive
knowing all edges leading to the black hole. The only way of locating a black hole is to have at least one
agent visiting it. However, since any agent visiting a black hole is destroyed without leaving any trace, the
location of the black hole must be deduced by some communication mechanism employed by the agents.
Four such mechanisms have been proposed in the literature: a) the whiteboard model in which there is a
whiteboard at each node of the network where the agents can leave messages, b) the ‘pure’ token model
where the agents carry tokens which they can leave at nodes, c) the ‘enhanced’ token model in which the
agents can leave tokens at nodes or edges, and d) the time-out mechanism (only for synchronous networks)
in which one agent explores a new node while another agent waits for it at a safe node.

The most powerful inter-agent communication mechanism is having whiteboards at all nodes. Since
access to a whiteboard is provided in mutual exclusion, this model could also provide the agents a symmetry-
breaking mechanism: If the agents start at the same node, they can get distinct identities and then the
distinct agents can assign different labels to all nodes. Hence in this model, if the agents are initially
co-located, both the agents and the nodes can be assumed to be non-anonymous without any loss of
generality.



In asynchronous networks and given that all agents initially start at the same safe node, the Black Hole
Search (BHS) problem has been studied under the whiteboard model (e.g., [10, 13–15]), the ‘enhanced’
token model (e.g., [11, 16, 29]) and the ‘pure’ token model in [19]. It has been proved that the problem can
be solved with a minimal number of agents performing a polynomial number of moves. Notice that in an
asynchronous network the number of the nodes of the network must be known to the agents otherwise the
problem is unsolvable ([14]). If the graph topology is unknown, at least ∆ + 1 agents are needed, where
∆ is the maximum node degree in the graph ([13]). Furthermore the network should be 2-connected. It is
also not possible to answer the question of whether a black hole exists in the network.

In asynchronous networks, with scattered agents (not initially located at the same node), the problem
has been investigated for the ring topology ([12, 14]) and for arbitrary topologies ([20, 3]) in the white-
board model while in the ‘enhanced’ token model it has been studied for rings ([17, 18]) and for some
interconnected networks ([29]).

The consideration of synchronous networks makes a dramatic change to the problem. Now two co-
located distinct agents can discover one black hole in any graph by using the time-out mechanism, without
the need of whiteboards or tokens. Moreover, it is now possible to answer the question of whether a black
hole actually exists or not in the network. No knowledge about the number of nodes is needed. Hence, with
co-located distinct agents, the issue is not the feasibility but the time efficiency of black hole search. The
issue of efficient black hole search has been studied in synchronous networks without whiteboards or tokens
(only using the time-out mechanism) in [4, 5, 7, 8, 23–25] under the condition that all distinct agents start
at the same node. However when the agents are scattered in the network, the time-out mechanism is not
sufficient anymore.

Indeed the problem seems to be much more difficult in the case of scattered agents and there are very
few known results for this scenario. In this paper we study this version of the problem using very simple
agents that can be modeled as finite state automata. Our objective is to determine the minimum resources,
such as number of agents and tokens, necessary and sufficient to solve the problem in a given class of
networks. For the class of ring networks, recent results [2] show that having constant-size memory is not
a limitation for the agents when solving BHS problem. We consider here the more challenging scenario
of anonymous torus networks of unbounded size. We show that even in this case, finite state agents are
capable of locating the black hole in all oriented torus networks using only a few tokens. Note that the
exploration of anonymous torus networks is a challenging problem in itself, in the presence of multiple
identical agents [27]. Since the tokens used by the agents are identical, they cannot be used to break the
symmetry between agents. While the token model has been mostly used in the exploration of safe networks,
the whiteboard model is commonly used in unsafe networks. The ‘pure’ token model can be implemented
with O(1)-bit whiteboards, for a constant number of agents and a constant number of tokens, while the
‘enhanced’ token model can be implemented having a O(log d)-bit whiteboard on a node with degree d. In
the whiteboard model, the capacity of each whiteboard is always assumed to be of at least Ω(log n) bits,
where n is the number of nodes of the network.

In all previous papers studying the Black Hole Search problem under a token model apart from [19]
and [2], the authors have used the ‘enhanced’ token model with agents having non-constant memory.
The weakest ‘pure’ token model has been used in [19] for co-located agents with non-constant memory in
asynchronous networks.

The BHS problem has also been studied for co-located agents in asynchronous and synchronous directed
graphs with whiteboards in [6, 25]. In [5] the authors study how to locate and repair faults (weaker than
black holes) using co-located agents in synchronous known networks with whiteboards and in [22] they study
the problem in asynchronous networks with whiteboards and co-located agents without the knowledge of
incoming link. A different dangerous behavior is studied for co-located agents in [26], where the authors
consider a ring and assume black holes with Byzantine behavior, which do not always destroy a visiting
agent.

Our Contributions: We consider the problem of black hole search in an anonymous but oriented torus
with a team of identical agents that are initially scattered within the torus. We focus our attention on very
simple mobile agents. The agents have constant-size memory, they can communicate with other agents
only when they meet at the same node and they carry a constant number of identical tokens which can be
placed at nodes. The tokens may be movable or unmovable. We prove the following results:



– No finite team of agents can solve the BHS problem in all oriented torus networks using a finite number
of unmovable tokens.

– For agents carrying any finite number of movable tokens, at least three agents are required to solve the
problem.

– Any algorithm for solving BHS using 3 agents requires more than one movable token per agent.
– The BHS problem can be solved using three agents and only two movable tokens per agent, thus

matching both the lower bounds mentioned above.

In Section 4, we present two deterministic algorithms for black hole search: (i) using k ≥ 3 agents
carrying 3 movable tokens per agents, and (ii) using k ≥ 4 agents carrying 2 movable tokens per agent. We
also present a more involved algorithm that uses exactly 3 agents and 2 tokens per agent. All our algorithms
are time-optimal and since they do not require any knowledge about the dimensions of the torus, they work
in any synchronous oriented torus, using only a finite number of agents having constant-size memory. Due
to space limitations, proofs of some of theorems and formal descriptions of the algorithms have been moved
to the appendix.

2 Our Model

Our model consists of k ≥ 2 anonymous and identical mobile agents that are initially placed at distinct
nodes of an anonymous, synchronous torus network of size n×m, n ≥ 3, m ≥ 3. We assume that the torus
is oriented, i.e., at each node, the four incident edges are consistently marked as North, East, South and
West. Each mobile agent owns a constant number of t identical tokens which can be placed at any node
visited by the agent. In all our protocols a node may contain at most three tokens at the same time and
an agent carries at most three tokens at any time. A token or an agent at a given node is visible to all
agents on the same node, but is not visible to any other agents. The agents follow the same deterministic
algorithm and begin execution at the same time and being at the same initial state.

At any single time unit, a mobile agent occupies a node u of the network and may 1) detect the presence
of one or more tokens and/or agents at node u, 2) release/take one or more tokens to/from the node u,
and 3) decide to stay at the same node or move to an adjacent node. We call a token movable if it can be
moved by any mobile agent to any node of the network, otherwise we call the token unmovable in the sense
that, once released, it can occupy only the node in which it has been released.

Formally we consider a mobile agent as a finite Moore automaton A = (S, S0, Σ, Λ, δ, φ), where S
is a set of σ ≥ 2 states; S0 is the initial state; Σ is the set of possible configurations an agent can see
when it enters a node; δ : S × Σ → S is the transition function; and φ : S → Λ is the output function.
Elements of Σ are quadruplets (D,x, y, b) where D ∈ {North, South, East, West, none} is the direction
through which the agent has arrived at the node, x is the number of tokens (at most 3) at that node, y is
number of tokens (at most 3) carried by the agent and b ∈ {true, false} indicates whether there is at least
another agent at the node or not. Elements of Λ are triplets (P, s,M) where P ∈ {put, pick} is the action
performed by the agent on the tokens, s ∈ {0, 1, 2, 3} is the number of tokens concerned by the action A,
and M ∈ {North, South, East, West, none} is the move performed by the agent. Note that the agent always
performs the action before the move.

Note that all computations by the agents are independent of the size n × m of the network and the
number k of agents. The agents have no knowledge of n,m or k. There is exactly one black hole in the
network. An agent can start from any node other than the black hole and no two agents are initially co-
located3. Once an agent detects a link to the black hole, it marks the link permanently as dangerous (i.e.,
disables this link). Since the agents do not have enough memory to remember the location of the black
hole, we require that at the end of a black hole search scheme, all links incident to the black hole (and only
those links) are marked dangerous and that there is at least one surviving agent. Thus, our definition of
a successful BHS scheme is slightly different from the original definition. The time complexity of a BHS
scheme is the number of time units needed for completion of the scheme, assuming the worst-case location
of the black hole and the worst-case initial placement of the scattered agents.

3 Since there is no symmetry-breaking mechanism at a node, two agents starting at the same node and in the same
state, would behave as a single (merged) agent.



3 Impossibility results

In this section we give lower bounds on the number of agents and the number and type of tokens needed
for solving the BHS problem in any anonymous, synchronous and oriented torus.

3.1 Agents with unmovable tokens

We will prove that any constant number of agents carrying a constant number of unmovable tokens each,
can not solve the BHS problem in an oriented torus. The idea of the proof is the following: We show that
an adversary (by looking at the transition function of an agent) can always select a big enough torus and
initially place the agents so that no agent visits nodes which contain tokens left by another agent, or meets
with another agent. Moreover there are nodes on the torus never visited by any agent. Hence the adversary
may place the black hole at a node not visited by any of the agents to make the algorithm fail.

Theorem 1. For any constant numbers k, t, there exists no algorithm that solves BHS in all oriented tori
containing one black hole and k scattered agents, where each agent has a constant memory and t unmovable
tokens.

3.2 Agents with movable tokens

We first show that the BHS problem is unsolvable in any synchronous torus by two scattered agents having
any number of movable tokens even if the agents have unlimited memory.

Theorem 2. Two agents carrying any number of movable tokens cannot solve the BHS problem in an
oriented torus even if the agents have unlimited memory.

Proof. Assume w.l.o.g. that the first move of the agents is going East. Suppose that the black hole has
been placed by an adversary at the East neighbor of an agent. This agent vanishes into the black hole after
its first move. The adversary places the second agent such that it vanishes into the black hole after its first
vertical move, or it is in a horizontal ring not containing the black hole if the agent never performs vertical
moves. Observe that the trajectories of the two agents intersect only at the black hole and neither can see
any token left by the other agent. Neither of the agents will ever visit the East neighbor of the black hole
and thus, they will not be able to correctly mark all links incident to the black hole.

Thus, at least three agents are needed to solve the problem. We now determine a lower bound on the
number of tokens needed by three scattered agents to solve BHS.

Theorem 3. There exists no universal algorithm that could solve the BHS problem in all oriented tori
using three agents with constant memory and one movable token each.

Proof. (Sketch) Clearly, in view of Theorem 1, an algorithm which does not instruct an agent to leave its
token at a node, cannot solve the BHS problem. Hence any potentially correct algorithm should instruct
an agent to leave its token down. Moreover this decision has to be taken after a finite number of steps
(due to agents’ constant memory). After that the agents visit new nodes until they see a token. Following
a similar reasoning as in Theorem 1 we can show that if the agents visit only a constant number of nodes
before returning to meet their tokens they cannot visit all nodes of the torus. If they move their tokens each
time they see them and repeat the previous procedure (i.e., visit a constant number of nodes and return
to meet their tokens), we can show that they will find themselves back at their initial locations and initial
states without having met with other agents and leaving some nodes unvisited. An adversary may place
the black hole at an unvisited node to make the algorithm fail. Now consider the case that at some point
an algorithm instructs the agents to visit a non-constant number of nodes until they see a token (e.g., leave
your token down and go east until you see a token). Again in a similar reasoning as in Theorem 1, we can
show that an adversary may initially place the agents and the black hole, and select the size of the torus
so that two of the agents enter the black hole without leaving their tokens close to it: The agent (say A)
that enters first into the black hole has been initially placed by an adversary so that it left its token more
than a constant number of nodes away from the black hole. The adversary initially places another agent
B so that it enters the black hole before it meets A’s token. Furthermore B leaves its token more than a
constant number of nodes away from the black hole. Hence the third agent, even if it meets the tokens left
by A or B, it could not decide the exact location of the black hole.



Corollary 1. At least three agents, each carrying at least two moveable tokens, are necessary to solve the
BHS problem in an oriented torus of arbitrary size.

4 Algorithms for BHS in a torus using moveable tokens

Due to the impossibility result from the previous section, we know that unmoveable tokens are not sufficient
to solve BHS in a torus. In the following, we will use only moveable tokens. To explore the torus an agent uses
the Cautious-Walk technique [14] using moveable tokens. In our algorithms, a Cautious-Walk in direction
D with x tokens means the following: (i) the agent releases a sufficient number of tokens such that there
are exactly x tokens at the current node, (ii) the agent moves one step in direction D and if it survives, the
agent immediately returns to the previous node, (iii) the agent picks up the tokens released in step (i) and
again goes one step in direction D. If an agent vanishes during step (ii), any other agent arriving at the
same location sees x tokens and realizes a potential danger in direction D. Depending on the algorithm an
agent may use 1, 2, or 3 tokens to implement the Cautious-Walk.

4.1 Solving BHS using k ≥ 3 agents and 3 tokens

We show that three agents suffice to locate the black hole if the agents are provided with three tokens. We
present an algorithm (BHS-torus-33) that achieves this. (See Algorithm 1 in the appendix for details).

Algorithm BHS-torus-33:
An agent explores one horizontal ring at a time and then moves one step South to the next horizontal ring
and so on. When exploring a horizontal ring, the agent leaves one token on the starting node. This node is
called the homebase of the agent and the token left (called homebase token) is used by the agent to decide
when to proceed to the next ring. The agent then uses the two remaining tokens to repeat Cautious-Walk
in the East direction until it has seen twice a node containing one token. Any node containing one token
is a homebase either of this agent or of another agent. The agent moves to the next horizontal ring below
after encountering two homebases. However before moving to the next ring, it does a cautious walk in
the South direction with three tokens (the two tokens it carries plus the homebase token). If the agent
survives and the node reached by the agent has one token, the agent repeats a cautious walk in the East
direction (with two tokens) until it reaches an empty node. The agent can now use this empty node as its
new homebase. It then repeats the same exploration process for this new ring leaving one token at its new
homebase.

Whenever the agent sees two or three tokens at the end of a cautious-walk, the agent has detected
the location of the black hole: If there are two (resp. three) tokens at the current node, the black hole is
the neighboring node w to the East (resp. South). In this case, the agent stops its normal execution and
then traverses a cycle around node w, visiting all neighbors of w and marking all the links leading to w as
dangerous.

Theorem 4. Algorithm BHS-torus-33 correctly solves the black hole search problem with 3 or more agents.

Proof. An agent may visit an unexplored node only while going East or South. If one agent enters the black
hole going East (resp. South), there will be two (resp. three) tokens on the previous node and thus, no
other agent would enter the black hole through the same link. This implies that at least one agent always
survives. Whenever an agent encounters two or three tokens at the end of a Cautious-Walk, the agent is
certain of the location of the black hole since any alive agent would have picked up its Cautious-Walk
tokens in the second step of the cautious walk (The agents move synchronously always using cautious walk
and taking three steps for each move).

4.2 BHS using k ≥ 4 agents and 2 tokens each

We now present an algorithm that uses only two tokens per agent, but requires at least 4 agents to solve
BHS. (See Algorithm 2 in the appendix.) During the algorithm, the agents put two tokens on a node u to
signal that either the black hole is on the South or the East of node u. Eventually, both the North neighbor



and the West neighbor of the black hole are marked with two tokens. Whenever there is a node v such that
there are exactly two tokens at both the West neighbor of v and the North neighbor of v, then we say that
there exists a Black-Hole-Configuration (BHC) at v.

Algorithm BHS-torus-42:

The agent puts one token on its starting node (homebase). It then performs a Cautious-Walk in the East
direction with two tokens. If the agent survives, it repeats the Cautious-Walk with one token (leaving the
other token on the homebase) until it reaches a node containing one or two tokens.

– If the agent reaches a node u containing two tokens, then the black hole is the next node on the East
or on the South (See Property C of Proposition 1). The agent stops its exploration and checks whether
the black hole is the East neighbor or the South neighbor.

– Whenever an agent reaches a node containing one token, it performs a Cautious-Walk in East direction
with two tokens and then continues the Cautious-Walk in the same direction with one token. If the
agent encounters three times a node containing one token, it moves to the next horizontal ring below.
To do that it first performs a Cautious-Walk with two tokens in the South direction. If the agent
survives and reaches the ring below, it can start exploring this horizontal ring. If the current node is
not empty, the agent repeats a cautious walk with two token in the East direction until it reaches an
empty node. Now the agent repeats the same exploration process using the empty node as its new
homebase. Whenever the agent encounter a node with two tokens, it stops its exploration and checks
whether the black hole is the East or South neighbor.

In order to check if the black hole is the East neighbor v or the South neighbor w of the current node u
(containing two tokens), the agent performs the following actions: The agent reaches the West neighbor
x of w in exactly three time units by going west and south (and waiting one step in between). If there
are two tokens on this node x then w is the black hole. Otherwise, the agent performs a cautious walk in
the East direction with one token (or with two tokens if there is already one token on node x). If it safely
reaches node w, then the black hole is the other node v. Otherwise the agent would have fallen into the
black hole leaving a BHC at node w. An agent that discovers the black hole, traverses a cycle around the
black hole visiting all its neighbors and marking all the links leading to it as dangerous.

Proposition 1. During an execution of BHS-torus-42 with k ≥ 4 agents, the following properties hold:

A When an agent checks the number of tokens at a node, all surviving agents have picked up their cautious-
walk token.

B At most three agents can enter the black hole:

(a) at most one agent going South leaving two tokens at the previous node.

(b) at most two agents going East, each leaving one of its tokens at the previous node.

C When an agent checks the number of tokens at a node, if there are two tokens then the black hole is
either the East or the South neighbor of the current node.

D After an agent starts exploring a horizontal ring, one of the following eventually occurs:

(a) If this ring is safe, the agent eventually moves to the next horizontal ring below.

(b) Otherwise, either all agents on this ring fall into the black hole or one of these agents marks all
links to the black hole.

Theorem 5. Algorithm BHS-torus-42 correctly solves the black hole search problem with k ≥ 4 agents,
each having two tokens.

Proof. Property B of Proposition 1 guarantees that at least one agent never enters the black hole. Property
D ensures that one of the surviving agents will identify the black hole. Property C shows that if the links
incident to a node w are marked as dangerous by the algorithm, then node w is the black hole.



4.3 BHS with 3 agents and 2 movable tokens

Using the techniques presented so far, we now present the algorithm that uses exactly 3 agents and two
tokens per agent. The algorithm is quite involved and we present here only the main ideas of the algorithm.
The complete algorithm along with a proof of correctness can be found in the appendix (Appendix C and
D).

Notice first that we can not prevent two of the three agents from falling into the black hole (see proof
of Theorem 2). To ensure that no more than two agents enters the black hole, the algorithm should allow
the agent to move only in two of the possible four directions (when visiting unexplored nodes). When
exploring the first horizontal ring, an agent always moves in the East direction, using a Cautious-Walk
as before and keeping one token on the starting node (homebase). This is called procedure First-Ring.
Once an agent has completely explored one horizontal ring, it explores the ring below, using procedure
Next-Ring. During procedure Next-Ring, an agent traverses the already explored ring and at each node u
of this ring, the agent puts one token, traverses one edge South (to check the node just below node u), and
then immediately returns to node u and picks up the token. Note that an agent may fall into the black
hole only when going South during procedure Next-Ring or when going East during procedure First-Ring.
We ensure that at most one agent falls into the black hole from each of these two directions. The surviving
agent must then identify the black hole from the tokens left by the other agents. For this algorithm, we
redefine the Black-Hole-Configuration (BHC) as follows: If there is a node v such that there is one or two
tokens at both the West neighbor of v and the North neighbor of v, then we say that a BHC exists at v.
The algorithm should avoid forming a black hole configuration at any other node except the black hole.
In particular, when the agents put tokens on their homebase, these tokens should not form a BHC. This
requires coordination between any two agents that are operating close to each other (e.g. in adjacent rings
of the torus) and it is not always possible to ensure that a BHC is never formed at a safe node.

The main idea of the algorithm is to make two agents meet whenever they are close to each other (this
requires a complicated synchronization and checking procedure). If any two agents manage to gather at
a node, we can easily solve BHS using the standard procedure for colocated agents4 (see algorithm BHS-
with-colocated-agents in the appendix). On the other hand, if the agents are always far away from each
other (i.e. more than a constant distance) then they do not interfere with the operations of each other until
one of them falls into the black hole. The agents explore each ring, other than first ring, using procedure
Next-Ring. We have another procedure called Init-Next-Ring that is always executed at the beginning of
Next-Ring, where the agents check for certain special configurations and take appropriate action. If the
tokens on the potential homebases of two agents would form a BHC on a safe node, then we ensure two
agents meet.

Synchronization:
During the algorithm, we ensure that two agents meet if they start the procedure Init-Next-Ring from
nearby locations. We achieve this by keeping the agents synchronized to each other, in the sense that they
start executing the procedure at the same time, in each iteration. More precisely, we ensure the following
property:

Property 1. When one agent starts procedure Init-Next-Ring, any other surviving agent either (i) starts
procedure Init-Next-Ring at exactly the same time, or (ii) waits in its current homebase along with both
its tokens during the time the other agent is executing the procedure or, (iii) has not placed any tokens at
its homebase.

Notice that if there are more than one agent initially located at distinct nodes within the same horizontal
ring, an agent cannot distinguish its homebase from the homebase of another agent, and thus an agent
would not know when to stop traversing this ring and go down to the next one. We get around this problem
by making each agent traverse the ring a sufficient number of times to ensure that every node in this ring
is explored at least once by this agent. To be more precise, each agent will traverse the ring until it has
encountered a homebase node six times (recall that there can be either one, two or three agents on the
same ring). This implies that in reality the agent may traverse the same ring either twice, or thrice, or

4 Note that the agents meeting at a node can be assigned distinct identifiers since they would arrive from different
directions.



six times. If either all agents start in distinct rings or if all start in the same ring then, the agents would
always be synchronized with each other (i.e. each agent would start the next iteration of Next-Ring at the
same time). The only problem occurs when two agents start on the same ring and the third agent is on
a different ring. In this case, the first two agents will be twice as fast as the third agent. We introduce
waiting periods appropriately to ensure that Property 1 holds.

For both the procedures First-Ring and Next-Ring, we define one big-step to be the period between
when an agent arrives at a node v from the West with its token(s) and when it has left node v to the
East with its token(s). In general the agent would move to an unsafe node (East or South), come back to
pick its token, wait for some time at v before moving to the next node with its token. The waiting period
is adjusted so that an agent can execute the whole procedure Init-Next-Ring during this time. Thus, the
actual number of time units for each big-step is a constant D which we call the magic number.

Algorithm BHS-Torus-32 :

Procedure First-Ring :
During this procedure the agent explores the horizontal ring that contains its starting location. The agent
puts one token on its homebase and uses the other token to perform cautious-walk in the direction East,
until it enters a node with some tokens. If it finds a node with two tokens then the next node is the black
hole. Thus, the agent has solved BHS. Otherwise, if the agent finds a node with a single token this is the
homebase of some agent (maybe itself). The agent puts the second token on this node and continues the
walk without any token (i.e. it imitates the cautious-walk). If it again encounters a node with a single
token, then the next node is the black hole and the algorithm terminates. Otherwise, the agent keeps a
counter initialized to one and increments the counter whenever it encounters a node containing two tokens.
When the counter reaches a value of six, the procedure terminates. At this point the agent is on a node
with two tokens (which it can use for the next procedure).

Unless an agent enters or locates the black hole, the procedure First-Ring requires exactly 6nD time
units for an agent that is alone in the ring, 3nD for two agents that start on the same ring, and 2nD if all
the three agents start on the same ring.

Procedure Init-Next-Ring :
An agent executes this procedure at the start of procedure Next-Ring in order to choose its new homebase
for exploring the next ring. The general idea is that the agent checks the node u on the South of its current
location, move its two tokens to the East, and then goes back to u. If there is another agent that has
started Next-Ring on the West of u (i.e., without this Procedure, the homebases of the two agents would
have formed a BHC), the agents can detect it, and Init-Next-Ring is designed in such a way that the two
agents meet. More precisely, when an agent executes Init-Next-Ring on horizontal ring i without falling
into the black hole, we ensure that either (i) it meets another agent, or (ii) it locates the black hole, or (iii)
it detects that the black hole is on ring i + 2, or (iv) the token it leaves on its homebase does not form a
BHC with a token on ring i+ 1. In case (iii), the agent executes Black-Hole-in-Next-Ring ; in case (iv), it
continues the execution of Next-Ring.

Procedure Next-Ring :
The agent keeps one token on the homebase and with the other token performs a special cautious-walk
during which it traverses the safe ring and at each node it puts a token, goes South to check the node
below, returns back and moves the token to the East. The agent keeps a counter initialized to zero, which
it increments whenever it sees a node with a token on the safe ring. When the agent sees a token on the
safe ring, it does not go South, since this may be dangerous. Instead, the agent goes West and South, and
if it does not see any token there, it puts a token and goes East. If the agent enters the black hole, it has
left a BHC. When the counter reaches a value of six, the procedure terminates.

During the procedure, an agent keeps track of how many (1 or 2) tokens it sees in the safe ring and the
ring below. This information is stored as a sequence (of length at most 24). At the end of the procedure,
the agent analyzes this sequence using Procedure Analyze. During procedure Analyze, an agent in the
horizontal ring i can detect whether (i) the Black hole lies in the horizontal ring i + 1 or i + 2, or, (ii)
there are two other agents in the ring i and ring i+ 1 respectively, or, (iii) the ring i+ 1 does not contain
the black hole. In scenario (i), the agent executes procedure Black-Hole-in-Next-Ring ; in scenario (ii), the



agent meets with the other agent in the same ring; in scenario (iii), the agent moves to the next horizontal
ring (i.e. ring i+ 1) to start procedure Next-Ring again.

Procedure Black-Hole-in-Next-Ring :
The agent executes this procedure only when it is certain that the black hole lies in the ring below its
current position. During the procedure, either (i) the agent detects the location of the black hole and
marks all links to the black hole or (ii) the agent falls into the black hole, forming a BHC at the black hole.

Theorem 6. Algorithm BHS-Torus-32 correctly solves the BHS problem in any oriented torus with exactly
three agents carrying two tokens each.

5 Conclusions

We showed that at least three agents are needed to solve BHS in oriented torus networks and these three
agents must carry at least two movable tokens each for marking the nodes. The algorithm BHS-Torus-32
uses the smallest possible team of agents (i.e., 3) carrying the minimum number of tokens (i.e., 2) and thus,
it is optimal in terms of resource requirements. However, on the downside this algorithm works only for
k = 3 agents. In combination with algorithm BHS-Torus-42 (which solves the problem for any k ≥ 4 agents
carrying 2 tokens each), these algorithms can solve the black hole search problem for any k ≥ 3, if the
value of k is known. Unfortunately, algorithms BHS-Torus-32 and BHS-Torus-42 cannot be combined to
give an algorithm for solving the BHS problem for any k ≥ 3 agents without the knowledge of k: Algorithm
BHS-Torus-32 for 3 agents will not correctly locate the black hole if the agents are more than 3, while in
the algorithm BHS-Torus-42, 3 of the agents may fall into the black hole. Hence, whether the problem can
be solved for k ≥ 3 agents equipped with 2 tokens, without any knowledge of k, remains an interesting (and
we believe challenging) open question. Another interesting open problem is to determine the minimum size
of a team of agents carrying one token each, that can solve the BHS problem. Note that the impossibility
result for three agents carrying one token each, does not immediately generalize to the case of 4 or more
agents, as in those cases, we cannot exclude the possibility that two surviving agents manage to meet.

It is interesting to compare our results with the situation in a synchronous, oriented, anonymous ring,
which can be seen as a one dimensional torus ([2]): The minimum trade-offs between the number of agents
and the number of tokens, in this case, are 4 agents with 2 unmovable tokens or 3 agents with 1 movable
token each. Additionally, in an unoriented ring the minimum trade-offs are 5 agents with 2 unmovable
tokens or 3 agents with 1 movable token each whereas the situation in an unoriented torus has not been
studied. Hence another open problem is solving the BHS problem in a d-dimensional torus, d > 3, as well
as in other network topologies.
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Appendix

A Proofs of Theorems and Propositions

To prove Theorem 1 we will need the following two propositions which appeared in [27].

Proposition 2. [27] Consider one mobile agent with σ states and a constant number t of identical unmov-
able tokens. We can always (for any configuration of the automaton, i.e., states and transition function)
select a n× n oriented torus, where n > tσ2 so that no matter what is the starting position of the agent, it
cannot visit all nodes of the torus. In fact, the agent will visit at most σ + t(σ − 1)2(n+ 1) < n2 nodes.

Proposition 3. [27] Let A be an agent with σ states and a constant number t of identical unmovable
tokens in a n × n oriented torus, where n > tσ2 and let v be a node in that torus. There are at most
σ + t(σ − 1)2(n + 1) < n2 different starting nodes that we could have initially placed A so that node v is
always visited by A.

Theorem 1 For any constant numbers k, t, there exists no algorithm that solves BHS in all oriented tori
containing one black hole and k scattered agents, where each agent has a constant memory and t unmovable
tokens.

Proof. Consider a constant number of k mobile agents with σ states and a constant number of t unmovable
tokens each, in an n × n oriented torus. We show that an adversary can always (for any configuration of
the automatons, i.e., states and transition function) initially place the agents on the torus and select n so
that there are nodes on the torus never visited by any agent.

Take a n × n oriented torus, where n > 2kt2σ2 and let s(A1) be the starting node of agent A1. If
agent A1 was alone in the torus would release its tokens at nodes T1(A1), T2(A1), . . . , Tt(A1). According to
Proposition 3, there are at least n2−(σ+ t(σ−1)2(n+1)) starting nodes at which an adversary could place
agent A2 so that A2 does not visit node T1(A1). Among these starting nodes (applying again Proposition
3) there are at most σ+ t(σ− 1)2(n+ 1) nodes that would lead agent A2 to token T2(A1), another at most
σ+ t(σ−1)2(n+1) nodes that would lead agent A2 to token T3(A1) and so on. Therefore there are at least
n2− t(σ+ t(σ−1)2(n+1)) starting nodes at which the adversary could place agent A2 so that A2 does not
visit any of the T1(A1), T2(A1), . . . , Tt(A1) nodes. The adversary still needs to place agent A2 at a starting
node s(A2) so that A2 releases its tokens at nodes T1(A2), T2(A2), . . . , Tt(A2) not visited by agent A1.

Notice that an agent can decide to release a new token at a distance of at most σ nodes from a previ-
ously released token (an agent cannot count more than σ before it repeats a state). Since n > 2kt2σ2

for every two different starting nodes s(A2) and s′(A2), agent A2 would release its tokens to nodes
T1(A2), T2(A2), . . . , Tt(A2) and T ′1(A2), T ′2(A2), . . . , T ′t (A2) respectively, where Ti(A2) 6= T ′i (A2), 1 ≤ i ≤ t.

Since in view of Proposition 2 agent A1 can visit at most σ + t(σ − 1)2(n + 1) nodes (if A1 was alone
in the torus), there are at most σ + t(σ − 1)2(n + 1) starting nodes for A2 for which A2 would place its
first token at a node visited by agent A1, another at most σ + t(σ − 1)2(n + 1) starting nodes for A2 for
which A2 would place its second token at a node visited by agent A1, and so on. Hence we need to exclude
another t(σ + t(σ − 1)2(n + 1)) starting nodes for agent A2. Thus we have left with n2 − 2t(σ + t(σ −
1)2(n+ 1)) starting nodes at which the adversary can place agent A2 so that A2 does not visit any of the
T1(A1), T2(A1), . . . , Tt(A1) nodes and agent A1 does not visit any of the T1(A2), T2(A2), . . . , Tt(A2) nodes.

For the placement of agent A3, following the same reasoning, and using again Proposition 3, we have
that there are at least n2−2t(σ+ t(σ−1)2(n+1)) starting nodes at which the adversary could place agent
A3 so that A3 does not visit any of the T1(A1), T2(A1), . . . , Tt(A1) or T1(A2), T2(A2), . . . , Tt(A2) nodes.
And using Proposition 2 as above by excluding another 2t(σ + t(σ − 1)2(n + 1)) starting nodes for agent
A3, we have left with n2 − 4t(σ + t(σ − 1)2(n+ 1)) starting nodes at which the adversary can place agent
A3 so that A3 does not visit any of the T1(A1), T2(A1), . . . , Tt(A1) or T1(A2), T2(A2), . . . , Tt(A2) nodes and
agents A1 and A2 do not visit any of the T1(A3), T2(A3), . . . , Tt(A3) nodes.

Following the same reasoning, an adversary can select a node out of

n2 − 2(k − 1)t(σ + t(σ − 1)2(n+ 1))



nodes to place agent Ak so that Ak does not visit any of the T1(Aj), T2(Aj), . . . , Tt(Aj) nodes, where
1 ≤ j ≤ k − 1, and agents Aj do not visit any of the T1(Ak), T2(Ak), . . . , Tt(Ak) nodes.

Hence all agents may only visit their own tokens and they have to do it at the same time and being
at the same states and therefore they maintain their initial distance forever. Since any agent may only see
its own tokens, by Proposition 2, any agent can visit at most σ + t(σ − 1)2(n+ 1) nodes on the torus and
hence all agents will visit at most k(σ + t(σ − 1)2(n + 1)) < n2 nodes when n > 2kt2σ2. Therefore there
are nodes never visited by any agent and the adversary can place the black hole at such a node.

Proposition 1 During an execution of BHS-torus-42 with k ≥ 4 agents, the following properties hold:

A When an agent checks the number of tokens at a node, all surviving agents have picked up their cautious-
walk token.

B At most three agents can enter the black hole:
(a) at most one agent going South leaving two tokens at the previous node.
(b) at most two agents going East, each leaving one of its tokens at the previous node.

C When an agent check the number of tokens at a node, if there are two tokens then the black hole is either
the East or the South neighbor of the current node.

D After an agent starts exploring a horizontal ring, one of the following eventually occurs:
(a) If this ring is safe, the agent eventually moves to the next horizontal ring below.
(b) Otherwise, either all agents on this ring fall into the black hole or one of these agents marks all

links to the black hole.

Proof. The network is synchronous and the agents take three time units for each move either while perform-
ing a Cautious-Walk or while checking for the black hole after finding two tokens. The agents always count
the number of tokens at the end of these three time units while they always pick up their Cautious-Walk
tokens at the end of the second time unit. Hence Property A holds.

Now for Property B, the agents explore new nodes by going either East or South. When an agent
explores a node on the South, it always leaves two tokens as a signal for danger. When an agent explores
a node on the East, it leaves at least one token as a signal for danger. If there are two tokens on the West
neighbor and the South neighbor of a node u, no agent encountering these neighbors will enter node u.
Thus, Property B is true.

Property C follows from Properties A and B, and the fact that an agent never leaves two tokens on a
node except in the first step of a Cautious-Walk. In the latter case, the agent (if it survives) removes at
least one of the tokens at the end of the Cautious-Walk.

An agent enters a horizontal ring only if it has seen once a node with two tokens, or three times a node
with one token in the previous horizontal ring. In the former case, the agent checks the exact location of
the black hole. Thus, it will either vanish into the black hole or mark all the links incident to the black
hole as dangerous. In the later case or when the agent starts the execution of the algorithm, the agent
will explore the current horizontal ring. If this ring does not contain the black hole, then the agent will
eventually go to the next horizontal ring after seeing some tokens (three times its own homebase token if
it is alone on the ring). Consider now an agent A1 that starts exploring the horizontal ring containing the
black hole. If agent A1 sees two tokens at a node u when exploring the ring, it identifies the East neighbor
of u as the black hole. Hence, property D holds in this case, or if agent A1 vanishes into the black hole
during the exploration of the ring. Otherwise, agent A1 moves to the next ring after it has seen three times
a node with one token. Assume for the sake of contradiction that these three tokens are owned by agents
that vanish into the black hole during the execution of the algorithm. By Property B, at most two agents,
A2 and A3, can leave single tokens on this ring before vanishing into the black hole by going East. Hence,
two of these three tokens are owned by the same agent A2. One of these two tokens is a cautious walk
token left on the west neighbor v of the black hole. The agent A3 must have vanished into the black hole
before the tokens was seen by agent A1. Hence, there must be another cautious walk token owned by agent
A3 on the node v — a contradiction! It follows that at least one of the three tokens seen by agent A1 is
the homebase token of a surviving agent, i.e., an agent that will not vanish into the black hole. This agent
or any surviving agent that have entered the ring closer to the black hole, will mark all the links incident
to the black hole as dangerous.



B Pseudo-code of Algorithms for Black Hole Search in Tori

The procedure Mark All(D) is executed by an agent when it deduces that the next node w in the direction
D from current location is the black hole. The agent traverses a cycle around node w, visiting each neighbor
of w and marking as “dangerous” all links leading to node w.
The subroutine Wait(x) requires the agent to take no action for x time units.

Procedure Cautious-walk(Direction D, integer x)

/* Procedure used by the agent to explore the nodes */

1 Put tokens until there are x tokens;
2 Go one step along D and then go back; /* test if the node in direction D is the black hole */

3 Pick up the tokens released in the first step;
4 Go one step along D;

Algorithm 1: BHS-Torus-33

/* Algorithm for BHS in Oriented Torus (using k=3 or more agents, 3 tokens each) */

/* One token = Homebase */

/* Two tokens = BlackHole in the East */

/* Three tokens = BlackHole in the South */

1

2 Found:= false;
3 while not Found do
4 Count := 0;
5 Put two tokens;
6 Go one step East and come back;
7 Pick one token and go one step East ; /* leaving one token at the homebase */

8 repeat
9 if found single token then increment Count;

10 CautiousWalk(East,2);

11 until found one or no tokens and count < 2;
12 if found 2 or 3 tokens then Found:=true;
13 else /* The agent found 1 token and must move to the next horizontal ring */

14 Pick one token ; /* Remove the homebase token */

15 CautiousWalk(South,3) ; /* using the token at the current node */

16 while found one token do /* Current node is the homebase of another agent */

17 CautiousWalk(East,2) ; /* using the token at the current node */

18 if found 2 or 3 tokens then Found:=true;

19 if found 2 tokens then Mark-All(East);
20 if found 3 tokens then Mark-All(South);



Algorithm 2: BHS-Torus-42

/* Algorithm for BHS in Oriented Torus (using k=4 or more agents, 2 tokens) */

/* One token = Homebase (or Blackhole in the East) */

/* Two tokens = BlackHole either in the East or in the South */

1

2 Found:= false;
3 while not Found do
4 Count := 0;
5 Put one token ; /* mark your homebase */

6 CautiousWalk(East,2);
7 repeat
8 if found single token then
9 increment Count; CautiousWalk(East,2);

10 else if found no tokens then
11 CautiousWalk(East,1);

12 until found two tokens or count = 3;
13 if found 2 tokens then
14 Found:=true;
15 else /* found 1 token (thrice), so move to the next horizontal ring */

16 Pick one token ; /* Remove the homebase token */

17 CautiousWalk(South,2);
18 while found one token do /* Search for an empty node */

19 CautiousWalk(East,2);

20 if found 2 tokens then Found:=true;

/* The agent found two tokens and knows that one of the neighbors is the black hole */

21 Go West;
22 Wait(1) ; /* To Synchronize with Cautious-Walk */

23 Go South;
24 if found two tokens then Mark-All(East);
25 else
26 if found one token then
27 CautiousWalk(East,2);
28 else
29 CautiousWalk(East,1);

30 Go North;
31 Mark-All(East);



C BHS algorithm for 3 agents with 2 tokens each

We now present the different procedures that are used in Algorithm 3. As explained before, the agents use
procedure FirstRing to explore the horizontal ring where they start and NextRing to explore the others
horizontal rings.

Algorithm 3: BHS-Torus-32

/* Algorithm for BHS in Oriented Torus (using k=3 agents, 2 tokens) */

1 FirstRing;
2 NextRing(true);

In the following, we sometimes denote nodes by their coordinates in the ring. The North (resp. East,
South, West) neighbor of node (i, j) is the node denoted by (i− 1, j) (resp. (i, j + 1), (i+ 1, j), (i, j − 1)).

Recall that for both the procedures First-Ring and Next-Ring, a big-step is the period between when
an agent arrives at a node v with its token(s) to when it has left node v with its token(s). Note that in
both procedures, a big-step takes the same number of time units that we denote by D.

FirstRing. During this procedure the agent explores the horizontal ring that contains its starting location.
The agent puts one token on its homebase and uses the other token to perform cautious-walk in the direction
East, until it enters a node with some tokens. This node is the homebase of some agent a (maybe itself).
If there are two tokens on this node, then it means died on its first move going East. Thus, the agent
has solved BHS. Otherwise, the agent puts the second token on this node and continues the walk using
cautious-walk moves but without moving tokens. Note that, in this case, agent a has already explored these
nodes, and so it is safe for the agent to continue going East until it reaches a token. If it again encounters
a node with a single token, then it must be the second token of agent a, because otherwise, a would have
put its second token on top of this token. Thus, it implies that the next node is the black hole. Otherwise,
the agent can only see nodes with two tokens on this ring. The agent keeps a counter initialized to one and
increments the counter whenever it encounters a node containing two tokens. When the counter reaches a
value of six, the procedure terminates. At this point the agent is back on its homebase with its two tokens
(which it can use for the next procedure).

When an agent locates the black hole, it marks all links incident to it, and then it uses the Procedure
CleanFirstRing in order to remove all tokens that have been left on the homebases of the agents.

Unless an agent dies or locates the black hole, the procedure First-Ring requires exactly 6n big-steps
(i.e., 6nD time units) for an agent that is alone in the ring, 3n big-steps (i.e., 3nD time units) for two
agents that start on the same ring, and 2n big-steps (i.e., 2nD time units) if all the three agents start on
the same ring.

If two agents meet. If two agents meet at a node, then it is quite easy to locate the black hole using the
team of two agents (without the help of any third agent). This algorithm is described below (see procedure
BHS-with-colocated-agents). Notice first that it is always possible to break the symmetry between the agents
who meet at a node, because the agents would arrive from different directions. In our algorithm, if two
agents meet, they are both close from their two tokens and they first go to pick their tokens up. Once each
agent has its two tokens, we do the following. After meeting, one of the agent becomes the leader and the
other is the follower. Together they perform a combined cautious walk (Procedure Cautious-Walk-With-
Another-Agent) described as follows. The follower stays at the current node while the leader goes to the
next node and returns immediately if the node is safe. Then both agents move together to the next node.
The starting node is marked with three tokens (recall the agents have two tokens each, thus four tokens
in total). The cautious-walk is repeated until the agents come back to the starting node5. The leader goes
to the node directly below to check if this node is the black hole. If not, the agents now move to the next
ring below along with the tokens, and repeat the whole process. Only the leader agent may fall into the
black hole and in that case, the follower knows this fact within two time units, and thus it has located the
black hole.



Algorithm 4: FirstRing

/* Algorithm for the first horizontal ring. If two (or three) agents start in the horizontal

ring where the black hole is located, the black hole is found. */

1 Put 2 tokens ;
2 repeat
3 reset clock;
4 Go East;
5 Go West;
6 pick up a token;
7 Go East;
8 n := the number of tokens you see;
9 if n = 2 then Mark-All(East), CleanFirstRing and Exit; /* The black hole is found */

10 else Put a token;
11 Wait until clock reaches magic number and reset clock;

12 until n > 0;
13 count := 1;
14 repeat
15 reset clock;
16 Go East;
17 if you see 1 token then Mark-All(East); CleanFirstRing and Exit; /* The black hole is found */

18 if you see 2 tokens then count := count+ 1;
19 Wait until clock reaches magic number and reset clock;

20 until count = 6;
21 Pick up 2 tokens ;

Procedure CleanFirstRing

/* Procedure to use if the Black-Hole is in the first ring in order to remove all tokens from

this ring except the one on the West of the Black-Hole */

1 repeat
2 Go West;
3 if you see some tokens then pick them up;

4 until until you see exactly one token or you meet an agent ;

Procedure BHS-with-colocated-agents

/* Procedure for BHS in Oriented Torus using 2 colocated agents, */

1 Pick up any token;
2 Go back to the home base of the first agent with both agents;
3 Pick up any token;
4 Go back to the home base of the second agent with both agents;
5 Pick up any token;
6 repeat
7 Put 3 tokens;
8 repeat
9 Cautious-Walk-With-Another-Agent(East);

10 until three tokens found ;
11 Pick up 3 tokens;
12 Cautious-Walk-With-Another-Agent(South);

13 until until black hole is found ;



Procedure Cautious-Walk-with-another-agent(direction)

1 first agent moves to direction and go back;
2 second agent Wait(2);
3 if second agent does not see first agent then
4 Mark-All(direction) and Exit;

5 both agents move to direction

Remark 1. In our algorithm, as soon as two agents meet, they execute BHS-with-colocated-agents. Note
that, in this case, if the third agent sees tokens belonging to the two agents executing BHS-with-colocated-
agents, it sees a tower of 3 tokens. Since in our algorithm, as long as no agents have met, there is at most
two tokens on each node. Thus, the third agent can detect that the two other agents have met, and in this
case, it stops the algorithm. We also assume that once two agents have met, if they meet the third agent
while executing BHS-with-colocated-agents, then the third agent also stops executing the algorithm.

Remark 2. While executing the algorithm, if an agent visits a node which one of its incident links is marked
as dangerous, then the agents stops executing the algorithm.

NextRing. Once an agent has finished exploring the horizontal ring where it started executing the al-
gorithm, it uses Procedure NextRing to explore the other rings. An agent executing NextRing on ring i
knows that ring i is safe, and it wants to explore the nodes of ring i+ 1. To do so, the agent first executes
InitNextRing that we describe below. If an agent a continues executing NextRing after it has executed
InitNextRing, we know that if a is on node (i, j), then there is no token on node (i+ 1, j − 1), and thus
a can safely leave a token on (i, j) without creating a BHC with the node (i + 1, j − 1). Then, the agent
does a special cautious walk, i.e., it repeats the following moves until it meets a token on ring i: It leaves a
token on its current node on ring i, goes South, goes North, picks up its token and goes East. If the agent
dies, then it could have only died when it went South, and in this case, it has left a token on the node on
the North of the black hole. In case the agent safely reaches the node on the South, if it sees some tokens,
it remembers how many tokens it sees.

When agent a has reached a node v on ring i where there is one or two tokens, a remembers how many
tokens it sees. Either v is the homebase of some agent b (that may be the same as a), or the token (or the
two tokens) on v indicates that the black hole is on the South or on the East of this node. However, if a
is executing NextRing on ring i, it implies that ring i is safe and thus the black hole cannot be on ring i.
Thus, either v is the homebase of an agent b, or the black hole is on the South of v.

If there are two tokens on v, then v is the homebase of some agent b and the black hole is on the
South of v; in this case, a locates the black hole. If there is only one token on v, a cannot safely go South.
However, we would like to check if the black hole is on the South of v. To do so, a goes West and then
South with its token; let u be the node reached (note that u is on the South −West of v). If there is no
token on u, a leaves its token, and then goes East. If the black hole is on the South of v, a dies leaving a
black hole configuration. If the black hole is not on the South of v, a picks up its token and goes back to v.

If there is one or two tokens on u, it is a black hole configuration, and thus a cannot safely go East. If
there are two tokens on u, then necessarily the black hole is on the South of v, and a locates it. However,
if there is one token on u, and one token on v, it does not necessarily means that the black hole is on the
South of v. Indeed, suppose that v is the homebase of a, that the black hole is on the South of u, and that
an agent c has started executing NextRing on ring i + 1 at the same time a started executing NextRing

on ring i. After v has executed InitNextRing, there was no token on u, but c has died leaving its token
on u later. Thus, if there is one token on v, and one token on v, a continues to execute NextRing.

If a has neither died, nor located the black hole at v, it continues to perform its special cautious walk
until it sees some tokens on ring i twice. Each time it sees some tokens on ring i + 1, v remembers how
many tokens it sees. Each time a sees some tokens on ring i, it remembers how many tokens it sees and
checks if the black hole is on the South as explained above.

5 Note that there can be at most one node in the torus that contains three tokens.



Procedure NextRing(first time)

/* At any time during the execution, if you meet an agent you call procedure

BHS-with-colocated-agents */

1 reset clock;
2 if not first time then Go South else Wait(1); /* to ensure all agents start InitNextRing at the

same time. */

3 InitNextRing;
4 count := 0; sequence := ε; danger := false;
5 repeat
6 Wait(12);

/* You wait to enable an agent executing InitNextRing on the ring above to meet you if

needed. */

7 if danger then
8 Wait(2);
9 danger := false;

10 else
11 Go South;
12 w := the number of tokens you see;
13 if w > 0 then
14 sequence := sequence⊕ bw;

15 Go North;

16 if count < 3 then Pick up 1 token;
17 Go East;
18 n := the number of tokens you see;
19 if count < 3 then Put 1 token;
20 if n > 0 then
21 count := count+ 1;
22 sequence := sequence⊕ tn;
23 if count ≤ 3 then
24 if n = 2 or w = 2 then Mark-All(South) and Exit; /* The black hole is found */

25 else if n = 1 and w = 1 then danger := true;
26 else
27 Pick up 1 token;
28 Go West, Go South;
29 Put 1 token;
30 Go East; /* If you die, there is a token North and West of the Black Hole */

31 Go West;
32 Pick up 1 token;
33 Go North, Go East;
34 Put 1 token;

35 else
36 if w ≥ 1 then danger := true;

37 Wait until clock reaches magic number and reset clock;

38 until count = 6;
39 Pick up all tokens;
40 Analyze(sequence);



Note that if the black hole is on ring i+ 1, it implies that v is not the homebase of a, and that another
agent died leaving a token on North of the black hole. Consequently, if v dies, it enters the black hole from
the East.

Once a has seen three times some tokens on ring i, we can show that if the black hole is on ring i,
either a died, or a located the black hole, or there is a BHC around the black hole. Thus, agent a leaves its
second token on top of the token at its current node. Then it performs a special cautious walk, avoiding
entering nodes marked by a BHC, until it sees tokens on ring i three more times. Again, while doing this,
it remembers how many tokens it saw on nodes on rings i and i + 1. However, during this final traversal,
whenever a reaches a node on ring i that contains one or two tokens, it does not check if the node on the
South is the black hole.

Remark 3. In order to remember how many tokens it sees on the nodes of rings i and i+1, the agent builds
a sequence over the alphabet {b1, b2, t1, t2}. Initially, its sequence is empty; each time the agent sees one
(resp. two) token on ring i+ 1, it adds a b1 (resp. b2) to its sequence; each time the agent sees one (resp.
two) token on ring i, it adds a t1 (resp. t2) to its sequence.

We can show that when an agent sees some tokens on ring i + 1, these are either tokens left by dead
agents, or homebase-tokens. This implies that the sequence is of length at most 24: an agent with finite
memory can remember such a sequence.

In the description of the algorithm, the ⊕ symbol stands for the standard concatenation of string and
ε for the empty string.

How to use the sequence constructed during NextRing? At the end of Procedure NextRing, the
agent a executing NextRing calls Procedure Analyze. This procedure enables an agent to distinguish which
of the following cases happen (see Lemma 11).

– a does not see any tokens on ring i+ 1 and ring i+ 1 is safe; in this case a executes NextRing on ring
i+ 1.

– there is no other agent on ring i and there is an agent that has executed NextRing without dying on
ring i+ 1 when a was executing NextRing on ring i; in this case, a executes NextRing on ring i+ 1.

– there were two other agents executing NextRing on ring i, the black hole is on ring i+ 1, and a is the
only agent that is still alive; in this case, a locates the black hole.

– there was another agent executing NextRing on ring i, the black hole is on ring i+ 1, and a is the only
agent that is still alive; in this case, a executes BlackHoleInNextRing on ring i.

– there is another agent on ring i, ring i+ 1 is safe and the tokens the agents see on ring i+ 1 enable the
two agents to meet.

– there is no other agent on ring i, black hole is in ring i+ 2, and there are the tokens of one or two dead
agents on ring i+ 1; a executes BlackHoleInNextRing on ring i+ 1 with its two tokens.

InitNextRing. The aim of Procedure InitNextRing is to ensure that when an agent a start executing
NextRing on ring i, the homebase of a does not form a BHC with a token on ring i+ 1.

In Figure 1, we have shown the different possible trajectories for an agent executing InitNextRing.
The figure can be read as follows:

– the double-circled node is the place where the agent starts executing InitNextRing.
– the black node, if any, represents the black hole.
– the numbers in black on top of each node represent the time units where the agents arrive on the node.
– the numbers in red in the node represent the number of tokens belonging to other agents that the agent

sees when it visits the node. If the agent visits the node twice and if it does not see the same number
of tokens, we write x/y that means that it sees x tokens the first time and it sees y tokens the second
time.

– the intervals in green below each node represent the nodes where the agent left its own tokens; note
that any agent executing InitNextRing always moves its two tokens together. If an interval [x− y] is
written below a node, it means that the agent left its two tokens on this node between time units x
and y. When an agent left its tokens on a node x time units after it started executing InitNextRing

and that they are not moved before the end of InitNextRing, we write [x−].



Procedure Analyze(sequence)

1 if sequence = b1t1b1t1b1t1b2t2b2t2b2t2 or sequence does not contain any b then
/* Either you have seen no tokens on the ring below or you are a single agent that has

seen tokens of another alive single agent */

2 Go South;
3 NextRing (false);

4 else if sequence contains less than 3 t2 then
5 if you have only one token then

/* In this case, the two other agents were in the same ring as you, they both died,

and there is only one node in the ring containing two tokens: the node that is

North of the black hole */

6 repeat
7 Go East
8 until you see two tokens;
9 Mark-All South and Exit;

10 else
/* In this case, there was another agent in the ring with you, but you are the only

one that is still alive */

11 BlackHoleInNextRing;

12 else if sequence contains two consecutive t then
/* You know that there is another active agent in the ring, and that your sequence is

different from the sequence of the other agent. */

13 if sequence start with b then
14 Wait until you meet an agent
15 else
16 repeat
17 Go East
18 until you meet an agent ;

19 else
/* You know that the next ring is safe and that an agent dies exploring the ring below

it. */

20 Go South;
21 BlackHoleInNextRing;
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Fig. 1. The different trajectories an agent can follow while executing InitNextRing.



First, a leaves its two tokens on the node (i, j) where it starts InitNextRing, and then it goes South
on node (i+ 1, j) and remembers how many tokens it sees. Then the agent moves its two tokens East on
node (i, j+ 1). If the agent sees two tokens on node (i, j+ 1), then it implies that the black hole is on node
(i+ 1, j + 1) and agent a locates it.

Otherwise, if the agent has seen zero or two tokens on node (i + 1, j), it goes back to the node and
checks how many tokens it sees. If a has seen zero tokens both times, we know that no agent has started
executing InitNextRing at the same moment as a did. In this case, a enters node (i + 1, j + 1) from the
North (where it has left its two tokens) to meet an agent b that may be waiting there (if there is another
agent in ring i, and if b is in the middle of the execution of NextRing); if it does not meet an agent, it goes
back on node (i, j + 1).

If the agent has seen twice two tokens on node (i+ 1, j), it means that the black hole is either on node
(i+ 1, j + 1), or on node (i+ 2, j). In this case, agent a enters node (i+ 1, j + 1) from the North (where
it has left its two tokens); if a dies, it leaves a black hole configuration, and otherwise, the black hole is on
node (i+ 2, j) and a locates it.

If the agent has seen first zero (resp. two), and then two (resp. zero) tokens on node (i+ 1, j), then it
implies that another agent b has started executing InitNextRing on node (i + 1, j − 1) (resp (i + 1, j))
at the same moment as a did. In this case, a waits for b on the two tokens b left on node (i + 1, j) (resp.
(i+ 1, j + 1)).

The last case to consider is when agent a has seen one token on node (i + 1, j); in this case, agent a
executes Procedure OneTokenBelow. Since the agents are synchronized, we can show that this token belongs
to a dead agent b: the black hole is either in ring i, or in ring i+ 1. In this case, agent a first enters node
(i+1, j+1) from the North (where it has left its two tokens); if a dies, it leaves a black hole configuration,
and otherwise, it remembers how many tokens it sees on node (i+ 1, j+ 1). If it does not see any token on
node (i + 1, j + 1), then a moves its two tokens on node (i, j + 2): it knows that its homebase-token will
not form a BHC with a node on ring i+ 1. If a sees at least one token on node (i+ 1, j + 1), it moves its
two tokens on node (i, j + 2) and enters node (i+ 1, j + 2) from the North. If a died, it leaves a black hole
configuration. Otherwise, it knows that the tokens a saw on nodes (i + 1, j) and (i + 1, j + 1) are either
homebase-tokens, or tokens indicating that the black hole is on ring i+ 2. However, if the black hole is on
ring i+1, then it implies that both tokens a saw were homebase tokens, and thus two agents have executed
FirstRing on ring i + 1. But in this case, we know that the black hole has already been found and all
homebase tokens of ring i+ 1 have been removed. Consequently, if a sees one token on node (i+ 1, j), and
at least one token on node (i+ 1, j + 1), then the black hole is in ring i+ 2. In this case, agent a executes
BlackHoleInNextRing on ring i+ 1.

BlackHoleInNextRing. When it executes InitNextRing, or NextRing, an agent may locate the ring
containing the black hole without locating the black hole itself. In this case, it executes the procedure
BlackHoleInNextRing. When an agent a executes BlackHoleInNextRing on ring i, agent a has its two
tokens, it knows that ring i is safe and that the black hole is on ring i+ 1. First, agent a reaches a node on
ring i that does not contain any token; this ensures that agent is not on the North of the black hole. Then,
agent a traverses the ring i until it finds a token on node (i, j). If there is a token on node (i+ 1, j − 1) (a
can check this safely by moving West and then South), i.e., agent a discovers a black hole configuration,
then we can show that the black hole is on node (i, j), and agent a locates it. If there is no token on node
(i+ 1, j − 1), a leaves its two tokens on node (i+ 1, j − 1) and enters node (i+ 1, j) going East. If a dies,
it leaves a black hole configuration. Otherwise, agent a repeat this procedure until it dies or locates the
black hole. Since we know that there is a token on the node located on the North of the black hole, we
know that either a locates the black hole, or a dies entering the black hole from the East leaving a black
hole configuration.

D Proof of Correctness for Algorithm BHS-Torus-32

Remark 4. During the execution of our algorithm, once two agents have met, they execute
BHS-with-co-located-agents, and they eventually find the black hole. We are mainly interested in show-
ing that even if agents do not meet, our algorithm is correct.

In a lot of the following lemmas, we implicitly assume that each agent that is still alive has not met
any other agent.



Procedure InitNextRing

/* Procedure used by the agent to proceed to the black hole search in the next ring. */

/* At any time during the execution, if you meet an agent you call procedure

BHS-with-colocated-agents */

1 Put 2 tokens;
2 Go South;
3 n1 := the number of tokens you see;
4 Go North;
5 Pick up 2 tokens;
6 Go East;
7 if you see 2 tokens then Mark-All(South) and Exit;
8 else Put 2 tokens;
9 if n1 = 1 then

10 OneTokenBelow;
11 else
12 Go West, Go South;
13 n3 := the number of tokens found; /* same place as for n1 */

14 switch the value of (n1, n3) do
15 case (0,0)
16 Go North, Go East; /* back to your new homebase */

17 Go South, Go North; /* if you die, you leave 2 tokens on top of the Black-Hole */

18 Wait(3); /* to ensure all agents finish InitNextRing at the same time */

19 case (0,2)
/* You know that there is someone in the ring below you that did exactly the same

thing as you did and it will come back to its homebase */

20 Wait until you meet an agent;

21 case (2,0)
/* You know that there is someone in the ring below you that did exactly the same

thing as you did and it will go back to its home base at East */

22 Go East;
23 Wait until you meet an agent;

24 case (2,2)
/* An agent have died and have left two tokens next to the black hole */

25 Go North, Go East, Go South;
/* If you die, you leave the good configuration indicating the black hole and the

third agent will find it */

26 Go North;
27 Pick up 2 tokens;
28 Go West;
29 Go South;
30 if no agent is waiting then Mark-All(South) and Exit;



Procedure OneTokenBelow

/* Procedure used by the agent that sees one token during InitNextRing. When the agent starts

executing this procedure, it is one node east and one node north from the node containing

one token. */

/* At any time during the execution, if you meet an agent you call procedure

BHS-with-colocated-agents */

1 Wait(1);
2 Go East;
3 if you see 2 tokens then
4 Wait(1); /* If an agent is doing the same thing, you wait for it. */

5 Go West; Pick up 2 tokens; Go East;
6 Mark-All(South) and Exit;

7 else
8 Go West, Go South;

/* if you died you leave the good configuration indicating the black hole and the third

agent will find it. */

9 n2 := the number of tokens you see;
10 Go North;
11 Move 2 tokens to the East;
12 if n2 > 0 then
13 Go South;

/* If you died you leave the good configuration indicating the black hole and the

third agent will find it. */

14 Go North;
/* There are two nodes with tokens in the ring below you and for both marked

positions, the link to the East is safe. Thus, the ring below you is safe and the

black hole is on the ring below this ring. */

15 Pick up 2 tokens;
16 Go South;
17 BlackHoleInNextRing;

18 else
19 Wait(3); /* to ensure all agents finish OneTokenBelow and InitNextRing at the same

time. */



Procedure BlackHoleInNextRing

/* An agent executes this procedure when it knows that the ring it is moving in is safe, and

that the Black Hole is in the ring below. */

/* At any time during the execution, if you meet an agent you call procedure

BHS-with-colocated-agents */

1 while you see some tokens do
2 Go East;

3 repeat
4 repeat
5 Go East;
6 until you see some tokens;

/* The Black Hole may be South; one needs to check this. */

7 Go West;
8 Go South;
9 if you see some tokens then

10 Mark-All(East);
/* You located the Black Hole since no agent had come back to pick the token. */

11 else
12 Put 2 tokens;
13 Go East ; /* If you die, there are some tokens North and West of the Black Hole. */

14 Go West;
15 Pick up 2 tokens;
16 Go North, Go East;

17 until you find the Black Hole;

Lemma 1. Assume that when an agent starts executing InitNextRing on ring i, each other alive agent
is either waiting with its two tokens on its homebases, or it starts executing InitNextRing, or it starts
executing BlackHoleInNextRing. Moreover, assume that ring i is safe, and that on every node of ring i
that contains tokens, there is an agent on its two tokens.

When an agent a is the only agent on a node v, if it leaves v to visit a node w that may be the black
hole, the following holds:

– a always leaves v going East, or South,

– a always leaves ones or two tokens on v,

– all the tokens on v when a left belong to a,

– if w is not the black hole, the next move of a is to go back to v.

Proof. The only times that an agent that is alone goes to a node that maybe the black hole are during
the execution of FirstRing, NextRing, BlackHoleInNextRing or InitNextRing. When an agent executes
FirstRing, it can only enter the black hole from the East, and this can only happen before it has seen
any token. When an agent executes the main loop of NextRing on ring i, agent a can die from the North
only before it meets a token on ring i. Thus, the only moves where a can enter the black hole is when
it executes Line 4 of Procedure FirstRing, Lines 10 (when count = 0) and 29 of Procedure NextRing,
Line 2, 17, 25 of Procedure InitNextRing, Lines 8 and 13 of OneTokenBelow, and Line 13 of Procedure
BlackHoleInNextRing. One can check that in all these cases, all the properties hold.

Lemma 2. If two or three agents start in the horizontal ring containing the black hole, then the black hole
is found during the exploration of the first ring.

Moreover, if two agents start in the horizontal ring containing the black hole, then the agent that locates
the black hole removes all tokens left on the homebases of the agents before the third agent visits any node
of this ring.

If one or more agents starts on a ring that does not contain the black hole, they finish executing
FirstRing on the vertex where they start without marking any link.



Proof. Suppose first that two or three agents starts in the horizontal ring containing the black hole. Consider
two agents a and b such that when moving East on the horizontal ring where the agents starts, a is the
closer to the black hole, and b is the second closer.

Note that b cannot die while executing the loop between lines 2 and 11 of Procedure FirstRing, since
it sees some tokens when it arrives on the homebase of a.

If a dies on its first move to the East, then a left two tokens on its homebase. Otherwise, a comes back
and picks up a token before continuing its cautious walk, and thus b sees only one token when it arrives
on the homebase of a. Consequently, the first time b sees some token, the black hole is located to the East
of its current position if and only if b sees exactly two tokens.

Suppose the black hole is not located immediately on the East of the homebase of a. Agent a dies while
executing the loop between lines 2 and 11 of Procedure FirstRing and leaves a token on the node on the
West of the black hole. Thus, b first visits the homebase of a where it sees one token, and then visit a node
with one token: it will mark the black hole links.

If there are three agents on the ring, let c be the third agent. Then it is easy to see that one of the
following happens:

– either the third agent meets b while b is performing its cleaning phase, or once b has finished it,
– or c reaches the homebase of b before b has terminated its cleaning phase.

In the second case, c first visit a node with one token (the homebase of b), puts a token on top of it
and then continue going East, and thus b picks up all the tokens that have been left on the homebases
of a, b and c. If c arrives on the homebase of a before b has picked up the tokens, then c sees two tokens
on the node and continue going East to reach the node where b marked the East link as leading to the
black hole. If c arrives on the homebase of a once b has picked up the tokens, then after it has visited the
homebase of b, it continues going East and reach the node where b marked the East link as leading to the
black hole.

Suppose now that there is one or more agents starting in a ring that does not contain the black hole.
If there is only one agent in the ring, each time the agent sees some token, it is back on its homebase:

the first time, there is only one token on its homebase and it adds a token. All the other times, it sees two
tokens. Thus, the agent performs 6 turns of the ring during the execution of FirstRing.

If there are two agents a and b in the ring, the first time a sees some tokens, it is on the homebase of
b and sees only one token. The next time it sees some token, it is back on its homebase, but b has arrived
there before and left its second token on the node. The next time a sees some tokens, it is successively on
the homebases of b, a, b, and a. Consequently, a is back on its homebase and has performed 3 turns of the
ring during the execution of FirstRing.

When there are three agents a, b, c starting in the same ring, let assume that when we traverse the ring
going East starting from the homebase of a, we reach the homebase of b before the homebase of c. For
the same reasons as before, no agent has marked any link as leading to the black hole. And when agent a
successively sees some tokens, it is successively on the homebases of b, c, a, b, c and a. Consequently a is
back on its homebases when count = 6 and it has performed 2 turns of the ring during the execution of
FirstRing.

When two agents start on the ring containing the black hole, it takes less than 2n big-steps to the
surviving agent to locate the black hole and to remove tokens left on homebases. An agent that is alone in
its ring needs 6n big-steps to finish executing FirstRing if the black hole is not in its ring. Thus, if two
agents start on the ring i containing the black hole, the only token the third agent can see on ring i is the
token located on the West of the black hole. Note that when the third agent reaches this node, the link
going East has been marked as leading to the black hole and thus the agent stops executing the algorithm.

Lemma 3. Consider two alive agents a and b and assume the black hole has not been found yet. When a
starts the execution of InitNextRing on some ring i, either b is also starting the execution InitNextRing

on some ring j, or b is starting the execution of BlackHoleInNextRing, or b is in the middle of the
execution of NextRing, and is waiting on its homebase with its two tokens.

Proof. We prove the lemma by induction on the numbers of rings explored by agent a, and we distinguish
different cases.



First suppose that all agents have started in the same ring. If an agent dies during FirstRing, the
black hole is found by the other agents. It takes exactly 2n big-steps (i.e., 2nD time units) to each agent
to execute FirstRing or NextRing on each ring. Consequently, while no agent is dead, all agents always
start the execution of NextRing simultaneously. Note that if an agent dies while executing NextRing, it
enters the black hole from the North, and either another agent find the black hole when it sees the tokens
of the dead agent, or it dies entering the black hole from the East.

Now assume that all agents have started in different rings. As long as no agent is dead, it takes exactly
6n big-steps (i.e., 6nD time units) to each agent to execute FirstRing or NextRing on each ring. Thus,
if agent a and b are neither dead, nor executing BlackHoleInNextRing, they starts executing NextRing

simultaneously.
The last case to consider is when two agents a and b start in the same ring, while the third agent c is

in another ring. We also show that the three agents will never execute NextRing in the same ring.
While agents a and b are not in the same ring as c, it takes exactly 3n big-steps (i.e., 3nD time units)

to agents a and b to execute FirstRing or NextRing on each ring, while it takes 6n big-steps to agent c.
Consequently, as long as all agents are not in the same ring, each time agent c starts NextRing, agents a
and b start NextRing at the same time, unless they are dead, or executing BlackHoleInNextRing.

Suppose now that the three agents are not in the same ring and that a starts the execution of NextRing.
If b is not dead, or executing BlackHoleInNextRing, b starts executing NextRing at the same time. Consider
now agent c, and assume that it is still alive and that it is not executing BlackHoleInNextRing. Let q
be the number of times a has executed FirstRing or NextRing so far, i.e., a has performed 3nq big-steps
since it has started executing the algorithm. If q is even, then agent c has executed FirstRing or NextRing
q/2 times, and starts executing NextRing at the same time as a. Otherwise, c has executed FirstRing or
NextRing (q − 1)/2 times and has performed 3n big-steps of NextRing. In this case, since c is alone in its
ring, it means c is back in its homebase with its two tokens, and waiting for D time units.

We now show that the three agents cannot be in the same ring when they start executing NextRing.
Since agent a and b are twice as fast as c, and since the agents start in two different rings, there will be a
big-step where agent c is executing NextRing on ring i+ 1 while agents a and b are executing NextRing on
ring i. Assume that agent c does not meet any other agent during InitNextRing. If c does not die while
executing NextRing on ring i+ 1, then assume without loss of generality that agent a sees the token c left
on its base before agent b. If agent c starts NextRing on ring i+ 1 at the same time as agents a and b start
NextRing on ring i, agent c carries one of its token to perform a special cautious walk while it has left its
other token on its homebase. If agent c is in the middle of executing NextRing on ring i+ 1 when agents a
and b start NextRing on ring i, both tokens of agent c are on its homebase. In both cases, since the tokens
of a and b always stay on ring i, agents a and b can see tokens on exactly one node of ring i+ 1.

Then the sequence a builds while executing NextRing starts with b1t1t1 (or b2t1t1), while the sequence
of b starts with t1b1t1 (or t1b2t1). Due to the design of Procedure Analyze, this implies that agents a and
b will not execute NextRing on ring i+ 1.

Lemma 4. When an agent starts NextRing on ring i, it knows that ring i is safe, and that on every node
of ring i that contains tokens, there is an agent on its two tokens.

Proof. Consider an agent a that starts executing NextRing on ring i at time t. First assume that this is
the first time agent a executes NextRing. From Lemma 2, we know that the black hole is not in ring i
(otherwise, a is either dead or has located the black hole). In this case, we know that all agents in ring
i are back on their homebases with their two tokens. Moreover, since the agents are synchronized, the
only case to consider is when there are two agents b and c that started in ring i − 1. While a executed
FirstRing, agents b and c have executed FirstRing and a first iteration of NextRing. However, during
the execution of NextRing, the only tokens b and c see on ring i are the two tokens of a on its homebase
and thus the sequence computed by b and c are b2t1t1b2t1t2b2t2t2 and t1b2t1t1b2t2t2b2t2. In this case b and
c have different sequences and they meet without leaving a unique token on ring i.

Assume now that agent a has already executed NextRing on ring i − 1. Suppose that there exists a
unique token on a node. Since all agents are synchronized, all alive agents are with their two tokens at
time t (either before starting NextRing, or in the middle of the execution of NextRing). Thus, agent a has
executed NextRing on ring i − 1, and a has seen this token on ring i while executing NextRing on ring
i− 1. Thus, its sequence is different from t31t

3
2. Moreover, if the sequence of a at the end of the execution of



NextRing on ring i− 1 is (b1t1)3(b2t2)3, it means that there are at least 6 other tokens on the ring i (three
towers of 2) after it sees the token at position (i, j+ 1). Since we have only three agents, this is impossible.

Lemma 5. When executing InitNextRing on ring i, starting on node (i, j), if an agent sees some tokens
on node (i, j + 1) without meeting an agent, then the black hole is located on node (i + 1, j + 1), and the
agent sees 2 tokens on this node.

Proof. Consider an agent a executing InitNextRing in ring i, starting at position j and that sees some
tokens at position j + 1 on ring i (line 7 of Procedure InitNextRing).

We first prove that agent a sees two tokens on position (i, j + 1). Suppose that there is only one token
on position (i, j+1). Since the agent are synchronized, this token belongs to a dead agent b. Since an agent
is moving its two tokens together during InitNextRing, agent b has died before a started InitNextRing.
But, from Lemma 4, we know that this is impossible.

Thus, agent a sees two tokens at position (i, j + 1). If these tokens belong to a dead agent, then the
black hole is either East or South of this node. Since agent a is performing InitNextRing on ring i, it
knows ring i is safe, and thus, if there is a black hole, it has to be the South node.

Suppose these tokens belong to an agent b that is still alive. Since the agents are synchronized, either
the agent is waiting on its homebase, or the agent has started the execution of InitNextRing at the same
moment as a did. In the first case, the two agents meet. In the second case, it would mean that agent b
and a started the execution of InitNextRing on the same node; which is impossible.

Consider an agent that starts executing InitNextRing on node (i, j). While executing InitNextRing,
if the agent sees two (resp. zero) tokens the first time it goes to node (i + 1, j) and sees zero (resp. two)
tokens the second time it visits node (i + 1, j), we say that the agent sees two tokens appearing (resp.
disappearing).

Lemma 6. During InitNextRing, if an agent sees tokens appearing or disappearing, then two agents
meet, or the black hole is located.

Proof. Suppose that an agent a executing InitNextRing on ring i at position j, sees 0 tokens (resp.
2 tokens) the first time it goes on ring i + 1 at position j and 2 tokens (resp. 0 tokens) the second
time it goes at position (i + 1, j). Since the agents are synchronized, all alive agents are either waiting
at their homebases with their two tokens, or executing InitNextRing. Since the tokens have appeared
(resp. disappeared), we know that there was an alive agent b that executes the lines 1 to 6 of Procedure
InitNextRing. Consequently, we know that ring i+ 1 is safe and thus agent a can move East if the tokens
have disappeared.

Thus, we know that 5 (resp. 6) time units after the beginning of the execution of InitNextRing, agent
a is waiting on the two tokens located at the East of the homebase of agent b. These two tokens can be the
two tokens of a dead agent, or the tokens of b that b moved during InitNextRing. In the first case, agent
b locates the black hole (see Lemma 5).

Otherwise, if when going South, agent b sees either twice 0 tokens, or twice 2 tokens, then b is back
on its two tokens 7 time units after the beginning of InitNextRing. If when going South, agent b sees 1
token, then b cannot die before the 8 time units after the beginning of InitNextRing. Moreover, either
agent b meets the third agent at time 6 on the node located at the East of the node where a is waiting, or
b is back on its two tokens at time 6 or 7. Thus the two agents meet.

Suppose now that agent b sees first 2 (resp. 0) tokens the first time it goes South and 0 (resp. 2) the
second time. In this case, it means that there is an agent c executing InitNextRing. Consequently, we know
that ring i+2 is safe. Thus, a, b and c are the three agents executing the algorithm, and they are located on
lines i, i+ 1, i+ 2. If, when executing InitNextRing, agent c sees tokens appearing, or disappearing, then
it means that these tokens are the tokens of agent a (since there is only 3 agents executing the algorithm).
Thus the torus has three horizontal lines and all of them are safe, which is impossible. Consequently, agent
c does not see tokens appearing, or disappearing, while it executes InitNextRing, and thus agents b and
c meet.

Lemma 7. When executing InitNextRing on ring i at position j, if an agent sees twice two tokens on
ring i+ 1 at position j, then one of the following holds:



– either, the black hole is on ring i+1 at position j+1, and the agent dies leaving a black hole configuration,
– or the black hole is on ring i+ 2 at position j and the agent locates it,
– or two agents meet.

Proof. Suppose that an agent a executing InitNextRing on ring i at position j, sees 2 tokens the two
times it goes on ring i+ 1 at position j.

There are two cases to consider: either the two tokens that a sees the first time have not been moved,
or an agent b picked up these two tokens, while an agent c moved its two tokens to this node.

In the second case, it means that agents b and c are alive when agent a starts InitNextRing. Since the
agents are synchronized, both agents are also executing InitNextRing and thus ring i + 1 is safe. Since
the three agents are located on ring i and i + 1, agents b and c do not see any token on ring i + 2 and
since they both moved their tokens to the East of their starting positions, none of them died going South.
Thus, they are back on their tokens 7 time units after the beginning of Procedure InitNextRing. Since ring
i+ 1 is safe, agent a is back on ring i+ 1 at position j, 11 time units after it started executing Procedure
InitNextRing: a meets another agent.

Suppose now that the two tokens seen by agent a the second time are the same as the two tokens it
sees the first time. Since the agents are synchronized, all agents that are still alive are either waiting on
their two tokens, or are executing InitNextRing and have picked up their tokens 2 time units after they
started InitNextRing. If a does not meet another agent the first time it goes South, it implies that the
agent that put these two tokens is dead. From Lemma 1, we know that the black hole is located either on
ring i+ 2 at position j, or on ring i+ 1 at position j + 1.

Assume that agent a does not meet any agent while it executes InitNextRing. If the black hole is
located at position j + 1 on ring i+ 1, agent a dies while going to this node, after it left its two tokens on
ring i at position j + 1. Thus, its two tokens and the two tokens on ring i + 1 at position j form a black
hole configuration. Otherwise, agent a does not die while executing InitNextRing and locates the black
hole that is on ring i+ 2 at position j.

Lemma 8. When executing InitNextRing in ring i, if an agent sees one token the first time it goes South,
it knows another agent is dead, and one of the following holds.

– either it meets another agent,
– or it locates the black hole,
– or it dies leaving a black hole configuration,
– or it knows ring i + 1 is safe and the black hole is in ring i + 2, and executes BlackHoleInNextRing

on ring i+ 1,
– or it continues executing NextRing without leaving a black hole configuration with a token on ring i+1.

Proof. Consider an agent a executing InitNextRing on ring i, starting at position j. Since the agents are
synchronized, when agent a executes InitNextRing, all alive agents are either waiting on their homebases,
or executing InitNextRing and moving their two tokens together. Thus, if agent a sees a token on the
node, then it is the token of a dead agent. This token may be the homebase token of the dead agent, or a
token indicating that the black hole is located at the South or at the East of this token. In any case, the
black hole is in ring i+ 1, or in ring i+ 2.

Claim. If an agent b starts InitNextRing on ring i− 1, at position j, j + 1 or j + 2, a and b meet.

If an agent b starts at position j, or j+ 1, the claim follows from Lemma 6. Suppose now that an agent
starts at position j + 2 on ring i. From Lemma 4, we know that b cannot see a unique token on ring i at
position j + 2. Since ring i is safe, agent b does not see two tokens on ring i − 1 at position j + 3, and
thus, agent b goes back at position (i, j + 2) 5 time units after it started InitNextRing. Since agent a is
on position (i, j + 2) at this moment, the two agents meet.

Assume now that no agent starts InitNextRing on ring i− 1, at position j, j + 1, or j + 2.

Claim. If an agent b starts on ring i at position j + 1, either the black hole is at position (i+ 1, j + 1) and
a locates it, or a and b meet.



If the black hole is at position (i+ 1, j + 1), then b dies leaving its two tokens on node (i, j + 1). From
Lemma 5, a locates the black hole.

Suppose now that the black hole is not at position (i+ 1, j+ 1). First note that since both a and b have
their tokens with them when they start InitNextRing, and since there is one token on node (i+1, j), from
Lemma 5, agent b cannot see any token at position (i, j + 2). Moreover, b can either see 0 or 1 token at
position (i+ 1, j + 1). If b does not see a unique token on node (i+ 1, j + 1), then b is at position (i, j + 1)
4 time units after it started InitNextRing; Since at this moment, a is also on this node, the two agents
meet. Suppose now that b sees one token at position (i + 1, j + 1). Since b cannot see any token on node
(i, j + 3), b is at position (i, j + 2) 6 time units after it started InitNextRing. Since a sees 2 tokens on
node (i, j + 2) 5 time units after it started InitNextRing, it waits there one time unit, and thus the two
agents meet on this node.

Assume now that agent a does not meet any agent while executing InitNextRing.

Claim. If agent a sees some tokens at position (i, j + 2), then a sees 2 tokens, the black hole is located at
node (i+ 1, j + 2), and a locates it.

For the same reasons as in the proof of Lemma 5, since agent a is executing InitNextRing, a can either
see 0 or 2 tokens on node (i, j + 2).

Suppose the two tokens located at node (i, j+ 2) belong to an agent b that is still alive. Since the agent
are synchronized, either b is waiting on its two tokens, or agent b has started executing InitNextRing at
the same moment a did. In the first case, a meets b. In the second case, agent b has picked up its two
tokens and moved to the East 3 time units after it started InitNextRing. Consequently, it implies that
agent b started on node (i, j + 1), but in this case, we know from the previous claim that a and b meet.

Thus, the two tokens a sees on node (i, j+ 2) belong to a dead agent. From Lemma 1, the black hole is
either located at the South or at the East of this node. Since a is executing NextRing on ring i, we know
that ring i is safe, and thus the black hole is located at node (i+ 1, j+ 2). Since a does not meet any other
agent, it locates the black hole.

Assume now that agent a does not meet any other agent, and does not see any token on nodes (i, j+ 1)
and (i, j + 2).

Claim. If the black hole is located on node (i + 1, j + 1) or (i + 1, j + 2), a dies leaving a black hole
configuration.

If the black hole is on node (i + 1, j + 1), agent a dies 7 time units after it started InitNextRing

leaving its two tokens on node (i, j + 1). With the unique token on node (i+ 1, j), this leaves a black hole
configuration.

If the black hole is on node (i+ 1, j + 2), then the token a sees on node (i+ 1, j) is a homebase token
of some dead agent b. From Lemma 1, b left a token on node (i + 1, j + 1) that a sees at time 7. Thus,
agent a dies at time 10 after it left its two tokens on node (i, j + 2). Consequently, with the token on node
(i+ 1, j + 1), a dies leaving a black hole configuration.

Assume now that while it executes InitNextRing, agent a does not meet any other agent, and does
not see any token on ring i. Furthermore, assume that the black hole is neither on node (i + 1, j + 1), or
(i+ 1, j + 2).

Claim. If agent a sees one or two tokens on node (i+ 1, j+ 1), then the black hole is in ring i+ 2, and ring
i+ 1 is safe.

We already know that the black hole is either on ring i + 1, or in ring i + 2. Since nodes located at
position (i + 1, j + 1) and (i + 1, j + 2) are safe, we know that each of these tokens is either a homebase
token, or a token indicating that the black hole is South.

Suppose that the black hole is on ring i+ 1. Then, the tokens left on both nodes are homebase tokens,
and consequently either two agents have started in the ring and at least one of them found the black hole,
or two agents died. If two agents have started executing the algorithm on ring i + 1, then by Lemma 2,
the black hole has been found, and while executing NextRing on ring i− 1 (or FirstRing on ring i), agent
a visited a node such that the link to the South was marked as leading to the black hole; i.e., a is not
executing the algorithm any more. Otherwise, at least one agent has executed NextRing on node i before
leaving its homebase on ring i+ 1, and thus it died leaving its homebase token on ring i, and not on ring



i+ 1. Consequently, only one of the two tokens on positions (i+ 1, j) and (i+ 1, j + 1) can be a homebase
token, and consequently, the black hole is on ring i+ 2, and thus ring i+ 1 is safe. In this case, a executes
BlackHoleInNextRing on ring i+ 1.

Claim. If agent a continues the execution of NextRing, then its homebase token is not part of a black hole
configuration with a token on ring i+ 1 when it terminates InitNextRing.

If agent a continues the execution of NextRing, then it means that a does not meet any agent, does
not see tokens on nodes (i, j + 1), (i, j + 2), or (i+ 1, j + 1), and that it leaves a homebase token on node
(i, j + 2). Suppose that its token is part of a homebase configuration.

Suppose that an agent b leaves a token on node (i+ 1, j+ 1) after agent a visited it. Then it means that
agent b is still alive when agent a starts InitNextRing. Since the third agent is dead, b is either executing
BlackHoleInNextRing on node i+ 1, or InitNextRing on ring i+ 1. In the first case, b does not leave any
token on ring i + 1. In the second case, the agent is executing InitNextRing on ring i + 1 and it means
agent b has visited node (i + 1, j + 1) ans has seen a unique token on the node; which is impossible from
Lemma 5.

Lemma 9. When executing InitNextRing in ring i, if an agent does not see any token and does not meet
any agent, then it continues executing NextRing without leaving a black hole configuration with a token on
ring i+ 1.

Proof. Consider an agent a that does not see any token and does not meet any agent while executing
InitNextRing. If agent a starts the execution on node (i, j), then it leaves its homebase token on node
(i, j + 1), and there was no token on ring (i + 1, j) when agent a visited it. If a token appears on node
(i + 1, j), then there is an agent b executing InitNextRing on ring i + 1 that has started on node j − 1
or j − 2. In the first case, agent a has seen the two tokens on agent b the first time it went South. In the
second case, agent b moves its two tokens to node (i + 1, j) only if it has seen a unique token on node
(i+ 2, j − 1). But in this case, from Case D of Lemma 8, both agents have met.

In the following lemma, we show that when an agent executes NextRing, if it has not meet any other
agent during InitNextRing, then there cannot be an agent that is located just below it. This implies that
while executing InitNextRing, an agent cannot see the token another agent uses for its special cautious
walk.

Lemma 10. Once an agent has finished executing InitNextRing and continues the execution of NextRing
(i.e., it is not dead, it has not meet any other agent, it is not executing BlackHoleInNextRing), it knows
that there is no alive agent located immediately below it that executes NextRing.

Proof. Consider an agent a that started executing InitNextRing on node (i, j) at time t. Once a has
finished executing InitNextRing, it continues to execute NextRing only if it has seen no token on node
(i + 1, j), or if it sees one token on node (i + 1, j) and no token on node (i + 1, j + 1). In the first case,
a is on node (i, j + 1). Since a did not see any token on node (i + 1, j) and did not meet any agent, we
know from Lemma 6 that no agent has started executing InitNextRing on node (i+ 1, j − 1), or (i+ 1, j)
at time t. Thus, any agent that has started executing InitNextRing at time t cannot continue executing
NextRing and be on node (i + 1, j + 1). Since the agents are synchronized, we know that only an agent
that was waiting on its homebase with its two tokens can be on node (i+ 1, j + 1); but in this case, agent
a meets it at time t+ 8.

Suppose now that agent a has seen exactly one token on node (i + 1, j). In this case, a is on node
(i, j + 2) when it has finished executing InitNextRing, and we know that the token on node (i + 1, j)
belongs to an agent b that dies before a started executing InitNextRing. Assume there is an agent c that
has finished executing InitNextRing on node (i + 1, j + 2) and that neither c has met any other agent,
nor c has located the black hole, nor c has started executing BlackHoleInNextRing. Note that this implies
that c has started executing InitNextRing on ring i+ 1. If this is the first time a performs InitNextRing,
then b died while performing FirstRing on ring i+ 1, and c also executed FirstRing on ring i+ 1. From
Lemma 2, this implies that c locates the black hole while executing FirstRing. Consequently, a and c have
already respectively executed NextRing on ring i − 1 and on ring i. But in this case, c saw the token left



by b on ring i+ 1 while executing NextRing on ring i. Thus the sequence computed by c contained at least
one b1. Since c has executed NextRing on ring i, its sequence should have been (b1t1)3(b2t2)3. But this
means that c saw at least 6 other tokens on the ring i (three towers of 2) after it sees the token at position
(i+ 1, j). Since we have only three agents, this is impossible.

Lemma 11. When an agent a continue executing NextRing on ring i after it has finished InitNextRing,
either a dies entering the black hole, or a locates the black hole, or a does not see any token on ring i+ 1,
or a has seen some token on ring i + 1 (i.e., sequence contains b1 or b2), and then a is in one of the
following case and it can detect in which case it is if from the sequence it constructed.

– there were two other agents executing NextRing on ring i, the black hole is on ring i+ 1, and a is the
only agent that is still alive; a locates the black hole.

– there was another agent executing NextRing on ring i, the black hole is on ring i+ 1, and a is the only
agent that is still alive; a executes BlackHoleInNextRing on ring i.

– there is another agent on ring i, ring i + 1 is safe and the tokens the agents see on ring i + 1 enable
the two agents to meet.

– there is no other agent on ring i and there is an agent that has executed NextRing without dying on
ring i+ 1 when a has executed NextRing on ring i; a executes NextRing on ring i+ 1.

– there is no other agent on ring i, black hole is in ring i + 2, and there are the tokens of one or two
dead agents on ring i+ 1; a executes BlackHoleInNextRing on ring i+ 1 with its two tokens.

Proof. Consider an agent a that starts executing NextRing on ring i at time t; note that from Lemma 4,
ring i is safe. If a does not see any token on ring i + 1, and if ring i + 1 is safe, a executes NextRing on
ring i+ 1 once it has terminated executing NextRing on ring i.

Case 1. The three agents start executing NextRing on ring i at time t and the black hole is on ring i+ 1.

Let v be the node on the North of the black hole, and u the node on the East of the black hole. Without
loss of generality, assume that c visits v before b, and that b visits v before a. Then, c dies leaving one or
two tokens on v, and b dies leaving one token on u. When a arrives at v, if c left two tokens on v, b has
located the black hole. Otherwise, v continues the execution of NextRing without entering the black hole
(it has set its variable danger to true). During the execution of NextRing on ring i, a visits successively
the homebase of b, the homebase of c, u, v, the homebase of a, the homebase of b, the homebase of c. It
puts its second token on v when it arrives in v the first time, leaving a black hole configuration. Thus the
sequence a has constructed is t1, t1, t1, b1, t1, t1, t1. In this case, a goes to v (this is the only node with two
tokens) and locates the black hole.

Case 2. Ring i+ 1 is safe, two agents a and b start executing NextRing on ring i at time t.

Note that a and b cannot die while executing NextRing on ring i.
First, assume that ring i+2 is also safe. Then the tokens a and b see on ring i+1 belong to agent c that

is alive all along the execution of NextRing on ring i by agent a and b. Since rings i+ 1 and i+ 2 are safe,
agent c is either executing FirstRing or NextRing. Suppose first that a and b are executing NextRing for
the first time, i.e., they have just finished executing FirstRing and thus they have performed exactly 3n
big-steps. During these first 3n big-steps c has visited its homebase three times and it has put a second
token on its homebase when a and b start executing NextRing. Moreover, it takes 3n big-steps to a and b
to execute NextRing. During these 3n more big-steps, c visits its homebase 3 times and put a second token
on its homebase at the end of these 3n big-steps. Consequently, during the whole execution of NextRing
by a and b, c does not move its tokens. Suppose that c is in the middle of the execution of NextRing on
ring i + 1 when a and b start the execution of NextRing on ring i. Then c has just put two tokens on its
homebase, and during the next 3n big-steps its tokens will not move. If c has started executing NextRing

on ring i + 1 when a and b start the execution of NextRing on ring i + 1, then during the 3n big-steps it
takes a and b to perform NextRing on ring i, c visits its homebase exactly three times and does not put a
second token on its homebase before the moment a and b have finished executing NextRing on ring i.

Without loss of generality, assume that a visits the homebase of c before b. Consequently, when executing
NextRing, a visits successively the homebases of c, b, a, c, b, a, c, b, a, while b visits successively the



homebases of a, c, b, a, c, b, a, c, b. Each time a or b visits the homebase of c, they either always see one
token, or always see two tokens.

The first three homebases on ring i that a or b sees contains one token, and both a and b add a token
on the third homebase on ring i they see. Thus, the last third homebases a and b visit on ring i contain
two tokens. Consequently, the sequence of a is tb1b1tb1b2tb2b2, while the sequence of b is b1tb1b1tb2b2tb2
where t is either t1 or t2. In this case, b waits on its homebase while a moves along ring i to meet b on its
homebase.

Suppose now that the black hole is in ring i + 2. Since the agents a and b some tokens on ring i + 1,
it implies that c has executed NextRing on ring i + 1. We know that c has started executing NextRing

on ring i + 1 at time t or before. In any case, c is either dead before time t, or it dies during the first n
big-steps of NextRing, i.e., before it comes back to its homebase. Once c is dead, there are two tokens left
on ring i+ 1 (they may be both on the homebase of c if the black hole is the node below). Without loss of
generality, assume that a visits the homebase of c before b. Let v be the node where is the second token of
c, i.e., the node on top of the black hole.

If a visits v before it visits the homebase of b, then c is dead before a and b visit c and the sequence of
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meet b on its homebase.
If a visits v after it visits the homebase of b, then the sequence of a is (b1t1)3(b1t2)3. Note that if c has

started NextRing on ring i at time t, the first time b visits v, c is not yet dead. Thus, the sequence of b is
either (b1t1)3(b1t2)3, or t1(b1t1)2(b1t2)3. In this case, both agents execute BlackHoleInNextRing.

Case 3. The black hole is in ring i+ 1, two agents a and b start executing NextRing on ring i at time t.

Let v be the node on the North of the black hole and assume without loss of generality that b visits v
before a.

First suppose that no agent has explored ring i+ 1 yet. If b has started NextRing on v, b dies after its
first move of NextRing. In that case, the first time a sees some tokens while executing NextRing is on v
and it sees two tokens: a locates the black hole. Otherwise, a first sees the homebase token of b, and then
the token b left on v. In this case, a dies entering the black hole from the West.

Let c be the third agent and assume that c has already executed FirstRing on ring i+ 1, or NextRing
on ring i. If c has executed NextRing on ring i, it died leaving its tokens on ring i; but in this case, a and
b have executed NextRing on ring i − 1 and they have seen the tokens c left. Thus, it implies that c died
while executing FirstRing.

If c died on its first move, then it left its two tokens on its homebase, and thus b dies entering the
black hole from v, but it leaves a black hole configuration, and a will locate the black hole while executing
NextRing. Otherwise, let u be the node on the West of the black hole. Then b dies entering the black hole
from v and a sees one token on u and one token on v and thus it does not enter the black hole. If we
consider the tokens a sees on ring i while executing NextRing, a visits successively the homebase of b, v,
the homebase of a, the homebase of b, v and the homebase of a. It adds a second token on its homebase
the first time it visits it. Thus, the sequence a computed contained less than three t2, and in this case, a
will execute BlackHoleInNextRing.

Case 4. Ring i+ 1 is safe, a is alone in its ring and ring i+ 2 is safe.

Note that there cannot be two agents executing NextRing on ring i+ 1 while a is executing NextRing

on ring i. Indeed, suppose a has executed NextRing q times, i.e., a has performed 6(q+ 1)n big-steps, then
if two agents have started in the same ring, they have executed FirstRing once and NextRing (12q + 1)
times, and thus they cannot be in the ring below a.

Since both rings i+ 1 and i+ 2 are safe, the tokens a sees on ring i are homebase tokens. If there is an
agent b that has executed NextRing on ring i+1 while a is executing NextRing on ring i, then between two
times a goes back to its homebase, it sees the base of b. Since the agents are synchronized, the third time
a is on its homebase, b is also on its homebase and both of them put a second token on their homebases.
Moreover, from previous lemmas, we know that the two homebases of a and b do not form a black hole
configuration. Thus the sequence computed by a is (b1t1)3(b2t2)3. In this case, a executes NextRing on
ring i+ 1.



Case 5. The black hole is in ring i+ 1 and a is alone in its ring.

If a is the first agent to explore ring i+ 1, a dies entering the black hole from the North.
If an agent b has explored ring i + 1 before a, then b explored the ring using FirstRing, because

otherwise, b would have left tokens on ring i, and a would have seen them while executing NextRing on
ring i− 1. In any case, a dies entering the black hole from the North.

If two agents b and c have already explored ring i+ 1, they have explored it using FirstRing and the
black hole has been found.

Case 6. Ring i+ 1 is safe, a is alone in its ring, and the black hole is in ring i+ 2.

As before, we know it is not possible that two agents start executing NextRing on ring i+ 1 at time t.
Since a sees some tokens on ring i+ 1, we know that at least one agent has started executing NextRing

on ring i+ 1 at time t or before.
First suppose that there is exactly one agent b that has started executing NextRing on ring i+ 1 before

time t, i.e, b died while a was executing NextRing on ring i− 1 or before. From the previous case, we know
that b died entering the black hole from the North, leaving one or two tokens on the node v on North
of the black hole. If b died leaving its two tokens on v, then during the execution of NextRing, a visits v
and its homebase six times, and the sequence computed by v is (b2t1)3(b2t2)3. If b died leaving only of of
its tokens on v, a visits v, the homebase of b and its homebase six times, and the sequence it computes is
(b1b1t1)3(b1b1t2)3. In any case, a executes BlackHoleInNextRing on ring i+1 once it has finished executing
NextRing on ring i.

Suppose now that no agent executed NextRing on ring i+ 1 before time t, and that exactly one agent
b starts executing NextRing on ring i + 1 at time t. First suppose that b dies leaving two tokens on a
vertex v; then it implies that the black hole is on the node on South of v. Note that in this case, b dies
while executing InitNextRing, and we know that if a starts InitNextRing on node (i, j) and b starts
InitNextRing on node (i+ 1, j − 1), or (i+ 1, j), a and b meet. Moreover, since b is dead when a finished
InitNextRing, we know from previous lemmas that the two tokens of b and the homebase token of a
do not form a black hole configuration. In this case, when executing NextRing, a never sees a black hole
configuration, a visits six times v and its homebase, and the sequence it computes is (b2t1)3(b2t2)3. In this
case, a executes BlackHoleInNextRing on ring i+ 1 once it has finished executing NextRing on ring i.

Suppose now that b does not die while it executes InitNextRing, i.e., when b dies, it has left one token
on its homebase, and one token on the node v that is North of the black hole. Note that the first time
a visits v, b may still be alive (if a visits v before it visits the homebase of b), but the second time a
reaches v, b is dead and a sees two tokens on v. During the execution of NextRing, a visits successively
six times v, the homebase of b, and its homebase, or the homebase of b, v, and its homebase. In the first
case, the sequence computed by a is b1t1(b1b1t1)2(b1b1t2)3 while in the second case, the sequence of a is
(b1b1t1)3(b1b1t2)3. Moreover, from previous lemmas, we know that the homebase tokens of a and b do not
form a black hole configuration. However it is possible that the homebase token of a and the token left on
v form a black hole configuration. But in this case, there is one token on a, one token on v and thus, a does
not visit the node u below its homebase and continues executing NextRing. Note that there cannot be a
token on node u, because, it can only be the homebase token of b, but this is impossible from Lemma 10.
Thus, a executes completely NextRing on ring i, and then it executes BlackHoleInNextRing on ring i+ 1.

Suppose now that two agents b and c have already NextRing on ring i+ 1, starting at time t or before.
Since a sees some tokens on ring i+1, at least one of these two agents has executed NextRing on ring i+1.
Again, we distinguish different cases: either b and c started executing NextRing on ring i+ 1 at the same
time t′ ≤ t, or b has executed NextRing on ring i at time t′ < t while c has started executing NextRing on
ring i+ 1 at time t′′ ≤ t.

Suppose that b and c started executing NextRing on ring i + 1 at the same time t′ ≤ t. For the same
reasons as before, we know that t′ < t. From Case 3, we know that either the black hole has been found,
or both agents are dead. If the black hole has been found, the first time a visits the node on North of the
black hole, it sees that the link going South has been marked, and it stops the algorithm. If both agents
are dead, we know that there is one token on ring i + 2 that is on the node on the West of the black
hole, and there are three tokens on ring i+ 1: the homebase of b, the homebase of c, and the node on the
North of the black hole. From Lemma 10, we know a cannot see a black hole configuration while executing



NextRing on ring i. The sequence computed by a is then (b31t1)3(b31t2)3 and once a has finished executing
NextRing, it executes BlackHoleInNextRing on ring i+ 1.

Suppose now that b has executed NextRing on ring i at time t′ < t while c has started executing
NextRing on ring i+ 1 at time t′′ ≤ t. In this case c dies while executing NextRing on ring i, and we know
that b start executing BlackHoleInNextRing on ring i + 1 at time t∗ ≤ t. In this case, c has left either
one or two tokens on the node v on the North of the black hole, and b does not leave any token on ring
i + 1, and dies leaving its two tokens on the node u on the West of the black hole, thus leaving a black
hole configuration. In this case, the only tokens a sees on ring i + 1 while executing NextRing on ring i
are the homebase token of c and the token left by c on v. Since c is already dead when a starts executing
InitNextRing on ring i, we know from previous lemmas that a cannot see any black hole configuration
when executing NextRing on ring i. Thus the sequence computed by a is (b1b1t1)3(b1b1t2)3, and a executes
BlackHoleInNextRing on ring i+ 1 once it has finished executing NextRing on ring i.

An agent executing BlackHoleInNextRing first moves to find a place where there is no token. In the
following lemma, we prove that in any ring there is always such a place.

Lemma 12. If the black hole has not been found yet, when an agent a starts executing
BlackHoleInNextRing on ring i, then there exists a node on ring i where there is no token.

Proof. Recall that an agent a is carrying its two tokens when it starts BlackHoleInNextRing on ring i and
it knows that ring i is safe.

Note that on ring i, there can be at most 3 nodes containing tokens: two homebases, and one indicating
the black hole is South. Thus if the size of ring i is at least 4 we are done.

Suppose now that the ring is of size 3. Since a is executing BlackHoleInNextRing, we know that either
a has executed NextRing on ring i, or on ring i− 1.

Suppose first that a has started executing NextRing on ring i at time t. Then we know from Lemma 11
that either the three agents have executed NextRing on ring i at time t, or that another agent b have
executed NextRing on ring i at time t and that the third agent c was dead before time t. In the first case,
since the ring is of size 3, one agent died on its first move when executing InitNextRing, and in this case,
the black hole has been found from Lemma 5. In the second case, we know from the proof of Case 2 of
Lemma 11 that c died while executing FirstRing, and thus its homebase token cannot be on ring i.

Consequently, a has executed NextRing on ring i− 1 at time t. It implies that a saw tokens of one or
two dead agents during InitNextRing, or during the execution of NextRing. Let b and c be the two dead
agents and assume that c died before b. Since both b and c left their tokens on ring i, both b and c died while
executing NextRing on ring i. First suppose that b and c did not execute NextRing on ring i simultaneously.
Then, when c died, b has not finished executing NextRing on ring i − 1, and from Lemma 11, b saw the
tokens left by c, and b has not executed NextRing on ring i, but BlackHoleInNextRing on ring i. This
implies that b did not leave its homebase token on ring i. Suppose now that b and c start simultaneously
the execution of NextRing on ring i. If c died on its first move of InitNextRing, then from Lemma 5, b
has located the black hole. Otherwise, since the ring is of size 3, c died leaving its two tokens on its new
homebase, and then b locates the black hole when it arrives in c.

Lemma 13. When an agent a executes BlackHoleInNextRing on ring i, at least one agent is dead and
the black hole is on ring i+ 1, and either a locates the black hole, or a died entering the black hole leaving
a black hole configuration.

Proof. We know that if a executes BlackHoleInNextRing on ring i, it has executed NextRing on ring i,
or on ring i− 1, and we know from Lemmas 8 and 11 that ring i is safe, that the black hole is in ring i+ 1
and that a saw tokens of dead agents on ring i. Thus, at least one agent died while executing NextRing on
ring i, and thus it left a token on top of the black hole.

Each time a sees a token on node (i, j), it goes to node (i+ 1, j − 1). If a does not see some tokens, it
leaves its two tokens on the node an enter node (i+ 1, j) from the East. Thus, if a dies, it leaves a black
hole configuration. If a sees some tokens on node (i+1, j−1), a marks all links leading to the node (i+1, j)
as leading to the black hole.

Since we know that there is a token on the node on the North of the black hole, we are sure that either
a dies, or a marks links as leading to the black hole.



Suppose a is wrong when marking links going to node (i + 1, j) as leading to the black hole. Since
we know the black hole is in ring i + 1, this implies that the tokens on node (i, j) and (i + 1, j − 1)
are respectively the homebase tokens of two dead agents b and c. This implies that c died while executing
FirstRing (otherwise its homebase token would be on ring i+1), and that b died while executing NextRing.
Thus the token on node (i+ 1, j−1) was already there when b executed InitNextRing on ring i. But from
Lemmas 8 and 9, we know it is impossible. Thus, if a marks links leading to node (i+ 1, j), the black hole
is indeed in node (i+ 1, j).

Lemma 14. Suppose that two agents b and c are dead, and that the black hole is on node (i+ 1, j). Then,
there are one or two tokens on both nodes (i, j) and (i+ 1, j − 1). Moreover, the agent a that is still alive
never enters the black hole and eventually locates it.

Proof. Without loss of generality, assume that c died before b. We know that agents b and c died in one of
the following way:

– c died executing FirstRing on ring i+ 1, and b died executing NextRing on ring i,
– b and c died executing NextRing on ring i,
– c died executing NextRing on ring i and b died executing BlackHoleInNextRing on ring i.

In the first case, the first agent let one or two tokens on node (i+1, j−1) and the other agent let one or
two tokens on node (i, j). In the second case, we know from Lemma 11 that it implies that the two agents
were executing NextRing on ring i simultaneously. Thus, c died while performing its special cautious walk
and left a token on node (i, j), and b died when during the execution of NextRing on ring i, it saw the
token left by c and it enters node (i+ 1, j) after it left a token on node (i+ 1, j − 1). In the last case, from
the previous lemma, we know that b died leaving a black hole configuration.

If a is not executing NextRing on ring i with b when b dies, then we know that a executes eventually
NextRing on ring i− 1. When a executes NextRing on ring i− 1, it sees some tokens on ring i, and from
Lemmas 8 and 11, we know that a executes BlackHoleInNextRing on ring i. From the previous lemma,
we know that a locates the black hole.

Suppose now that a is executing NextRing on ring i with b when b dies. Once b is dead, there are some
tokens on nodes (i, j) and (i + 1, j − 1). Thus, either a locates the black hole, or it continues to execute
NextRing avoiding the node (i+ 1, j) (its variable danger is true). We know from Lemma 11 that once a
has finished executing NextRing on ring i, a executes BlackHoleInNextRing on ring i. From the previous
lemma, a locates the black hole.

Theorem 6 Algorithm BHS-Torus-32 correctly solves the BHS problem in any oriented torus with exactly
three agents carrying two tokens each.

Proof. We proved that if an agent reports it found the black hole, then it is always correct.
First, we know that if two or three agents start in the horizontal ring containing the black hole, then

one agent locates the black hole.
Otherwise, the agents execute NextRing on consecutive rings until they see some tokens belonging to

dead agents. Thus, at least one agent will die entering the black hole. Then, either a second agent locates
the black hole, or it also dies entering the black hole, leaving a black hole configuration. In this last case,
we know the third agent will not be killed and will eventually locates the black hole.


