
Constructing a Map of an Anonymous Graph:

Applications of Universal Sequences

Jérémie Chalopin1,�, Shantanu Das1, and Adrian Kosowski2

1 LIF, CNRS & Aix-Marseille University, France
jeremie.chalopin@lif.univ-mrs.fr, shantanu.das@acm.org

2 Gdańsk University of Technology, Poland
and LaBRI, INRIA Bordeaux Sud-Ouest, France

adrian@kaims.pl

Abstract. We study the problem of mapping an unknown environment
represented as an unlabelled undirected graph. A robot (or automaton)
starting at a single vertex of the graph G has to traverse the graph and
return to its starting point building a map of the graph in the process.
We are interested in the cost of achieving this task (whenever possible)
in terms of the number of edge traversal made by the robot. Another
optimization criteria is to minimize the amount of information that the
robot has to carry when moving from node to node in the graph.

We present efficient algorithms for solving map construction using a
robot that is not allowed to mark any vertex of the graph, assuming the
knowledge of only an upper bound on the size of the graph. We also
give universal algorithms (independent of the size of the graph) for map
construction when only the starting location of the robot is marked. Our
solutions apply the technique of universal exploration sequences to solve
the map construction problem under various constraints. We also show
how the solution can be adapted to solve other problems such as the
gathering of two identical robots dispersed in an unknown graph.

Keywords: Graph Exploration, Map Construction, Anonymous Net-
works, Mobile Robot, Universal Exploration Sequences.

1 Introduction

We consider the problem of exploration and mapping of an unknown unlabelled
environment by a mobile entity which we call the agent. The environment is
usually modelled as a graph where the agent is initially located at any arbitrary
node of the graph. The objective of the agent is to build a map of the graph. The
graph is anonymous i.e. the nodes of the graph do not have any identifying labels
and thus, all nodes of the same degree look identical to the agent. However,
the edges incident to a node are locally ordered with a port numbering that
allows the agent to deterministically choose an edge and traverse along it. Note
that if the agent is allowed to somehow mark the nodes that it visits (such

� This author was partially supported by ANR Projects SHAMAN and ECSPER.

C. Lu, T. Masuzawa, and M. Mosbah (Eds.): OPODIS 2010, LNCS 6490, pp. 119–134, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

120 J. Chalopin, S. Das, and A. Kosowski

that it can recognize them on future visits), then a simple depth-first search
suffices to solve the problem. When the agents do not have the capability to
mark nodes it is sometimes difficult to solve the map construction problem. A
known technique for traversing unlabelled graphs is to use the so-called universal
traversal sequences [18]. A universal traversal sequence is a sequence of port
numbers such that if the agent traverses the edges of any graph G according to
this sequence it is guaranteed to visit all nodes of G irrespective of the topology
of G and the port-numbering on G. However, such sequences tend to be very
large and thus it is perhaps not the most efficient method of traversing a graph.
Moreover, traversing the graph does not necessarily imply that the agent can
build a map. In certain cases, when the graph has enough symmetry, it may not
be possible to build a map of the complete graph. In this paper, we concerned
about the time complexity (or number of moves made by the agent) for building
a map in those cases when it is possible to do so. An efficient method for map
construction is useful as a basic step for an autonomous agent in solving other
tasks in unknown unlabelled environments.

One application of the map construction problem is the task of gathering
together two autonomous agents that are dispersed in a unknown environment.
This is called the rendezvous problem. When the two dispersed entities can not
communicate from a distance, solving rendezvous is essential for an exchange
of information or for achieving even the simplest form of coordination between
the mobile entities. The rendezvous problem belongs to the class of symmetry-
breaking problems (e.g. leader election is another such problem) that are central
to study of computability in distributed systems. The importance of the problem
is evident from the large volume of literature [5,10,13,16,19,11,26] dedicated to
solving the problem under various conditions and restrictions.

Even if the agents succeed in building a map of the graph, it may not always
be possible to rendezvous. For instance, if the agents are in a ring of even size and
they start from diametrically opposite nodes in the ring, then no deterministic
algorithm is guaranteed to solve rendezvous in this case. However, if the agents
start from any other location (except being opposite to each other) then it is
possible to solve rendezvous, as soon as we allow the agents to mark their starting
locations [19]. In this paper, we solve rendezvous in anonymous graphs assuming
that the starting locations of the agents are marked. However, the agents are not
allowed to mark any other vertices during their traversal. Further, the agents
may not have any prior information about the graph not even the size of the
graph.

Related Work: Previous studies on graph exploration have mostly concen-
trated on labelled graphs (or digraphs), with an emphasis on minimizing the cost
of exploration in terms of either the number of moves (edge traversals) or the
amount of memory used by the agent. Panaite and Pelc [21] gave an algorithm
for exploring labelled undirected graphs that uses m+O(n) moves, improving on
the standard Depth-First Search algorithm that takes 2m moves. On the other
hand, Deng and Papadimitrou [12] as well as Albers and Henzinger [1] studied
the exploration of strongly connected directed graphs under the same conditions.

Constructing a Map of an Anonymous Graph 121

There have also been some studies on the efficiency of exploration when some
prior information about the graph is available with the agent—for instance, when
the agent possesses an unlabelled isomorphic map of the graph [22].

Given an unknown, unlabelled (sometime called anonymous) graph, it is not
always possible to construct an exact map of the graph (due to the presence
of symmetries). There exists characterizations of anonymous graphs where it is
possible to solve the problem [25].

For exploring arbitrary anonymous graphs, various methods of marking nodes
have been used by different authors. Bender et al. [7] proposed the method of
dropping a pebble on a node to mark it and showed that any strongly connected
directed graph can be explored using just one pebble, if the size of the graph
is known and using O(log log n) pebbles, otherwise. Dudek et al. [14] used a set
of distinct markers to explore unlabeled undirected graphs. In [15] the authors
focus on minimizing the amount of memory used by the agents for exploration
(however, they do not require the agents to construct a map of the graph).
Others have studied the exploration of mazes or labyrinths, which have been
shown [8] to be easier to explore than graphs, due to the availability of orientation
information.

In the absence of any device for marking nodes, unknown anonymous graphs
can still be explored using universal traversal/exploration sequences [18]. Aleliu-
nas et al. [2] showed that there exists universal traversal sequences of polynomial
size for all connected graphs of a given size n. A recent result by Reingold [23]
showed that universal exploration sequences can be constructed in logarithmic
space. Such sequences have been used for solving the rendezvous problem [10,24]
though only in the synchronous setting.

The problems of rendezvous and leader election has been extensively studied
as symmetry-breaking problems in unknown anonymous graphs, starting from
the work of Angluin [4]. Characterizations of the solvable instances for leader
election in message passing networks of processors, have been provided by Boldi
et al. [9] and by Yamashita and Kameda [25] among others. Recently, Fusco
and Pelc [17] have shown that leader election can be solved if each process has a
memory of O(log n) bits, matching the lower bound given by Ando et al. [3]. The
rendezvous problem has been solved under various different assumptions such as
distinct labels for the agents, sense of direction information, or prior knowledge of
topology (e.g.[5,13,16,19,26]). In the most general setting of unknown anonymous
graph with identical agents, the problem was recently solved in [10], though only
for synchronous agents. In the asynchronous case, an almost complete solution
using distinct labels has been provided in [11]. The idea of solving rendezvous
by marking the starting locations with tokens was first proposed by Baston and
Gal [6].

Our Results: We study the complexity of map construction in anonymous
graphs by a mobile agent that is not allowed to write on the nodes of the
graph. We present several polynomial time deterministic algorithms for map
construction.

122 J. Chalopin, S. Das, and A. Kosowski

In the model where no vertices of the graph are marked, for the task of
map construction to be feasible, the agents must know some bound n on the
number of nodes of the graph and some bound d ≤ n on its degree. The folklore
algorithm based on view construction [25] requires O(dn) moves by the agent.
The recent paper [10] provides more efficient map construction algorithms: a
polynomial-time approach (with very high exponent) using small memory, and
an O(n10d5 log2 n)-time algorithm using O(n9d4 log2 n) memory. Herein we put
forward two improved algorithms which offer different time/memory tradeoffs:

– a simple algorithm running in O(n6d2 log n) time, using O(n6d2 log n) mem-
ory (Prop. 6),

– a more advanced algorithm running in O(n6d3 log n) time, using
O(n3d2 log n log d) memory (Prop. 7).

In the model in which the agent has no prior knowledge of graph parameters
(such as n or d), in order to make the problem feasible, we assume that the
starting location of the agent is specially marked. In this case, we show how to
guess the value of n and thus solve map construction in polynomial time using
an optimal memory (Θ(log n)) algorithm (Prop. 8). We also present another
algorithm which requires slightly more agent memory (O(nd log n)) but is much
more efficient in terms of time steps, requiring only O(n3d) steps (Prop. 9).
Finally, in this model we also show how our algorithms can be extended to
solve the rendezvous of two mobile agents in anonymous graphs with marked
homebases even in the asynchronous case (Prop. 11).

2 Model, Definitions and Known Results

2.1 Our Model

The environment is represented by a simple undirected connected graph G =
(V (G), E(G)). The agent starts from a single node of the graph, called the home-
base. The agent can traverse any edge of the graph incident to its current location.
At each node v ∈ V (G), the edges incident to v are distinguishable to any agent
arriving at v. There is a bijective function

λv : {(v, u) ∈ E(G) : u ∈ V (G)} → {0, 1, 2, . . . d(v) − 1}
which assigns unique labels (port-numbers) to the edges incident at node v
(where d(v) is the degree of v). An agent at a node u can choose to leave through
any incident edge e = (u, v) simply by specifying the port number λu(u, v) of
the edge. On reaching the node v, the agent knows the port number λv(v, u) of
the edge through which it arrived. The ith successor of a node u, denoted by
succ(u, i) is the node v reached by taking port number i from node u (where
0 ≤ i < deg(u)). For any edge (u, v), we use λ(u, v) to denote the ordered pair of
labels (λu(u, v),λv(u, v)). A path in G is a sequence of nodes P = (u0, u1, . . . , uk)
such that (uj, uj+1) ∈ E(G), ∀j, 0 ≤ j < k and the label sequence of path P is
Λ(P) = (λ(u0, u1), . . . λ(uk−1, uk)).

Constructing a Map of an Anonymous Graph 123

The nodes of G do not have visible identities by which a visiting agent can
identify them. In other words, nodes having the same degree look identical to
the agents. The agents have computing and storage capabilities. When an agent
moves from one node to another, it carries with its own local memory which
consists of two parts. One part is a write-only stable storage which is used to
write the output (we assume it is large enough to store a map of G). The other
part is the agent’s private memory which is used for remembering the information
obtained in previous moves. Our objective is to minimize the private memory
of the agent i.e. the amount of information it needs to remember while moving
along the graph. When the agent is located at any node of the graph, it has
access to a read-write memory which can be used for local computation (but
not for storing information). We are not concerned about the cost of performing
local computations at node. We are interested in minimizing the total number
of edge traversals (steps) made by the agent in achieving its tasks.

2.2 Universal Exploration Sequences

In this paper, we will use the notion of a Universal Exploration Sequence (UXS)
[18]. Let (a1, a2, . . . , ak) be a sequence of integers. An application of this sequence
to a graph G at node u is the sequence of nodes (u0, . . . , uk+1) obtained as follows:
u0 = u, u1 = succ(u0, 0); for any 1 ≤ i ≤ k, ui+1 = succ(ui, (p+ai) mod d(ui)),
where p is the port number at ui corresponding to the edge {ui−1, ui}. A sequence
(a1, a2, . . . , ak) whose application to a graph G at any node u contains all nodes
of this graph is called a UXS for this graph. A UXS for a class G of graphs is a
UXS for all graphs in this class.

For all feasible pairs of N and D, let U(N, D) be a UXS for the class GN,D of
all graphs with at most N nodes and maximum degree at most D. The following
important result, based on a reduction from Kouckỳ [18], is due to Reingold [23].

Proposition 1 ([23]). For any positive integer n, there exists a UXS Y (n) =
(a1, a2, . . . , aM) for the class Gn of all graphs with at most n nodes, such that

– M is polynomial in n,
– for any i ≤ M , the integer ai can be constructed using O(log n) bits of

memory.

The above result implies that a (usually non-simple) path (u0, . . . , uM+1) travers-
ing all nodes can be computed (node by node) in memory O(log n), for any graph
with at most n nodes. Moreover, logarithmic memory suffices to walk back and
forth on this path: to walk forward at node ui, port (p + ai) mod d(ui) should
be computed when coming by port p, to walk backward, port (p−ai) mod d(ui)
should be computed.

Proposition 2 ([2]). For any positive integers n, d, d < n, there exists a uni-
versal exploration sequence of length O(n3d2 log n) for the family of all graphs
with at most n nodes and maximum degree at most d.

124 J. Chalopin, S. Das, and A. Kosowski

Note that the exploration sequences in the proposition above are not con-
structible in logarithmic memory, while the log-space constructible sequences
from Proposition 1 are much longer (though still polynomial in n).

2.3 The Map Construction Problem

As mentioned before, the problem of reconstructing the topology of a network of
processors has been studied before, notably in [25]. That paper introduced the
concept of the view of a node in a graph, which we restate below:

Definition 1 ([25]). The view V G,λ(v) of node v, in a graph G with port-
numbering λ, is an infinite edge-labelled rooted tree T , whose root represents the
node v and for each neighboring node ui of v, there is a vertex xi in T and an
edge from the root to xi with the same labels as the edge from v to ui in G. The
subtree of T rooted at xi is again the view V G,λ(ui) of the node ui.

We shall drop the subscript λ when it is obvious from the context.

Proposition 3 ([20]). Given any simple graph G with n nodes and a port-
numbering λ, two vertices u, u′ ∈ V (G) have the same view (i.e. V G(u) =
V G(u′)) if and only if the views truncated to a depth of n are equal (i.e.
V n

G(u) = V n
G(u′)).

If two nodes of a graph have identical views then these nodes are said to be
equivalent to each other. If the nodes of the graph are grouped into classes such
that two nodes are put in the same class if and only if they have the same view,
then such a classification is an equivalence partition of V (G), where all classes
have the same size. Based on this partitioning, the quotient graph of G is defined
as follows.

Definition 2 ([25]). Given an undirected connected graph G with port-
numbering λ, the quotient graph H is an edge-labelled multigraph such that
there exists a homomorphism ϕ from G to H satisfying the following: (i) For
any two nodes u and v, ϕ(u) = ϕ(v) if and only if V G(u) = V G(v), (ii) For
each edge (u, v) of G, there is an edge (ϕ(u), ϕ(v)) in H labelled with λ(u, v) and
(iii) H has no other edges.

If two graphs G1 and G2 have identical quotient graph then it is not possible to
distinguish between them by just traversing them (without making any marks
on the graph). Any deterministic algorithm executed on G1 would produce the
same output as the same deterministic algorithm executed on G2. Thus, for such
graphs, it is not possible to reconstruct an exact copy of the graph. In fact the
maximum information that can be obtained by an agent traversing the graph,
is represented by the quotient graph.

Definition 3. We define the Map Construction problem as follows. Given an
undirected connected graph G with port-numbering λ, an agent starting at any
node of G has to build the (edge-labelled) multigraph H such that H is the quo-
tient graph of (G, λ).

Constructing a Map of an Anonymous Graph 125

Note that if G has no symmetry (i.e. when all nodes have distinct views) then
the quotient graph of G is G itself. Thus for these cases, the maps constructed
by our algorithms would be the exact copy of G.

Finally we present a well known impossibility result for the rendezvous problem.

Proposition 4 ([9,25]). Given a graph G with a port-numbering λ, the deter-
ministic rendezvous of two agents is impossible if the starting location of the two
agents have the same view.

. . .

. . .

3

2 3

3

2

21

1 2

2

1

3

3

2

3

3

1
2

1

2

1

2

1

3
1

2

2

1

2
3

31

2

1

3

1

1
1

1

1
1

2

2

2

2

2

2

3

3 3

3

1

2
1

3

1 2

2

3

1 1 1

32 2

1 2

1

2

(a)

(c)
(b)

u v

u

1

2

1

Fig. 1. (a) An example graph containing two agents initially at the marked nodes. The
view of each agent is shown in (b) while the quotient graph is shown in (c).

3 Map Construction with Knowledge of Upper Bound

In this section, we assume that the agent has prior knowledge of n, the size of
the graph. In fact, in all our algorithms, the value of n can be replaced by any
upper bound N ≥ n.

A polynomial-time approach for solving the map construction problem can be
obtained by applying a subroutine from [10], which, for any given starting node,
computes an integer in the range [1, n] which is a unique identifier of the node
in the quotient graph. In this way, the map exploration problem can be solved
by performing a DFS exploration of the graph and computing the identifiers of
the endpoints of all the traversed edges. The claim below follows.

Proposition 5 ([10]). The map construction problem can be solved in time
O(nd · T (n, d)), where T (n, d) is the (polynomial) time complexity of computing
the identifier of a node in a graph of order n and degree d.

Using the routines from [10], the operation of computing the identifier is
extremely time consuming. When the agent is equipped with only O(log n)
memory, we have T (n, d) = O(|U(n2, d)|2|U(n, d)|2), where the used exploration

126 J. Chalopin, S. Das, and A. Kosowski

sequences need to be logarithmically constructible. It is possible to implement
the signature detection routines in T (n, d) = O(|U(n2, d)||U(n, d)|) steps, but
using memory of the same order as the number of steps. Thus, for the best
known upper bounds on the length of exploration sequences, this means that
the map is constructed in O(n10d5 log2 n) time and O(n9d4 log2 n) memory.

In this section we put forward two algorithms which solve the map construc-
tion problem more efficiently. The first relies on the intriguing property that the
traversal of a sufficiently long exploration sequence is sufficient to identify the
graph. The second uses UXS-s in a completely different way.

3.1 Using a UXS as a Sequence for Graph Identification

Suppose that a fixed sequence Y = (a1, a2, . . . , aM) applied at a node u = u0

of graph G results in the traversal of G visiting the nodes (u0, u1, . . . , uM+1).
The signature of node u is the sequence of edge labels which are traversed by
an application of the sequence in graph G starting at node u: S(Y,G)(u) =
(λ(u0, u1), . . . , λ(uM , uM+1)).

The results in [10] provide a constructive criterion for distinguishing the views
of two vertices of a graph G based on the signatures of vertices. In fact, by a
minor modification of their proof, we obtain a method for distinguishing the
views of vertices in any two (not necessarily identical) graphs, and we have the
following result.

Lemma 1. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs with at most n
nodes. Then, for any nodes u1 ∈ V1, u2 ∈ V2, we have V G1(u1) �= V G2(u2), if
and only if S(Y,G1)(u1) �= S(Y,G2)(u2), where Y = U(2n2, d).

Proposition 6. There exists an algorithm for map construction which runs in
|U(2n2, d)| steps and requires O(|U(2n2, d)|) memory.

Proof. The algorithm proceeds by performing a traversal of the sequence Y =
U(2n2, d), starting from the agent’s homebase u. The agent records successive
labels encountered during its traversal, thus computing the signature S(Y,G)(u).
Based on this, the agent computes its quotient graph (using local computations
only), as the smallest graph G′ = (V ′, E′) with distinguished node u′ ∈ V ′ such
that S(Y,G′)(u′) = S(Y,G)(u). Such a graph must exist, since the tested property
is by Lemma 1 equivalent to the condition V G(u) = V G′(u′), which is satisfied
by a non-empty family of graphs, having a unique element which is smallest in
terms of the number of nodes. This element is precisely the quotient graph of G,
which completes the proof. �	

3.2 An Algorithm with Efficient Identification of Nodes

We now present an algorithm to solve map construction more efficiently. Our al-
gorithm uses ideas that are usually used to minimize a deterministic automaton.

Given a graph G and node u of G and a sequence of edge-labels Y =
((p1, q1), (p2, q2), . . . , (pj , qj)), we say that Y is accepted from u if there exists a

Constructing a Map of an Anonymous Graph 127

path P = (u = u0, u1, . . . , uj) in G such that Λ(P) = Y , i.e. for each i, 1 ≤ i ≤ j,
(pi, qi) = λ(ui−1, ui). For any k > 0, two vertices u, v that have the same view
up to depth k are said to be k-equivalent; we denote it by u ∼k v. The k-class
of u is the set of all vertices that are k-equivalent to u and this set is denoted
by [u]k. Given any two distinct k-classes C, C′, a (C, C′)-distinguishing path is a
sequence of edge-labels YC,C′ = ((p1, q1), (p2, q2), . . . , (pj , qj)) of length at most
k such that YC,C′ is accepted from each node u ∈ C and it is not accepted from
any node v ∈ C′. For any two distinct k-classes, there always exists either a
(C, C′)-distinguishing path or a (C′, C)-distinguishing path.

To compute the quotient graph of G, it suffices to visit every node v of G and
identify the n-class of v and each of its neighbors. Recall from Proposition 3 that
[u]n = [u]∞ = [u] for any node u ∈ G. Once these equivalence classes are known,
one can construct the quotient graph H as follows. The vertices of H are the
equivalence classes, and there is an edge labelled by (p, q) from [u] to [v] in H if
and only if, u has a neighbor v′ ∈ [v] such that λu(u, v′) = p and λv(v′, u) = q.

We present an algorithm (See Algorithm 1) that iterates over k, and for each
k, explores the graph and identifies the k-classes of the visited nodes and their
neighborhoods. We use a UXS U(n, d) of size O(n3d2 log n) for the traversal.

For k = 1, it is easy to determine the k-class of any node v by traversing each
edge incident to v and noting the labels. From this information, one can find the
distinguishing paths for any pair of 1-classes. For k ≥ 2, it is possible to identify
the k-classes and the corresponding distinguishing paths (from knowledge of the
k − 1 classes) using the properties below.

Lemma 2. For k ≥ 2, two nodes u and v belong to the same k-class, if and only
if (i) u and v belong to the same 1-class and (ii) for each i, 0 ≤ i ≤ degG(u) =
degG(v), the ith neighbor ui of u and the ith neighbor vi of v belong to the same
(k − 1)-class and λ(u, ui) = λ(v, vi) = (i, j), for some j ≥ 0.

Proposition 7. Algorithm 1 solves map construction for any graph of size n in
O(|U(n, d)| · n3d) moves and requires O(n3 log n + |U(n, d)| log d) memory.

Proof. Let nk be the number of k-classes. During the kth iteration, on each node
v reached by the UXS, for each neighbor w of v, the agent computes the k − 1
class of w. To do so, it needs to check at most nk different paths of length k− 1.
Consequently, for each node v, it needs O(deg(v) · nk · k) moves to compute the
k-class of v. Thus, during the kth iteration of the algorithm, the agent performs
O(d ·nk · k · |U(n, d)|) moves, where d is the maximum degree of the graph. Due
to Proposition 3 there are at most n iterations, and nk ≤ n; so the total number
of moves made by the agent is O(|U(n, d)| · n3d).

At the end of the kth iteration, the agent needs to remember the number nk

of k-classes and nk(nk−1)/2 distinguishing paths, each of length at most k. This
can be stored using O(n3 log n) bits. During the kth iteration, the agent needs
to remember for each v and for each neighbor w of v, the label of the edge (v, w)
and the index of the (k−1)-class of w. For each v, it needs O(deg(v) · log n) bits.
However, the agent does not need to remember the k-class of each vi, but it is
sufficient to identify the distinct k-classes that exist in the graph. Thus, since

128 J. Chalopin, S. Das, and A. Kosowski

there are at most n different k-classes, the agent needs O(n · d · log n) bits of
memory to compute the number of k-classes, and to compute the corresponding
distinguishing paths using the distinguishing paths for the (k − 1)-classes. Since
the agent can store the UXS using O(|U(n, d)| log d) bits, the agent can execute
this algorithm using O(n3 log n + |U(n, d)| log d) memory. �	

Algorithm 1. Class-Refinement(n)
Let v1, v2, . . . vt be the sequence of nodes visited by U(n, d), possibly containing
duplicate nodes ;
Apply U(n, d) and for each node vi do

Store the labels of each edge incident to vi;

Compute the number of 1-classes and store a distinguishing path for each pair
of distinct classes ;
k := 2;
repeat

Apply U(n, d) and for each node vi do
for each edge (vi, w) incident to vi do

Compute the (k − 1)-class of w (using the distinguishing paths);
Store the label of (vi, w) and the index of the (k − 1)-class of w ;

Compute the number of k-classes and store a distinguishing path for each
pair of distinct k-classes ;
Increment k;

until the number of k-classes is equal to the number of (k − 1)-classes ;
Compute the quotient graph ;

4 Universal Algorithms for Map Construction

In this section, we assume that the agents do not know the size of the graph G and
we are interested in designing universal algorithms that work for graphs of any
size. Note that it is not possible to perform exploration with stop in unlabelled
graphs of arbitrary size and topology. No terminating algorithm can guarantee
to visit all the nodes of an arbitrary connected graph with unmarked nodes. To
get around this problem, we assume that the starting location of an agent is
specially marked, so that it can be distinguished from the other nodes. This is a
much weaker assumption compared to allowing the agent to have a pebble which
it can drop at any node and later retrieve it. However this weak assumption is
sufficient for obtaining universal algorithms for the map construction problem.

4.1 Guessing the Value of n

The universal exploration sequences used in the previous section used the order
of the graph as input. If this information is not available, we can try to guess a
value of an upper bound N on n. If the assumed value of N is not big enough, we
may not be able to explore the entire graph using U(N, N). The idea is to detect
this fact and increase the value of N and try again. Eventually, we would reach a

Constructing a Map of an Anonymous Graph 129

correct upper bound on the size of the graph. In this case, any of the algorithms
from the previous section can be applied to solve the map construction problem.

The first of the proposed approaches is implementable in logarithmic space.

Proposition 8. There exists an algorithm for an agent with a marked homebase
which computes an upper bound N ≥ n on the order of the graph, N ∈ poly(n),
using O(log n) memory.

Proof. Let K be a parameter which is initially set as 1 and doubled in successive
iterations of the algorithm. The idea of the proof is to detect in each iteration
whether the universal exploration sequence U(K, K), starting from the homebase
r of the agent has visited all nodes of the graph G. The considered UXS is
obtained through Reingold’s log-space construction [23]. For the smallest value
of parameter K such that U(2K, 2K) explores G, and U(K, K) does not, we
have that K < n ≤ U(2K, 2K). Hence, by putting N = U(2K, 2K) we obtain
the sought polynomial upper bound on the value of N , since the length of the
considered UXS is polynomial in K.

It remains to describe a subroutine which allows the agent to decide if an
exploration sequence U(K, K), starting from homebase r, explores the entire
graph G. Let S = (r = u0, u1, . . . , uM) be the sequence of vertices visited during
the traversal, and U = {u0, u1, . . . , uM}. Observe that since G is a connected
graph, the considered traversal does not completely explore G if and only if
there exists a node v ∈ V \ U which is a neighbor of some node u ∈ U . The
algorithm proceeds by visiting the successive vertices (u0, u1, . . . , uM) of the
exploration sequence. At each node ui, the agent makes a detour to explore its
neighborhood Nbd(ui). The agent visits successive nodes of this neighborhood,
and for each node v ∈ Nbd(ui), v �= r, executes a subroutine to decide if v ∈ U .
More precisely, when located at v, for successive values of index j = 1, 2, . . . , M ,
the agent performs a test to decide whether v = uj, and then returns to v.
Testing the condition v = uj is performed by traversing a path starting at v
and defined through the sequence of port labels which appear in the traversal
(uj , uj−1, . . . , u0). In other words, we follow a reversal of the j-prefix of the
exploration sequence U(K, K), starting by leaving node v through the port by
which uj is entered in sequence S. Since each node can be uniquely identified by
the sequence of ports appearing on any path leading from the marked homebase
r to this node, we have that v = uj if and only if the traversal of the considered
path terminates at the marked node r.

We finally note that since navigating the robot along sequence U(K, K), or
any prefix or reversal of U(K, K), only requires O(log n) memory (cf. [18]), the
entire algorithm runs using O(log n) memory. �	

4.2 More Efficient Map Construction

In this section we consider other methods of exploration rather than using an
UXS. The fact that the starting node r of the agent is marked and can be
distinguished from other nodes, makes it easier to perform an exploration. The
agent can perform a breadth-first traversal building a BFS-tree T rooted at r.

130 J. Chalopin, S. Das, and A. Kosowski

During the traversal, whenever the agent explores a new edge and reaches a
node v, it checks whether v is same as some node u in its tree. This can be done
by successively applying the label-sequences for the back-paths from each node
u ∈ T to the root r, and checking if one of these hits the marked node. Based on
this idea, we have an algorithm for building a map of G starting from the single
marked homebase in G (See Algorithm 2). The algorithm maintain a BFS-tree
T containing the visited nodes and a data structure called ROOT PATHS that
stores the edge-labelled path P in T from any node v to the homebase r. For
such a stored path P , Start(P) refers to the node v.

Proposition 9. There exists an algorithm for map construction for an agent with
a marked homebase which runs in O(n3d) steps and uses O(n · d log n) memory.

Proof. First we show that the Map output by algorithm BFS-Tree-Construction
is an exact copy of G and the graph T output by the algorithm is a spanning
tree of G. Note that the sequence of labels on the path from the homebase
r to each node in T is unique. Thus no node appears more than once in T .
Since the algorithm performs a breadth-first search, every node is reached by the
algorithm. If the algorithm does not add a reached node u to T then there is path
from u to r which is identically labelled as an exisitng path P ∈ ROOT PATHS.
Hence by the previous argument u already exists in T . It is easy to see that T
is connected and every edge in T appears in G. Thus, T is a spanning tree of G.
The Map is a super-graph of T and every edge that is traversed by the algorithm
is added to Map (either as tree-edge or as a cross-edge). The algorithm traverses
each edge incident to any node in T and thus all edges of G are traversed by the
algorithm. Thus we conclude that Map is an isomorphic copy of G.

Whenever the algorithm traverses an unexplored edge at a node v, it has to
check at most n paths in ROOT PATH, each of length at most n. This takes
O(n2) steps for each edge and thus O(n3d) steps in total. The agent requires
O(n ·d · log n) memory to store Map and T . The data-structure ROOT PATHS
does not need to be stored explicitly and can be obtained from T . �	

4.3 Solving Rendezvous

We now show the above techniques can be used to solve the rendezvous of two dis-
persed agents in an unknown graph. Note the algorithm BFS-Tree-Construction
from the previous section will fail to build a map if there are more than one
agents in the graph. If there are two marked nodes in G and an agent can con-
fuse between these two nodes, as they would look identical to the agent. However,
if we execute the algorithm BFS-Tree-Construction in a graph with two marked
homebases, the following properties would be satisfied.

Lemma 3. If two agents starting from marked homebases in a connected graph
G execute algorithm BFS-Tree-Construction, then the following holds:
(i) The graph T constructed by each agent would be an acyclic connected (not
necessarily spanning) subgraph of G.
(ii) If the maps constructed by the two agents are identical then the views from
the two homebases are identical.

Constructing a Map of an Anonymous Graph 131

Algorithm 2. BFS-Tree-Construction
Map := T := {r} ;
Add r to Queue;
ROOT PATHS := ∅;
while Queue is not empty do

Get next node v from Queue and go to v using Map;
while node v has unexplored edges do

Traverse the next unexplored edge e = (v, u);
for each path P ∈ ROOT PATHS do

Apply sequence Λ(P) at node u ;
if successfully reached a marked node then

Add to Map a cross-edge from v to Start(P);
Update the number of explored edges at the node Start(P);
Return to node v using T and exit Loop;

else
Backtrack to node u ;

if All path sequences failed to reach a marked node then
Add a new node u to T and Map ;
Add edge (v, u) to T and Map ;
Insert u to Queue ;
ROOT PATHS := ROOT PATHS ∪ PathT (u, r) ;
Backtrack to node v ;

Proof. (i) An agent executing Algorithm 2 adds a node u to T only if this node
does not exist in T (If the node u already belongs to T the agent can correctly
detect this fact). Thus result (i) follows from properties of breadth-first search.
(ii) The Map constructed by an agent a consists of a BFS-tree (call it Ta) and
some cross-edges. The tree Ta is a subgraph of G rooted at the homebase ra of
the agent. If the maps of the two agents are identical then, for every cross-edge
(u, v) in the Map of agent a, there is a cross-edge (u′, v′) in the Map of the
other agent (say, agent b) such that either (u, v) and (u′, v′) are actual edges in
G, or (u, v′) and (u′, v) are edges in G. It is possible to build the view of the
agent a using the information contained in its Map (and the fact that the two
Maps are identical). We replace each cross-edge (u, v) in the Map, by an edge
(u, uv) and a new node uv, and plug in a copy of Map re-rooted at v at the new
node uv. We can repeat this recursively from the top level down to any depth N
until there are no cross-edges up to depth N . Finally, for each tree edge (x, y)
where x is the parent of y, we can add an edge (y, yx) and a new node yx and
attach a copy of the current Map re-rooted at x at the new node yx. Using this
process recursively, one can obtain the view of agent a up to any desired depth
N . Hence we conclude that the views of the two agents are identical if and only
if the Maps obtained by Algorithm 2 are identical. �	
Due to the above results and Proposition 4, we know that when the maps ob-
tained by the two agents are identical, then rendezvous is not solvable determin-
istically. So, we only need to consider the case when the maps are distinct. In

132 J. Chalopin, S. Das, and A. Kosowski

this case if we could compare the maps of the agents, we can elect one of the
agents and the agents could rendezvous at the homebase of the elected agent.

The map constructed by an agent is a rooted edge-labelled graph, where the
edge-labelling is a port-numbering on G. There exists a total ordering on the
family of such graphs. In the following we will use a fixed ordering on this family
of graphs and we say M1 < M2, if M1 is distinct from M2 and appears earlier
than M2 in this fixed ordering. We now present an algorithm for rendezvous
of the two agents using the algorithm BFS-Tree-Construction as a basic step,
followed by comparison of the maps (See Algorithm 3).

Algorithm 3. Universal-RDV
(T, Map) := BFS-Tree-Construction();
Let ROOTPATHS be the set of paths obtained during the algorithm;
Traverse Map and for each cross-edge e = (u, v) ∈ Map do

Apply the sequence λ(u, v);
Apply the sequence for the path P ∈ ROOTPATHS that starts at v;
// The agent has reached some marked homebase

(T2, Map2) := BFS-Tree-Construction();
if Map2 < Map then

Traverse tree edges from current node to reach root of Map2;
Terminate;

else if Map2 > Map then
Traverse tree edges from current node to reach node v;
Apply the sequence λ(v, u);
Apply the sequence for the path P ∈ ROOTPATHS that starts at u;
Terminate;

Output: “Rendezvous is not solvable”;

Proposition 10. Algorithm Universal-RDV solves rendezvous of two agents in
any connected graph G with marked homebases, whenever it is deterministically
possible and otherwise detects failure.

Proof. The algorithm constructs a map using Algorithm 2 as a sub-procedure
and then compares it with the map of the other agent. Since the procedure
BFS-Tree-Construction is deterministic, the map of the other agent can be
obtained by simply executing algorithm 2 from the homebase of the other agent.
So we need to show that the algorithm succeeds in reaching the other homebase.
Suppose Ta and Tb be the two trees constructed by the two agents a and b and
ra and rb be the corresponding homebases. Since each node is included in one of
the two trees, there exists a node v in Ta that is adjacent to some node w in Tb.
When agent a explored the neighborhood of v, the neighbor w was not added to
Ta. This implies that there must be a node u ∈ Ta, such the path from u to ra is
identically labelled as the path from w to rb. In other words there is a cross-edge
(v, u) in Mapa that corresponds to an actual edge (v, w) in G. Thus, when
the agent a traverses this cross-edge and follows the path to the root, it will reach

Constructing a Map of an Anonymous Graph 133

the homebase of the other agent. Note that the agent does not know which path
leads to the other homebase, so it must repeat this process for each cross-edge
in its Map.

If the maps from the two homebases are distinct, the agents can always agree
on a rendezvous location by comparing the maps. The algorithm fails only if the
two maps are identical. In that case, we know that rendezvous is not solvable
due to Lemma 3 and Proposition 4. �	
Proposition 11. Any execution of Algorithm Universal-RDV on a graph of size
n and maximum degree d by two agents, requires O(n4d2) moves by each agent.
Each agent requires a private memory of size O(nd log n).

Proof. If there are n nodes in the graph, then the Map of an agent can contain
at most n nodes. The map construction process requires O(n3d) steps as before.
However the process is repeated for each cross-edge in the Map. Each cross-edge
corresponds to a distinct edge in G, thus there can be at most n · d cross-edges.
Hence the result follows. The agent stores the Map in its memory, which requires
O(nd log n) memory space. �	
Note that the algorithm presented here solves rendezvous with detect in the
asynchronous case (in contrast to [10]). In case the agents possess only logarith-
mic memory, we can use the techniques from Section 4.1 to obtain a log-space
algorithm for solving rendezvous with detect, in the same setting.

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM Journal on
Computing 29(4), 1164–1188 (2000)

2. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: 20th An-
nual Symposium on Foundations of Computer Science (FOCS 1979), pp. 218–223
(1979)

3. Ando, E., Ono, H., Sadakane, K., Yamashita, M.: The space complexity of leader
election in anonymous networks. International Journal of Foundations of Computer
Science 21(3), 427–440 (2010)

4. Angluin, D.: Local and global properties in networks of processors. In: 12th Sym-
posium on Theory of Computing (STOC 1980), pp. 82–93 (1980)

5. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of
mobile agents: impact of sense of direction. Theory of Computing Systems 40(2),
143–162 (2007)

6. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points.
Naval Research Logistics 48(8), 722–731 (2001)

7. Bender, M., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble:
Exploring and mapping directed graphs. In: 30th ACM Symposium on Theory of
Computing (STOC 1998), pp. 269–278 (1998)

8. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to
search than graphs). In: 19th Annual Symposium on Foundations of Computer
Science (FOCS 1978), pp. 132–142 (1978)

134 J. Chalopin, S. Das, and A. Kosowski

9. Boldi, P., Vigna, S.: An effective characterization of computability in anonymous
networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer,
Heidelberg (2001)

10. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space
rendezvous in arbitrary graphs. In: 29th Annual ACM Symposium on Principles
of Distributed Computing (PODC 2010), pp. 450–459 (2010)

11. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) every-
where. In: 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2010), pp. 22–30 (2010)

12. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. Journal of Graph
Theory 32(3), 265–297 (1999)

13. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous
in graphs. Algorithmica 46(1), 69–96 (2006)

14. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: Robotic exploration as graph con-
struction. Transactions on Robotics and Automation 7(6), 859–865 (1991)

15. Fraigniaud, P., Ilcinkas, D.: Digraphs exploration with little memory. In: Diek-
ert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer,
Heidelberg (2004)

16. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer,
Heidelberg (2008)

17. Fusco, E.G., Pelc, A.: How much memory is needed for leader election. In: Lynch,
N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 251–266. Springer,
Heidelberg (2010)

18. Koucký, M.: Universal traversal sequences with backtracking. Journal of Computer
and System Sciences 65(4), 717–726 (2002)

19. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a
ring. In: 23rd International Conference on Distributed Computing Systems (ICDCS
2003), pp. 592–599 (2003)

20. Norris, N.: Universal covers of graphs: isomorphism to depth n–1 implies isomor-
phism to all depths. Discrete Applied Mathematics 56(1), 61–74 (1995)

21. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Journal of Algo-
rithms 33(2), 281–295 (1999)

22. Panaite, P., Pelc, A.: Impact of topographic information on graph exploration
efficiency. Networks 36(2), 96–103 (2000)

23. Reingold, O.: Undirected connectivity in log-space. Journal of the ACM 55(4)
(2008)

24. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly uni-
versal exploration sequences. In: 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), pp. 599–608 (2007)

25. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I - char-
acterizing the solvable cases. IEEE Transactions on Parallel and Distributed Sys-
tems 7(1), 69–89 (1996)

26. Yu, X., Yung, M.: Agent rendezvous: A dynamic symmetry-breaking problem. In:
Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp.
610–621. Springer, Heidelberg (1996)

	Constructing a Map of an Anonymous Graph: Applications of Universal Sequences
	Introduction
	Model, Definitions and Known Results
	Our Model
	Universal Exploration Sequences
	The Map Construction Problem

	Map Construction with Knowledge of Upper Bound
	Using a UXS as a Sequence for Graph Identification
	An Algorithm with Efficient Identification of Nodes

	Universal Algorithms for Map Construction
	Guessing the Value of n
	More Efficient Map Construction
	Solving Rendezvous

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

