
Algorithmica manuscript No.
(will be inserted by the editor)

Mapping Simple Polygons:
How Robots Benefit from Looking Back

Jérémie Chalopin · Shantanu Das ·
Yann Disser · Matúš Mihalák · Peter
Widmayer

the date of receipt and acceptance should be inserted later

Abstract We consider the problem of mapping an initially unknown polygon
of size n with a simple robot that moves inside the polygon along straight lines
between the vertices. The robot sees distant vertices in counter-clockwise order
and is able to recognize the vertex among them which it came from in its last
move, i.e. the robot can look back. Other than that the robot has no means of
distinguishing distant vertices. We assume that an upper bound on n is known
to the robot beforehand and show that it can always uniquely reconstruct the
visibility graph of the polygon. Additionally, we show that multiple identical
and deterministic robots can always solve the weak rendezvous problem in
which the robots need to position themselves such that all of them are mutually
visible to each other.

Our results are tight in the sense that the strong rendezvous problem,
where robots need to gather at a vertex, cannot be solved in general, and,
without knowing a bound beforehand, not even n can be determined. In terms

A preliminary version of this paper appeared in the proceedings of the 7th International
Conference on Algorithms and Complexity (CIAC 2010) [7].

Jérémie Chalopin
LIF, CNRS & Aix-Marseille Université
E-mail: jeremie.chalopin@lif.univ-mrs.fr

Shantanu Das
LIF, CNRS & Aix-Marseille Université
E-mail: shantanu.das@acm.org

Yann Disser
Institute of Theoretical Computer Science, ETH Zurich
E-mail: ydisser@inf.ethz.ch

Matúš Mihalák
Institute of Theoretical Computer Science, ETH Zurich
E-mail: matus.mihalak@inf.ethz.ch

Peter Widmayer
Institute of Theoretical Computer Science, ETH Zurich
E-mail: widmayer@inf.ethz.ch

2 Jérémie Chalopin et al.

of mobile agents exploring a graph, our result implies that they can reconstruct
any graph that is the visibility graph of a simple polygon. This is in contrast
to the known result that the reconstruction of arbitrary graphs is impossible
in general, even if n is known.

Keywords polygon · mapping · visibility graph · rendezvous · robot

1 Introduction

We are interested in the study of simple but autonomous robots that are ca-
pable of performing tasks like searching, cleaning, guarding or gathering data
in unknown environments. One of the most fundamental problems involved
in these tasks is to obtain a map of the environment. The complexity of this
problem depends on the environment in which a robot operates, and on the
robot’s sensors. For example, it makes a difference whether there are identifi-
able landmarks in the environment, or whether a robot has access to powerful
sensors like GPS. In some settings, large numbers of simple robots are de-
ployed in an environment and expected to cooperate and solve given tasks. A
fundamental problem that arises in many settings with multiple robots is the
rendezvous problem in which robots either need to gather at the same location
(strong rendezvous) or at least need to position themselves such that they are
visible to each other (weak rendezvous).

A challenging computational and algorithmic question in this context is
the study of simple autonomous robots that have only “weak” sensors and
only basic moving capabilities. The problem is to decide what capabilities are
sufficient for solving fundamental tasks like those mentioned above. The goal
is to characterize the difficulty of such a task by finding minimal combinations
of capabilities that enable a simple robot (or multiple robots) to perform the
task.

The task of mapping an unknown environment has previously been studied
both in graphs and in geometric environments where robots move in the plane.
In this paper we focus on the latter case, more precisely on the case of robots
operating in polygonal environments. For many tasks a geometrically accu-
rate map of the environment is not needed, instead a qualitative description
of its shape is sufficient. The visibility graph of a polygon is such a qualitative
map: Its nodes are the vertices of the polygon and two nodes are joined by
an edge if they are visible to each other, i.e. if the line segment connecting
them lies entirely within the polygon. Visibility graphs and their characteriza-
tion have been studied extensively [13]. A general goal is to find minimalistic
configurations of sensors and movement capabilities that enable simple robots
to reconstruct the visibility graph of a polygon, and, in the case of multiple
robots, to solve the rendezvous problem.

The rendezvous problem has been solved for robots that freely move in
the plane (without polygon) and measure distances [17]. Similar studies in
this setting consider for example robots with limited visibility and memory
[2] or robots subject to measurement errors [9]. There have also been several

Mapping Simple Polygons: How Robots Benefit from Looking Back 3

studies concerned with the capabilities of minimalistic robots in polygonal en-
vironments. For instance it has been shown that a single pebble alone already
enables a simple robot to reconstruct the visibility graph [16] of its environ-
ment. Other models for simplistic robots have been studied (e.g. [6,12,19]).
The variant considered in this paper originates from [16]. Roughly speaking,
we allow a robot to order the vertices it sees in counter-clockwise order and
to drive to any vertex it sees (for more details cf. Section 2). It was previously
shown that without initial knowledge about the size of the polygon, such a
robot cannot infer the size of a polygon and thus cannot reconstruct its vis-
ibility graph [6]. If the robot is only allowed to move along the boundary of
the polygon, it cannot reconstruct the visibility graph, even if the number of
vertices n is known beforehand [4]. It is still an open question whether the
knowledge of n helps in the general case where the robot is not restricted to
move along the boundary.

We extend the basic model by allowing the robot to look-back after moving,
i.e. to know which vertex it came from among those now visible to it. In [4]
another sensor was used in combination with the look-back capability, and an
algorithm for reconstructing the visibility graph was given for a robot equipped
with both sensors, for the case in which the total number of vertices n is not
known beforehand (not even an upper bound on n). The look-back capability
alone, on the other hand, is not even sufficient for the robot to infer n [6]. In
this paper we show that if an upper bound on n is known beforehand, a robot
with look-back capability can reconstruct the visibility graph of any simple
polygon and thus, in particular, determine its size. Furthermore, we show that
the look-back capability is sufficient for solving the weak rendezvous problem
in all simple polygons if an upper bound on n is known. This is in contrast
to the fact that the strong rendezvous problem cannot always be solved, even
when the geometry of the polygon is known.

The above results are for simple polygons and do not generalize to polygons
with holes. In the latter case, knowing an upper bound on the number of
vertices is not sufficient to solve the polygon reconstruction problem: The
vertices of a triangle with slightly smaller inscribed triangular hole cannot
be distiguished from the vertices of a square with a large square hole. This
means it is not even possible to infer n precisely from an upper bound, and
thus, in particular, the visibility graph cannot be reconstructed. Moreover,
even if the exact value of n (or even the visibility graph) is known, the weak
rendezvous problem cannot be solved in polygons with holes. The question
whether visibility graph reconstruction become possible when n is known is
still open.

The problem of reconstructing the visibility graph of a polygon can be seen
as a special instance of the problem of reconstructing a general graph. In a
graph the robot is allowed to move along edges and sense the degree of the
vertex it is currently located at. A usual assumption is that the edges incident
to a vertex are distinctly labeled by a port-numbering function. The result-
ing model is equivalent to the message-passing network model of distributed
computation [8]. A characterization of the graphs for which the rendezvous

4 Jérémie Chalopin et al.

problem is solvable has been given [8,18]. From the results of [18] it is easy to
infer that there are graphs which cannot be distinguished by a robot, i.e. it is
not always possible to reconstruct a graph. A robot with look-back capability
moving in a polygon can imitate an agent that is moving in the corresponding
visibility graph, which allows us to borrow concepts from the setting for general
graphs. We are able to show that while the graph reconstruction problem and
the rendezvous problem are not solvable in the general setting, the reconstruc-
tion problem as well as the weak rendezvous problem are solvable for visibility
graphs if a bound on n is known and if the port-numbering gives a way to
find the counter-clockwise order of the edges as they appear in the underlying
polygon, starting from the edge corresponding to the polygon boundary.

Related Work.There have been several papers concerned with the capabilities
of minimalistic robots (e.g. [12], [16], [19]). The variant considered in this
paper originates from [16]. As mentioned above, the ability to look-back was
introduced in [4], but no results without additional capabilities were previously
shown.

The rendezvous problem for robots [1] gained a lot of interest, mainly in
the setting of robots moving in the unbounded plane, where every robot can
measure the exact distance to every other robot [2,9,17]. In this setting, all
robots are required to reach a common location or at least converge towards a
common location. The problem has been studied in many different variations,
e.g. in the asynchronous [11] or the semi-synchronous model [17], with memory
or without [2], under limited visibility [2,11] or unbounded visibility [9,17].

The rendezvous problem for robots operating in unlabeled graphs has been
extensively studied in the setting of distributed computing (cf. [14] for a sur-
vey). These studies are related to the more general question of what can be
computed in a fixed network of processors that are indistinguishable from each
other. This fundamental question was first raised by Angluin [3] and later stud-
ied by Boldi et al. [5] and Yamashita and Kameda [18], who in particular gave
a complete characterization of graphs where problems like leader election and
map construction are solvable (deterministically). These results carry over to
the model of mobile agents/robots moving on a graph, due to the equivalence
of the two models and the similarity of the leader election and rendezvous
problems.

2 Notation and Basic Properties of Polygons

Polygons and Visibility Graphs.In this work we consider simple polygons only
and we assume polygons to be in general position, i.e. no three vertices lie on a
common line. Let in the following P be such a simple polygon with n vertices.
We denote the set of vertices of P by V (P), where we drop the argument P
whenever the polygon is evident from the context. The boundary of P together
with an (arbitrary) choice of a starting vertex v0 induces an order among the
vertices and we write v0, . . . , vn−1 to denote the vertices along the boundary in

Mapping Simple Polygons: How Robots Benefit from Looking Back 5

counter-clockwise order. We define chain(vi, vj) := (vi, vi+1, . . . , vj). Note that
throughout this paper all indices of vertices are modulo n, unless otherwise
specified.

We say two vertices u,w ∈ V see each other or u sees w if and only if the
line segment uw lies entirely in P – in particular vi sees vi+1 for all i. If vi−1

sees vi+1, we say vi forms an ear. Observe that every simple polygon has at
least one ear while polygons with holes do not need to have ears. Our proofs in
subsequent sections strongly rely on the existence of ears and therefore cannot
be generalized to non-simple polygons.

The visibility graph of a polygon has a node for every vertex of the polygon
and an edge for every pair of vertices that see each other. We use m to denote
the number of edges in the visibility graph of a given polygon. We define the
degree of a vertex of the polygon to be the degree of the corresponding node
in the visibility graph.

With vis(vi) = (u1, . . . , ud) we denote the sequence of vertices that a ver-
tex vi ∈ V of degree d sees, enumerated in counter-clockwise order along
the boundary starting at u1 = vi+1 and ending at ud = vi−1. We write
visj(vi) , 1 ≤ j ≤ d, to denote uj , vis−j(vi) to denote ud+1−j and vis0(vi) to
denote vi itself. For a given sequence chain(vi, vj) we denote by chainv(vi, vj)
the subsequence of chain(vi, vj) containing only the vertices visible to v.

Let C = (u0, . . . , ul−1) be a cycle of length l in the visibility graph of P. We
say C is an ordered cycle, if and only if u0, . . . , ul−1 appear on the boundary
of P in that order (counter-clockwise). As ui sees ui+1 for 0 ≤ i ≤ l − 1, an
ordered cycle C induces a subpolygon of P with C being the boundary of the
subpolygon. Note that C being an ordered cycle implies that the boundary of
the induced subpolygon does not self-intersect.

Lemma 1 Let P be a simple polygon of size n ≥ 4. For all 0 ≤ i < n we have
that either the degree of vi or the degree of vi+1 is greater than two.

Proof As any polygon has a triangulation, two vertices that see each other
need to share a third vertex they both see. In our instance two vertices vi and
vi+1 thus need to share a third vertex w that they both see. For the sake of
contradiction assume there is a vertex vi such that vi and vi+1 have degree
two. It follows that w must be a neighbor of both vertices on the boundary and
thus the polygon has to be a triangle. This is a contradiction to the assumption
n ≥ 4. %&

Look-Back Robot.We now define a basic robot which we use as a basis for more
sophisticated models later on. A basic robot r in a polygon P is modeled to
be a moving point which is initially situated at some vertex of P. We allow it
to move to the neighboring vertices along the boundary of P, and we write vr
to denote its current location. We say r sees a vertex u if u ∈ vis(vr). While
r remains at a vertex vr, we allow it to sense the degree of vr and to put
the vertices it sees into counter-clockwise order starting with vr+1.1 Note that

1 As long as the vertices visible to the robot remain indistinguishable to it, knowing the
counter-clockwise order of the vertices it sees does not provide additional information. The

6 Jérémie Chalopin et al.

the robot has no immediate way of globally identifying the vertices it sees,
i.e. knowing their global index with respect to vr (their index counting from
vr in counter-clockwise order along the boundary). As our intention lies in
obtaining a weak model, we do not allow robots to gather sensory information
while moving. Similarly, when dealing with multiple robots, we say a robot r
sees another robot r2 if and only if r sees vr2 (or equivalently r2 sees vr) – in
particular the robot can count the number of robots located at any vertex it
sees. We do not impose a limitation on the robots’ memory.

A natural extension of the basic robot model lies in allowing a robot to
not only move along the boundary, but to any vertex it sees. In general a
robot does not know the identity (i.e. the global index2) of any vertex but its
neighbors. This means that any local information it gathered while moving
along the boundary may be lost once it decides to move to a distant vertex.
In order to get around this problem we further enhance our robot model by
adding the look-back capability. To explain what this means, consider a robot
at some vertex vi that drives to a distant visible vertex vj . Without look-back,
the robot afterwards has no way of knowing the identity of vi in vis(vj). Look-
back provides the robot the index k such that vi = visk(vj). We call such a
robot a look-back robot or LB-robot for short.

3 Reconstruction and Rendezvous in Simple Polygons

As soon as there is one vertex v! of the environment that a robot can distin-
guish from all other vertices, it can easily determine the visibility graph: It
can define v0 = v! and identify the global index of any vertex it sees easily
by driving there and then along the boundary until it encounters v!, counting
the number of steps along the boundary (cf. [16]).This means that if the robot
can perceive any non-symmetrical structure, it can define a unique vertex v!

and thus reconstruct the visibility graph. In other words, reconstructing the
visibility graph (or meeting other identical robots) is an easy task for most
polygons. Only highly symmetrical polygons present a challenge. In order to
solve the problem in general (i.e. in any polygon), we make use of concepts
that were first introduced in the context of distributed networks.

In distributed computing, a network is modelled as a graph whose edges
are labeled by so-called port numbers, such that edges incident to any node
v are assigned distinct labels from the set {1, 2, . . . , d}, where d is the degree
of v in the graph. Such an edge-labelling is called local orientation or port-
numbering (e.g. see [18]). In our model, an LB-robot is capable of putting
the vertices it sees into counter-clockwise order, and this order is the same
whenever a vertex is visited. Thus the robot has access to a port numbering of
the visibility graph G defined as follows. At any node u of G, each incident edge
(u, v) is labeled by i such that visi(u) = v. The same edge (u, v) is labeled

order becomes important as soon as we equip the robot with sensors that make it possible
to distinguish between some of the vertices it sees.

2 We usually set v0 to be the vertex the robot is initially located at.

Mapping Simple Polygons: How Robots Benefit from Looking Back 7

Fig. 1 Left: illustration of the definition of the level-1-label of a vertex v. Right: illustration
of how classes repeat along the boundary of a highly symmetrical polygon.

j at the other end-point v, such that visj(v) = u. Thus, each edge of G is
labeled by two numbers, one at either end-point (as in a bidirectional network
with port numbering). Look-back allows the robot to access the port-number
of the edge through which it has entered a node v of G. This corresponds to
the Port-to-Port model of message-passing in distributed networks. In other
words, our robot can backtrack any number of moves, or, in the sense of
distributed computing, to send messages back and forth between vertices. In
distributed networks it has proven beneficial [18] to define the view of a vertex
as the collection of information a node can gather by sending and receiving
messages. We will introduce the same concept in our setting of a robot moving
along the visibility graph of a polygon and apply it in order to analyze the
capabilities of the robot.

In the following we adapt the definition of the view of a vertex, to suit our
robot perspective. Consult Figure 1 (left) along with the definitions.

Definition 1 Let v be a vertex of a simple polygon P and d be its degree.
The level-1-label l(v) ≡ l(1)(v) of v is given by l(v) := (r1, . . . , ri, . . . , rd) where
ri is defined such that visri(visi(v)) = v, i.e. ri is the index of v in visi(v)’s
list of neighbors. We write lj(v) to denote rj and l−j(v) to denote rd+1−j for
0 < j ≤ d. Similarly li(v) = −k means vis−k(visi(v)) = v.

Let v be a vertex of a simple polygon P and d be its degree. Let vis(v) =
(u1, . . . , ud). For k ∈ N, k > 1, the level-k-label l(k)(v) of v is given by l(k)(v) :=(
l(k−1)(v) ,

(
l(k−1)(u1) , . . . , l(k−1)(ud)

))
.

Note that the definition of the level-k-label of a vertex v is equivalent to its
view up to depth k as originally defined in [18]. Intuitively it contains the
information a backtracking agent can gather by exploring the visibility graph
up to a distance of k from v.

In the following we introduce the notion of a level-k-class of a vertex for
the equivalence class containing all vertices with the same level-k-labels.

Definition 2 Let v be a vertex of a simple polygon P. The level-k-class
C(k)

v (P) of v is the set of vertices of P that have the same level-k-label as v,
including v itself. Formally C(k)

v (P) :=
{
u ∈ V | l(k)(u) = l(k)(v)

}
. The class

Cv(P) of v is defined to be the set of vertices that have the same level-j-label

8 Jérémie Chalopin et al.

for all j: Cv(P) :=
{
u ∈ V | ∀j ≥ 1 : l(j)(u) = l(j)(v)

}
. We drop the argument

P whenever the polygon is clear from the context.

The following lemma summarizes the key properties of classes. In particular it
states that a finite exploration depth is sufficient for fully characterizing the
class of a vertex.

Lemma 2 Let v be a vertex of a simple polygon P of size n. For all k ≥ 1 we
have the following properties:

1. C(k+1)
v ⊆ C(k)

v ;
2. Cv ⊆ C(k)

v ;
3. C(n−1)

v ⊆ C(k)
v ;

4. C(n−1)
v = Cv.

Proof Properties 1 and 2 follow immediately from the definitions of level-k-
labels and classes. Property 3 was proven by Norris [15] for general graphs (not
only visibility graphs) using the observation that if there is a vertex v such
that for some k > 1 we have C(k)

v *= C(k+1)
v , then there is also a vertex u for

which C(k−1)
u *= C(k)

u . Property 4 follows from Property 3 and the definition
of Cv. %&

In [18] it was first shown that all classes have the same size q even in general
graphs. The following lemma adds that in the case of polygons, the sequence
of classes to which the vertices along the boundary belong is periodical with
period n

q (cf. Figure 1 (right)).

Lemma 3 Let vi be a vertex of a simple polygon P of size n. For all vertices
u ∈ V we have q := |Cvi | = |Cu| and p := n

q is an integer equal to the number
of different classes of P. For all integers k we have Cvi = Cvi+kp .

Proof For every vj ∈ V we have
∣∣Cvj

∣∣ =
∣∣Cvj+1

∣∣ as every vertex of Cvj has
a vertex of Cvj+1 as its counter-clockwise neighbor on the boundary and con-
versely every vertex of Cvj+1 has a vertex of Cvj as its cw neighbor on the
boundary. Since this is true for every vertex vj , all classes must have the same
size q = |Cvi | and thus p = n

q is an integer and there are p classes. As the
sequence

(
Cvl , Cvl+1 , . . . , Cvl−1

)
is the same for all vl ∈ Cvi , the vertices of

Cvi need to be equally spaced in it. Using that an equal spacing is given by
n/ |Cvi | = p, we get Cvi = Cvi+kp for all integers k. %&

We now show that level-1-labels are enough to find the ears of a polygon.

Lemma 4 Let vi be a vertex of a simple polygon P of size n ≥ 3. We have
that vi is an ear if and only if l2(vi−1) = −2 or equivalently l−2(vi+1) = 2.

Proof If vi is an ear, we obviously have vis2(vi−1) = vi+1 and vis−2(vi+1) =
vi−1 which implies l2(vi−1) = −2 and l−2(vi+1) = 2.

Conversely, vis2(vi−1) = vi+1 (or vis−2(vi+1) = vi−1) obviously implies
that vi is an ear. As l2(vi−1) = −2 and l−2(vi+1) = 2 are equivalent, it
remains to show that l2(vi−1) = −2 implies vis2(vi−1) = vi+1.

Mapping Simple Polygons: How Robots Benefit from Looking Back 9

For the sake of contradiction assume w := vis2(vi−1) *= vi+1. Consider the
subpolygon P ′ induced by the ordered cycle chain(vi−1, w). In P ′, vi−1 and w
have degree 2. As w *= vi+1, we have |chain(vi−1, w)| ≥ 4 which contradicts
Lemma 1. Therefore vis2(vi−1) = vi+1 and vi is an ear. %&

Lemma 5 Let vi be a vertex of a simple polygon P. If vi is an ear of P, then
every vertex in C(2)

vi is an ear.

Proof By Lemma 4 we know that l2(vi−1) = −2 and l−2(vi+1) = 2. Let
vj ∈ C(2)

vi . Because l(2)(vi) = l(2)(vj), we have l(vi−1) = l(vj−1) and l(vi+1) =
l(vj+1) from which it follows that l2(vj−1) = −2 and l−2(vj+1) = 2. This
however implies that vj is an ear (again using Lemma 4). %&

The following lemma allows a robot to ’cut off’ ears of the polygon. With cut-
ting off an ear vi of a polygon P we mean the operation that removes a vertex vi
yielding the subpolygon induced by the ordered cycle v0, . . . , vi−1, vi+1, . . . , vn−1

in P’s visibility graph. Cutting off a single ear is problematic for a robot as
it has no obvious way of deciding which edges of the visibility graph it has to
ignore afterwards in order to restrict itself to the remaining subpolygon. An
edge might lead to a vertex of the same class as the one the robot cut off,
in which case it has no way of distinguishing whether the vertex is still there
or not. Cutting off all vertices of one class however is possible as the robot
can then simply ignore all edges leading to vertices of the corresponding class
altogether.

Lemma 6 Let v be a vertex of a simple polygon P of size n with |Cv| < n,
i.e. P has more than one class. If v is an ear of P, the subpolygon P ′ of P
obtained by cutting off the vertices Cv(P) is well-defined and for all vertices u
of P ′ we have Cu(P) ⊆ Cu(P ′).

Proof As v is an ear, Lemma 5 gives us that all vertices in C(2)
v are ears and

thus all vertices in Cv ⊆ C(2)
v are (Lemma 2). The subpolygon P ′ is thus

well-defined as the inducing set of vertices lies on an ordered cycle.
Let u,w be vertices of P ′ such that Cu(P) = Cw(P) and thus for all k ≥ 1

we have l(k)(u) = l(k)(w) in P. The level-k-label of a vertex v′ in P ′ can be
obtained from its level-k-label in P by recursively removing all occurrences
of labels that belong to a vertex in Cv(P) (i.e. we remove the level-(k − 1)-
labels belonging to vertices in Cv(P) from l(k)(v′) and apply the procedure
recursively for k − 1 to the other labels in l(k)(v′)). As Cv′(P) = C(n−1)

v′ (P),
i.e. a finite depth determines the class of a vertex, the same occurrences are
removed for vertices in the same class. Thus in P ′, l(k)(u) = l(k)(w) still holds
for all k ≥ 1 and hence Cu(P ′) = Cw(P ′). %&

The following result is the main insight for reconstructing the visibility graph
of a polygon and for solving the weak rendezvous problem for multiple robots.

Theorem 1 For any simple polygon P there is a vertex v for which C(n−1)
v =

Cv forms a clique in the visibility graph of P.

10 Jérémie Chalopin et al.

Proof Using the fact that any simple polygon has an ear, we can select an
ear u of our polygon and cut off all vertices in Cu. Lemma 6 gives us that
we can do this and we never divide classes in the process. We can repeatedly
apply this procedure until we obtain a polygon P ′ where every vertex is in
the same class. As P ′ needs to have at least one ear, it follows from Lemma 5
that all vertices of P ′ are ears. This in turn implies that P ′ is convex and
thus its visibility graph is a complete graph. As we never divide classes in our
procedure, we know that there is a vertex v of P such that every vertex of
Cv(P) is still present in P ′. Hence, Cv(P) forms a clique in P ′ and thus forms
a clique in P. %&

Lemma 7 Let P be a simple polygon of n vertices. Given n and some k ≥ 1,
an LB-robot located at v can determine l(k)(v).

Proof An LB-robot can compute the level-1-label l(1)(v) of a vertex v by mov-
ing to every neighbor of v in turn. It can recursively compute l(k)(v), the
level-k-label of v, by moving to every neighbor of v in turn and computing its
level-(k − 1)-label. In both cases, as the robot can look-back, it is capable of
returning to v after visiting a neighbor. %&

Using Lemma 7 and Theorem 1, we conclude that any number of deterministic
LB-robots can position themselves such that they are mutually visible.

Theorem 2 Let P be a simple polygon of n vertices. Given n, any number
of identical and deterministic LB-robots can weakly meet in P, i.e. they can
position themselves such that every robot sees all other robots.

Proof By Lemma 7 a robot can calculate l(n)(v) for every vertex v along the
boundary and thus not only find the classes of all vertices but also the classes
of all vertices they see. By Theorem 1 at least one class forms a clique. The
robot can easily check which classes form a clique (by comparing the level-
n-labels) and drive to a vertex of the class Cmin with the lexicographically
smallest level-n-label among all these classes. This strategy will choose the
same class Cmin for every robot independent of its starting location, thus if all
robots execute it they will eventually all be located on vertices of Cmin seeing
each other as Cmin forms a clique. %&

In the following we again use the fact that an LB-robot can find a class of
vertices that forms a clique in the visibility graph, and we show that using
this clique as a frame, it can incrementally build up the visibility graph of the
polygon.

Theorem 3 Let P be a simple polygon of n vertices. Given n, an LB-robot
can determine the visibility graph of P.

Proof By Lemma 7 the robot can determine l(n)(v) for all vertices v along the
boundary and thus not only find the classes of all vertices but also the classes
of all vertices they see. As in the proof of Theorem 2, this means the robot can

Mapping Simple Polygons: How Robots Benefit from Looking Back 11

identify the class Cmin with the lexicographically smallest level-n-label among
the classes forming a clique.

Let u ∈ Cmin be a vertex of this class. We argue that the edges of u in
the visibility graph of P are easily identified. Assume that the i-th edge of
u (in counter-clockwise order) leads to a vertex w of class C ′ and let xi be
the number of edges with index j < i that lead to vertices of class Cmin. If
C ′ = Cmin, w is easily identified as the (xi + 1)-th vertex of class Cmin counting
along the boundary starting at u. If C ′ *= Cmin, w is the first vertex of class C ′

after the xi-th vertex of class Cmin in counter-clockwise order counting from
u (by Lemma 3, there is exactly one vertex of class C ′ between the xi-th and
the (xi + 1)-th vertex of class Cmin). In the following we show that the robot
can identify the edges incident to other vertices (u /∈ Cmin).

Let vi be a vertex of P. With dk(vi) and d−k(vi) we denote the set of
vertices in chainvi(vi, vi+k) and chainvi(vi−k, vi), respectively. In terms of this
definition, finding the visibility graph of P is the same as finding dn

2
(v) and

d−n
2
(v) (i.e. finding the global indices of the vertices in dn

2
(v) and d−n

2
(v)) of

every vertex v along the boundary of P. In the following we assume: (!) for
any two vertices u and w, Cu = Cw implies |dk(u)| = |dk(w)| and |d−k(u)| =
|d−k(w)| for all k ≥ 1. We will prove (!) later, but for now observe that it
trivially holds for k = 1.

We show inductively how to obtain d±n
2

for all vertices. The robot knows
d±1 for every vertex as every vertex sees its neighbors on the boundary. It
remains to be shown how to obtain dk+1(vi) for some vertex vi assuming dk is
known – this can then be applied to all vertices in order to obtain d±(k+1) for
all vertices. Let x := |dk(vi)| and vis(vi) = (u1, . . . , ud), where d is vi’s degree.
We have

dk+1(vi) =

{
dk(vi) ∪ {vi+k+1} , if ux+1 = vi+k+1

dk(vi) , otherwise.

Let vj := ux+1 be the first vertex (in counter-clockwise order) visible to vi and
not in dk(vi). In order to derive dk+1(vi), it is now enough for the robot to
decide whether vj = vi+k+1 or vj *= vi+k+1. As the robot knows Cvi+k+1 and
can compute Cvj , this is trivial for vi+k+1 /∈ Cvj . We therefore restrict our-
selves to the case vi+k+1 ∈ Cvj . We then have y := |d−k(vi+k+1)| = |d−k(vj)|,
using (!). Assuming vj = vi+k+1 immediately leads to lx+1(vi) = − (y + 1).
We want to show that lx+1(vi) = − (y + 1) if and only if vj = vi+k+1. For the
sake of contradiction assume vj *= vi+k+1 and lx+1(vi) = − (y + 1).

Let a ∈ Cmin be the first vertex in chain(vi, vj) lying in Cmin and likewise
let b ∈ Cmin be the last vertex in chain(vi, vj) lying in Cmin. Note that a and
b are well-defined, as vi+k+1 ∈ chain(vi, vj) and as there is a vertex of Cmin

in chain(vi+k+1, vj) since Cvi+k+1 = Cvj (Lemma 3). For the same reason we
have b ∈ chain(vi+k+2, vj). On the other hand, since the number of vertices of
Cmin in chain(vi+1, vi+k+1) must be equal to the number of vertices of Cmin in
chain(vj−k, vj), and since b /∈ chain(vi+1, vi+k+1), we have a /∈ chain(vj−k, vj).
Hence a ∈ chain(vi+1, vj−k−1) (cf. Figure 2).

12 Jérémie Chalopin et al.

Fig. 2 Illustration of the visibility graph for the cases a != b (left) and a = b (right). The
outline of the subpolygon causing a contradiction is highlighted.

Consider the case a *= b (cf. Figure 2 (left)). We define s to be the last vertex
in chain(vi+1, a) visible to vi and t to be the first vertex in chain(b, vj−1) visible
to vj . Let P ′ be the subpolygon induced by vi, chain(s, a) , chain(b, t) , vj . This
subpolygon is well-defined since a sees b (as Cmin forms a clique), and it has
at least four vertices. Note that vi does not see any vertices in chain(b, vj−1),
likewise vj does not see any vertices in chain(vi+1, a) (recall that vj = ux+1

and lx+1(vi) = − (y + 1)). In P ′, vi and vj are neighbors on the boundary and
both have degree 2 which is a contradiction with Lemma 1.

We may thus assume a = b (cf. Figure 2 (right)). As a ∈ chain(vi+1, vj−k−1)
and b ∈ chain(vi+k+2, vj), this means that chain(vi, vi+k+1) and chain(vj−k, vj)
do not overlap. Let now s be the last vertex in chain(vi+1, vi+k) visible to vi
and t be the first vertex in chain(vj−k, vj−1) visible to vj . We can then define
the subpolygon P ′ induced by vi, chain(s, t) , vj in which again vi and vj are
neighbors of both degree 2, which is a contradiction to Lemma 1.

We have seen that lx+1(vi) = − (y + 1) is necessary and sufficient for vj =
vi+k+1. Both x and y as well as level-1-labels can be derived from l(n)(vi).
This proves that our robot can compute the visibility graph inductively. To
complete the proof we still need to show (!). Obviously we have (!) for k = 1.
By inspection of the inductive method above for k > 1, we see that whenever
we conclude vj = vi+k+1 for some vertex vi, the same conclusion will be made
for any other vertex vl ∈ Cvi . In step k of the induction, we only use (!) for
d±k. Hence (!) is maintained throughout. %&

The following theorem implies that the results of Theorem 2 and Theorem 3
still hold if only an upper bound N ≥ n on the number of vertices is given.

Theorem 4 Let P be a simple polygon of n vertices. Given a bound N ≥ n,
an LB-robot can determine the number of vertices n.

Proof By Lemma 7, the robot can determine the sequence of level-N -labels
l(N)(vi) , l(N)(vi+1) , . . . , l(N)(vi+N−1), where vi is its initial location. By Lemma 2,

Mapping Simple Polygons: How Robots Benefit from Looking Back 13

we have C(N−1)
vj = Cvj and thus the robot knows the classes of the ver-

tices vi, vi+1, . . . , vi+N−1 as well as the classes of the vertices they see. Let
q = |Cvi | and p = n

q as in Lemma 3. The robot can easily determine p which
is equal to the number of different classes it encounters, since N ≥ n. Once
the robot knows q, it can immediately infer n = p · q. By Theorem 1 there is
a class C! that forms a clique in the visibility graph. Let Mi := vis(vi) ∩ Cvi .
As N ≥ n, there is a vertex of C! among vi, vi+1, . . . , vi+N−1 and hence
q = maxi≤j≤i+N−1 |Mj | + 1. As the robot knows the classes of the vertices
vi, vi+1, . . . , vi+N−1 as well as the classes of the vertices they see, it can infer
Mi,Mi+1, . . . ,Mi+N−1 and thus q. %&

4 Time and Memory Requirements

Until now we have been concerned about the possibility of recognizing the
visibility graph of a polygon by a simple look-back robot. Indeed, the main
motivation of this paper is to determine what minimum set of capabilities
enable the robot to solve the polygon reconstruction and weak rendezvous
problems. In this section, we consider the time and space complexity of our
algorithms. The cost of an algorithm for a robot is measured in terms of the
number of moves made by the robot, where one move corresponds to the
traversal of an edge in the visibility graph3. For the algorithm we described
in the last section, the number of moves made by the robot is exponential in
n. In the following we will show how to adapt the algorithm such that the
reconstruction of visibility graphs can be achieved after a polynomial number
of moves. Note that map construction of arbitrary unlabeled graphs is not
always possible, and even for those cases where it is possible no fast algorithms
are known.

Efficient Reconstruction of Visibility Graphs.We have shown how an LB-robot
can reconstruct the visibility graph of a simple polygon, when the number
of vertices n (or at least an upper bound N ≥ n) is known. The algorithm
described in Section 3 constructs the visibility graph by computing the level-
n-label of each vertex in a recursive manner. Notice that the level-n-label of
a vertex has an exponential size in terms of n. However, it is not necessary
for the robot to explicitly construct and remember the level-n-labels of the
vertices. If the robot can determine the level-n-class for each vertex v along
the boundary of the polygon (and for each vertex visible to v), it has sufficient
information to construct the visibility graph.

We now present an iterative procedure to compute the level-k-class of each
vertex v, for k = 1 to n. For k = 1, the robot can compute the level-1-label
of each vertex in the same manner as before and thus determine the level-
1-classes. This computation requires the robot to walk along the boundary

3 For simplicity, let us assume that the time taken by the robot to move to any visible
vertex is bounded by a constant. Then the time complexity of an algorithm is proportional
to the number of moves.

14 Jérémie Chalopin et al.

of the polygon, and at each vertex v to visit each visible neighbor of v and
return back. Let us call this the basic traversal. During the basic traversal, the
robot makes (2m−n) moves, since each edge is traversed twice, except for the
boundary edges which need to be traversed only once. (If n is not known then
a basic traversal requires no more than 2-N/n.m edge traversals.) Suppose
that for some k ≥ 1 the robot has already determined the level-x-class of each
vertex vi, for all x ≤ k. We show that using this information, the robot can
efficiently compute the level-(k + 1)-class of any vertex v, since the robot can
distinguish between vertices belonging to distinct level-k-classes, as explained
below.

Recall that each edge (u, v) of the visibility graph is labeled with two port
numbers, one at each end-point of the edge. When a robot traverses an edge
(u, v) from u to v, it encounters the labels i, j (in this order) where visi(u) = v
and visj(v) = u. For any path (u0, u1, . . . , ut) in the visibility graph G, there
exists a corresponding label-sequence, i.e. a sequence of ordered pairs of port
numbers, for the edges (u0, u1), (u1, u2) and so on.

Let Ck
1 , Ck

2 , . . . Ck
nk

be the distinct level-k-classes (where nk is the number
of distinct level-k-classes). We define below the concept of distinguishing paths
for any pair of distinct classes Ck

i , C
k
j .

Definition 3 For any two vertices x and y that belong to distinct level-k
classes Ck

i and Ck
j , we define the distinguishing-path, DP k[x/y] to be a se-

quence of l ≤ k ordered pairs of numbers that corresponds to the port-numbers
on a path of length l starting from vertex x ∈ Ck

i , such that no path starting
from vertex y ∈ Ck

j has the same sequence of port numbers.

It is easy to see that for any two vertices x and y that belong to dis-
tinct level-k-classes Ck

i and Ck
j respectively, there always exists at least one

distinguishing-path which can be either DP k[x/y] or DP k[y/x]. (If neither
of them exists then the set of paths of length k starting from x is identical
to those starting from y, and this would imply that x belongs to the same
level-k-class as y – a contradiction). If there is more than one distinguishing
path for the pair of vertices x and y, then it is possible to choose a unique dis-
tinguishing path, e.g. the minimum one in the lexicographical ordering of the
sequences. This unique distinguishing path which differentiates the vertices of
the class Ck

i from the vertices of the class Ck
j is denoted by DP k(i, j).

For the nk classes at level k, there are
(nk

2

)
such distinguishing paths (one

for each pair of distinct classes). An LB-robot can construct the
(nk

2

)
dis-

tinguishing paths using the same iterative procedure as for constructing the
classes. We first show how the distinguishing paths can be used for determining
the class of a vertex.

Lemma 8 An LB-robot that knows the distinguishing paths at level k can
determine the level-k-class Ck

t of any arbitrary vertex ut by traversing at most
nk paths, each of length at most k, starting from ut.

Mapping Simple Polygons: How Robots Benefit from Looking Back 15

Proof An LB-robot placed at vertex ut can determine the level-k-class of this
vertex by attempting to traverse the distinguishing paths for level k, start-
ing from ut. Whenever the robot tries a distinguishing path DP k(i, j) it can
eliminate one of the two classes Ck

i or Ck
j . Thus after traversing nk − 1 dis-

tinguishing paths, the robot knows exactly which class the vertex ut belongs
to. %&

The distinguishing paths can be computed inductively. The level-1 distinguish-
ing paths correspond to single edges and the LB-robot can construct these by
performing a basic traversal. The distinguishing paths for level k, k > 1, are
obtained using the distinguishing paths for level (k − 1).

Lemma 9 An LB-robot can construct the distinguishing path DP k(i, j) for
any two distinct level-k-classes Ck

i and Ck
j , without making any additional

moves if it already knows

(i) the distinguishing paths for every pair of classes at level (k − 1), and
(ii) for each vertex v along the boundary of the polygon, level-1-label and level-

k-class of v and the level-(k − 1)-class of each neighbor of v.

Proof Suppose the robot knows all distinguishing paths at level (k − 1). In
order to compute the distinguishing path DP k(i, j), consider two vertices u
and v belonging to the distinct level-k-classes Ck

i and Ck
j and inspect their

level-1-labels. If there is a difference in the level-1-labels, then we immediately
obtain a distinguishing path of length one. Otherwise, there exists an integer
q > 0 such that the q-th neighbor of u and the q-th neighbor of v belong to
distinct level-(k − 1)-classes. Thus, using the level-(k − 1) distinguishing path
for these two classes and prefixing it with the port-numbers of the q-th incident
edge of u, one can obtain the required distinguishing path DP k(i, j). %&

Theorem 5 Given a bound N ≥ n on the size of the polygon, an LB-robot
can compute the class Cv = Cn

v for each vertex v along the boundary of the
polygon and the class Cui for each neighbor ui of v, using a total of O(mNn2)
moves.

Proof We already know that the robot can construct the level-1-classes and
the level-1 distinguishing paths in O(mN/n) moves. For k > 1, the knowledge
of level-(k − 1)-classes and the corresponding distinguishing paths allows the
LB-robot to construct the level-k-class of each vertex v of the polygon (see
Lemma 8). The robot performs a basic traversal and whenever it reaches a
neighbor ui of a vertex v, it determines the level-k-class of ui by traversing at
most n paths each of length k starting from ui. Since the robot repeats this
process for each vertex of the polygon (while traversing along the boundary),
it makes at most N+

∑N
i=1 Degree(vi)·n·k = O(m·N ·k) moves for computing

the level-k-classes of all the vertices. Thus the number of moves made in total
for computing the level-k-labels for k = 1 to n, using the above procedure, is
in O(m ·N ·

∑n
k=1 k) which is in O(mNn2). Note that the robot does not need

to continue until level k = N ; once the robot reaches level k = n, it can detect

16 Jérémie Chalopin et al.

the class C! that forms a clique in the visibility graph and thus it can infer
the value of n. %&

Due to the observations made in the previous section, the above result imme-
diately implies the following:

Corollary 1 Given N ≥ n, the weak rendezvous problem can be solved after
at most O(mNn2) moves by each LB-robot.

Corollary 2 Given N ≥ n, an LB-robot can construct the visibility graph of
a simple polygon P of n vertices, in O(mNn2) time steps.

Memory Required for Constructing Visibility Graphs.The space complexity of
an algorithm for a robot is measured in terms of the amount of data the robot
has to carry when moving from one vertex to another. Let us now consider
how much memory a robot needs in order to construct the visibility graph of
any polygon and to solve weak rendezvous. Recall that the level-k-labels of
the vertices have lengths exponential in k. Since the robot does not explicitly
remember the level-k-labels of the vertices, the memory requirement for our
algorithm is still polynomial in n (and N). At any level k of the computation,
the robot needs to remember the distinguishing paths for that level. There are
at most n2 such paths and each can be stored using O(n log n) bits of memory.
Further, for each vertex v visited during a basic traversal, the robot needs to
remember a sequence of indices j0, j1, . . . jd such that v belongs to class Ck

j0 ,
and the ith neighbor of v belongs to class Ck

ji . This requires an additional
O(Nd log n) bits of memory where d is the maximum degree of a vertex in the
visibility graph. Hence, we have the following result.

Theorem 6 LB-robots each knowing N and having O((n3 + Nd) logn) bits
of memory can construct the visibility graph and solve the weak rendezvous
problem in any simple polygon P of at most n ≤ N vertices.

5 Summary and Future Work

In this work, we have introduced the notion of an LB-robot; a model that
allows the robot in a polygon to move to any vertex it sees and to identify
which vertex in its current view it came from in its last move. We have shown
that, given a bound on the number of vertices, LB-robots can solve the weak
rendezvous problem and are capable of reconstructing the visibility graph of
the polygon in polynomial time. To show this, we adopted the concept of views
from distributed computing (cf. [18]) into our notion of the level-k-label of a
vertex with the corresponding level-k-class containing all vertices that have the
same level-k-label. Our central result is the fact that at least one class forms
a clique in the polygon’s visibility graph. From this result we concluded that
computing the level-n-labels of all vertices is essentially enough for multiple
robots to weakly meet and, with some additional effort, also to reconstruct the

Mapping Simple Polygons: How Robots Benefit from Looking Back 17

visibility graph of the polygon. Our solution improves on the previous result [4]
where LB-robots additionally were allowed to measure angles very roughly (in
fact only to distinguish between angles smaller and larger than π). The results
in the present paper show that this additional capability is not necessary. A
recent complimentary result [10] shows that the ability of measuring angles
accurately is in itself sufficient to solve the problem (without the look-back
capability considered in this paper). This still leaves open the question of
whether it is possible to find a “weaker” robot model that still allows the
reconstruction of the visibility graph.

Acknowledgements

We wish to thank a reviewer for comments that helped to improve the quality
of the paper.

References

1. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer (2003)
2. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point conver-

gence algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics
and Automation 15(5), 818–828 (1999)

3. Angluin, D.: Local and global properties in networks of processors. In: Proceedings of
the twelfth annual ACM symposium on Theory of computing, pp. 82–93 (1980)

4. Bilò, D., Disser, Y., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Reconstructing vis-
ibility graphs with simple robots. In: Proceedings of the 16th International Colloquium
on Structural Information and Communication Complexity, pp. 87–99 (2009)

5. Boldi, P., Vigna, S.: An effective characterization of computability in anonymous net-
works. In: Proceedings of the 15th International Conference on Distributed Computing,
pp. 33–47 (2001)

6. Brunner, J., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Simple robots in polygonal
environments: A hierarchy. In: Proceedings of the Fourth International Workshop on
Algorithmic Aspects of Wireless Sensor Networks, pp. 111 – 124 (2008)

7. Chalopin, J. and Das, S. and Disser, Y. and Mihalák, M. and Widmayer, P.: How Simple
Robots Benefit from Looking Back. In: Proceedings of the 7th International Conference
on Algorithms and Complexity, pp. 229–239 (2010)

8. Chalopin, J., Godard, E., Métivier, Y., Ossamy, R.: Mobile agent algorithms versus
message passing algorithms. In: Proceedings of the 10th International Conference on
the Principles of Distributed Systems, pp. 187–201 (2006)

9. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors
and movements. SIAM Journal on Computing 38(1), 276–302 (2008)

10. Disser, Y., Mihalák, M., Widmayer, P.: Reconstructing a simple polygon from its angles.
In: Proceedings of the 12th Scandinavian Symposium and Workshops on Algorithm
Theory, pp. 13–24 (2010)

11. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theoretical Computer Science 337(1-3), 147–168 (2005)

12. Ganguli, A., Cortés, J., Bullo, F.: Distributed deployment of asynchronous guards in
art galleries. In: Proceedings of the 2006 American Control Conference, pp. 1416–1421
(2006)

13. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press (2007)
14. Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: A survey. In: Pro-

ceedings of the 13th International Colloquium Structural Information and Communica-
tion Complexity, pp. 1–9 (2006)

18 Jérémie Chalopin et al.

15. Norris, N.: Universal covers of graphs: isomorphism to depth n−1 implies isomorphism
to all depths. Discrete Applied Mathematics 56(1), 61–74 (1995)

16. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From local
visibility to global geometry. International Journal of Robotics Research 27(9), 1055–
1067 (2008)

17. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geomet-
ric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)

18. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I – characterizing
the solvable cases. IEEE Transactions on Parallel and Distributed Systems 7(1), 69–89
(1996).

19. Yershova, A., Tovar, B., Ghrist, R., LaValle, S.M.: Bitbots: Simple robots solving com-
plex tasks. In: Proceedings of the 20th national conference on Artificial intelligence,
vol. 3, pp. 1336–1341 (2005)

