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Abstract

We consider the problem of collectively delivering a package from a specified
source to a designated target location in a graph, using multiple mobile agents.
Each agent starts from some vertex of the graph; it can move along the edges of
the graph and can can pick up the package from a vertex and drop it in another
vertex during the course of its movement. However, each agent has limited
energy budget allowing it to traverse a path of bounded length B; thus, multiple
agents need to collaborate to move the package to its destination. Given the
positions of the agents in the graph and their energy budgets, the problem of
finding a feasible movement schedule is called the Collaborative Delivery problem
and has been studied before.

One of the open questions from previous results is what happens when
the delivery must follow a fixed path given in advance. Although this special
constraint reduces the search space for feasible solutions, we show that the
problem of finding a feasible schedule remains NP hard (as the original problem).
We consider the optimization version of the problem that asks for the optimal
energy budget B per agent which allows for a feasible delivery schedule, given the
initial positions of the agents. We show the existence of better approximations
for the fixed-path version of the problem (at least for the restricted case of a
single pickup per agent), compared to the known results for the general version
of the problem.

We provide polynomial time approximation algorithms for both directed and
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undirected graphs, and establish hardness of approximation for the directed case.
Note that the fixed path version of collaborative delivery requires completely
different techniques since a single agent may be used multiple times, unlike
the general version of collaborative delivery studied before. We show that
restricting each agent to a single pickup allows better approximations for fixed
path collaborative delivery compared to the original problem. Finally, we provide
a polynomial time algorithm for determining a feasible delivery strategy, if any
exists, for a given budget B when the number of available agents is bounded by
a constant.

Keywords: Collaborative delivery; mobile agents; energy constrained robots;
directed graphs; fixed path; approximation algorithms

1. Introduction1

We consider a team of mobile agents which need to collaboratively deliver a2

package from a source location to a destination. The difficulty of collaboration3

can be due to several limitations of the agents, such as limited communication,4

restricted vision or the lack of persistent memory, and this has been the subject of5

extensive research (see e.g. [1] for a recent survey of this area of research). When6

considering agents that move physically (such as mobile robots or automated7

vehicles), a major limitation of the agents are their energy resources, which8

restricts the distance that the robot can travel. This is particularly true for9

small battery operated robots or drones, for which the energy limitation is the10

real bottleneck. We consider a set of mobile agents where each agent i has a11

budget Bi on the distance it can move, as in [2, 3, 4, 5, 6, 7]. We model the12

environment as a directed or undirected edge-weighted graph G, with each agent13

starting on some vertex of G and traveling along edges of G, until it runs out of14

energy and stops forever. In this model, the agents are obliged to collaborate as15

no single agent can usually perform the required task on its own.16

Given a graph G with designated source and target vertices, and k agents17

with given starting locations and energy budgets, the decision problem of whether18

the agents can collectively deliver a single package from the source to the target19

node in G is called CollaborativeDelivery. Chalopin et al. [4, 5] showed that20

CollaborativeDelivery is weakly NP-hard on paths and strongly NP-hard21

on general graphs. When the agents are homogenous, each agent has the same22

uniform budget initially. The optimization version of this problem asks for23

the minimum energy budget B per agent, that allows a feasible schedule for24

delivering the package. Throughout this paper we consider agents with uniform25

budgets. There exist constant factor approximations [3, 4] for the optimal budget26

needed for solving CollaborativeDelivery.27

Unlike previous papers, this paper considers a version of the problem where28

the package must be transported through a designated path that is provided as29

input to the algorithm. This is a natural assumption, e.g. for delivery of valuable30

packages which must go on a “safe” route, allowing them to be tracked. We call31

this variant FixedPath CollaborativeDelivery. Even with this additional32
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constraint, the problem remains NP-hard for general graphs due to the result in33

[4]. Note that on trees, the two problems are equivalent and both problems are34

known to be weakly NP-hard. However, for arbitrary graphs, the two problems35

are quite different. In particular, in the FixedPath CollaborativeDelivery,36

each agent may be used multiple times, while in the original version each agent37

participates at most once in any optimal delivery schedule (see [4]). In this38

paper, we attempt to find the difference between the two problems in terms of39

approximability.40

Our Model.41

We consider finite, connected (or strongly connected), edge-weighted graphs42

G = (V,E) with n = |V | vertices. For undirected graphs, the weight w(e) of43

an edge e ∈ E defines the energy required to cross the edge in either direction.44

For directed graphs, there may be up to two directed arcs between any pair of45

vertices and the weight of each arc is the energy required to traverse the arc46

from its tail to its head. We have k mobile agents which are initially placed47

on arbitrary nodes p1, . . . , pk of G, called the starting positions. In this paper,48

we consider the agents to have uniform budget B. Each agent has an initially49

assigned energy budget B > 0 which allows each agent to move along the edges50

of the graph for a total distance of at most B (if an agent travels only on a51

part of an edge, its travelled distance is downscaled proportionally to the part52

travelled). The agents are required to move a package from a given source node53

s to a target node t. An agent can pick up the package when it is at the same54

location as the package; we say that the agent is carrying the package. An agent55

carrying the package can drop it at any location that it visits, i.e., either at a56

node or even at a point inside an edge/arc. The agents do not need to return to57

their starting locations, after completing their task. We assume that the graph58

and the starting locations are initially known and the objective is to compute a59

strategy for movements of the agents which allows the delivery of the package60

from s to t (along a given (s, t) path P ). We denote by d(x, y) = dG(x, y) the61

distance between two nodes x, y in G (i.e. the sum of the weights on the shortest62

path from x to y in G). The length of path P is the sum of the weights on the63

path, denoted by w(P ) = dP (s, t). We denote an interval on this path as (x, y] if64

it includes all points on P between x and y, excluding point x, but including y.65

Definitions. Given a graph G with edge-weights w, vertices s 6= t ∈ V (G),66

starting nodes p1, . . . , pk for the k agents, and an energy budget B, we define67

CollaborativeDelivery as the decision problem of whether the agents can68

collectively deliver the package. A solution to CollaborativeDelivery is69

given in the form of a delivery schedule which prescribes for each agent whether70

it moves and if so, the locations in which it has to pick up and drop off the71

package. A delivery schedule is feasible if the package can be delivered from s to72

t and each agent moves at most distance B.73

The optimization version of CollaborativeDelivery is to compute the74

minimum value of B for which there exists a feasible delivery schedule. The75
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problem of FixedPath CollaborativeDelivery provides an additional pa-76

rameter: an (s, t) path P in G, and the feasible delivery schedules are restricted77

to those where the package travels on the given path P . Thus an instance of78

FixedPath CollaborativeDelivery is given as (G,w, P, p1, . . . , pk) where79

P is a path in G, starting at node s and ending at node t.80

Related Work.81

The model of energy-constrained robot was introduced by Betke et al. [8] for82

single agent exploration of grid graphs. Later Awerbuch et al. [9] studied the83

same problem for general graphs. In both these papers, the agent is allowed to84

return to its starting node to refuel, and between two visits to the starting node85

the agent can traverse at most B edges. Duncan et al. [10] studied a similar86

model where the agent is tied with a rope of length B to the starting location87

and they optimized the exploration time, giving an O(m) time algorithm. A88

more recent paper [11] provides a constant competitive algorithm for the same89

exploration problem when the value of energy budget B may be as small as the90

length of the smallest path that visits the farthest node.91

For energy-constrained agents without the option of refuelling, multiple agents92

may be needed to explore even graphs of restricted diameter. Given a graph G93

and k agents starting from the same location, each having an energy constraint of94

B, deciding whether G can be explored by the agents is NP-hard, even if graph G95

is a tree [12]. Dynia et al. studied the online version of the problem [7, 13]. They96

presented algorithms for exploration of trees by k agents when the energy of each97

agent is augmented by a constant factor over the minimum energy B required98

per agent in the offline solution. Das et al. [6] presented online algorithms that99

optimize the number of agents used for tree exploration when each agent has100

a fixed energy bound B. On the other hand, Dereniowski et al. [14] gave an101

optimal time algorithm for exploring general graphs using a large number of102

agents. When both k and B are fixed, Bampas et al. [15] studied the problem103

of maximizing the number of nodes explored by the agents, called the maximal104

exploration problem. For more details on tree exploration with energy constraint,105

see the recent thesis [16].106

When multiple agents start from arbitrary locations in a graph, optimizing107

the total energy consumption of the agents is computationally hard for several108

formation problems which require the agents to place themselves in desired109

configurations (e.g. connected or independent configurations) in a graph [17, 18].110

Anaya et al. [2] studied centralized and distributed algorithms for the information111

exchange by energy-constrained agents, in particular the problem of transferring112

information from one agent to all others (Broadcast) and from all agents to one113

agent (Convergecast). For both problems, they provided hardness results for114

trees and approximation algorithms for arbitrary graphs. Czyzowicz et al. [19]115

recently showed that the problems of collaborative delivery, broadcast and116

convergecast remain NP-hard for general graphs even if the agents are allowed117

to exchange energy when they meet. Further results on collective delivery with118

energy exchange showed that the problem remains hard even when B is a small119

constant [20].120

4



As mentioned before, the collaborative delivery problem was first studied121

by Chalopin et al. [4] in arbitrary undirected graphs for both uniform or non-122

uniform budgets. When the agents have non-uniform budgets, they provided123

the so-called resource-augmented algorithms where the budgets of the agents124

are augmented by a small constant factor to allow polynomial time solutions125

for all feasible instances of the original problem. The surprising result that126

collaborative delivery non-uniform budgets is weakly NP-hard even for a line127

was proved in [5] where a quasi-pseudo-polynomial time algorithm was provided.128

Bärtschi et al. [3] considered the returning version of the problem, where129

each agent needs to return to its starting location. They showed that, in this130

case, the problem can be solved in polynomial time for trees, but the problem is131

still NP-hard for arbitrary planar graphs. They provided 2-resource-augmented132

algorithm for general graphs in this setting and showed that it is the best133

possible solution that can be computed in polynomial time. Other variants of134

collaborative delivery that have been considered are when agents have distinct135

rate of energy consumption [21] or when the agents have distinct speeds [22]. In136

these cases the optimization criteria is to minimize the total energy consumption137

and/or the total time taken for delivery. Another related work [23] studied the138

collective delivery problem for selfish agents that try to optimize their personal139

gain. See also [24] for a survey of recent results on collaborative delivery by140

agents with energy limitations.141

Our Contributions.142

We show that the best possible approximation of the optimal budget B for143

FixedPath CollaborativeDelivery is between 2 and 3 for directed graphs144

and at most 2.5 for undirected graphs. In contrast, the best known approximation145

ratio for the general version of CollaborativeDelivery is 2 for undirected146

graphs [4], and there is no known lower bound on approximability.147

In the fixed path version of the problem agents may be used multiple times148

in a feasible delivery schedule, i.e., the same agent may move the package along149

several disjoint segments of the path. Thus, it is not surprising that our solution150

for FixedPath CollaborativeDelivery has a higher approximation ratio151

than the general version of the problem where each agent is used at most once.152

For better comparison, we can make the FixedPath CollaborativeDe-153

livery problem easier by restricting each agent to a single pickup of the package.154

This easier version of the problem was considered recently in [25] which provided155

a 3-approximation algorithm. In this paper we improve upon this and provide a156

2-approximation algorithm for directed graphs and a (2−1/2k)-approximation al-157

gorithm for undirected graphs. We also show that there exists no polynomial-time158

approximation algorithm with better approximation ratio than 3
2 for directed159

graphs.160

Finally, for the case where the number of agents k is a constant, we show that161

the decision version of FixedPath CollaborativeDelivery can be solved in162

pseudo-polynomial time. For this setting, we also provide a fully polynomial-time163

approximation scheme (FPTAS) giving a (1 + ε)-approximation to the optimal164

budget, for any ε > 0.165
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2. Lower bound on approximation166

In this section we prove a lower bound on the approximation factor for167

any polynomial time algorithm that solves collaborative delivery with uniform168

budgets on a fixed path.169

We give a reduction from an NP-hard variant of Sat [26]. Note the difference170

from the polynomially solvable (3, 3)-Sat, where each variable appears in exactly171

three clauses [27].172

(≤ 3, 3)-Sat173

Input: A formula with a set of clauses C of size three over a set of174

variables X, where each variable appears in at most three clauses.175

Problem: Is there a truth assignment of X satisfying C?176

Observe that we may assume that each variable appears at most twice in177

positive literals and exactly once in a negative literal, otherwise we can either178

eliminate or negate the variable.179

Theorem 1. The minimum uniform budget required to solve FixedPath Col-180

laborativeDelivery on directed graphs cannot be approximated to within a181

factor better than 2 in polynomial time, unless P = NP.182

Proof We reduce from (≤ 3, 3)-Sat by constructing, for every sufficiently183

small ε > 0 and every instance of (≤ 3, 3)-Sat, an instance of FixedPath184

CollaborativeDelivery that has a solution with budget B ≤ 2 − ε if and185

only if the (≤ 3, 3)-Sat instance has a satisfying assignment. In this case, our186

instance always admits a solution with budget B = 1. Since (≤ 3, 3)-Sat is187

NP-hard, this then implies that no (2− ε)-approximation algorithm can exist,188

unless P = NP.189

In the following, fix 0 < ε < 1 and consider an instance of (≤ 3, 3)-Sat190

with variables x1, . . . , xt and clauses C1, . . . , Cm. We construct a (directed)191

instance of FixedPath CollaborativeDelivery with k = (3 + q)t agents,192

where q := d3/εe, starting at vertices p1, . . . , pk. The agents 3i− 2, 3i− 1, 3i193

for i ∈ {1, . . . , t} are associated with the (at most) two positive literals and the194

single negative literal of variable xi, in this order, that appear in the clauses. In195

case variable xi only appears in a single positive literal, the agent 3i− 1 does not196

represent any literal. The other q ·t agents are the so-called blockers, defined later.197

We incrementally construct the fixed (s, t)-path P = (s = v0, v1, . . . , vm+2(q+1)t)198

that the package has to be transported along.199

The first m arcs of P correspond to the clauses C1, . . . , Cm. Each arc e =200

(vj−1, vj) with j ∈ {1, . . . ,m} has weight w(e) = 1 and is associated with201

clause Cj . For every literal of a variable xi that appears in Cj , we let pij denote202

the starting position of the (unique) agent associated with this literal, and we203

introduce an arc eij = (pij , vj−1) of weight w(eij) = 0.204

Now we add the variable gadgets to the path P . Let qi := m+ 2(q+ 1)(i− 1).205

The gadget associated with each variable xi (cf. Figure 1) is the subpath Pi =206

(vqi , . . . , vqi+1
) of P consisting of 2q + 2 edges. The first q arcs have weight ε/3207

6



p3i−2 p3i p3i−1

ε
3

ε
3

ε
3

ε
3

1 − ε
3

1 − ε
3

1 − ε
3

1 − ε
3

0
0

0
0

1 − ε/3 0 ε/3

Figure 1: Illustration of the variable gadget. The horizontal arcs are part of the fixed path of
the package. Colors indicate responsibilities: blue nodes are for blockers and green/red nodes
contain agents associated with positive/negative literals.

each, the central two arcs ei = (vqi+q, vqi+q+1) and e′i = (vqi+q+1, vqi+q+2) have208

weights w(ei) = ε/3 and w(e′i) = 1−ε/3, and the final q arcs have weight 1−ε/3209

each. For ` ∈ {1, . . . , q}, we connect the starting position of the ((i− 1)q + `)-th210

blocker to vqi+`−1 with an arc of weight 0, and we add a shortcut arc (that cannot211

be taken by the package) (vqi+`, vqi+1−`) of weight 0. Finally, we connect the212

three agents associated with variable xi as follows: We add an arc (p3i−2, vqi+q)213

of weight 1− ε/3, an arc (p3i−1, vqi+q+1) of weight ε/3, and an arc (p3i, vqi+q)214

of weight 0.215

We first claim that in every solution with B ≤ 2 − ε we can assume that,216

without loss of generality, for every i ∈ {1, . . . , t} and every ` ∈ {1, . . . , q}, the217

((i−1)q+`)-th blocker transports the package across the arc (vqi+`−1, vqi+`), then218

takes the shortcut arc (vqi+`, vqi+1−`), and finally transports the package across219

the arc (vqi+1−`, vqi+1−`+1). To see this, consider the last arc (vqi+1−1, vqi+1)220

of P ′i . Since the arcs preceding the vertices vqi and vqi+1−1 along P both have221

length at least 1− ε/3, no agent other than the two blockers connected to vqi222

and vqi+1 can reach vqi+1−1 with more than B − (1 − ε/3) ≤ 1 − 2ε/3 budget223

remaining, which is insufficient to cross the last arc of P ′i . Since there is no224

disadvantage in using the ((i−1)q+1)-st blocker rather than the ((i−1)q+2)-nd,225

we may assume that the ((i−1)q+1)-st blocker transports the package as claimed.226

By repeating this argument (slightly adapted for the iq-th blocker), we can fix227

all subsequent blockers, too. Note that each blocker requires only B = 1.228

After fixing all blockers, we can observe that any other agent, having a budget229

B ≤ 2 − ε can transport the package either inside a single clause gadget or230

inside a single variable gadget, but not both. This is because transporting the231

package inside a clause gadget requires one unit of budget, and entering/leaving232

a variable gadget before or after transporting the package across one of its two233

central arcs also takes at least one unit of budget (all other arcs of a variable234

gadget are handled by blockers).235

Finally, and crucially, observe that, in order to transport the package across236

the two central edges of the variable gadget for xi, either the two agents 3i− 2237

and 3i− 1 associated with the positive literals of xi, or the agent 3i associated238

with the negative literal are needed, since blockers cannot help (see above). We239

interpret the former situation as xi being set to false, and the latter situation as xi240
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being set to true. Note that either assignment can be accomplished with B = 1.241

If a variable is set to true, the two agents corresponding to positive literals242

are free to transport the package across the single (!) clause gadget each of them243

can reach. Otherwise, the agent corresponding to the negative literal is free244

to do this. In both cases, we interpret this as the clause being satisfied by the245

corresponding variable. Note that satisfying a clause again requires only B = 1.246

Clearly, we can turn a satisfying assignment for (≤ 3, 3)-Sat into a feasible247

solution of FixedPath CollaborativeDelivery with B = 1. Conversely,248

every feasible solution of FixedPath CollaborativeDelivery with B ≤ 2−ε249

corresponds to a satisfying assignment for (≤ 3, 3)-Sat. Note that q is constant250

for fixed ε, hence our construction can be done in polynomial time. �251

3. Approximation algorithms for fixed path delivery252

In this section, we give approximation algorithms solving FixedPath Col-253

laborativeDelivery for both directed and undirected graphs. Note that for254

solution to the problem the total distance travelled by the agents must be at255

least the length of the path P plus the distance to s from the closest agent256

(which denote this by D). This gives the following bound on the optimal budget257

per agent.258

Observation 2. The optimal budget B for FixedPath CollaborativeDe-259

livery must be in the range [D/k,D], where D = mini dG(pi, s) + w(P ).260

In the following, we assume that we are given the optimal value of B for261

a given instance of the problem and we provide a polynomial time algorithm262

to compute a delivery strategy that uses an energy budget of at most α · B263

for some constant α > 1. When B is not known, we can guess the optimal264

value of B by using a binary search in the interval [D/k,D] due to the above265

observation. The binary search terminates when we find the smallest B for266

which our algorithm provides a valid strategy for a budget of α ·B. Clearly this267

provides an α-approximation algorithm for the optimization problem.268

Consider an optimal solution to the problem which moves the package on269

path P using a budget of B per agent. If P is of length at least l ·B then at least270

l agents were used. Consider a partition of the path P into intervals of length B271

exactly (assuming that w(P ) is a multiple of B). Then, for any x ≤ l intervals,272

there must be at least x agents that pushed the package along those intervals in273

any optimal solution. This means that it is possible to assign agents to intervals274

in such a way that: (i) The agent assigned to the interval participated in moving275

the package on that interval, i.e. the agent is able to reach some point on the276

interval using at most budget B. (ii) Each agent is assigned a distinct interval.277

The solution strategies that we use for the approximation algorithm would278

use the above idea. In particular we would try to find a matching between a279

subset of the agents and the intervals of the path P as described below.280
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Lemma 1. Given an instance (G,w, P, p1, . . . , pk) of the problem for which the281

optimal budget is B and B < w(P ), let, for some l ≥ 2, m0,m1, . . . ,ml−1 be282

distinct points (not necessarily vertices) on the path P , such that 0 ≤ dP (s,m0) <283

B, dP (mi−1,mi) = B, for 0 < i < l, and dP (ml−1, t) > 0. We consider the path284

P as an Euclidean line and on this line, we define I0 to be the interval [s,s] and285

Ii to be the interval (mi−1,mi], for 0 < i < l. Then there exists distinct agents286

a0, a1, . . . , al−1 which can be matched to interval I0, I1, . . . Il−1, such that each287

agent ai can reach some point in interval Ii using an energy budget of at most288

B.289

Proof Note that for moving the package across x segments of length B290

each, we need at least x agents. Consider any optimal solution for the instance291

and let a0 be the agent that picks up the package at source s, which implies292

agent a0 was able to reach s. If dP (s,m0) > 0, and agent a0 moves the package293

over some non-zero distance in this interval, it would have depleted some of its294

energy; thus agent a0 would not have enough energy to move the package over295

the complete interval I1, which is of length B. Thus, at least one other agent296

must participate in moving the package over interval I1, let this be agent a1.297

On the other hand, if dP (s,m0) = 0, i.e. s = m0, then agent a0 can potentially298

move the package on the complete interval I1; in that case it would completely299

exhaust its budget and there must be some other agent a1 that picks up the300

package at m1. This implies agent a1 was able to reach point m1 ∈ I1. So, in301

both cases there is an agent a1 that can reach I1. Thus, the lemma holds for302

the base case of l = 2 and we can extend this argument. Suppose the lemma303

holds for l = j and agents a0, . . . aj−1 be the corresponding agents. We prove304

the lemma for l = j + 1 i.e. for j intervals I1 to Ij .305

Case(i): Only the j agents a0, . . . aj−1 move the package over intervals I0306

to Ij in the optimal solution. This is only possible if s = m0 and each agent307

starts at the beginning of an interval. In this case the j agents would completely308

exhaust their total budget in moving the package and thus, a new agent aj309

must pick up the package at mj (Note that that target t is further than point310

mj according to the lemma). Thus, we have agents a0, . . . aj that satisfy the311

conditions of the lemma.312

Case(ii): There are x ≥ j + 1 agents a0, . . . ax that participate in the optimal313

solution, with agents a0 to aj−1 already matched to the intervals I0 to Ij−1,314

according to the induction hypothesis. Consider the last interval Ij and let315

A∗ be the subset of i > 0 agents that participated in moving the package on316

this particular interval. If one of these agents is unmatched, it can matched317

to interval Ij and we are done. Otherwise the agents in A∗ are matched to318

i intervals, possibly including the interval [s, s], so the total length of these319

intervals is at most (i − 1) ∗ B. If we include the interval Ij of length B and320

consider the fact that some of the agents have to move between non-consecutive321

intervals incurring additional energy consumption, this implies that the total322

movement by all the agents that participated in these (i+ 1) intervals is strictly323

more than i ∗B. Hence, at least one other agent ar /∈ A∗ participated in at least324

one of these intervals say, Iq, where q < j. If we match this agent to interval Iq,325
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then the agent aq that was originally matched to Iq, can be matched to interval326

Ij . By definition aq ∈ A∗ and thus participated in the last interval Ij , so it can327

reach Ij . This concludes the proof. �328

The solution strategies that we use for the approximation algorithm would329

use the above fact. We first show that it is possible to compute in polynomial330

time, one such matching between a subset of agents and the segments of the331

path P as defined in the Lemma 1.332

Lemma 2. Consider an instance (G,w, P, p1, . . . , pk) of the problem for which333

the optimal budget is B, then given any set I = I0, I1, . . . Il of segments of334

P satisfying the conditions of Lemma 1, there is a O(n3) algorithm to find a335

matching g between the a subset of agents and the segments, satisfying Lemma 1.336

Proof One can find such a matching g using the following algorithm :337

1. Construct a weighted bipartite graph H = (A ∪ I, E,wH) with A = [0, k],338

M = [0, `], E = M × A and for all i ∈ M, j ∈ A, wH(ij) is the smallest339

distance from pj (the starting position of agent j) to some vertex in Ii (or340

one of the endpoints of Ii in case no vertex is located in that segment).341

This can be done in O(k(m + n log n)) using a Dijkstra’s algorithm [28]342

starting from each starting position of an agent. Observe that graph H343

has O(n+ k) vertices and O(k(n+ k)) edges.344

2. Compute a maximal matching in H that minimizes the maximum weight.345

For each weight ω, one can compute in time O((n+ k)2 log(n+ k) + k(n+346

k) min(n, k)) a maximal matching [28] in the graph H without edges of347

weight greater than ω. Hence, one can decide if there is a maximal matching348

in H with maximum weight ω and by using binary search, one can compute349

a maximal matching in H which minimizes the maximum weight, in time350

O(log k((n+ k)2 log(n+ k) + k(n+ k) min(n, k))).351

Assuming k = O(n), the algorithm above has a complexity of O(n3). When the352

number of agents k is considerably smaller than n, the algorithm would only be353

faster. �354

We now present the approximation algorithms for FixedPath Collab-355

orativeDelivery in directed and undirected graphs, based on the above356

observations.357

3.1. Directed graphs: 3-approximation358

Theorem 3. There is a 3-approximation algorithm for FixedPath Collabo-359

rativeDelivery on directed graphs.360

Proof Consider an instance (G,w, P, p1, . . . , pk) of FixedPath Collabo-361

rativeDelivery on directed graphs and let S be an optimal solution of this362

instance with uniform budget B. Let l = dw(P )/Be.363

Case(i): If B ≥ w(P ), then any agent that can reach s can transport the364

package to t using an additional budget of B. Since there must exist such an365

agent and it is possible to find such an agent in O(k) time by a linear search366

over all agents, this give us the required approximation algorithm.367
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Case(ii): If B < w(P ) then l = dw(P )/Be ≥ 2. Thus we can apply the368

Lemma 1 using points m0 = s, and mi = s+ i ·B, 0 < i < l on the path P . Note369

that the last point satisfies the property 0 < dP (ml−1, t) ≤ B. Let a0, . . . al−1370

be the matching agents according to Lemma 1 (which can be computed using371

the algorithm from Lemma 2). Since agent a0 can reach the source s = m0 using372

budget B, it can transport the package to point m1 using a budget of at most373

2B in total. For 0 < i < l − 1, agent ai can reach the point mi using a budget374

of at most 2B and thus it can transport the package from mi to mi+1 using375

a budget of at most 3B in total. Similarly, the agent al−1 can transport the376

package from ml−1 to the target t. This gives the required 3-approximation. �377

3.2. Undirected graphs: 2.5-approximation378

Theorem 4. There is a 2.5-approximation algorithm for FixedPath Collab-379

orativeDelivery on undirected graphs.380

Proof Consider an instance (G,w, P, p1, . . . , pk) of FixedPath Collab-381

orativeDelivery on undirected graphs and let S be an optimal solution of382

this instance with uniform budget B. If w(P ) ≤ 3B/2, then any agent that383

reaches the vertex s can carry the package to t, using an additional budget of384

3B/2, and this immediately gives a 2.5-approximation. Thus, let us assume that385

w(P ) > 3B/2 and consider l = dw(P )/B − 1/2e ≥ 2.386

We define the points m′1, . . .m′l on P such that m′i + (l − i) ∗ B = t, for387

1 ≤ i ≤ l (thus m′l = t). Note that the distance from s to m′1 is at most 3B/2.388

Now let mi be the point on path P defined as mi = m′i+1 −B/2 for 0 ≤ i < l.389

Thus the point mi is the midpoint between m′i−1 and m′i for 1 < i ≤ l and the390

point m0 is at a distance at most B from s. Now we can apply Lemma 1 using391

points s,m0, . . .ml−1 to obtain matching agents a0 to al−1. Agent a0 can reach392

the source s and thus it can transport the package to m′1 using an additional393

budget of 3B/2. Agent ai, 0 < i < l can reach the interval (mi−1,mi), and thus394

using an additional budget B/2, the agent can reach the mid-point m′i (this may395

involve going back on the path). Thus agent ai can transport the package from396

m′i to m′i+1 using a total budget of at most 2.5 ∗ B which gives the required397

approximation algorithm. �398

4. Special case: Single pickup per agent399

In this section, we consider a slightly easier version of the problem when each400

agent can pickup the package at most once. This means that each agent that401

participates in the solution, moves the package over a single continuous segment402

of the path. In this case, we can obtain better approximations for the problem.403

We first present a lower bound of 3
2 on the approximation ratio of optimizing404

FixedPath CollaborativeDelivery using the same idea as in Section 2.405
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p3i−2 p3i p3i−1

1/2 1/2

1/2 0 1/2

Figure 2: Illustration of the variable gadget for the case where agents cannot pickup the
package more than once.

4.1. Lower bound406

Theorem 5. The minimum uniform budget required to solve FixedPath Col-407

laborativeDelivery on directed graphs cannot be approximated to within a408

factor better than 1.5 in polynomial time, unless P = NP, even when each agent409

may pickup the package at most once.410

Proof We use the same construction as in the proof of Theorem 1, but we411

set ε = 3/2 and q = 0 (cf. Fig. 2). All claims in the proof of Theorem 1 remain412

valid for any B < 3/2. Note that, since we eliminated all blockers, no agent has413

to pickup the package more than once in the optimum solution. �414

4.2. Approximation algorithm for single pickup per agent415

We now present approximation algorithms for FixedPath Collabora-416

tiveDelivery with the restriction of a single pickup per agent. This means417

that for agents with uniform budget B, any two points on the fixed path P that418

are separated by a distance of at least B must be served by distinct agents. This419

observation allows us to match the agents to specific points on the path P (as420

opposed to intervals on the path in the general case considered in the previous421

section). The rest of the algorithm is based on similar ideas as in the previous422

section.423

Lemma 3. Given any instance of FixedPath CollaborativeDelivery that424

admits a solution using optimal uniform budget B, under the restriction that425

each agent can pickup the package at most once; then given the value of B, we426

can compute in polynomial time a 2-approximate delivery strategy with a single427

pickup per agent. When the graph is undirected, we can compute a (2− 1/2k)-428

approximation for the same problem in polynomial time.429

Proof Suppose there exists a feasible solution S for the problem using430

uniform budget B and a single pickup per agent. Consider the fixed (s, t) path431

P and partition it into segments using the points X = (m1,m2 . . .ml = t) on432

P , such that l = dw(P )/Be and, the length of the first segment dP (s,m1) ≤ B,433

the length of segment (mi,mi+1) is B, ∀1 ≤ i < l. We have the following434

observations for strategy S: (1) Any agent that moves the package over point435

mi ∈ X in strategy S must have enough energy to reach point mi, and (2) Any436

single agent cannot transport the package over two distinct points in X since437

the distance between these two points is at least B.438
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Case (i): In strategy S, the agent that picks up the package at s is not the same439

agent that moves the package over m1. In this case, there exists a matching440

between the agents and the points X+ = (s = m0,m1,m2, . . .ml) such that each441

agent can reach the point that it is mapped to. We call any such matching a442

type M0 matching.443

Case (ii): In strategy S, a single agent delivers the package from s to m1 with444

its original energy budget B. In this case, there exists a matching between the445

agents and the points in X (w.l.o.g. agent ai is mapped to point mi), such that,446

agent a1 has enough energy to move the package from s to m1 and ∀1 < i < l,447

agent ai can reach mi, using budget B. We call any such matching a type M1448

matching.449

Note that if S is a feasible solution to the problem using a single pickup450

per agent and uniform budget B, then there exists a matching of type M0 or451

M1. If we can find such a matching, then, using budget B per agent, we can452

move the package to point m1 and move each agent ai to the respective point453

mi in path P . If the budget of each agent is augmented by factor 2, then using454

the additional budget B, the agent ai that is mapped to point mi can actually455

deliver the package to the next point mi+1. This gives a 2-approximate solution456

to the problem (for directed and undirected graphs).457

458

For undirected graphs, we will now construct a delivery strategy where each459

agent has a budget 2B −B/2k. We consider the same two cases as before.460

Case (i): The delivery strategy S uses at least l + 1 agents and there is a a type461

M0 matching between the agents and l + 1 points s = m0,m1,m2, . . .ml = t.462

Consider the points m′i = mi + B − (2i − 1)B/2l+1, 0 ≤ i ≤ l − 1. The463

agent a0 can the package from point s = m0 to m′0 using additional budget of464

B(1− 1/2l+1). For 0 < i < l, each agent ai located at point mi returns to m′i−1465

to pick up the package and then moves the package to point m′i. This requires466

an additional budget of B − (2i − 1)B/2l+1 + 2 × 2iB/2l+1 = B(1 − 1/2l+1),467

for each of these agents. Finally, note that the distance between point m′l−1468

and the target t = ml is at most B/2−B/2l+1, and so the agent al can move469

from ml to m′l−1 to pick up the package and deliver it to the target, using470

2× (B/2−B/2l+1) < B(1− 1/2l+1) ≤ B(1− 1/2k) additional energy.471

Case (ii): The delivery strategy S uses l agents and there is a a typeM1 matching472

between the agents and l points s = m1,m2, . . .ml = t. Consider the points473

m′i = mi +B − (2i − 1)B/2l, 1 ≤ i ≤ l − 1. The agent a1 delivers the package474

from point m1 to m′1. For 1 < i < l, each agent ai located at point mi returns475

to m′i−1 to pick up the package and then moves the package to point m′i. This476

requires an additional budget of B − (2i − 1)B/2l + 2× 2iB/2l = B(1− 1/2l),477

for each of these agents. Finally, note that the distance between point m′l−1478

and the target t = ml is at most B/2 − B/2l, and so the agent al can move479

from ml to m′l−1 to pick up the package and deliver it to the target, using480

2× (B/2−B/2l) < B(1− 1/2l) ≤ B(1− 1/2k) additional energy.481

The computation of the schedule requires constructing a bipartite graph482

between k agents and at most k points, and then solving maximum matching in483
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this bipartite graph. Similar to the proof of Lemma 2, these computations can484

be performed in O(n3) time. �485

As in the previous section, we use a binary search to find the smallest B for486

which there exists a matching of type M0 or M1 from the above lemma. This487

gives us a (2− 1/2k)-approximate (respectively 2-approximate) solution to the488

optimization problem for undirected (resp. directed) graphs. Hence we can state489

the following theorem:490

Theorem 6. The minimum uniform budget required to solve FixedPath Col-491

laborativeDelivery with a single pickup per agent on directed (and undirected)492

graphs can be approximated to a factor 2 (respectively (2− 1/2k)), in polynomial493

time.494

5. Fixed Path Delivery with O(1) agents495

In this section we consider the FixedPath CollaborativeDelivery prob-496

lem with only a few agents, i.e., when k is a small constant. Further we will497

assume in this section that the agents are allowed to exchange the package at498

vertices only. Recall that if there is a single agent (k = 1) then the problem can499

be solved trivially (by simply computing the shortest path from the agent to the500

source). However for k > 1 agents, the problem is weakly NP-hard.501

Theorem 7. FixedPath CollaborativeDelivery is (weakly) NP-hard for502

k = 2 agents even if the agents are restricted to pickup the package only at503

vertices of G.504

Proof Consider a complete graph on n vertices where the fixed path P is505

(s = v1, v2, v3 . . . vn = t), k = 2 and both the agents are initially located at the506

source. We show a reduction from the NP-complete problem Subset-Sum: Given507

a set X of n integers a1, a2, . . . an whose sum is 2S, does there exist a subset of508

X whose sum is exactly S?509

We construct the instance of FixedPath CollaborativeDelivery by510

assigning weights a1, a2, . . . , an to the edges (v1, v2), (v2, v3), . . . (vn−1, vn) of the511

path P and we assign weight zero to all other edges of the complete graph.512

Finally we assign a budget of B = S to each agent. It is easy to see that there513

is a feasible delivery schedule by the two agents if and only if each agent can514

move on a subset of edges whose sum of weights equals S, which is equivalent to515

finding a subset of sum S for the instance of subset sum. �516

Given an instance of the decision problem for a specific B, we can design a517

dynamic programming algorithm that computes whether there exists a feasible518

schedule with uniform budget B, and has a running time that is exponential in519

k and pseudo-polynomial in n (the run-time will depend on B).520

Theorem 8. There is an algorithm that decides whether there exists a feasible521

schedule restricted to pickup at vertices, for FixedPath CollaborativeDe-522

livery with uniform budget B in undirected or directed graphs. The algorithm523

runs in O(k · nk+2 ·Bk) time.524
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Proof The algorithm works as follows. We keep a boolean table whose525

entries are of the form Tv[j|pv1, . . . , pvk|Bv1 , . . . , Bvk ] denoting whether there exists526

a feasible schedule that delivers the package from s to vertex v on the path P527

such that528

1. the last agent that delivers the package to vertex v is agent aj ,529

2. the positions of the k agents, when the package arrives at v, are pv1, . . . , pvk,530

and531

3. the remaining budgets of the agents are Bv1 , . . . , Bvk .532

We initialize Ts[0|p1, . . . , pk|B, . . . , B] = TRUE and initialize Ts[...] = FALSE533

for all other values of j and psi and Bsi , i = 1, . . . , k. Here, j = 0 denotes that534

no agent has been used yet. We also abuse the notation and use p0 to denote535

s. Clearly, Tv[j|pv1, . . . , pvk|Bv1 , . . . , Bvk ] = TRUE if and only if pvj = v, and there536

exists a vertex u on the path P before vertex v and an agent’s index j′ 6= j such537

that there is a feasible schedule where agent aj walks from position puj to pick-up538

the package at vertex u from agent aj′ and carries it from vertex u to vertex v.539

I.e., we have Tv[j|pv1, . . . , pvk|Bv1 , . . . , Bvk ] = TRUE if and only if there exists u and540

j′ and an entry in the table T such that Tu[j′|pu1 , . . . , puk |Bu1 , . . . , Buk ] = TRUE and541

pvj = v, pvj′ = puj′ = u, pvi = pui for every i 6= j, j′, Bvj = Buj − d(puj , u)− dP (u, v),542

and Bvi = Bui for every i 6= j. Recall that dP (u, v) denotes the distance from u543

to v on the path P .544

At the end, when the whole table is computed, we check whether there is545

an entry at target vertex t such that Tt[. . .] = TRUE, in which case there is a546

feasible schedule for the uniform budget B, and there is no feasible schedule547

otherwise. To compute the feasible schedule, standard bookkeeping techniques548

can be applied. There are n · nk ·Bk entries in T that need to be computed. To549

compute one entry Tv[j|pv1, . . . , pvk|Bv1 , . . . , Bvk ], we need to check the existence550

of j′ and u with the above mentioned properties, which can be done in time551

O(k · n). Hence, the total run-time of the alorithm is O(k · nk+2 ·Bk). �552

By using the data rounding technique, we turn the developed algorithm into553

a fully polynomial-time approximation scheme (FPTAS).554

Theorem 9. For any ε > 0, there is an algorithm that computes a feasible555

uniform budget B that is at most (1 + ε)B∗, where B∗ is the optimum uniform556

budget, and runs in O
(
k · nk+2 · ( 2m2k

ε )k log
(

2m2k
ε

))
time.557

Proof We define an alternative weight unit µ := εw(P )/k+X
m2 , where w(P ) is558

the weight of the fixed path P , X is the minimum distance of any agent to the559

path P , and m is the number of edges of the graph G. We measure the weights560

w(e) in the integer multiples of µ, rounded-up, i.e., we define w̄(e) := dw(e)/µe.561

We solve the problem in the new edge weights w̄(e) using the dynamic562

programming approach, where we also measure budget in multiples of µ. Let B̄563

be the computed optimum uniform budget for the modified edge-weights. Our564

algorithm returns BA = B̄ · µ as the solution for the original edge-weights. Let565

P̄1, . . . , P̄k be the walks that the k agents walk in the optimum solution for the566
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modified edge-weights. Hence, B̄ = maxi{w̄(P̄i)}, and thus B̄ ·µ = maxi{w̄(P̄i) ·567

µ}. Observe also that BA is a feasible budget, since every path P̄i can be walked568

with budget BA, since the original length of P̄i is w(P̄i) ≤ µ · w̄(P̄i) ≤ µB̄.569

LetB∗ be the optimum budget for the original edge-weights, and let P ∗1 , . . . , P ∗k570

be the walks of the k agents in some optimum solution. Hence, B∗ = maxi{w(Pi)}.571

We now argue that BA is not much larger than B∗. We have BA = µ · B̄ =572

µ·maxi{w̄(P̄i)}
(1)

≤ µ·maxi{w̄(P ∗i )} = maxi{µ·w̄(P ∗i )}
(2)

≤ maxi{w(P ∗i )+m2µ} =573

m2µ + maxi{w(P ∗i )} = m2µ + B∗ = m2
(
εw(P )/k+X

m2

)
+ B∗

(3)

≤ ε · B∗ + B∗ =574

(1+ε)B∗. Here, inequality (1) is because maxi P̄i is the optimum feasible solution575

in weights w̄; inequality (2) follows because any walk appears at most m times576

on the path P , and between any two appearances, the walk contains at most m577

edges (this part of the walk is a simple path), inequality (3) follows because B∗578

needs to be at least w(P )/k +X (the average traveled distance per agent on P579

plus the distance to get from the initial position to the path P ).580

We now analyze the run-time of the algorithm. Observe first that B∗ ≤581

mini d(pi, s) +w(P ) ≤ (X+w(P )) +w(P ) ≤ 2(X+w(P )). Therefore, measured582

in the units µ, we search for B̄ in the range between 1 and 2(X+w(P ))/µ ≤ 2m2k
ε .583

Hence, one run of the dynamic programming on the modified weights takes time584

O(k ·nk+2 · ( 2m
2k
ε )k). Using the binary search to find the minimum such B̄ adds585

a multiplicative logarithmic factor of log
(

2m2k
ε

)
. This proves the theorem. �586

Thus, we have shown the following.587

Corollary 1. There exists an FPTAS for FixedPath CollaborativeDeliv-588

ery restricted to pickup at vertices, when the number of agents is constant.589

6. Conclusions590

The problem of collectively delivering a package by mobile agents is a difficult591

problem even when the path for moving the package is given in advance. We592

presented approximation algorithms and lower bounds of approximation for593

the fixed path version of the problem. These results leave some gaps and we594

would like to reduce the gap between the upper and lower bounds for the595

various versions of the problem. We also considered the special case of fixed596

path delivery with a single pickup per agent, and we were able to find better597

approximation algorithms for this case compared to the best known algorithm598

for collaborative delivery without fixed path. This seems to suggest that the599

fixed path version admits better approximation than the general version, when600

each agent is restricted to a single pickup. However to prove this we need to find601

lower bounds on the approximation factor of collaborative delivery. Another602

possible extension to this work is to consider agents with non-uniform budgets603

and find resource-augmented algorithms for fixed path delivery. Finally, we604

would like to analyse more precisely the effect of restricting package handovers605

to nodes only and not anywhere inside the edges.606
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