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Abstract. We consider the problem of collectively delivering a package
from a specified source to a designated target location in a graph, using
multiple mobile agents. Each agent starts from a distinct vertex of the
graph, and can move along the edges of the graph carrying the package.
However, each agent has limited energy budget allowing it to traverse a
path of bounded length B; thus, multiple agents need to collaborate to
move the package to its destination. Given the positions of the agents
in the graph and their energy budgets, the problem of finding a feasible
movement schedule is called the Collaborative Delivery problem and has
been studied before.
One of the open questions from previous results is what happens when the
delivery must follow a fixed path given in advance. Although this special
contraint reduces the search space for feasible solutions, the problem of
finding a feasible schedule remains NP hard (as the original problem).
We consider the optimization version of the problem that asks for the
optimal energy budget B per agent which allows for a feasible delivery
schedule, given the initial positions of the agents. We show the existence
of better approximations for the fixed-path version of the problem (at
least for the restricted case of single pickup per agent), compared to the
known results for the general version of the problem, thus answering the
open question from the previous paper.
We provide polynomial time approximation algorithms for both directed
and undirected graphs, and establish hardness of approximation for the
directed case. Note that the fixed path version of collaborative delivery
requires completely different techniques since a single agent may be used
multiple times, unlike the general version of collaborative delivery studied
before. We show that restricting each agent to a single pickup allows
better approximations for fixed path collaborative delivery compared to
the original problem. Finally, we provide a polynomial time algorithm for
determining a feasible delivery strategy, if any exists, for a given budget
B when the number of available agents is bounded by a constant.

? This work was partially supported by the ANR project ANCOR (anr-14-CE36-0002-
01)
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1 Introduction

We consider a team of mobile agents which need to collaboratively deliver a
package from a source location to a destination. The difficulty of collaboration
can be due to several limitations of the agents, such as limited communication,
restricted vision or the lack of persistent memory, and this has been the subject
of extensive research (see [21] for a recent survey). When considering agents that
move physically (such as mobile robots or automated vehicles), a major limitation
of the agents are their energy resources, which restricts the distance that the
robot can travel. This is particularly true for small battery operated robots
or drones, for which the energy limitation is the real bottleneck. We consider
a set of mobile agents where each agent i has a budget Bi on the distance it
can move, as in [1, 5, 11, 12, 14, 19]. We model the environment as a directed or
undirected edge-weighted graph G, with each agent starting on some vertex of G
and traveling along edges of G, until it runs out of energy and stops forever. In
this model, the agents are obliged to collaborate as no single agent can usually
perform the required task on its own.

Given a graph G with designated source and target vertices, and k agents with
given starting locations and energy budgets, the decision problem of whether the
agents can collectively deliver a single package from the source to the target node
in G is called CollaborativeDelivery. Chalopin et al. [11, 12] showed that
CollaborativeDelivery is weakly NP-hard on paths and strongly NP-hard
on general graphs. When the agents are homogenous, each agent has the same
uniform budget initially. The optimization version of this problem asks for the
minimum energy budget B per agent, that allows a feasible schedule for delivering
the package. Throughout this paper we consider agents with uniform budgets.
There exist constant factor approximations [5, 11] for the optimal budget needed
for solving CollaborativeDelivery.

Unlike previous papers, this paper considers a version of the problem where
the package must be transported through a designated path that is provided as
input to the algorithm. This is a natural assumption, e.g. for delivery of valuable
packages which must go on a “safe” route, allowing them to be tracked. We call
this variant FixedPath CollaborativeDelivery. Even with this additional
constraint, the problem remains NP-hard for general graphs due to the result in
[11]. Note that on trees, the two problems are equivalent and both problems are
known to be weakly NP-hard. However, for arbitrary graphs, the two problems
are quite different. In particular, in the FixedPath CollaborativeDelivery,
each agent may be used multiple times, while in the original version each agent
participates at most once in any optimal delivery schedule (see [11]). In this
paper, we attempt to find the difference between the two problems in terms of
approximability.

Our Contributions. We show that the best possible approximation of the
optimal budget B for FixedPath CollaborativeDelivery is between 2 and
3 for directed graphs and at most 2.5 for undirected graphs. In contrast, the
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best known approximation ratio for the general version of CollaborativeDe-
livery is 2 for undirected graphs [11], and there is no known lower bound on
approximability.

In the fixed path version of the problem agents may be used multiple times
in a feasible delivery schedule, i.e., the same agent may move the package along
several disjoint segments of the path. Thus, it is not surprising that our solution
for FixedPath CollaborativeDelivery has a higher approximation ratio
than the general version of the problem where each agent is used at most once.

For better comparison, we can make the FixedPath CollaborativeDeliv-
ery problem easier by restricting each agent to a single pickup of the package.
This easier version of the problem was considered recently in [25] which provided
a 3-approximation algorithm. In this paper we improve upon this and provide a
2-approximation algorithm for directed graphs and a (2−1/2k)-approximation al-
gorithm for undirected graphs. We also show that there exists no polynomial-time
approximation algorithm with better approximation ratio than 3

2 for directed
graphs.

Finally, for the case where the number of agents k is a constant, we show that
the decision version of FixedPath CollaborativeDelivery can be solved in
pseudo-polynomial time. For this setting, we also provide a fully polynomial-time
approximation scheme (FPTAS) giving a (1 + ε)-approximation to the optimal
budget, for any ε > 0.

Our Model. We consider finite, connected (or strongly connected), edge-
weighted graphs G = (V,E) with n = |V | vertices. For undirected graphs,
the weight w(e) of an edge e ∈ E defines the energy required to cross the edge
in either direction. For directed graphs, there may be up to two directed arcs
between any pair of vertices and the weight of each arc is the energy required
to traverse the arc from its tail to its head. We have k mobile agents which are
initially placed on arbitrary nodes p1, . . . , pk of G, called the starting positions.
Each agent has an initially assigned energy budget B > 0 which allows each
agent to move along the edges of the graph for a total distance of at most B (if
an agent travels only on a part of an edge, its travelled distance is downscaled
proportionally to the part travelled). We say that agents have uniform budget B.

The agents are required to move a package from a given source node s to a
target node t. An agent can pick up the package when it is at the same location
as the package; we say that the agent is carrying the package. An agent carrying
the package can drop it at any location that it visits, i.e., either at a node or
even at a point inside an edge/arc. The agents do not need to return to their
starting locations, after completing their task. We assume that the graph and the
starting locations are initially known and the objective is to compute a strategy
for movements of the agents which allows the delivery of the package from s to
t (along a given s − t path P ). We denote by d(x, y) = dG(x, y) the distance
between two nodes x, y in G (i.e. the sum of the weights on the shortest path
from x to y). The length of path P is the sum of the weights on the path, denoted
by w(P ) = dP (s, t).
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Definitions. Given a graph G with edge-weights w, vertices s 6= t ∈ V (G),
starting nodes p1, . . . , pk for the k agents, and an energy budget B, we define
CollaborativeDelivery as the decision problem of whether the agents can
collectively deliver the package. A solution to CollaborativeDelivery is given
in the form of a delivery schedule which prescribes for each agent whether it
moves and if so, the locations in which it has to pick up and drop off the package.
A delivery schedule is feasible if the package can be delivered from s to t and
each agent moves at most distance B.

Given (G,w, s, t) and the locations p1, . . . , pk of the agents in G, the optimiza-
tion version of CollaborativeDelivery is to compute the minimum value of
B for which there exists a feasible delivery schedule. The problem of FixedPath
CollaborativeDelivery provides an additional parameter: an (s− t) path P
in G, and the feasible delivery schedules are restricted to those where the package
travels on the given path P .

Related Work. The model of energy-constrained robot was introduced by
Betke et al. [9] for single agent exploration of grid graphs. Later Awerbuch et
al. [2] studied the same problem for general graphs. In both these papers, the
agent is allowed to return to its starting node to refuel, and between two visits
to the starting node the agent can traverse at most B edges. Duncan et al. [18]
studied a similar model where the agent is tied with a rope of length B to the
starting location and they optimized the exploration time, giving an O(m) time
algorithm. A more recent paper [15] provides a constant competitive algorithm
for the same exploration problem when the value of energy budget B is not much
more than the distance to farthest node.

For energy-constrained agents without the option of refuelling, multiple agents
may be needed to explore even graphs of restricted diameter. Given a graph G
and k agents starting from the same location, each having an energy constraint of
B, deciding whether G can be explored by the agents is NP-hard, even if graph G
is a tree [22]. Dynia et al. studied the online version of the problem [19, 20]. They
presented algorithms for exploration of trees by k agents when the energy of each
agent is augmented by a constant factor over the minimum energy B required
per agent in the offline solution. Das et al. [14] presented online algorithms that
optimize the number of agents used for tree exploration when each agent has
a fixed energy bound B. On the other hand, Dereniowski et al. [17] gave an
optimal time algorithm for exploring general graphs using a large number of
agents. When both k and B are fixed, Bampas et al. [3] studied the problem
of maximizing the number of nodes explored by the agents, called the maximal
exploration problem.

When multiple agents start from arbitrary locations in a graph, optimizing
the total energy consumption of the agents is computationally hard for several
formation problems which require the agents to place themselves in desired
configurations (e.g. connected or independent configurations) in a graph [16, 10].
Anaya et al. [1] studied centralized and distributed algorithms for the information
exchange by energy-constrained agents, in particular the problem of transferring
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information from one agent to all others (Broadcast) and from all agents to one
agent (Convergecast). For both problems, they provided hardness results for trees
and approximation algorithms for arbitrary graphs. Czyzowicz et al. [13] recently
showed that the problems of collaborative delivery, broadcast and convergecast
remain NP-hard for general graphs even if the agents are allowed to exchange
energy when they meet. Further results on collective delivery with energy exchange
showed that the problem remains hard even when B is a small constant [4].

As mentioned before, the collaborative delivery problem was first studied
by Chalopin et al. [11] in arbitrary undirected graphs for both uniform or non-
uniform budgets. When the agents have non-uniform budgets, they provided
the so-called resource-augmented algorithms where the budgets of the agents are
augmented by a small constant factor to allow polynomial time solutions for all
feasible instances of the original problem. The surprising result that collaborative
delivery non-uniform budgets is weakly NP-hard even for a line was proved in
[12] where a quasi-pseudo-polynomial time algorithm was provided.

Bärtschi et al. [5] considered the returning version of the problem, where
each agent needs to return to its starting location. They showed that, in this
case, the problem can be solved in polynomial time for trees, but the problem is
still NP-hard for arbitrary planar graphs. They provided 2-resource-augmented
algorithm for general graphs in this setting and showed that it is the best possible
solution that can be computed in polynomial time. Other variants of collaborative
delivery that have been considered are when agents have distinct rate of energy
consumption [6] or when the agents have distinct speeds [7]. In these cases the
optimization criteria is to minimize the total energy consumption and/or the
total time taken for delivery. Another related work [8] studied the collective
delivery problem for selfish agents that try to optimize their personal gain.

2 Lower bounds on optimal budget

In this section we prove some lower bounds on the approximation factor for
any polynomial time algorithm that solves collaborative delivery with uniform
budgets on a fixed path.

We give a reduction from an NP-hard variant of Sat [24]. Note the difference
to the polynomially solvable (3, 3)-Sat, where each variable appears in exactly
three clauses [26].

(≤ 3, 3)-Sat
Input: A formula with a set of clauses C of size three over a set of
variables X, where each variable appears in at most three clauses.
Problem: Is there a truth assignment of X satisfying C?

Observe that we may assume that each variable appears at most twice in
positive literals and at most once in a negative literal, otherwise we can either
eliminate or negate the variable.
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Theorem 1. The minimum uniform budget required to solve FixedPath Col-
laborativeDelivery on directed graphs cannot be approximated to within a
factor better than 2 in polynomial time, unless P = NP.

Proof. We reduce from (≤ 3, 3)-Sat by constructing, for every sufficiently
small ε > 0 and every instance of (≤ 3, 3)-Sat, an instance of FixedPath
CollaborativeDelivery that has a solution with budget B ≤ 2− ε if and only
if the (≤ 3, 3)-Sat instance has a satisfying assignment. In this case, our instance
always admits a solution with budget B = 1. Since (≤ 3, 3)-Sat is NP-hard, this
then implies that no (2− ε)-approximation algorithm can exist, unless P = NP.

In the following, fix 0 < ε < 1 and consider an instance of (≤ 3, 3)-Sat with
variables x1, . . . , xt and clauses C1, . . . , Cm. We construct a (directed) instance
of FixedPath CollaborativeDelivery with k = (3 + q)t agents, where q :=
d3/εe, starting at vertices p1, . . . , pk. The agents p3i−2, p3i−1, p3i for i ∈ {1, . . . , t}
are associated with the (at most) two positive literals and the single negative
literal of variable xi, in this order, that appear in the clauses. In case variable xi
only appears in a single positive literal, the agent p3i−1 does not represent any
literal. The other agents are so-called blockers. We incrementally construct the
fixed s-t-path P = (v0, v1, . . . , vm+2(q+1)t) that the package has to be transported
along.

The first m arcs of P correspond to the clauses C1, . . . , Cm. Each arc e =
(vj−1, vj) with j ∈ {1, . . . ,m} has weight w(e) = 1 and is associated with
clause Cj . For every literal of a variable xi that appears in Cj , we let pij denote
the starting position of the (unique) agent associated with this literal, and we
introduce an arc eij = (pij , vj−1) of weight w(eij) = 0.

Now we add the variable gadgets to the path P . Let qi := m+ 2(q+ 1)(i− 1).
The gadget associated with each variable xi (cf. Figure 1) is the subpath Pi =
(vqi , . . . , vqi+1

) of P consisting of 2q + 2 edges. The first q arcs have weight ε/3
each, the central two arcs ei = (vqi+q, vqi+q+1) and e′i = (vqi+q+1, vqi+q+2) have
weights w(ei) = ε/3 and w(e′i) = 1− ε/3, and the final q arcs have weight 1− ε/3
each. For ` ∈ {1, . . . , q}, we connect the starting position of the ((i− 1)q + `)-th
blocker to vqi+`−1 with an arc of weight 0, and we add a shortcut arc (that cannot
be taken by the package) (vqi+`, vqi+1−`) of weight 0. Finally, we connect the
three agents associated with variable xi as follows: We add an arc (p3i−2, vqi+q)
of weight 1− ε/3, an arc (p3i−1, vqi+q+1) of weight ε/3, and an arc (p3i, vqi+q)
of weight 0.

We first claim that in every solution with B ≤ 2 − ε we can assume that,
without loss of generality, for every i ∈ {1, . . . , t} and every ` ∈ {1, . . . , q}, the
((i−1)q+`)-th blocker transports the package across the arc (vqi+`−1, vqi+`), then
takes the shortcut arc (vqi+`, vqi+1−`), and finally transports the package across
the arc (vqi+1−`, vqi+1−`+1). To see this, consider the last arc (vqi+1−1, vqi+1

) of P ′i .
Since the arcs preceding the vertices vqi and vqi+1−1 along P both have length
at least 1− ε/3, no agent other than the two blockers connected to vqi and vqi+1

can reach vqi+1−1 with more than B − (1− ε/3) ≤ 1− 2ε/3 budget remaining,
which is insufficient to cross the last arc of P ′i . Since there is no disadvantage
in using the ((i− 1)q + 1)-st blocker rather than the ((i− 1)q + 2)-nd, we may
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assume that the ((i− 1)q + 1)-st blocker transports the package as claimed. By
repeating this argument (slightly adapted for the iq-th blocker), we can fix all
subsequent blockers, too. Note that each blocker requires only B = 1.

v3i−2 v3i v3i−1

ε
3

ε
3

ε
3

ε
3

1 − ε
3

1 − ε
3

1 − ε
3

1 − ε
3

0
0

0
0

1 − ε/3 0 ε/3

Fig. 1. Illustration of the variable gadget. Thick, horizontal arcs are part of the fixed
path of the package. Colors indicate responsabilities: blue is for blockers and green/red
is for agents associated with positive/negative literals.

After fixing all blockers, we can observe that every agent with budget B ≤
2 − ε can only transport the package along an arc inside a single clause or
variable gadget: This is because transporting the package inside a clause gadget
requires one unit of budget, and entering/leaving a variable gadget before or after
transporting the package across one of its two central arcs also takes at least one
unit of budget (all other arcs of a variable gadget are handled by blockers).

Finally, and crucially, observe that, in order to transport the package across
the two central edges of the variable gadget for xi, either the two agents p3i−2
and p3i−1 associated with the positive literals of xi, or the agent p3i associated
with the negative literal are needed, since blockers cannot help (see above). We
interpret the former situation as xi being set to false, and the latter situation as xi
being set to true. Note that either assignment can be accomplished with B = 1.

If a variable is set to true, the two agents corresponding to positive literals are
free to transport the package across the single (!) clause gadget each of them can
reach. Otherwise, the agent corresponding to the negative literal is free to do this.
In both cases, we interpret this as the clause being satisfied by the corresponding
variable. Note that satisfying a clause again requires only B = 1.

Clearly, we can turn a satisfying assignment for (≤ 3, 3)-Sat into a feasible
solution of FixedPath CollaborativeDelivery with B = 1. Conversely,
every feasible solution of FixedPath CollaborativeDelivery with B ≤ 2− ε
corresponds to a satisfying assignment for (≤ 3, 3)-Sat. Note that q is constant
for fixed ε, hence our construction can be done in polynomial time.

3 Approximation algorithms for fixed path delivery

In this section, we give approximation algorithms solving FixedPath Collab-
orativeDelivery for both directed and undirected graphs. In the following,
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we assume that we are given the optimal value of B for a given instance of the
problem and we provide a polynomial time algorithm to compute a delivery
strategy that uses an energy budget of at most α · B for some constant α > 1.
When B is not known, we can guess the optimal value of B by using a binary
search in the interval [D/k,D] where D is the length of the given fixed path plus
the distance from node s to the nearest agent. The binary search terminates
when we find the smallest B for which our algorithm provides a valid strategy
for a budget of α ·B. Clearly this provides an α-approximation algorithm for the
optimization problem.

3.1 Directed graphs: 3-approximation

Theorem 2. There is a 3-approximation algorithm for FixedPath Collabo-
rativeDelivery on directed graphs.

Proof. Consider an instance (G,w, P, {pi | 1 ≤ i ≤ k}) of FixedPath Collabo-
rativeDelivery on directed graphs and let S be an optimal solution of this
instance with uniform budget B. For i from 0 to ` =

⌊
dP (s,t)
B

⌋
, we define mi as

the point on P at distance iB from s. Observe that ` = O(min(n, k)) since the
path P is of length less or equal than kB, P has at most n − 1 arcs and each
arc in P has a weight at most B. For i from 0 to ` − 1, let Ii be the interval
[mi,mi+1] on path P . In the solution S, there is an agent aj starting at position
pj that moves the package from s to some point in I0. Observe that since the
length of each interval is B, for any set I of l intervals at least l different agents
must carry the package inside ∪I∈II, i.e., the trajectory of these agents intersects
interval ∪I∈II in S. If the number of such agents for a set I is exactly l, it means
each agent covers exactly an interval of size B and there is no other agent picking
the package at the end of the last interval. This can only happen if I = ∪`−1i=0Ii,
m` = t and for all 0 ≤ i ≤ ` − 1, there is an agent at mi. This case is easy to
check and if it happens, one can construct an easy optimal solution. Hence, we
can assume, w.l.o.g., that any set I of l intervals at least l + 1 different agents
must carry the package inside ∪I∈II. Hence, there exists a bijection f between
a set R ⊆ [1, k] \ {j} and [0, ` − 1] such that for each i ∈ R, agent ai carries
the package inside interval If(i) in S. Observe that dG(pj ,m0) ≤ B since agent
aj can reach s = m0 with budget B in the solution S. For all i ∈ R, we have
dG(pi,mf(i)+1) ≤ 2B since agent ai can reach some point in If(i) with budget
B in solution S and then reach mf(i)+1 by moving inside P for a distance at
most B. We can deduce that there is a bijection g between the set R′ = R ∪ {j}
and [0, `] such that dG(pi,mg(i)) ≤ 2B. One can find such a bijection g using the
following algorithm :

1. Construct a weighted bipartite graph H = (A ∪M,E,wH) with A = [0, k],
M = [0, `], E = M × A and for all i ∈ M, j ∈ A, wH(ij) = dG(mi, pj).
This can be done in O(k(m + n log n)) using a Dijkstra’s algorithm [23]
starting from each starting position of an agent. Observe that graph H has
O(min(n, k) + k) = O(n+ k) vertices and O(min(n, k).k) edges.
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2. Compute a maximal matching in H that minimizes the maximum weight.
For each weight ω, one can compute in time O((n+ k)2 log(n+ k) + k(n+
k) min(n, k)) a maximal matching [23] in the graph H without edges of weight
greater than ω. Hence, one can decide if there is a maximal matching in
H with maximum weight ω and by using binary search, one can compute
a maximal matching in H which minimizes the maximum weight, in time
O(log k((n+ k)2 log(n+ k) + k(n+ k) min(n, k))).

3. For each edge ij in the matching, we fix g(i) = j. This gives us a bijection
g between some set R′ of size ` + 1 and M . This bijection minimizes the
maximal distance dG(pi,mg(i)) and this value must be less than 2B since
there is at least one such bijection.

From such a bijection g, we can deduce a 3-approximated solution of our instance:
for each i ∈ [0, `], agent ag−1(i) moves to point mi (cost less than 2B) and then
carries the package to point mi+1 if i < ` or t otherwise (cost less than B).

3.2 Undirected graphs: 2.5-approximation

Theorem 3. There is a 2.5-approximation algorithm for FixedPath Collab-
orativeDelivery on undirected graphs.

Proof. The proof is similar to that of Theorem 2, the intervals are slightly
different in order to use the possibility for an agent to move on the path P in
both directions.

Consider an instance (G,w, P, {pi | 1 ≤ i ≤ k}) of FixedPath Collabo-
rativeDelivery on undirected graphs and let S be an optimal solution with
budget B. For i from 0 to ` =

⌊
dP (s,t)
B

⌋
, we define mi as the point on P at

distance iB from s (same definition as in proof of Theorem 2). For i from 1
to `, we define m′i as the point on P at distance iB − B/2 from s. We set
m′0 = s. Let `′ = `+ 1 and m′`′ be the point of P at distance `B +B/2 from s,
if dP (m`, t) >

B
2 , and let `′ = ` and m′`′ = t otherwise. For i from 0 to `′ − 1,

let Ii be the interval [m′i,m
′
i+1] on path P . Observe that |I0| = B/2, and for

each i ∈ [1, `′ − 1], |Ii| = B. Hence the union of l intervals have a length strictly
greater than (l − 1)B. With a similar argument as proof of Theorem 2, there
exists a bijection f between a set R ⊆ [1, k] and [1, `′ − 1] such that for each
i ∈ R, agent ai carries the package inside interval If(i) in S. The starting position
pi of agent ai is at distance at most B from some point sf(i) in If(i). Observe
that for all i ∈ [0, `], we have dP (mi,m

′
i) ≤ B/2 and dP (mi,m

′
i+1) ≤ B/2. It

follows that every point in Ii and so si is at distance at most B/2 of mi. By the
triangular inequality, we have that for all i ∈ [0, `] dP (pi,mf(i)) ≤ 3

2B. One can
find a bijection f having this property with the same algorithm as in the proof
of Theorem 2.

From a bijection f , we can deduce a 2.5-approximated solution of our instance:
for each i ∈ [0, `], agent af−1(i) moves to point mi (cost less or equal than 3

2B)
and then carries the package to point mi+1 if i < ` or t otherwise (cost less or
equal than B).
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4 Special case: single pickup per agent

In this section, we consider a slightly easier version of the problem when each
agent can pickup the package at most once. We first present a lower bound of 3

2 on
the approximation ratio of optimizing FixedPath CollaborativeDelivery.

4.1 Lower bound

v3i−2 v3i v3i−1

1/2 1/2

1/2 0 1/2

Fig. 2. Illustration of the clause gadget for the case where agents cannot pickup the
package more than once.

Theorem 4. The minimum uniform budget required to solve FixedPath Col-
laborativeDelivery on directed graphs cannot be approximated to within a
factor better than 1.5 in polynomial time, unless P = NP, even when each agent
may pickup the package at most once.

Proof. We use the same construction as in the proof of Theorem 1, but we set
ε = 3/2 and q = 0 (cf. Fig. 2). All claims in the proof of Theorem 1 remain valid
for any B < 3/2. Note that, since we eliminated all blockers, no agent has to
pickup the package more than once in the optimum solution.

4.2 Approximation algorithm for single pickup per agent

Lemma 1. Given any instance of the decision problem for FixedPath Col-
laborativeDelivery that admits a solution where each agent can pickup the
package at most once; then we can compute in polynomial time a 2-approximate
delivery strategy. When the graph is undirected, we can compute a (2 − 1/2k)-
approximation in polynomial time.

Proof. Suppose there exists a feasible solution S for the problem using uniform
budget B and single pickup per agent. Consider the fixed (s − t) path P and
partition it into segments using the points X = (m1,m2 . . .ml = t) on P , such
that l = dw(P )/Be, the length of segment (mi,mi+1) is B, ∀1 ≤ i < l, and the
length of the first segment (s,m1) ≤ B. We have the following observations for
strategy S: (1) Any agent that moves the package over point mi in strategy S
must have enough energy to reach point mi, and (2) Any single agent can not
transport the package over two distinct points in X since the distance between
two points is at least B.
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Case (i): In strategy S, the agent that picks up the package at s is not the same
agent that moves the package over m1. In this case, there exists a matching
between the agents and the points X+ = (s = m0,m1,m2, . . .ml = t) such that
each agent can reach the point that it is mapped to. We call any such matching
a type M0 matching. Case(ii): In strategy S, a single agent delivers the package
from s to m1 with its original energy budget B. In this case, there exists a
matching between the agents and the points in X (w.l.o.g. agent ai is mapped
to point pi), such that, agent a1 has enough energy to move the package from
s to m1 and ∀i > 1, agent ai can reach mi, using budget B. We call any such
matching a type M1 matching. Note that if S is a feasible solution to the problem
using single pickup per agent, then there exists a matching of type M0 or M1.
If we can find such a matching, then, using budget B per agent, we can move
the package to point p1 and move each agent ai to the respective point mi in
path P . If the budget of each agent is augmented by factor 2, then using the
additional budget B, the agent ai that is mapped to point mi can actually deliver
the package to the next point mi+1. This gives a 2-approximate solution to the
problem (for directed and undirected graphs).

For undirected graphs, we will now construct a delivery strategy where each
agent has a budget 2B − B/2l. As per previous discussion, using the original
budget B each agent ai can reach point mi and the package can be moved to
point m1. Each agent ai now has available energy budget of at least B −B/2l
after arriving at the designated point mi.

Consider the points m′i = mi +B − (2i − 1)B/2l, 1 ≤ i ≤ l− 1. The agent a1
delivers the package from point m1 to m′1. For 1 < i < l, each agent ai located at
point mi returns to m′i−1 to pick up the package and then moves the package to
point m′i. This requires an additional budget of B − (2i − 1)B/2l + 2× 2iB/2l

= B(1− 1/2l), for each of these agents. Finally, note that the distance between
point m′l−1 and the target t = ml is at most B/2 − B/2l, and so the agent al
can move from ml to m′l−1 to pick up the package and deliver it to the target,
using 2× (B/2−B/2l) < B(1− 1/2l) additional energy.

Since k ≥ l, this provides a (2− 1/2k)-approximate solution strategy for any
instance which has a feasible solution using k agents and a single pickup per
agent.

The computation of the schedule requires constructing a bipartite graph
between k agents and at most k points, and then solving maximum matching
in this bipartite graph. The former task requires O(n3) time using an all-pair
shortest path algorithm to compute distances in the original graph. The second
task of computing the matching requires at most O(k2) time.

As in the previous section, we use a binary search to find the smallest B for
which there exists a matching of type M0 or M1 from the above lemma. This
gives us a (2− 1/2k)-approximate (respectively 2-approximate) solution to the
optimization problem for undirected (resp. directed) graphs. Hence we have the
following results:
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Theorem 5. The minimum uniform budget required to solve FixedPath Col-
laborativeDelivery with single pickup per agent on undirected graphs can be
approximated to a factor (2− 1/2k), in polynomial time.

Theorem 6. The minimum uniform budget required to solve FixedPath Col-
laborativeDelivery with single pickup per agent on directed graphs can be
approximated to a factor 2, in polynomial time.

5 Delivery with few agents

In this section we consider the special case when agents are allowed to exchange
the package at vertices only. Using the dynamic programming technique, we
design an algorithm that for a given B, computes whether there exists a feasible
schedule with uniform budget B, and has a running time that is exponential
in k and pseudo-polynomial in n (the run-time will depend on B). To find a
minimum B such that there exists a feasible schedule, we can use binary search
on B, which adds multiplicative logB increase to the run-time.

We keep a boolean table Tv[j|pv1, . . . , pvk|Bv1 , . . . , Bvk ] denoting whether there
exists a feasible schedule that delivers the package from s to vertex v on the path
P such that

1. the last agent that delivers the package to vertex v is agent aj ,
2. the positions of the k agents, when the package arrives at v, are pv1, . . . , pvk,

and
3. the remaining budgets of the agents are Bv1 , . . . , Bvk .

We initialize Ts[0|p1, . . . , pk|B, . . . , B] = TRUE and initialize Ts[...] = FALSE
for all other values of j and psi and Bsi , i = 1, . . . , k. Here, j = 0 denotes that
no agent has been used yet. We also abuse the notation and use p0 to denote s.
Clearly, Tv[j|pv1, . . . , pvk|Bv1 , . . . , Bvk ] = TRUE if and only if pvj = v, and there exists
a vertex u on the path P before vertex v and an agent’s index j′ 6= j such that
there is a feasible schedule where agent aj walks from position puj to pick-up the
package at vertex u from agent aj′ and carries it from vertex u to vertex v. I.e.,
we have Tv[j|pv1, . . . , pvk|Bv1 , . . . , Bvk ] = TRUE if and only if there exists u and j′
and an entry in the table T such that Tu[j′|pu1 , . . . , puk |Bu1 , . . . , Buk ] = TRUE and
pvj = v, pvj′ = puj′ = u, pvi = pui for every i 6= j, j′, Bvj = Buj − d(puj , u)− dP (u, v),
and Bvi = Bui for every i 6= j. Recall that dP (u, v) denotes the distance from u
to v on the path P .

At the end, when the whole table is computed, we check whether there is
an entry at target vertex t such that Tt[. . .] = TRUE, in which case there is a
feasible schedule for the uniform budget B, and there is no feasible schedule
otherwise. To compute the feasible schedule, standard bookkeeping techniques
can be applied. There are n · nk ·Bk entries in T that need to be computed. To
compute one entry
Tv[j|pv1, . . . , pvk|Bv1 , . . . , Bvk ], we need to check the existence of j′ and u with the
above mentioned properties, which can be done in time O(k ·n). Hence, the total
run-time of the alorithm is O(k · nk+2 ·Bk). Thus, we have shown the following:
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Theorem 7. There is an algorithm that decides whether a feasible schedule for
uniform budget B exists and runs in O(k · nk+2 ·Bk) time.

By using the data rounding technique, we turn the developed algorithm into
a fully polynomial-time approximation scheme (FPTAS). Let ε > 0 be a (small)
error margin for which we want to design a (1 + ε)-approximation algorithm (for
computing a minimum feasible uniform budget B).

We define an alternative weight unit µ := εw(P )/k+X
m2 , where w(P ) is the

weight of the fixed path P , X is the minimum distance of any agent to the path
P , and m is the number of edges of the graph G. We measure the weights w(e)
in the integer multiples of µ, rounded-up, i.e., we define w̄(e) := dw(e)/µe.

We solve the problem in the new edge weights w̄(e) using the dynamic
programming approach, where we also measure budget in multiples of µ. Let B̄
be the computed optimum uniform budget for the modified edge-weights. Our
algorithm returns BA = B̄ · µ as the solution for the original edge-weights. Let
P̄1, . . . , P̄k be the walks that the k agents walk in the optimum solution for the
modified edge-weights. Hence, B̄ = maxi{w̄(P̄i)}, and thus B̄·µ = maxi{w̄(P̄i)·µ}.
Observe also that BA is a feasible budget, since every path P̄i can be walked
with budget BA, since the original length of P̄i is w(P̄i) ≤ µ · w̄(P̄i) ≤ µB̄.

LetB∗ be the optimum budget for the original edge-weights, and let P ∗1 , . . . , P ∗k
be the walks of the k agents in some optimum solution. Hence, B∗ = maxi{w(Pi)}.
We now argue that BA is not much larger than B∗. We have BA = µ · B̄ =

µ·maxi{w̄(P̄i)}
(1)

≤ µ·maxi{w̄(P ∗i )} = maxi{µ·w̄(P ∗i )}
(2)

≤ maxi{w(P ∗i )+m2µ} =

m2µ + maxi{w(P ∗i )} = m2µ + B∗ = m2
(
εw(P )/k+X

m2

)
+ B∗

(3)

≤ ε · B∗ + B∗ =

(1 + ε)B∗. Here, inequality (1) is because maxi P̄i is the optimum feasible solution
in weights w̄; inequality (2) follows because any walk appears at most m times
on the path P , and between any two appearances, the walk contains at most m
edges (this part of the walk is a simple path), inequality (3) follows because B∗
needs to be at least w(P )/k +X (the average traveled distance per agent on P
plus the distance to get from the initial position to the path P ).

We now analyze the run-time of the algorithm. Observe first that B∗ ≤
mini d(pi, s) +w(P ) ≤ (X +w(P )) +w(P ) ≤ 2(X +w(P )). Therefore, measured
in the units µ, we search for B̄ in the range between 1 and 2(X+w(P ))/µ ≤ 2m2k

ε .
Hence, one run of the dynamic programming on the modified weights takes
time O(k · nk+2 · ( 2m2k

ε )k). Using the binary search to find optimum B̄ adds

a multiplicative logarithmic factor of log
(

2m2k
ε

)
. Thus, we have shown the

following.

Theorem 8. For any ε > 0, there is an algorithm that computes a feasible
uniform budget B that is at most (1 + ε)B∗, where B∗ is the optimum uniform
budget, and runs in O

(
k · nk+2 · ( 2m2k

ε )k log
(

2m2k
ε

))
time.

Corollary 1. There exists an FPTAS for the variant where the number of agents
is constant.
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6 Conclusions

The problem of collectively delivering a package by mobile agents is a difficult
problem even when the path for moving the package is given in advance. However,
for the case of single pickup per agent, we were able to find better approximation
algorithms for the fixed path version of collaborative delivery. These results leave
many open questions: how to reduce the gap between the upper and lower bounds
for the various versions of the problem? How to extend the results to agents
with non-uniform budgets and find resource-augmented algorithms for fixed path
delivery? Finally, what is the effect of restricting package handovers to nodes
only and not anywhere inside the edges.
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