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COP AND ROBBER GAMES WHEN THE ROBBER CAN
HIDE AND RIDE∗

JÉRÉMIE CHALOPIN† , VICTOR CHEPOI† , NICOLAS NISSE‡ , AND YANN VAXÈS†

Abstract. In the classical cop and robber game, two players, the cop C and the robber R,
move alternatively along edges of a finite graph G = (V,E). The cop captures the robber if both
players are on the same vertex at the same moment of time. A graph G is called cop win if the
cop always captures the robber after a finite number of steps. Nowakowski and Winkler [Discrete
Math., 43 (1983), pp. 235–239] and Quilliot [Problèmes de jeux, de point fixe, de connectivité et
de représentation sur des graphes, des ensembles ordonnés et des hypergraphes, Thèse de doctorat
d’état, Université de Paris VI, Paris, 1983] characterized the cop-win graphs as graphs admitting a
dismantling scheme. In this paper, we characterize in a similar way the class CWFR(s, s′) of cop-win
graphs in the game in which the robber and the cop move at different speeds s and s′, s′ ≤ s. We
also establish some connections between cop-win graphs for this game with s′ < s and Gromov’s
hyperbolicity. In the particular case s = 2 and s′ = 1, we prove that the class of cop-win graphs is
exactly the well-known class of dually chordal graphs. We show that all classes CWFR(s, 1), s ≥ 3,
coincide, and we provide a structural characterization of these graphs. We also investigate several
dismantling schemes necessary or sufficient for the cop-win graphs in the game in which the robber is
visible only every k moves for a fixed integer k > 1. In particular, we characterize the graphs which
are cop-win for any value of k.
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1. Introduction.

1.1. The cop and robber game(s). The cop and robber game originated in
the 1980s with the work of Nowakowski and Winkler [30], Quilliot [31], and Aigner
and Fromme [2], and since then has been intensively investigated by numerous authors
and under different names (e.g., hunter and rabbit game [28]). Cop and robber is a
pursuit-evasion game played on finite undirected graphs. Player cop C has one or
several cops who attempt to capture the robber R. At the beginning of the game,
C chooses at most k vertices at which to place his k cops (more than one cop can
be at a vertex) and then R occupies another vertex. Thereafter, the two sides move
alternatively, starting with C, where a move is to slide along an edge or to stay at
the same vertex, i.e., pass. Both players have full knowledge of the current positions
of their adversaries. The objective of C is to capture R, i.e., to have a cop at some
moment in time, or step, at the same vertex as the robber. The objective of R is to
continue evading the cop. A cop-win graph [2, 30, 31] is a graph in which a single cop
captures the robber after a finite number of moves from any possible initial position
of C and R. Denote by CW the set of all cop-win graphs. The cop-number of a graph
G, introduced by Aigner and Fromme [2], is the minimum number of cops necessary
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to capture the robber in G. Different combinatorial (lower and upper) bounds on the
cop number for different classes of graphs were given in [2, 5, 9, 17, 21, 24, 32, 33, 34]
(see [4] for a survey and the annotated bibliography [20]).

In this paper, we investigate cop-win graphs for two basic variants of the classical
cop and robber game (for continuous analogues of these games, see [20]). In the cop and
fast robber game, introduced by Fomin et al. [19] and further investigated in [3, 22],
the cop is moving at unit speed, while the speed of the robber is an integer s ≥ 1
or is unbounded (s ∈ N ∪ {∞}); i.e., at his turn, R moves along a path of length at
most s which does not contain vertices occupied by C. Let CWFR(s) denote the class
of all graphs in which a single cop having speed 1 captures a robber having speed s.
Obviously, CWFR(1) = CW . In a more general version, we will supposeRmoves with
speed s and C moves with speed s′ ≤ s (if s′ > s, then the cop can always capture the
robber by strictly decreasing at each move his distance to the robber). We will denote
the class of cop-win graphs for this version of the game by CWFR(s, s′). A witness
version of the cop and robber game was recently introduced by Clarke [18]. In this
game, the robber has unit speed and moves by having perfect information about cop
positions. On the other hand, the cop no longer has full information about the robber’s
position but receives it only occasionally, say, every k units of time, in which case,
we say that R is visible to C, otherwise, R is invisible (this kind of constraint occurs,
for instance, in the “Scotland Yard” game [13]). Following [18], we call a graph G k-
winnable if a single cop can guarantee a win with such witness information and denote
by CWW(k) the class of all k-winnable graphs. Notice that CWFR(s) ⊆ CWW(s)
because the first game can be viewed as a particular version of the second game in
which C moves only at the turns when he receives the information about R.

1.2. Cop-win graphs. Cop-win graphs (in CW) have been characterized by
Nowakowski and Winkler [30] and Quillot [32] (see also [2]) as dismantlable graphs.
Let G = (V,E) be a graph and u, v two vertices of G such that any neighbor of v
(including v itself) is also a neighbor of u. Then there is a retraction of G to G− {v}
mapping v to u. Following [26], we call this retraction a fold, and we say that v
is dominated by u. A graph G is dismantlable if it can be reduced, by a sequence
of folds, to a single vertex. In other words, an n-vertex graph G is dismantlable if
its vertices can be ordered v1, . . . , vn so that for each vertex vi, 1 ≤ i < n, there
exists another vertex vj with j > i, such that N1(vi) ∩ Xi ⊆ N1(vj), where Xi :=
{vi, vi+1, . . . , vn} and N1(v) denotes the closed neighborhood of v. For a simple proof
that dismantlable graphs are the cop-win graphs, see pp. 20 and 68 of the book [26].
An alternative (more algorithmic) proof of this result is given in [28]. Dismantlable
graphs include bridged graphs (graphs in which all isometric cycles have length 3)
and Helly graphs (absolute retracts) [7, 26] which occur in several contexts in discrete
mathematics. Apart from the cop and robber games, dismantlable graphs are used
to model physical processes like phase transition [12], while bridged graphs occur
as 1-skeletons of systolic complexes in the intrinsic geometry of simplicial complexes
[15, 25, 27]. Dismantlable graphs are closed under retracts and direct products, i.e.,
constitute a variety [30].

1.3. Our results. In this paper, we characterize the graphs of the class of graphs
CWFR(s, s′) for all speeds s, s′ in the same vein as cop-win graphs by using a specific
dismantling order. Our characterization allows us to decide in polynomial time if a
graph G belongs to any of considered classes CWFR(s, s′). In the particular case
s′ = 1, we show that CWFR(2) is exactly the well-known class of dually chordal
graphs. Then we show that the classes CWFR(s) coincide for all s ≥ 3 and that
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the graphs G of these classes have the following structure: the block-decomposition
of G can be rooted in such a way that any block has a dominating vertex and that
for each nonroot block, this dominating vertex can be chosen to be the articulation
point separating the block from the root. We also establish some connections between
the graphs of CWFR(s, s′) with s′ < s and Gromov’s hyperbolicity. More precisely,
we prove that any δ-hyperbolic graph belongs to the class CWFR(2r, r+ 2δ) for any
r > 0 and that, for any s ≥ 2s′, the graphs in CWFR(s, s′) are (s − 1)-hyperbolic.
We also establish that Helly graphs and bridged graphs belonging to CWFR(s, s′)
are s2-hyperbolic, and we conjecture that, in fact, all graphs of CWFR(s, s′), where
s′ < s, are δ-hyperbolic, where δ depends only of s.

In the second part of our paper, we characterize the graphs that are s-winnable for
all s (i.e., graphs in ∩s≥1CWW(s)) using a similar decomposition as for the graphs
from the classes CWFR(s), s ≥ 3. On the other hand, we show that for each s,
CWW(s) \ CWW(s + 1) is nonempty , contrary to the classes CWFR(s). We show
that all graphs of CWW(2), i.e., the 2-winnable graphs, have a special dismantling
order (called bidismantling), which, however, does not ensure that a graph belongs to
CWW(2). We present a stronger version of bidismantling and show that it is sufficient
for ensuring that a graph is 2-winnable. We extend bidismantling to any k ≥ 3 and
prove that for all odd k, bidismantling is sufficient to ensure that G ∈ CWW(k). We
also formulate several open questions.

1.4. Preliminaries. For a graph G = (V,E) and a subset X of its vertices,
G(X) is the subgraph of G induced by X. We will write G − {x} and G − {x, y}
instead of G(V \ {x}) and G(V \ {x, y}). The distance d(u, v) := dG(u, v) between
two vertices u and v of G is the length (number of edges) of a shortest (u, v)-path.
An induced subgraph H of G is isometric if the distance between any pair of vertices
in H is the same as that in G. The ball Nr(x) of center x and radius r ≥ 0 consists
of all vertices of G at distance at most r from x. In particular, the unit ball N1(x)
comprises x and the neighborhood N(x). The punctured ball Nr(x,G−{y}) of center
x, radius r, and puncture y is the set of all vertices of G which can be connected to
x by a path of length at most r avoiding the vertex y; i.e., this is the ball of radius
r centered at x in the graph G − {y}. A retraction ϕ of a graph H = (W,F ) is an
idempotent nonexpansive mapping of H into itself, that is, ϕ2 = ϕ : W → W with
d(ϕ(x), ϕ(y)) ≤ d(x, y) for all x, y ∈ W. The subgraph of H induced by the image of
H under ϕ is referred to as a retract of H.

A strategy for the cop is a function σ which takes as an input the first i moves of
both players and outputs the (i + 1)th move ci+1 of the cop. Note that a strategy is
defined independently of the initial position of the cop. A cop’s strategy σ is winning
if for any sequence of moves of the robber, the cop, following σ, captures the robber
after a finite sequence of moves. Note that if the cop has a winning strategy σ in
a graph G, then there exists a winning strategy σ′ for the cop that depends only
on the last positions of the two players (such a strategy is called positional); thus,
necessarily, σ′ is a memoryless strategy. This is because cop and robber games are
parity games (by considering the directed graph of configurations), and parity games
always admit positional strategies for the winning player [29]. A strategy for the cop is
called parsimonious if at his turn, the cop captures the robber (in one move) whenever
he can. For example, in the cop and fast robber game, in his move, the cop following
a parsimonious strategy always captures a robber located at distance at most s′ from
his current position. Clearly, in the games investigated in this paper, if the cop has
a (positional) winning strategy, then he also has a parsimonious (positional) winning
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strategy. An itinerary of the robber R is any sequence of admissible moves of R from
the beginning and until the eventual end of the game.

2. Cop-win graphs for game with fast robber: Class CWFR(s, s′). In
this section, first we characterize the graphs of CWFR(s, s′) via a specific dismantling
scheme, allowing for their recognition in polynomial time. Then we show that any
δ-hyperbolic graph belongs to the class CWFR(2r, r+2δ) for any r ≥ 1.We conjecture
that the converse is true, i.e., any graph from CWFR(s, s′) (s′ < s) is δ-hyperbolic
for some value of δ depending of s, and we confirm this conjecture in particular cases.

2.1. Graphs of CWFR(s, s′). For technical convenience, we will consider a
slightly more general version of the game: given a subset of vertices X of a graph
G = (V,E), the X-restricted game with cop and robber having speeds s′ and s,
respectively, is a variant in which C and R can pass through any vertex of G but can
stand only at vertices of X (i.e., the beginning and the end of each move are in X). A
subset of vertices X of a graph G = (V,E) is (s, s′)-winnable if the cop captures the
robber in the X-restricted game. We call a sequence of vertices Sr = (a1, . . . , ap, . . .)
of a graph G = (V,E) X-valid for a robber with speed s (respectively, for a cop
with speed s′) if, for any k, we have ak ∈ X and d(ak−1, ak) ≤ s (respectively,
d(ak−1, ak) ≤ s′). We will say that a subset of vertices X of a graph G = (V,E) is
(s, s′)-dismantlable if the vertices of X can be ordered v1, . . . , vm in such a way that
for each vertex vi, 1 ≤ i < m, there exists another vertex vj with j > i, such that
Ns(vi, G− {vj}) ∩Xi ⊆ Ns′(vj), where Xi := {vi, vi+1, . . . , vm}. A graph G = (V,E)
is (s, s′)-dismantlable if its vertex-set V is (s, s′)-dismantlable. In the following, we
say that a vertex vi is eliminated after (respectively, before) a vertex vj if i > j
(respectively, i < j). Additionally, if i < j and Ns(vi, G− {vj}) ∩Xi ⊆ Ns′(vj), then
we will say vi is eliminated by vj or that vj eliminates vi. Notice that a vertex vj
eliminating a given vertex vi is not necessarily unique.

Theorem 2.1. For any s, s′ ∈ N ∪ {∞}, s′ ≤ s, a graph G = (V,E) belongs to
the class CWFR(s, s′) iff G is (s, s′)-dismantlable.

Proof. First, suppose that G is (s, s′)-dismantlable, and let v1, . . . , vn be an (s, s′)-
dismantling ordering of G. By induction on n− i, we will show that for each set Xi =
{vi, . . . , vn} the cop captures the robber in the Xi-restricted game. This is obviously
true for Xn = {vn}. Suppose that our assertion is true for all sets Xn, . . . , Xi+1, and
we will show that it still holds for Xi. Let Ns(vi, G − {vj}) ∩ Xi ⊆ Ns′(vj) for a
vertex vj ∈ Xi. Consider a parsimonious positional winning strategy σi+1 for the cop
in the Xi+1-restricted game. We build a parsimonious winning strategy σi for the
cop in the Xi-restricted game: the intuitive idea is that if the cop sees the robber at
vi, he plays as in the Xi+1-restricted game when the robber is in vj . Let σi be the
following strategy for the Xi-restricted game: for any positions c ∈ Xi of the cop and
r ∈ Xi of the robber, set σi(c, r) = r if d(c, r) ≤ s′, otherwise σi(c, r) = σi+1(c, r) if
c, r 
= vi, σi(c, vi) = σi+1(c, vj) if c /∈ {vi, vj}, and σi(vi, r) = vj if r 
= vi (in fact,
if the cop plays σi, he will never move to vi except to capture the robber there). By
construction, σi is parsimonious; in particular, σi(vj , vi) = vi, because d(vi, vj) ≤ s′.
We now prove that σi is winning.

Consider any Xi-valid sequence Sr = (r1, . . . , rp, . . .) of moves of the robber and
any itinerary (π1, . . . , πp, . . .) of R extending Sr, where πp is a simple path of length
at most s from rp to rp+1 along which the robber moves. Let S′

r = (r′1, . . . r
′
p, . . .) be

the sequence obtained by setting r′k = rk if rk 
= vi and r′k = vj if rk = vi. For each
p, set π′

p = πp if vi /∈ {rp, rp+1}. If vi = rp+1 (resp., vi = rp ), set π′
p to be a shortest

path from rp to vj (resp., from vj to rp+1) if πp does not contain vj and set π′
p to be
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the subpath of πp between rp and vj (resp., between vj and rp+1) otherwise. Since
Ns(vi, G− {vj}) ∩Xi ⊆ Ns′(vj), we infer that S′

r is an Xi+1-valid sequence of moves
for the robber. By the induction hypothesis, for any initial location of C in Xi+1, the
strategy σi+1 allows the cop to capture the robber which moves according to S′

r in
the Xi+1-restricted game. Let c′m+1 be the position of the cop after his last move and
S′
c = (c′1, . . . , c

′
m+1) be the sequence of positions of the cop in the Xi+1-restricted

game against S′
r using σi+1. Let Sc = (c1, . . . , cp, . . .) be the sequence of positions of

the cop in the Xi-restricted game against Sr using σi. From the definition of S′
r and

σi, Sc and S′
c coincide at least until step m, i.e., c′k = ck for k = 1, . . . ,m. Moreover,

if c′m+1 
= cm+1, then cm+1 = rm = vi and c′m+1 = r′m = vj . In the Xi+1-restricted
version of the game, the robber is captured either (i) because after his last move, his
position r′m is at distance at most s′ from cop’s current position c′m or (ii) because
his itinerary π′

m from r′m to r′m+1 passes via c′m+1.
In case (i), since d(r′m, c′m) ≤ s′ and the strategy σi+1 is parsimonious, we conclude

that c′m+1 = r′m. If c′m+1 = r′m 
= vj , then from the definition of S′
r and σi, we conclude

that cm+1 = c′m+1 = r′m = rm, whence cm+1 = rm and C captures R using σi. Now
suppose that c′m+1 = r′m = vj . If rm = vj , then d(cm, rm) ≤ s′ because cm = c′m, and
thus C captures R at vj using σi. On the other hand, if rm = vi, either cm+1 = vi
and we are done, or cm+1 = vj and since Ns(vi, G−{vj})∩Xi ⊆ Ns′(vj), the robber
is captured in the next move of the cop, i.e., cm+2 = rm+1 holds.

In case (ii), either the path π′
m from r′m to r′m+1 is a subpath of πm or vi ∈

{rm, rm+1} and πm does not go via vj . In the first case, note that cm+1 = c′m+1,
otherwise cm+1 = vi = rm by construction of σi, and thus the robber has been
captured before. Therefore the itinerary πm of the robber in the Xi-game traverses
the position cm+1 of the cop and we are done. Now suppose that πm does not go
via vj and vi ∈ {rm, rm+1}. Note that in this case, cm+1 = c′m+1 holds; otherwise,
c′m+1 = r′m = vj and cm+1 = rm = vi, and therefore the robber is caught at step
m + 1. If cm+1 belongs to πm, then we are done as in the first case. So suppose
that cm+1 /∈ πm. If rm+1 = vi, then rm ∈ Ns(vi, G − {vj}) ⊆ Ns′(vj). Since, π

′
m

is a shortest path and c′m+1 belongs to this path, d(c′m+1, vj) ≤ s′, and thus either
cm+2 = vi = rm+1 if d(c′m+1, vi) ≤ s′, or cm+2 = vj since σi+1 is parsimonious.
In the latter case, since Ns(vi, G − {vj}) ⊆ Ns′(vj), rm+1 = vi, and cm+2 = vj ,
the robber will be captured in the next move. Finally, suppose that rm = vi. Then
r′m = vj . Since πm is a path of length at most s avoiding vj , we conclude that
rm+1 ∈ Ns(vi, G − {vj}) ⊆ Ns′(vj). Since π′

m is a shortest path from vj to rm+1

containing the vertex c′m+1 = cm+1, we have d(cm+1, rm+1) ≤ d(vj , rm+1) ≤ s′.
Therefore the cop captures the robber in rm+1 in his next move, i.e., cm+2 = rm+1.
This shows that an (s, s′)-dismantlable graph G belongs to CWFR(s, s′).

Conversely, suppose that for an X-restricted game played on a graph G = (V,E)
there is a positional winning strategy σ for the cop. We assert that X is (s, s′)-
dismantlable. This is obviously true if X contains a vertex y such that d(y, x) ≤ s′

for any x ∈ X. So suppose that X does not contain such a vertex y. Consider an
X-valid sequence of moves of the robber having a maximum number of steps before
the capture of the robber. Let u ∈ X be the position occupied by the cop before the
capture of R, and let v ∈ X be the position of the robber at this step. Since wherever
the robber moved next in X (including remaining in v or passing via u), the cop would
capture him, necessarily Ns(v,G− {u}) ∩X ⊆ Ns′(u) holds. Set X

′ := X \ {v}.
We assert that X ′ is (s, s′)-winnable as well. In this proof, we use a strategy that

is not positional but uses one bit of memory. A strategy using one-bit memory can
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be presented as follows: it is a function which takes as input the current positions
of the two players and a boolean (the current value of the memory) and that outputs
the next position of the cop and a boolean (the new value of the memory). Using the
positional winning strategy σ, we define σ′(c, r,m) for any positions c ∈ X ′ of the
cop and r ∈ X ′ of the robber and for any value of the memory m ∈ {0, 1}. The
intuitive idea for defining σ′ is that the cop plays using σ except when he is in u
and his memory contains 1; in this case, he uses σ as if he was in v. If m = 0 or
c 
= u, then we distinguish two cases: if σ(c, r) = v, then σ′(c, r,m) = (u, 1) (this is
a valid move since Ns′(v) ∩ X ⊆ Ns′(u)) and σ′(c, r,m) = (σ(c, r), 0) otherwise. If
m = 1 and c = u, we distinguish two cases: if σ(v, r) = v, then σ′(u, r, 1) = (u, 1) and
σ′(u, r, 1) = (σ(v, r), 0) otherwise (this is a valid move since Ns′(v)∩X ⊆ Ns′(u)). Let
Sr = (r1, . . . , rp, . . .) be any X ′-valid sequence of moves of the robber. Since X ′ ⊂ X,
Sr is also an X-valid sequence of moves of the robber. Let Sc := (c1, . . . , cp, . . .) be
the corresponding X-valid sequence of moves of the cop following σ against Sr in X ,
and let S′

c = (c′1, . . . , c′p, . . .) be the X ′-valid sequence of moves of the cop following
σ′ against Sr. Note that the sequences of moves Sc and S′

c differ only if ck = v and
c′k = u. Finally, since the cop follows a winning strategy for X, there is a step j such
that cj = rj ∈ X \ {v} (note that rj 
= v because we supposed that Sr ⊆ X ′). Since
cj 
= v, we also have c′j = rj , thus C captures R in the X ′-restricted game. Starting
from a positional strategy for the X-restricted game, we have constructed a winning
strategy using memory for the X ′-restricted game. As mentioned in the introduc-
tion, it implies that there exists a positional winning strategy for the X ′-restricted
game.

Applying induction on the number of vertices of the cop-winning set X, we con-
clude that X is (s, s′)-dismantlable. Applying this assertion to the vertex set V of
cop-win graph G = (V,E) from the class CWFR(s, s′), we will conclude that G is
(s, s′)-dismantlable.

Corollary 2.2. Given a graph G = (V,E) and the integers s, s′ ∈ N ∪ {∞},
s′ ≤ s, one can recognize in polynomial time if G belongs to CWFR(s, s′).

Proof. By Theorem 2.1, G ∈ CWFR(s, s′) iff G is (s, s′)-dismantlable. Moreover,
from the last part of the proof of Theorem 2.1 we conclude that if a set X is (s, s′)-
winnable and u, v ∈ X such that Ns(v,G − {u}) ∩ X ⊆ Ns′(u) holds, then the set
X ′ = X \ {v} is (s, s′)-winnable as well. Therefore it suffices to run the following
algorithm. Start with X := V and as long as possible find in X two vertices u, v
satisfying the inclusion Ns(v,G − {u}) ∩ X ⊆ Ns′(u), and set X := X \ {v}. If the
algorithm ends up with a set X containing at least two vertices, then G is not (s, s′)-
winnable, otherwise if X contains a single vertex, then G is (s, s′)-dismantlable, and
therefore G ∈ CWFR(s, s′).

2.2. Graphs of CWFR(s, s′) and hyperbolicity. Introduced by Gromov
[23], δ-hyperbolicity of a metric space measures, to some extent, the deviation of a
metric from a tree metric. A graph G is δ-hyperbolic if for any four vertices u, v, x, y
of G, the two larger of the three distance sums d(u, v) + d(x, y), d(u, x) + d(v, y),
d(u, y) + d(v, x) differ by at most 2δ ≥ 0. Every 4-point metric d has a canonical
representation in the rectilinear plane as illustrated in Figure 2.1(a). The three dis-
tance sums are ordered from small to large, thus implying ξ ≤ η. Then η is half the
difference of the largest and the smallest sum, while ξ is half the largest minus the
medium sum. Hence, a graph G is δ-hyperbolic iff ξ does not exceed δ for any four ver-
tices u, v, w, x of G. Many classes of graphs are known to have bounded hyperbolicity
[7, 16]. Our next result, based on Theorem 2.1 and a result of [16], establishes that
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Fig. 2.1. (a) Realization of a 4-point metric in the rectilinear plane. (b) Proof of Proposition 2.7
(case of bridged graphs).

in a δ-hyperbolic graph a “slow” cop captures a faster robber with s′ > s/2 + 2δ (in
the same vein, Benjamini [8] showed that in the competition of two growing clusters
in a δ-hyperbolic graph, one growing faster than the other, the faster cluster does not
necessarily surround the slower one).

Proposition 2.3. Given r ≥ 2δ ≥ 0, any δ-hyperbolic graph G = (V,E) is
(2r, r + 2δ)-dismantlable, and therefore G ∈ CWFR(2r, r + 2δ).

Proof. The second assertion follows from Theorem 2.1. To prove the (2r, r + 2δ)-
dismantlability of G, we will employ Lemma 2 of [16]. According to this result, in a
δ-hyperbolic graph G for any subset of vertices X there exist two vertices x ∈ X and
c ∈ V such that d(c, y) ≤ r + 2δ for any vertex y ∈ X ∩ N2r(x), i.e., N2r(x) ∩ X ⊆
Nr+2δ(c). The proof of [16] shows that the vertices x and c can be selected in the
following way: pick any vertex z of G as a basepoint, construct a breadth-first search
tree T of G rooted at z, and then pick x to be the furthest from z vertex of X and c to
be vertex located at distance r+2δ from x on the unique path between x and z in T.
Using this result, we will establish a slightly stronger version of dismantlability of a δ-
hyperbolic graph G, in which the inclusion Ns(vi, G−{vj})∩Xi ⊆ Ns′(vj) is replaced
by Ns(vi) ∩ Xi ⊆ Ns′(vj) with s := 2r and s′ := r + 2δ. We recursively construct
the ordering of V . By a previous result, there exist two vertices v1 ∈ X1 := V and
c ∈ X2 := V \ {v1} such that N2r(v1) ∩ X1 ⊆ Nr+2δ(c). At step i ≥ 1, suppose by
the induction hypothesis that V is the disjoint union of the sets Vi = {v1, . . . , vi}
and Xi+1 = V \ Vi, so that, for any j ≤ i, there exists a vertex c ∈ Xj+1 such that
N2r(vj) ∩Xj ⊆ Nr+2δ(c) with Xj = {vj, . . . , vi} ∪Xi+1. We assert that this ordering
can be extended. Applying the previous result to the set X := Xi+1, we can define
two vertices vi+1 ∈ Xi+1 and c 
= vi+1 such that N2r(vi+1) ∩Xi+1 ⊆ Nr+2δ(c). The
choice of the vertices x ∈ X and c ∈ V provided by [16] and the definition of the sets
X1, X2, . . . ensure that if a vertex of G is closer to the root than another vertex, then
the first vertex will be labeled later than the second one. Since c is closer to z than
vi+1, necessarily c belongs to the set Xi+1 \ {vi+1}.

Dismantlable graphs do not have bounded hyperbolicity because they are univer-
sal in the following sense. As we noticed in the introduction, any finite Helly graph is
dismantlable. On the other hand, it is well known that an arbitrary connected graph
can be isometrically embedded into a Helly graph (see, for example, [7, 31]). However,
dismantlable graphs without some short induced cycles are 1-hyperbolic.

Corollary 2.4. Any dismantlable graph G = (V,E) without induced 4-,5-, and
6-cycles is 1-hyperbolic, and therefore G ∈ CWFR(2r, r + 2) for any r > 0.
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Proof. A dismantlable graph G not containing induced 4- and 5-cycles does not
contain 4-wheels and 5-wheels as well (a k-wheel is a cycle of length k plus a vertex
adjacent to all vertices of this cycle); therefore G is bridged by a result of [1]. Since
G does not contain 6-wheels as well, G is 1-hyperbolic by Proposition 11 of [16]. The
second assertion immediately follows from Proposition 2.3.

Open question 1. Is it true that the converse of Proposition 2.3 holds? More
precisely, is it true that if G ∈ CWFR(s, s′) (s′ < s), then the graph G is δ(s)-
hyperbolic, where δ(s) depends only of s?

We give some evidences for this conjecture by showing that for s ≥ 2s′ all graphs
G ∈ CWFR(s, s′) are (s − 1)-hyperbolic. On the other hand, since CWFR(s, s′) ⊂
CWFR(s, s′ + 1), to answer our question for s′ < s < 2s′ it suffices to show its
truth for the particular case s′ = s − 1. We give a positive answer to our question
for Helly and bridged graphs by showing that if such a graph G belongs to the class
CWFR(s, s − 1), then G is s2-hyperbolic. In the following results, for an (s, s′)-
dismantling order v1, . . . , vn of a graph G ∈ CWFR(s, s′) and a vertex v of G, we
will denote by α(v) the rank of v in this order (i.e., α(v) = i if v = vi). For two
vertices u, v with α(u) < α(v) and a shortest (u, v)-path P (u, v), an s-net R(u, v) of
P (u, v) is a sequence (u = x0, x1, . . . , xk, xk+1 = v) of vertices of P (u, v) such that
d(xi, xi+1) = s for any i = 0, . . . , k − 1 and 0 < d(xk, xk+1) ≤ s.

Proposition 2.5. If G ∈ CWFR(s, s − 1) and u, v are two vertices of G such
that α(u) < α(v) and d(u, v) > s2, then for any shortest (u, v)-path P (u, v), the
vertex x1 of its s-net R(u, v) = (u = x0, x1, . . . , xk, xk+1 = v) satisfies the condition
α(u) < α(x1).

Proof. Suppose by way of contradiction that α(u) > α(x1). Let xi (1 ≤ i ≤ k)
be a vertex of R(u, v) having a locally minimal index α(xi), i.e., α(xi−1) > α(xi) <
α(xi+1). Let yi be a vertex eliminating xi in the (s, s − 1)-dominating order. We
assert that d(yi, xi−1) ≤ s− 1 and d(yi, xi+1) ≤ s− 1. Indeed, if yi does not belong to
the portion of the path P (u, v) comprised between xi−1 and xi+1, then xi−1, xi+1 ∈
Xα(xi) ∩ Ns(xi, G − {yi}), and therefore xi−1, xi+1 ∈ Ns−1(yi) by the dismantling
condition. Now suppose that yi belongs to one of the segments of P (u, v), say, to the
subpath between xi−1, xi. Since yi 
= xi, we conclude that d(xi−1, yi) ≤ s− 1. On the
other hand, since xi+1 ∈ Xα(xi) ∩Ns(xi, G− {yi}), by the dismantling condition we
conclude that d(yi, xi+1) ≤ s−1. Hence, indeed d(yi, xi−1) ≤ s−1, d(yi, xi+1) ≤ s−1,
whence d(xi−1, xi+1) ≤ 2s − 2. Since d(xi−1, xi+1) = 2s for any 1 ≤ i ≤ k − 1,
we conclude that i = k. Therefore the indices of the vertices of R(u, v) satisfy the
inequalities α(u) = α(x0) > · · · > α(xk−1) > α(xk) < α(xk+1) = α(v).

Denote by Rk the sequence of vertices (x0 = u, x1, . . . , xk−1, yk, xk+1 = v) ob-
tained from the s-net R(u, v) by replacing the vertex xk by yk. We say that Rk is
obtained from R(u, v) by an exchange. Call two consecutive vertices of Rk a link; Rk

has k−1 links of length s and two links of length at most s−1. If α(yk) < α(xk−1), then
we exchange yk in the same way as we did with xk. After several such exchanges, we
will obtain a new sequence (x0 = u, x1, . . . , xk−1, zk, v) (denote it also by Rk) having
k− 1 links of length s and two links of length ≤ s− 1, so that α(xk−1) < α(zk). Since
α(xk−2) > α(xk−1), using the (s, s− 1)-dismantling order we can exchange in Rk the
vertex xk−1 by a vertex yk−1 to get an ordered set (denote it by Rk−1) having first k−3
links of length s and last 3 links of length ≤ s − 1. Suppose that after several such
exchanges we obtained the ordered set Ri+1 = (u = x0, x1, . . . , xi, zi+1, . . . , zk, v),
having first i links of length s and last k + 1 − i links of length ≤ s − 1, and such
that xi is a local minimum of Ri+1 with respect to α. Now exchanging xi with a
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new vertex zi and then repeatedly exchanging each local minimum in the new part
of the current sequence, after a finite number of exchanges we will obtain a sequence
Ri = (u, x1, . . . , xi−1, z

′
i, . . . , z

′
k, v) with i−1 links of length s and k+2−i links of length

≤ s − 1 such that xi−1 is the unique local minimum of Ri. Therefore, after a finite
number of such exchanges we will obtain a sequence R1 = (u, z1, z2, . . . , zk, v) consist-
ing of k+1 links of length ≤ s−1 each and such that α(u) < α(zi) for any i = 1, . . . , k.
By the triangle inequality, d(u, v) ≤ d(u, z1)+d(z1, z2)+ · · ·+d(zk, v) ≤ (k+1)(s−1).
On the other hand, from the definition of R(u, v) we conclude that d(u, v) = ks+ γ,
where 0 < γ = d(xk, v) ≤ s. Hence (k + 1)(s − 1) ≥ ks + γ, yielding k ≤ s − γ − 1.
But then d(u, v) = ks + γ ≤ (s − γ − 1)s + γ = s2 − sγ − s + γ < s2, con-
trary to the assumption that d(u, v) ≥ s2. This contradiction shows that indeed
α(x1) > α(u).

We call a graph G ∈ CWFR(s, s− 1) (s, s− 1)∗-dismantlable if for any (s, s− 1)-
dismantling order v1, . . . vn of G, for each vertex vi, 1 ≤ i < n, there exists another
vertex vj adjacent to vi such that Ns(vi, G − {vj}) ∩ Xi ⊆ Ns−1(vj), where Xi :=
{vi, vi+1, . . . , vn} and Xn = {vn}. The difference between (s, s − 1)-dismantlability
and (s, s− 1)∗-dismantlability is that in the second case the vertex vj dominating vi
is necessarily adjacent to vi but not necessarily eliminated after vi.

Proposition 2.6. If G ∈ CWFR(s, s− 1) is (s, s− 1)∗-dismantlable, then G is
s2-hyperbolic.

Proof. Pick any quadruplet of vertices u, v, x, y of G, consider its representation
as in Figure 2.1(a) where ξ ≤ η, and proceed by induction on the total distance sum
S(u, v, x, y) = d(u, v) + d(u, x) + d(u, y) + d(v, x) + d(v, y) + d(x, y). From Figure
2.1(a) we immediately conclude that if one of the distances between the vertices
u, v, x, y is at most s2, then ξ ≤ s2 and we are done. So suppose that the distance
between any two vertices of our quadruplet is at least s2. Consider any (s, s − 1)-
dismantling order v1, . . . , vn of G and suppose that u is the vertex of our quadruplet
occurring first in this order. Pick three shortest paths P (u, v), P (u, x), and P (u, y)
between the vertex u and the three other vertices of the quadruplet. Denote by v1, x1,
and y1 the vertices of the paths P (u, v), P (u, x), and P (u, y), respectively, located at
distance s from u. From Proposition 2.5 we infer that u is eliminated before each of the
vertices v1, x1, y1. Let u

′ be a neighbor of u eliminating u in the (s, s−1)∗-dismantling
order associated with the (s, s− 1)-dismantling order v1, . . . , vn. From the (s, s− 1)∗-
dismantling condition we infer that each of the distances d(u′, v1), d(u′, x1), d(u

′, y1)
is at most s − 1. Since u is adjacent to u′ and u is at distance s from v1, x1, y1,
necessarily d(u′, v1), d(u′, x1), d(u

′, y1) are all equal to s− 1. Therefore, if we replace
in our quadruplet the vertex u by u′, we will obtain a quadruplet with a smaller total
distance sum: S(u′, v, x, y) = S(u, v, x, y)− 3. Therefore, by the induction hypothesis,
the two largest of the distance sums d(u′, v)+d(x, y), d(u′, x)+d(v, y), d(u′, y)+d(v, x)
differ by at most 2s2. On the other hand, d(u, v) + d(x, y) = d(u′, v) + d(x, y) + 1,
d(u, x) + d(v, y) = d(u′, x) + d(v, y) + 1, and d(u, y) + d(v, x) = d(u′, y) + d(v, x) + 1,
whence the two largest distance sums of the quadruplet u, v, x, y also differ by at most
2s2. Hence G is s2-hyperbolic.

A graph G is called a Helly graph if its family of balls satisfies the Helly property:
any collection of pairwise intersecting balls has a common vertex. A graph G is called
a bridged graph if all isometric cycles of G have length three. Equivalently, G is a
bridged graph if all balls around convex sets are convex (a subset S of vertices is
convex if together with any two vertices u, v, the set S contains the interval I(u, v) =
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{x ∈ V : d(u, v) = d(u, x) + d(x, v)} between u and v). For a comprehensive survey of
results and bibliography on Helly and bridged graphs, see [7].

Proposition 2.7. If G ∈ CWFR(s, s− 1) is a Helly or a bridged graph, then G
is (s, s− 1)∗-dismantlable, and therefore G is s2-hyperbolic.

Proof. The second assertion immediately follows from Proposition 2.6. Thus, we
need only to prove that any Helly or bridged graph in CWFR(s, s− 1) is (s, s− 1)∗-
dismantlable. First, let G be an (s, s − 1)-dismantlable Helly graph. Let vi be the
ith vertex in an (s, s − 1)-dismantling order, and let yi be a vertex eliminating vi.
Suppose that k := d(vi, yi) ≥ 2. We assert that we can always eliminate vi with a
vertex y′i adjacent to yi and located at distance k − 1 from vi. Then repeating the
same reasoning with y′i instead of yi, we will eventually arrive at a vertex of I(vi, yi)
adjacent to vi which still eliminates vi. Set A := (Xi ∩ Ns(vi)) \ {vi, yi}. For each
vertex x ∈ A, consider the ball Ns−1(x) of radius s − 1 centered at x. Consider also
the balls Nk−1(vi) and N1(yi). We assert that the balls of the resulting collection
pairwise intersect. Indeed, any two balls centered at vertices of A intersect in yi. The
ball N1(yi) intersects any ball centered at A in yi. The ball Nk−1(vi) intersects any
ball centered at a vertex x ∈ A because d(vi, x) ≤ s ≤ k− 1+ s− 1. Finally, Nk−1(vi)
and N1(yi) intersect because d(vi, yi) = k = k−1+1. By the Helly property, the balls
of this collection intersect in a vertex y′i. Since y′i is at distance at most k − 1 from
vi and at distance at most 1 from yi, from the equality d(vi, yi) = k we immediately
deduce that y′i is a neighbor of yi located at distance k − 1 from vi. This establishes
the (s, s− 1)∗-dismantling property for Helly graphs in CWFR(s, s− 1).

Now suppose that G is a bridged graph, and let the vertices vi, yi and the set
A be defined as in the previous case. Since G is bridged, the convexity of the ball
Nk−1(vi) implies that the set C of neighbors of yi in the interval I(vi, yi) induces a
complete subgraph. Pick any vertex x ∈ A. Clearly, d(x, yi) ≤ s− 1 and d(x, vi) ≤ s.
If d(x, vi) ≤ s− 1, then vi, yi ∈ Ns−1(x), and from the convexity of the ball Ns−1(x)
we conclude that I(vi, yi) ⊂ Ns−1(x). Hence, in this case, d(x, y) ≤ s − 1 for any
y ∈ I(vi, yi), in particular, for any vertex of C. Analogously, if d(x, yi) < s− 1, then
d(x, y) ≤ s−1 for any vertex y ∈ C. Therefore the choice of the vertex y′i in C depends
only of the vertices of the set A0 = {x ∈ A : d(x, vi) = s and d(x, yi) = s− 1}.

Pick any vertex x ∈ A0. If I(x, yi) ∩ I(yi, vi) 
= {yi}, then yi has a neighbor y′ in
this intersection located at distance s − 2 from x. Since y′ ∈ C and C is a complete
subgraph, then d(y, x) ≤ s − 1 for any y ∈ C. Therefore we can discard all such
vertices of A0 from our future analysis and suppose without loss of generality that
I(x, yi)∩I(yi, vi) = {yi} for any x ∈ A0. For x ∈ A0, let x0 be a furthest from x vertex
of I(x, yi) ∩ I(x, vi). Let v0 be a furthest from vi vertex of I(vi, x0) ∩ I(vi, yi). Since
I(x, yi)∩ I(yi, vi) = {yi} and G is bridged, the vertices yi, x0, v0 define an equilateral
metric triangle sensu [6, 7]: d(yi, x0) = d(x0, v0) = d(v0, yi) =: m. Moreover, any
vertex of I(v0, yi) is located at distance m from x0 and therefore at distance s−1 from
x, showing, in particular, that Ns−1(x) ∩ C 
= ∅ for any x ∈ A0. From the definition
of x0 and v0 we conclude that m+ d(x0, x) = s− 1, d(x, x0) +m+ d(v0, vi) = s, and
d(vi, v0) +m ≤ s− 1. Whence d(vi, v0) = 1, yielding d(vi, yi) = m+ 1.

Pick in C a vertex y belonging to a maximum number of balls Ns−1(x) centered
at x ∈ A0. Suppose by way of contradiction that A0 contains a vertex x′ such that
y /∈ Ns−1(x

′) (for an illustration, see Figure 2.1(b)). Since d(x′, yi) = s − 1 and y is
adjacent to yi, we have d(x′, y) = s. Let y′ be a vertex of C belonging to Ns−1(x

′)
(such a vertex y′ exists because of the remark in above paragraph). Let v′0 be the
neighbor of vi defined with respect to x′ in the same way as v0 was defined for x.
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Then all vertices of I(v′0, y
′) are located at distance s−1 from x′. We can suppose that

there exists a vertex x ∈ A0 such that y ∈ Ns−1(x) but y′ /∈ Ns−1(x), otherwise we
will obtain a contradiction with the choice of y. Since the balls Ns−1(x) and Ns−1(x

′)
are convex, the intervals I(v0, yi) and I(v′0, yi) belong to these balls, respectively,
whence d(v0, y) = d(v′0, y

′) = m− 1 but d(v0, y
′) = d(v′0, y) = m. Let z be a neighbor

of y in I(v0, y). Since z, y′ ∈ I(y, v′0) and G is bridged, the vertices z and y′ are
adjacent. Hence y′ ∈ I(v0, yi), yielding d(x, y′) = s − 1, contrary to our assumption
that y′ /∈ Ns−1(x). This contradiction shows that C contains a vertex belonging to all
balls Ns−1(x) centered at vertices of A0, thus establishing the (s, s− 1)∗-dismantling
property for bridged graphs in CWFR(s, s− 1).

Proposition 2.8. If s ≥ 2s′, then any graph G of CWFR(s, s′) is (s − 1)-
hyperbolic.

Proof. First we prove that if d(u, v) ≥ s and α(u) < α(v), then the vertex x1 of the
s-net R(u, v) of any shortest (u, v)-path satisfies the inequality α(x1) > α(u). Suppose
by way of contradiction that α(u) > α(x1). Then as in proof of Proposition 2.5 we
conclude that xk is the unique local minimum of α on R(u, v) : α(xk−1) > α(xk) <
α(xk+1). Let yk be a vertex eliminating xk in the (s, s′)-dominating order. If yk does
not belong to the segment of P (u, v) between xk−1 and xk, then d(xk−1, xk+1) ≤
d(xk−1, yk) + d(yk, xk+1) ≤ 2s′, contrary to the assumption that d(xk−1, xk+1) > s ≥
2s′. So yk belongs to the subpath of P (u, v) between xk−1 and xk+1. If yk belongs to
the subpath comprised between xk and xk+1, then the dismantling condition implies
that d(yk, xk−1) ≤ s′, which is impossible because d(yk, xk−1) = d(yk, xk) + s > 2s′.
The same contradiction is obtained if yk belongs to the second half of the subpath
between xk−1 and xk. Finally, if yk belongs to the first half of this subpath, then
d(yk, xk+1) ≤ s′ by the dismantling condition, contradicting the fact that the location
of yk on this subpath of P (u, v) implies that d(yk, xk+1) > s′. This shows that indeed
α(x1) > α(u).

To establish (s− 1)-hyperbolicity of G, as in the proof of Proposition 2.6, we pick
any quadruplet of vertices u, v, x, y of G and proceed by induction on the total distance
sum S(u, v, x, y) = d(u, v)+d(u, x)+d(u, y)+d(v, x)+d(v, y)+d(x, y). Again, we can
suppose that the distance between any two vertices of this quadruplet is at least s,
otherwise we are done. Let u be the vertex of our quadruplet occurring first in some
(s, s′)-dismantling order of G. Pick three shortest paths P (u, v), P (u, x), and P (u, y)
and denote by v1, x1, and y1 their respective vertices located at distance s from u. From
the first part of our proof we infer that u is eliminated before v1, x1, and y1. Let u

′ be a
vertex eliminating u. From the (s, s′)-dismantling condition we infer that d(u, u′) ≤ s′.
Moreover, either d(u′, v1) ≤ s′ or v1 /∈ Ns(u,G − {u′}). Since d(u, v1) = s ≥ 2s′, in
both cases we conclude that u′ belongs to a shortest (u, v1)-path of G. Analogously, we
conclude that u′ lie on a shortest (u, x1)-path and on a shortest (u, y1)-path. Therefore,
if we replace in our quadruplet u by u′, we will get a quadruplet with total distance sum
S(u′, v, x, y) = S(u, v, x, y) − 3d(u, u′) < S(u, v, x, y). By the induction hypothesis,
the two largest distance sums of this quadruplet differ by at most 2(s − 1). On the
other hand, since d(u, v) + d(x, y) = d(u′, v) + d(x, y) + d(u, u′), d(u, x) + d(v, y) =
d(u′, x) + d(v, y) + d(u, u′) and d(u, y) + d(v, x) = d(u′, y) + d(v, x) + d(u, u′), the two
largest distance sums of the quadruplet u, v, x, y also differ by at most 2(s−1). Hence
G is (s− 1)-hyperbolic.

3. Cop-win graphs for game with fast robber: Class CWFR(s). In this
section, we specify the dismantling scheme provided by Theorem 2.1 in order to char-
acterize the graphs in which one cop with speed 1 captures a robber with speed s ≥ 2.
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First we show that the graphs from CWFR(2) are precisely the dually chordal graphs
[11]. Then we show that for s ≥ 3 the classes CWFR(s) coincide with CWFR(∞),
and we provide a structural characterization of these graphs.

3.1. CWFR(2) and dually chordal graphs. We start by showing that when
s′ = 1 and s ≥ 1, then the dismantling order in Theorem 2.1 can be defined using the
subgraphs Gi = G(Xi).

Proposition 3.1. A graph G is (s, 1)-dismantlable and can be ordered v1, . . . , vn
in such a way that for each vertex vi 
= vn there exists a vertex vj , j > i, with
Ns(vi, Gi − {vj}) ⊆ N1(vj , Gi).

Proof. First, note that for any i ≤ j, N1(vj , G)∩Xi = N1(vj , Gi). Thus, if a graph
G is (s, 1)-dismantlable, then any (s, 1)-dismantling order satisfies the requirement
Ns(vi, Gi−{vj}) ⊆ N1(vj , Gi). Conversely, consider an order v1, . . . , vn on the vertices
of G satisfying this condition. If s = 1, then N1(vi, Gi−{vj}) = N1(vi, G−{vj})∩Xi,
and thus our assertion is obviously true. We now suppose that s ≥ 2. By induction
on i, we will show that Ns(vi, G− {vj}) ∩Xi ⊆ N1(vj). For i = 1, Gi = G and thus
the property holds. Consider i such that for any i′ < i, the property is satisfied. Pick
any vertex u ∈ Ns(vi, Gi − {vj}) ∩ Xi. If the distance in Gi − {vj} between vi and
u is at most s, then u ∈ Ns(vi, Gi − {vj}) ⊆ N1(vj) and we are done. Otherwise, it
means that dGi−{vj}(u, vi) > s while dG−{vj}(u, vi) ≤ s. Since the distance between
u and vi in Gk − {vj} can only increase with k, there exists an index i0 < i such
that the distance between vi and u in the graph Gi0 − {vj} is at most s and in the
graph Gi0+1 − {vj} is larger than s. Consider a shortest path π between vi and u in
Gi0 − {vj}. From the choice of i0, necessarily vi0 is a vertex of π. Since the length of
π is at most s, we deduce that dGi0

(u, vi0) ≤ s and dGi0
(vi, vi0) ≤ s. By the induction

hypothesis, there exists j0 > i0 such that Ns(vi0 , Gi0 − {vj0}) ∩ Xi0 ⊆ N1(vj0 ). If
j0 
= j, then vj0 cannot belong to π because otherwise vi0 is adjacent to vj0 and some
w ∈ N1(vj0 ) in π, contradicting the fact that π is a shortest path. Hence, if j0 
= j,
then vj0 /∈ V (π) and there exists a path (u, vj0 , vi) of length 2 between u and vi in
Gi0+1 − {vj}, a contradiction with the definition of i0. Hence j0 = j, and, by our
induction hypothesis, u ∈ Ns(vi0 , Gi0 − {vj})) ⊆ N1(vj), and we are done.

Analogously to Theorem 3 of Clarke [18] for the witness version of the game, it
can be easily shown that, for any s, the class CWFR(s) is closed under retracts.

Proposition 3.2. If G ∈ CWFR(s) and G′ is a retract of G, then G′ ∈
CWFR(s).

Recall that a graph G is called dually chordal [11] if its clique hypergraph or,
equivalently, its ball hypergraph (i.e., the hypergraphs whose hyperedges are, respec-
tively, the maximal cliques or the balls of G) is a hypertree; i.e., it satisfies the Helly
property and its line graph is chordal (see Berge’s book on hypergraphs [10] for these
two definitions). Dually chordal graphs are equivalently defined as the graphs G hav-
ing a spanning tree T such that any maximal clique or any ball of G induces a subtree
of T. Finally, dually chordal graphs are exactly the graphs G = (V,E) admitting
a maximum neighborhood ordering (mno) of its vertices. A vertex u ∈ N1(v) is a
maximum neighbor of v if for all w ∈ N1(v) the inclusion N1(w) ⊆ N1(u) holds. The
ordering {v1, . . . , vn} is an mno of G [11] if for all i < n, the vertex vi has a maximum
neighbor in the subgraph Gi induced by the vertices Xi = {vi, vi+1, . . . , vn}. Dually
chordal graphs comprise strongly chordal graphs, doubly chordal, and interval graphs
as subclasses and can be recognized in linear time. Any graph H can be transformed
into a dually chordal graph by adding a new vertex c adjacent to all vertices of H.
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Theorem 3.3. For a graph G = (V,E), the following conditions are equivalent:
(i) G ∈ CWFR(2); (ii) G is (2, 1)-dismantlable; (iii) G admits an mno ordering; (iv)
G is dually chordal.

Proof. Since CWFR(2) = CWFR(2, 1), the equivalence (i)⇔(ii) follows from
Theorem 2.1. The equivalence (iii)⇔(iv) is a result of [11]. Notice that u is a maximum
neighbor of v in G iff N2(v) = N1(u). Therefore, {v1, . . . , vn} is an mno of G iff for all
i < n, N2(vi, Gi) = N1(vj , Gi) for some vj , j > i. Hence any mno ordering is a (2, 1)-
dismantling ordering, establishing (iii)⇒(ii). Finally, by induction on the number of
vertices of G, we will show that any (2, 1)-dismantling ordering {v1, . . . , vn} of the
vertex set of G is an mno; thus (ii)⇒(iii). Suppose that N2(v1, G− {u}) ⊂ N1(u) for
some u := vj , j > 1. Then u is adjacent to v1 and to all neighbors of v1. Since for any
neighbor w 
= u of v1 the ballN1(w) is contained in the punctured ballN2(v1, G−{u}),
we conclude that N1(w) ⊆ N1(u); i.e., u is a maximum neighbor of v1. The graph G′

obtained from G by removing the vertex v1 is a retract and therefore an isometric
subgraph of G. Thus for any vertex vi, i > 1, by Proposition 3.1, the intersection of
a ball (or of a punctured ball) of G centered at vi with the set X2 = {v2, . . . , vn}
coincides with the corresponding ball (or punctured ball) of the graph G′ = G(X2)
centered at the same vertex vi. Therefore {v2, . . . , vn} is a (2, 1)-dismantling ordering
of the graph G′. By the induction assumption, {v2, . . . , vn} is an mno of G′. Since v1
has a maximum neighbor in {v2, . . . , vn}, we conclude that {v1, v2, . . . vn} is an mno
of G.

3.2. CWFR(k), k ≥ 3, and big brother graphs. A block of a graph G is
a maximal by inclusion vertex two-connected subgraph of G (possibly reduced to a
single edge). Two blocks of G are either disjoint or share a single vertex, called an
articulation point. Any graph G = (V,E) admits a block-decomposition in the form of
a rooted tree T : each vertex of T is a block of G, pick any block B1 as a root of T, label
it, and make it adjacent in T to all blocks intersecting it, then label those blocks and
make them adjacent to all nonlabeled blocks which intersect them, etc. A block B of
G is dominated if it contains a vertex u (called the big brother of B) which is adjacent
to all vertices of B. A graph G is a big brother graph if its block-decomposition can
be represented in the form of a rooted tree T is such a way that (1) each block of
G is dominated, and (2) for each block B distinct from the root B1, the articulation
point between B and its father-block dominates B. Equivalently, G is a big brother
graph if its blocks can be ordered B1, . . . , Br such that B1 is dominated and, for any
i > 1, the block Bi is a leaf in the block-decomposition of ∪j≤iBj and is dominated
by the articulation point connecting Bi to ∪j<iBj (we will call such a decomposition
a bb-decomposition of G); see, e.g., Figure 3.1(a).

Theorem 3.4. For a graph G = (V,E) the following conditions are equivalent:
(i) G ∈ CWFR(3); (i′) G is (3, 1)-dismantlable; (ii) G ∈ CWFR(∞); (ii′) G is
(∞, 1)-dismantlable; (iii) G is a big brother graph. In particular, the classes of graphs
CWFR(s), s ≥ 3, coincide.

Proof. The equivalences (i)⇔(i′) and (ii)⇔(ii′) are particular cases of Theorem 2.1.
Next we will establish (iii)⇒(i) and (ii), i.e., that any big brother graph G belongs
to CWFR(s) for all s ≥ 3. Let B1, . . . , Br be a bb-decomposition of G. We consider
the following strategy for the cop. At the beginning of the game, we locate the cop
at the big brother of the root-block B1. Now, at each subsequent step, the cop moves
to the neighbor of his current position that is closest to the position of the robber.
Notice the following invariant of the strategy: the position of the cop will always be
at the articulation point of a block B on the path of T between the previous block
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(a) (b)

Fig. 3.1. (a) A big brother graph. (b) A big two-brother graph.

hosting C and the current block hosting R. This means that since R cannot traverse
this articulation point without being captured, R is restricted to move only in the
union of blocks in the subtree rooted at B. Now if before the move of the cop C and
R occupy their positions in the same block, then C captures R in the next move.
Otherwise, the next move will increase the distance in T between the root and the
block hosting C. Therefore after at most a diameter of T rounds, R and C will be
located in the same block, and thus the cop captures the robber in the next move.
This shows that (iii)⇒(i) and (ii).

The remaining part of the proof is devoted to the implication (i) and (i′)⇒(iii). Let
G ∈ CWFR(3). Notice first that for any articulation point u of G and any connected
component C of G − {u}, the graph induced by C ∪ {u} also belongs to CWFR(3).
Indeed, G(C∪{u}) is a retract of G (this retraction is obtained by mapping all vertices
outside C to u), and CWFR(3) is closed under retracts by Proposition 3.2. To prove
that a graph G = (V,E) ∈ CWFR(3) is a big brother graph, we will proceed by
induction on the number of vertices of G. If G has one or two vertices, the result is
obviously true. For the inductive step, we distinguish two cases, depending if G is
two-connected or not.

Case 1. G is not two-connected. Since each block of G has fewer vertices than
G, by the induction hypothesis each block is a big brother graph. First suppose
that the block-decomposition of G has a leaf B such that the articulation point a
of B separating B from the rest of G is a big brother of B. Let G′ be the sub-
graph of G induced by all blocks of G except B, i.e., G′ = G(V \ (B \ {a})). Since
G′ ∈ CWFR(3) by what has been shown above, from the induction hypothesis we
infer that G′ is a big brother graph. Consequently, there exists a bb-decomposition
B1, . . . , Br of G′. Then B1, . . . , Br, B is a bb-decomposition of G, and thus G is a big
brother graph. Suppose now that for any leaf in the block-decomposition of G, the
articulation point of the corresponding block does not dominate it. Pick two leaves
B1 and B2 in the block-decomposition of G and consider their unique articulation
points a1 and a2 (ai disconnects Bi from the rest of G). We claim that in this case,
a robber that moves at speed 3 can always escape, which will contradict the assump-
tion that G ∈ CWFR(3). Let bi be the dominating vertex of the block Bi, i = 1, 2
(by assumption, bi 
= ai). Consider now a vertex ci ∈ Bi \ {bi} which can be con-
nected with ai by a 2-path (ci, gi, ai) avoiding bi (such a vertex exists because Bi

is two-connected and, by assumption, ai is not a dominating vertex of Bi). Let π
be a shortest path from a1 to a2 in G, and let h1 and h2 be the neighbors in π
of a1 and a2, respectively. Note that hi does not belong to Bi; thus ai is the only
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neighbor of hi in Bi. We now describe a strategy that enables the robber to escape.
Initially, if the cop is not in B1, then the robber starts in c1; otherwise, he starts in
c2. Then the robber stays in ci, as long as the cop is at distance ≥ 2 from ci. When
the cop moves to a neighboring vertex of ci, then the robber goes to hi (either via
the path (ci, bi, ai, hi) or via the path (ci, gi, ai, hi)) and then, no matter how the
cop moves, he goes to c3−i using the shortest path π. Now notice that when R is
in hi, C is in Bi \ {ai}, and thus he cannot capture the robber. When the robber is
moving from hi to c3−i, he uses a shortest path π of G: the cop cannot capture him
either because he is initially at distance 2 from the robber and moves slower than the
robber. Hence, the cop cannot capture the robber, contrary to the assumption that
G ∈ CWFR(3).

Case 2. G is two-connected. We must show that G has a dominating vertex.
Consider a (3, 1)-dismantling order v1, . . . , vn of the vertices of G. Let u be a vertex
such thatN3(v1, G−{u}) ⊆ N1(u). Since u is a maximum neighbor of v1, the isometric
subgraph G′ := G(V \ {v1}) of G also belongs to CWFR(3) because v2, . . . , vn is a
(3, 1)-dismantling ordering of G′. By the induction hypothesis, G′ is a big brother
graph. Again, we distinguish two subcases, depending on the two-connectivity of G′.
First suppose that G′ is two-connected. Since G′ is a big brother graph, it contains
a dominating vertex t. If t is adjacent to v1, then t dominates G and we are done.
Otherwise, consider a neighbor w 
= u of v1. Any vertex x 
= u of G can be connected
to v1 by the path (v1, w, t, x) of length 3 avoiding u; thus x belongs to the punctured
ball N3(v1, G − {u}). As a consequence, x is a neighbor of u; thus u dominates G.
Now suppose that G′ is not two-connected. We assert that u is the only articulation
point of G′. Assume by way of contradiction that w 
= u is an articulation point
of G′, and let x and y be two vertices of G′ such that all paths connecting x to y
go through w. In G, x and y can be connected by two vertex-disjoint paths π1 and
π2. Assume without loss of generality that w /∈ π1. Since π1 cannot be a path of
G′, the vertex v1 belongs to π1. Let π1 = (x, x1, . . . , xk, v1, yl, . . . , y1). Since xk, yl ∈
N1(v1) ⊆ N3(v1, G − {u}) ∪ {u} ⊆ N1(u), necessarily xk, yl ∈ N1(u). If xk = u or
yl = u, then (x, x1, . . . , xk, yl, . . . , y1) is a path between x and y in G′ − {w}, which
is impossible. Thus u is different from xk and yl but adjacent to these vertices. But
then (x, x1, . . . , xk, u, yl, . . . , y1) is a path from x to y in G′ − {w}, leading again to
a contradiction. This shows that w cannot be an articulation point of G′. Since G′

is not two-connected, we conclude that u is the only articulation point of G′. By the
induction hypothesis, any block B of G′ is dominated by some vertex b. Suppose that
u does not dominate G′; for instance, u is not adjacent to any vertex t of B. Since u is
the unique articulation point of G′ but is not an articulation point of G, v1 necessarily
has a neighbor w 
= u in B. Hence, there is a path (v1, w, b, t) of length 3 in G− {u},
and thus t is a neighbor of u because t ∈ N3(v1, G−{u}) ⊆ N1(u). Thus u dominates
G′ = G − {v1}, and, since v1 ∈ N1(u), u dominates G as well. This concludes the
analysis of Case 2 and the proof of the theorem.

4. Cop-win graphs for game with witness: Class
⋂

k≥1 CWW(k). We
now investigate the structure of k-winnable graphs. In an analogy with big brother
graphs, we characterize here the graphs G that are k-winnable for all k ≥ 1, i.e., the
graphs from the intersection

⋂
k≥1 CWW(k).

4.1. Game with witness: Preliminaries. In the k-witness version of the
game, the cop first selects his initial position and then the robber selects his ini-
tial position which is visible to the cop. As in the classical cop and robber game, the
players move alternatively along an edge or pass. However, the robber is visible to the
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cop only every k moves. After having seen the robber, the cop decides a sequence of
his next k moves (the first move of such a sequence is called a visible move). The cop
captures the robber if they both occupy the same vertex at the same step (even if the
robber is invisible). In particular, the cop can capture the visible robber if after the
robber shows up, they occupy two adjacent vertices of the graph. Since we are looking
for winning strategies for the cop, we may assume that the robber knows the cop’s
strategy; i.e., after each visible move, the robber knows the next k − 1 moves of the
cop. In the k-witness version of the game, a strategy for the cop is a function σ which
takes as an input the first i visible positions of the robber and the first ik moves of
the cop and outputs the next k moves of the cop. A winning strategy is defined as
before, and in any k-winnable graph, the cop has a positional winning strategy. We
will call a phase of the game the movements of the two players comprised between
two consecutive visible moves. We will call the behavior of the cop during several con-
secutive moves of the same phase {a, b}-oscillating if his moves alternate between the
adjacent vertices a and b. In a k-winnable graph G, if σ is the cop’s winning strategy,
any itinerary Sr of the robber ends up in a vertex rp at which the robber is captured.
We will say that the itinerary Sr = (r1, . . . , rp) is maximal if (r1, . . . , rp−1) cannot
be extended to a longer itinerary for which the robber is not captured by the cop.
Notice that the last vertex rp in a maximal itinerary Sr corresponds to an invisible
move iff it is a leaf of G. Indeed, otherwise let rp−1 be the previous position of the
robber. If rp−1 
= rp, the robber could have stayed in rp−1 to avoid being captured.
Thus rp−1 = rp and if rp has at least two neighbors, the robber can safely move to
one of the neighbors of rp not occupied by the cop and survive for an extra unit of
time. We continue with two simple observations: the first shows that during a phase
an invisible robber can always safely move around a cycle, while the second shows
that a robber visiting one of the vertices a or b during one phase is always captured
by an {a, b}-oscillating cop.

Lemma 4.1. Suppose that in his move, the robber R occupies a vertex v of a cycle
C of a graph G and is not visible after this move. Then R has a move (either staying
at v or going to a neighbor of v) such that the cop does not capture the robber in his
next move.

Proof. Let u be a neighbor of v in C which is not occupied by the cop. Since the
robber will not be visible after his next move, the strategy of the cop is defined a
priori. Let z be the next vertex to be occupied by the cop. Then the robber can stay
at v if v 
= z or can move to u if u 
= z.

Lemma 4.2. If during one phase, the cop does {a, b}-oscillating moves and the
robber moves to the vertex a or b, then the robber is captured either immediately or in
the next move of the cop.

Proof. Suppose that R moves to a. If C is located at a, then R is captured
immediately. If C is located at b and this is not the last vertex of the phase, then C
will move to a and will capture there the robber. Finally, if a and b are the positions
of R and C at the end of the phase, then the robber will be visible at a and in the
next visible move of C from b to a, the robber will be caught at a.

4.2. On the inclusion of CWW(k + 1) in CWW(k). Clarke [18] noticed
that for any k ≥ 2, the inclusion CWFR(k) ⊆ CWW(k) holds. Contrary to the classes
considered in the previous section which collapses for k ≥ 3, we present now, for each
k, an example of a graph in CWW(k) \ CWW(k + 1).

Proposition 4.3. For any k ≥ 2, CWFR(k) is a proper subclass of CWW(k).
For any k ≥ 1, there exists a graph contained in CWW(k) \ CWW(k + 1).
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Proof. To show that CWFR(k) ⊆ CWW(k) (mentioned also in [18]), it suffices
to interpret the moves at speed k of the robber as if the cop moves only when the
robber is visible (i.e., each kth move). Now let S3 be the 3-sun (see Figure 4.1(a)).
Since no vertex of S3 has a maximum neighbor, the 3-sun is not dually chordal; thus
S3 /∈ CWFR(2) by Theorem 3.3, whence S3 is not a big brother graph. On the other
hand, S3 ∈ CWW(k) for any k ≥ 2. Indeed, initially the cop is placed at a vertex
u of degree 4. Then the robber shows himself at the unique vertex v which is not
adjacent to u. Let x and y be the two neighbors of v in S3. The strategy of the cop
consists in oscillating between x and y until the robber becomes visible again. Suppose
without loss of generality that the cop’s sequence of moves is x, y, x, y, . . . , y. Then
from Lemma 4.2 we infer that R is jammed at vertex v. At the end, when the robber
shows his position again, either he is at v or he moves to x. In both cases, he is caught
by C in the next move. This shows that CWFR(k) is a proper subclass of CWW(k).

yu

x v

x
u v

y

(a) (b)

Fig. 4.1. Two graphs in (a) CWW(k) \ CWFR(k), k ≥ 2, and (b) CWW(4) \ CWW(5).

Now we will establish the second assertion. Let k ≥ 1 and Gk be the graph defined
as follows. The vertex set of Gk is {x, y, u, v, u1, . . . , uk, v1, . . . , vk}. The vertex x is
adjacent to any vertex except v, while y is adjacent to any vertex except u. For any
i < k, the pairs {ui, ui+1}, {ui, vi+1}, {vi, vi+1}, {vi, ui+1} are edges of Gk. Finally, u
is adjacent to x, u1, and v1, while v is adjacent to y, uk, and vk (G4 is depicted in
Figure 4.1(b)). To prove that Gk ∈ CWW(k), consider the following strategy for one
cop. Initially, C occupies x. To avoid being caught immediately, R must show up at v.
The cop occupies alternatively x and y in such a way that after k moves he is at y (if k
is odd, then C passes his first move). Therefore, after k steps,R shows up at a vertex of
Nk(v,G−{x, y})∪{x} ⊆ N1(y), and in the next move the cop caught him. On the other
hand, we assert that in Gk a robber with witness k+1 can evade against any strategy
of the cop. Indeed, assume without loss of generality (in view of symmetry) that the
initial position of the cop belongs to the set L = {x, u, u1, . . . , u�k/2�, v1, . . . , v	k/2
}.
Then R chooses v (or v1 if k = 1 and C is occupying uk) as his initial position. Let z
be the vertex occupied by C after k+1 steps. If z ∈ L, then by Lemma 4.1 the robber
can move in the triangle {v, vk, y} in order to avoid the cop during the k + 1 steps
and to finish at a vertex of the triangle that is not adjacent to z. If z /∈ L, then the
robber uses the k + 1 steps to reach u (or u1 if k = 1 and z = v1). At any step, there
is some i ≤ k such that the two vertices ui and vi allow R to decrease his distance to
u (or to u1) by one; the robber chooses one of these vertices that is not occupied and
will not be occupied by the cop after his move.

Open question 2. Is it true that CWW(k + 1) ⊂ CWW(k)?

4.3.
⋂

k≥1 CWW(k) and big two-brother graphs. In an analogy to the big
brother graphs, a graph G is called a big two-brother graph if G can be represented
as an ordered union of subgraphs G1, . . . , Gr in the form of a tree T rooted at G1
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such that (1) G1 has a dominating vertex, and (2) any Gi, i > 1, contains one or
two adjacent vertices disconnecting Gi from its father and one of these two vertices
dominates Gi. Equivalently, G is a big two-brother graph if G can be represented as
a union of its subgraphs G1, . . . , Gr labeled in such a way that G1 has a dominating
vertex, and for any i > 1, either the subgraph Gi intersects ∪j<iGj in two adjacent
vertices xi, yi belonging to a common subgraph Gj , j < i, so that yi dominates Gi, or
Gi has a dominating vertex yi and intersects ∪j<iGj in a single vertex xi (that may
coincide with yi); we will call such a decomposition G1, . . . , Gr a btb-decomposition
of G (see Figure 3.1(b) for an example). The vertices yi and xi are the big and the
small brothers of Gi. Let CWW be the class of all big two-brother graphs. As for big
brother graphs, one can associate a rooted tree T with the decomposition G1, . . . , Gr

of a big two-brother graph G. Obviously any big brother graph G is a big two-brother
graph because the required union is provided by the block decomposition of G and
xi = yi is the articulation point of the block Gi = Bi relaying it with its father. The
2-trees and, more generally, the chordal graphs in which all minimal separators are
vertices or edges are examples of big two-brother graphs which are not big brother
graphs.

Theorem 4.4. A graph G = (V,E) is k-winnable for all k ≥ 1 iff G is a big
two-brother graph, i.e., CWW =

⋂
k≥1 CWW(k).

Proof. First we show that any big two-brother graphG is k-winnable for any k ≥ 1.
Let G1, . . . , Gr be a btb-decomposition of G. We consider the following strategy for C.
The cop starts the game in the big brother of the root graph G1, and, more generally,
at the beginning of each phase, we have the following property: C is located in the
big brother yi of some subgraph Gi such that R is located in a subgraph Gk that is a
descendent of Gi in the decomposition tree T of G. If Gi = Gk, then C will capture R
in the first move of the phase. Otherwise, let Gj be the son of Gi on the unique path
of T between Gi and Gk. If Gi and Gj intersect in an articulation point xj , then the
cop moves from yi to xj , stays there during k − 2 steps, and then, at the last step of
the phase, if xj is not the big brother yj of Gj , he moves to yj . If Gi and Gj intersect
in an edge xjyj where yj is the big brother of Gj , then the cop moves from yi to one
of the vertices xj , yj and then oscillate between xj and yj in such a way that when R
becomes visible again, C occupies the vertex yj (the decision to move first to xj or to
yj depends only on the parity of k). During this phase, the robber cannot leave the
subgraph induced by the descendants of Gj ; otherwise he has to go from Gj to Gi.
In the first case, the cop stays during the whole phase in the unique vertex xj which
cannot be traversed by the robber. In the second case, the cop oscillates between xj

and yj; therefore, by Lemma 4.2 the robber cannot traverse {xj, yj}. Therefore, after
this phase, the invariant is preserved and the distance in T between the root and the
subgraph Gj hosting the cop has strictly increased. Thus after at most diameter of T
phases, R and C will be located in the same subgraph Gk, and the cop captures the
robber.

Conversely, let G ∈ CWW(k) for any k ≥ 1. If G has a vertex z of degree 1,
then G′ = G − {z} is a retract of G; thus G′ ∈ CWW(k) for any k ≥ 1. Hence G′

has a btb-decomposition G1, . . . , Gr−1 by the induction hypothesis. If w is the unique
neighbor of z, then setting Gr to be the edge zw and yr = xr := w, we will conclude
that G is a big two-brother graph as well. So, we can suppose that G does not contain
vertices of degree 1. Since G ∈ CWW(n2), applying Proposition 4.5 below for k = n,
where n is the number of vertices of G, we deduce that G contains a vertex v and two
adjacent neighbors x, y of v such that Nn(v,G − {x, y}) ⊆ N1(y). This means that



COP AND ROBBER GAMES IN GRAPHS 351

the connected component C of G− {x, y} containing the vertex v is dominated by y.
The graph G′ := G(V \C) is a retract of G; thus by Theorem 3 of [18] G′ ∈ CWW(k)
for any k ≥ 1. By the induction assumption, either G′ is empty or G′ has a btb-
decomposition G1, . . . , Gr−1. If G

′ is empty, then, since y dominates C, we conclude
that G has a btb-decomposition consisting of a single subgraph. Otherwise, setting
Gr := G(C ∪ {x, y}), yr := y, and xr := x, one can easily see that G1, . . . , Gr−1, Gr

is a btb-decomposition of G.
Proposition 4.5. Let G ∈ CWW(k2) for k ≥ 1. If the minimum degree of

a vertex of G is at least 2, then G contains a vertex v and an edge xy such that
Nk(v,G− {x, y}) ⊆ N1(y).

Proof. If G contains a dominating vertex y, then the result follows by taking as x
any vertex of G different from y. Assume thus that G does not have any dominating
vertex. Consider a parsimonious winning strategy of the cop and suppose that the
robber uses a strategy to avoid being captured as long as possible. Since G does not
contain leaves, the robber is caught immediately after having been visible, i.e., at step
pk2+1. Since G does not have dominating vertices, the robber is visible at least twice,
i.e., p ≥ 1. Let y be the vertex occupied by the cop when the robber becomes visible
for the last time before his capture. Let v be the next-to-last visible vertex occupied
by the robber, i.e., his position at step (p−1)k2+1, and let c0 be the vertex occupied
by the cop at that moment. Finally, let Sp

c = (c0, c1, . . . , ck2 = y) be the sequence of
moves of the cop between the steps (p−1)k2+1 and pk2+1 (repetitions are allowed).
Note that v /∈ N1(c0), otherwise the robber would have been caught immediately at
step (p − 1)k2 + 1. We distinguish two cases depending on whether or not the cop
occupies y at least once every two consecutive steps.

Case 1. There exists an index (p− 1)k2+1 ≤ i < pk2− 1 such that y /∈ {ci, ci+1}.
Let i be the largest index satisfying the condition of Case 1 and set x := ci+1.
Claim 1. If G contains a cycle C and a vertex w ∈ C such that d(v, w) <

d(c1, w)− 1, then G− {x, y} has a connected component that is dominated by y.
Proof. Let w be a closest to v vertex satisfying the condition of the claim. We will

show that if the assertion of the claim is not satisfied, then there exists a strategy
allowing the robber to escape the cop during more steps, contradicting the choice of
the strategy of R. Suppose that at the beginning of the pth phase R moves from v to
w along a shortest (v, w)-path. Since d(v, w) < d(c1, w), R cannot be intercepted by
C during these moves. Suppose that the robber reaches the vertex w before the ith
step when the cop arrives at ci. Then by Lemma 4.1 R can safely move on C until C
reaches ci. Let z be the position of R when C reaches ci. Then z ∈ N1(y), otherwise
the robber could stay at z without being caught because starting with this step the
cop moves only on vertices of N1(y). Suppose that there exists a vertex t at distance
2 from y in G − {x}. Let r 
= x be a common neighbor of t and y. The following
sequence of moves is valid for the robber: when the cop is in ci, the robber goes from
z to y (or stays in y, if z = y); once the cop has moved to x = ci+1, the robber goes
from y to r; finally, once the cop has moved to y, the robber goes from r to t. After
this step, by definition of ci, the cop only stays in N1(y) and finishes in y. Hence,
the robber can remain in t and will not be captured the next time he shows up, a
contradiction. This concludes the proof of the claim.

If the vertex v belongs to a cycle C, then setting w := v and applying Claim
1 we conclude that y dominates the connected component of G − {x, y} containing
v, establishing the assertion of Proposition 4.5. So, suppose that v is an articulation
point of G not contained in a cycle. Since the minimum degree of G is at least 2,
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G− {v} has a connected component D that does not contain c0 (nor c1). Necessarily
D contains a cycle C, otherwise we will find in D a vertex of degree 1 in G. Since any
path from c1 to a vertex w of C passes via v and c1 is not adjacent to v, we obtain
d(v, w) < d(c1, w) − 1. The result then follows from the claim. This concludes the
analysis of Case 1.

Case 2. For any (p− 1)k2 ≤ i ≤ pk2, y ∈ {ci, ci+1}; i.e., C occupies y at least once
every 2 steps.

First, assume that there exists a vertex x (possibly x = y) and (p − 1)k2 ≤ i ≤
pk2 − k such that ci, . . . , ci+k ∈ {y, x}, i.e., that there are at least k consecutive steps
when the cop remains at x or y. Then we claim thatNk(v,G−{x, y}) ⊆ N1(y). Indeed,
pick z ∈ Nk(v,G − {x, y}), and let P = (v = p1, . . . , pk = z) be a shortest path in
G− {x, y} between v and z. Until the ith step of the phase, the robber may progress
“slowly” along P : either by staying at his current position or moving to the next
vertex of P toward z, depending on the moves of the cop. The cop starts oscillating
between x and y at step i. Then during the next k steps, the robber can follow P
until he reaches z (since the length of P is at most k). Therefore, if z is not a neighbor
of y, then the robber can remain at z until step k2p without being captured. Since
by our assumption the robber is caught at step k2p, necessarily z ∈ N1(y). Hence
Nk(v,G− {x, y}) ∈ N1(y), and the assertion of Proposition 4.5 holds.

Therefore, we may assume that between the steps (p − 1)k2 and pk2, for all k
consecutive steps, the cop occupies at least three distinct vertices (one of which is y).
We assert that Nk(v,G − {y}) ⊆ N1(y). Pick z ∈ Nk(v,G − {y}), and let P be a
shortest path between v and z in G − {y}. Then for any vertex w of P , among any
sequence of k moves of the cop, we can find three consecutive moves during which
the cop does not occupy w. Therefore, for any sequence of k consecutive steps the
robber can reduce by one his distance to z by moving on P toward z without being
captured. Hence, he will reach z before step pk2. If z is not adjacent to y, then staying
at z the robber will not be captured, a contradiction. This concludes the proofs of
Proposition 4.5 and Theorem 4.4.

5. Cop-win graphs for game with witness: Classes CWW(k). In this sec-
tion, we investigate the dismantling orders related to k-winnable graphs. We provide
a dismantling order which must be satisfied by all graphs of CWW(2). We show that
this order is not sufficient, but some of its reinforcement is. Then we continue with
similar results about k-winnable graphs for odd values of k ≥ 3.

5.1. Class CWW(2). We continue with the definition of a dismantling ordering
which seems to be intimately related with the witness variant of the cop and robber
game. Again, we will consider a slightly more general version of the game: given a
subset of vertices X of a graph G = (V,E), the X-restricted k-witness game of cop
and robber is a variant in which R can pass through any vertex of G, C can move only
inside X , and all visible positions of the robber are at vertices of X . Then X is called
k-winnable if for any starting positions of C and R, the cop wins in the X-restricted
variant of the k-witness version of the game. We will say that a subset of vertices X of
a graph G = (V,E) is k-bidismantlable if the vertices of X can be ordered v1, . . . , vm
in such a way that for each vertex vi, 1 ≤ i < m, there exist two adjacent or coinciding
vertices x, y with y = vj , x = v�, and j, 
 > i such that Nk(vi, G−{x, y})∩Xi ⊆ N1(y),
where Xi := {vi, vi+1, . . . , vm} (then we say that vi is eliminated by the couple x, y).
A graph G = (V,E) is k-bidismantlable if its vertex-set V is k-bidismantlable. In case
k = 2, the inclusion N2(vi, G − {x, y}) ∩ Xi ⊆ N1(y) can be equivalently written
as N2(vi, G − {x}) ∩Xi ⊆ N1(y). Any (k, 1)-dismantlable graph is k-bidismantlable,
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but the converse is not true: for any k ≥ 2, the 3-sun S3 presented in Figure 4.1
is k-bidismantlable but not (k, 1)-dismantlable. In some proofs, we will denote by
x(v), y(v) a couple of vertices eliminating a vertex v in a k-bidismantling order.

Proposition 5.1. Any graph G = (V,E) of CWW(2) is 2-bidismantlable.
Proof. Suppose that a subset X ⊆ V is 2-winnable and assume that there exists

an order u1, . . . u� on the vertices of V \ X such that for each 1 ≤ i ≤ 
, there
exist x(ui), y(ui) ∈ Xi+1 so that N2(ui, G − {x(ui), y(ui)}) ∩ Xi ⊆ N1(y(ui)) holds,
where Xi = {ui, . . . , u�} ∪ X . We show by induction on |X | that the set X is 2-
bidismantlable. We first show that we can select a vertex v1 ∈ X , a vertex y ∈
N(v1)∩X , y 
= v1, and a vertex x ∈ N1(y)∩N(v1)∩X such that N2(v1, G−{x, y})∩
X ⊆ N1(y). If there exists a vertex y ∈ X such that X ⊆ N1(y), then taking x := y
and any vertex of X \ {y} as v1, we are done. So, further we assume that X does not
contain dominating vertices. Consider a parsimonious winning strategy of the cop and
a maximal itinerary of the robber. First suppose that the capture happened when R
is invisible. Let v1 be the last position where R is visible. Let a be the position of the
cop when the robber shows up in v1. We know that v1 /∈ N(a), otherwise C would
have captured R before. Let y be the vertex where C moves when he sees R at v1.
Since R is captured when he is invisible, it implies he is captured in v1. Moreover,
since R follows a maximal itinerary, it implies that N2(v1, G − {y}) ∩ X = {v1},
otherwise the robber could live longer. Consequently, by setting x := y, we have
N2(v1, G− {x, y}) ∩X ⊆ N1(y).

Now suppose that C captures R in the next visible move. This means that when C
sees R, the cop is located in some vertex y ∈ X , the robber is located in some vertex
w ∈ X , and w ∈ N1(y) holds. Then the cop moves from y to w and captures R there.
Denote by v1 the vertex of X where R is visible for the next-to-last time. Suppose
that after having seen R in v1, C moves first to a vertex of X which we denote by x
and then to vertex y. Note that x 
= v1 (otherwise R would have been caught when
he shows up in v1) and that y may coincide with x or with v1. When C moves to
x, R moves first to some vertex u ∈ N1(v1) \ {x} and then, when C moves to y, R
moves to a vertex w ∈ N1(u) ∩X ⊆ (N2(v1, G− {x})∪ {x}). By the definition of the
vertices y and w, in y the cop sees (for the last time) the robber which is located at
w and in the next move captures him. Since R follows a maximal sequence of moves,
any vertex of N2(v1, G − {x}) ∩ X must be adjacent to y, otherwise if there exists
z ∈ N2(v1, G− {x})∩X not adjacent to y, instead of moving to w, in two moves the
robber can safely reach z and survive for a longer time. Thus N2(v1, G− {x}) ∩X ⊆
N1(y) holds. If v1 
= y, then we are done. If v1 = y, then N2(y,G−{x})∩X ⊆ N1(y).
If N1(y) ∩ X ⊆ N1(x), then N2(v1, G − {x}) ∩ X ⊆ N1(y) ∩ X ⊆ N1(x), and thus
by setting y(v1) := x(v1) := x, we have N2(v1, G − {x(v1), y(v1)}) ∩X ⊆ N1(y(v1)),
and again we are done. Suppose now that there exists a vertex v ∈ N1(y) ∩X which
does not belong to N1(x). We assert that N2(v,G − {x, y}) ∩ X ⊆ N1(y). Since
N1(v,G − {x, y}) ∩X ⊆ N2(y,G− {x}) ∩X ⊆ N1(y), any neighbor u of v in X is a
neighbor of y. Consider a vertex u ∈ N2(v,G − {x, y}) ∩X and suppose there exists
a vertex r ∈ N1(v) ∩ N1(u) ∩ X \ {x, y}. Then r ∈ N1(y) and thus u ∈ N2(y,G −
{x}) ∩ X ⊆ N1(y). Suppose now that there does not exist any vertex r ∈ N1(v) ∩
N1(u) \ {x, y} that belongs to X . Among all vertices in N1(v) ∩ N1(u) \ {x, y}, let r
be the last vertex occurring in the ordering u1, . . . , u�. Then since u, v ∈ N1(r) ∩ X ,
u, v ∈ N1(y(r)) and consequently y(r) 
= x, since v /∈ N1(x). By our choice of r, we
know that y(r) ∈ X , and thus there exists a vertex in N(v) ∩ N(u) ∩ X \ {x, y}, a
contradiction.
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Therefore, by setting x(v) := y(v) := y, we have N2(v,G − {x(v), y(v)}) ∩ X ⊆
N1(y(v)). In the rest of the proof, we denote by v1 the vertex satisfying this condition;
it can be either v1 or v. Let X ′ := X \ {v1}. Note that V \X ′ = V \X ∪ {v1}, and
there exists an order u1, . . . u�, u�+1 := v1 on the vertices of V \X ′ so that for each
1 ≤ i ≤ 
 + 1, there exist x(ui), y(ui) ∈ Xi+1 such that N2(ui, G − {x(ui), y(ui)}) ∩
Xi ⊆ N1(y(ui)). We show that the set X ′ is 2-winnable as well. Consider a positional
parsimonious winning strategy σ of the cop in X . For any positions c of the cop and
r of the robber in X ′, we note σ(c, r) = (c1, c2). As in the proof of Theorem 2.1, we
construct a strategy that uses one bit of memory m: it is a function that associates
to each (c, r,m) a couple ((c′1, c′2),m). The intuitive idea is that the cop plays using
σ, except when he is in y and his memory contains 1; in that case, he plays using σ
as if he was in v1. If m = 0 or c 
= y, let (c1, c2) = σ(c, r). If c1 = v1, then c′1 = y and
c′1 = c1 otherwise. If c2 = v1, then σ′(c, r,m) = ((c′1, y), 1) and σ′(c, r,m) = ((c′1, c2), 0)
otherwise. If m = 1 and c = y, let (c1, c2) = σ(v1, r). If c1 = v1, then c′1 = y and
c′1 = c1 otherwise. If c2 = v1, then σ′(y, r, 1) = ((c′1, y), 1) and σ′(y, r, 1) = ((c′1, c2), 0)
otherwise. Since N1(v1) ∩X ⊆ N1(y), one can easily check that σ′ is a valid strategy
for the X ′-restricted game.

By way of contradiction, suppose that there exists an infinite X ′-valid sequence
S′
r of moves of R in the X ′-restricted game allowing him to escape forever against a

cop using the strategy σ′. First note that the sequence of moves Sc of the cop playing
σ against S′

r differs from the sequence of moves S′
c of the cop playing σ′ against S′

r

only in the positions where C is in v1 in Sc. We show that there exists an infinite
sequence Sr in the X-restricted game, enabling R to escape forever against C using
σ. The visible positions of R in Sr coincide with the visible positions of R in S′

r

(thus the cop’s strategies σ and σ′ behave in the same way against both sequences).
It is sufficient to show that if during a phase of S′

r the robber goes from r′0 ∈ X ′ to
r′2 ∈ X ′ via r′1 ∈ V (G), then in the X-restricted game where the cop plays with σ
(going to c1 and then to c2), there exists r1 such that R can go from r′0 to r′2 via
r1 without being captured in r1. If r

′
1 
= v1 or if v1 /∈ {c1, c2}, then one can choose

r1 = r′1 (since r′0, r
′
2 ∈ X ′, they are different from v1). Thus, we may assume that

r′1 = v1 and that c1 = v1 or c2 = v1. If c2 ∈ {v1, y}, then c′2 = y. Since r′1 = v1,
r′2 ∈ N1(v1) ∩ X ⊆ N1(y), and thus R is captured when he shows up in r′2; i.e.,
S′
r does not enable R to escape forever. Consequently, c2 /∈ {v1, y} and c1 = v1. In

this case, (r′0, r1 := y, r′2) is a X-valid sequence since r′0, r′2 ∈ N1(v1) ∩ X ⊆ N1(y),
and moreover y /∈ {c1, c2} (since c1 = v1 and y 
= c2). It implies that there exists an
infinite X-valid sequence Sr enabling the robber to escape forever, a contradiction.

Starting from a positional strategy for theX-restricted game, we have constructed
a winning strategy using memory for the X ′-restricted game. As mentioned in the
introduction, it implies that there exists a positional winning strategy for the X ′-
restricted game. Consequently, the set X ′ := X \ {v1} is 2-winnable as well. By the
induction assumption, X ′ admits a 2-bidismantling order v2, . . . , vm. Then clearly
v1, v2, . . . , vm is a 2-bidismantling of X. If G is 2-winnable, then its set of vertices is
2-winnable and therefore 2-bidismantlable, showing that G is 2-bidismantlable.

The graph from Figure 5.1(a) shows that 2-bidismantlability is not a sufficient
condition (the analysis of this and other examples is provided in [14]). We continue
with a condition on 2-bidismantling which turns out to be sufficient for 2-winability. A
graph G is strongly 2-bidismantlable if G admits a 2-bidismantling order such that for
any vertex vi, i < n, y(vi) = x(vi) orN2(vi, G−{y(vi)}) ∩Xi ⊆ N2(x(vi), G−{y(vi)}).
(The graph of Figure 5.1(b) does not admit a strong 2-bidismantling order, however,
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Fig. 5.1. (a) 2-bidismantlable graph not in CWW(2). (b) Graph in CWW(2) that is not strongly
2-bidismantlable.

it belongs to CWW(2), showing that strong 2-bidismantlability is not a necessary
condition.)

Proposition 5.2. If a graph G is strongly 2-bidismantlable, then G ∈ CWW(2).
Proof. Suppose that a subset X of G admits a strong 2-bidismantling order

v1, . . . , vm. Assume by the induction assumption that the set X ′ = {v2, . . . , vn} is
2-winnable and we establish that X itself is 2-winnable. Let N2(v1, G− {x}) ∩ X ⊆
N1(y). Let σ′ be a parsimonious positional winning strategy for C in X ′. We define
the strategy σ for C in X : σ(c, r) = r if r ∈ N1(c), σ(c, v1) = (x, y) if c ∈ N1(x) (in
this case, R will be caught in the next move because N2(v1, G− {x}) ∪X ⊆ N1(y))
and σ(c, v1) = σ′(c, x) otherwise, and σ(c, v) = σ′(c, v) in all other cases. We prove
that σ is winning. Let Sr = (r1, r2, . . .) be any X-valid sequence of moves of R. We
transform Sr into an X ′-valid sequence S′

r = (r′1, r
′
2, . . .) of moves of the robber and

prove that since C playing σ′ eventually captures R following S′
r, then C playing σ

captures R following Sr.
Let r′1 := x if r1 = v1 and r′1 := r1 otherwise. Suppose that r′1, . . . , r

′
2j−1 (j ≥ 1)

have been already defined, and we wish to define r′2j and r′2j+1. We set r′2j+1 := r2j+1

if r2j+1 
= v1 and r′2j+1 := x otherwise (indeed, when the cop sees the robber at the
vertex v1, then C will plays againstR as like the latter was in x). We set r′2j := r2j in all
cases unless v1 ∈ {r2j−1, r2j+1} and r2j /∈ N1(x) (in particular r2j 
= y). If r2j−1 = v1
(resp., if r2j+1 = v1) and r2j /∈ N1(x), then there exists a common neighbor u of r2j−1

(resp., r2j+1) and x different from y. The choice of r′2j depends of the current position
c2j of the cop pursuing R. We set r′2j := u if c2j 
= u and r′2j := y otherwise (this is to
avoid artificially creating a move where the robber goes to a vertex occupied by the
cop). It can be easily seen that S′

r is an X ′-valid sequence of moves of the robber. Let
S′
c = (c′1, c′2, . . .) be the X ′-valid sequence of moves of the cop playing σ′ against a

robber R′ moving according to S′
r, and let Sc = (c1, c2, . . .) be the X-valid sequence of

moves of the cop playing σ against the robber R following Sr. It is easy to check that
S′
c and Sc are similar except for one or two steps before the capture of the robber.

Moreover, since σ′ is a winning strategy in X ′, there is j > 0 such that c′j = r′j .
First suppose that C captures the robber R′ when he is visible, say, R′ is located

in r′2j+1. If r
′
2j+1 = r2j+1, then we are done. So, suppose that r′2j+1 
= r2j+1, i.e.,

r2j+1 = v1 and r′2j+1 = x. Therefore, when C sees R in v1, the cop is located in a
neighbor of x. According to σ, C will move to x and then to y, while R can only reach
a vertex in N2(v1, G − {x}) ∩ X . Since N2(v1, G − {x}) ∩ X ⊆ N1(y), the cop will
capture the visible robber in his next move. Now suppose that C captures R′ when
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the latter is invisible, say, R′ is located in r′2j . Again, if r
′
2j = r2j , then we are done.

Otherwise, according to the definition of S′
r, r2j is a common neighbor of r2j−1 and

r2j+1 different from y with either v1 = r2j+1 or v1 = r2j−1. Suppose that v1 = r2j+1

(the other case is analogous), r′2j is either y or a common neighbor u of r2j−1, and x
is provided by the strong 2-bidismantling order. Since between r2j−1 and r2j+1 = v1
the itinerary of R′ avoids the cop if possible, we deduce that {c2j−1, c2j} = {u, y}
or {c2j, c2j+1} = {u, y}. If {c2j−1, c2j} = {u, y}, then, when C sees R at r2j−1; the
cop is located in a neighbor of r2j−1. By the definition of σ, C will move to r2j−1 and
captures R. Otherwise, if {c2j , c2j+1} = {u, y}, then when C sees R in v1; C is located
in a neighbor of x. By σ, C will move to x and then to y, while R can only reach
a vertex in N2(v1, G − {x}) ∪ X . Since N2(v1, G − {x}) ∩ X ⊆ N1(y), the cop will
capture the visible robber in his next move.

5.2. Classes CWW(k) for k ≥ 3. In this subsection we show that k-
bidismantlable graphs are k-winnable for any odd k ≥ 3. On the other hand, Figure 5.2
shows that for any k ≥ 3, there exist graphs in CWW(k) that are not k-bidismantlable.
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a1 b1
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y′2

y′1

b′1 a′1 u1,1 u1,k−2

u2,k−2u2,1u2′,1

u′
1,1u′

1,k−2

Fig. 5.2. A graph G ∈ CWW(k) that is not k-bidismantlable.

Theorem 5.3. For any odd integer k ≥ 3, if a graph G is k-bidismantlable, then
G ∈ CWW(k).

Proof. Suppose that X ⊆ V is a k-bidismantlable set of vertices of a graph G. We
prove that there is a winning strategy for the cop in the X-restricted k-witness game
on G. To do so, we proceed as in the papers [28, 30] and use the k-bidismantling order
to mark all X-configurations (c, r). An X-configuration of an X-restricted game is a
couple (c, r) that consists of a position of the cop c ∈ X and a position of the robber
r ∈ X , with r 
= c. An X-configuration (c, r) is called terminal if r ∈ N1(c). To mark
the X-configurations, we use the following procedure Mark(X):

1. Initially, all X-configurations are unmarked.
2. Any terminal X-configuration (c, r) is marked with label 1.
3. While it is possible, mark an unmarked X-configuration (c, r) with the small-

est possible integer 
+1 such that there exist vertices y(c,r) ∈ N1(c)∩X and
x(c,r) ∈ (N1(y(c,r))\{r}) ∩ X such that for all z ∈ Nk(r,G−{x(c,r), y(c,r)}) ∩
X , the X-configuration (y(c,r), z) is marked with a label at most 
.

Claim 2. If all X-configurations are marked by Mark(X), then there is a winning
strategy for the cop in the X-restricted k-witness game on G.

Indeed, pick any initial positions c ∈ X of the cop and r ∈ X of the robber. If
the configuration (c, r) is terminal, then r ∈ N1(c), and the robber is captured in
the next move. Otherwise, the cop first moves to y(c,r) and then oscillates between
x(c,r) and y(c,r) during k − 1 steps, ending in y(c,r) since k is odd. If during one
of his invisible moves the robber goes to x(c,r) or y(c,r), then he will be captured
immediately. Otherwise, in k moves the robber goes from r to a vertex z ∈ Nk(r,G−
{x(c,r), y(c,r)})∩X. According to Mark(X), the label of (y(c,r), z) is strictly less than
that of (c, r). Therefore, by repeating the same process, after a finite number of steps
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either the cop captures the robber during an invisible move or the cop and the robber
arrive at a terminal configuration.

Claim 3. If X is k-bidismantlable, then Mark(X) marks all X-configurations.
The general idea of our proof follows the proof of Theorem 12 of [28]. Let

{v1, . . . , vt} be a k-bidismantling ordering of X . We prove by induction on t− i that
Mark(Xi) marks all Xi-configurations, where Xi = {vi, . . . , vt}. The assertion triv-
ially holds for Xt−1. Let i < t− 1. Assuming that all Xi+1-configurations are marked
by Mark(Xi+1), we prove that Mark(Xi) marks all Xi-configurations. By the defini-
tion of the k-bidismantling ordering, there exist two adjacent or coinciding vertices
x, y ∈ Xi+1 such that Nk(vi, G− {x, y}) ∩Xi ⊆ N1(y). Roughly speaking, Mark(Xi)

marks the Xi-configurations in the same order as Mark(Xi+1) marks the Xi+1-
configurations, but once a configuration (c, y) with c ∈ Xi+1 is marked, Mark(Xi)

also marks the configuration (c, vi). Once Mark(Xi) has marked all Xi-configurations
(c, r) ∈ Xi+1 ×Xi, the remaining Xi-configurations (vi, r) with r ∈ Xi+1 can also be
marked by Mark(Xi).

Let 
 ≥ 1. By induction on 
, we prove that any Xi+1-configuration (c, r) that
is marked by Mark(Xi+1) with label at most 
 will be also marked by Mark(Xi).
Moreover, if r = y, we prove that once Mark(Xi) has marked (c, r), then it can
mark (c, vi). Let us first prove this assertion for 
 = 1. For any (c, r) ∈ Xi × Xi

with r ∈ N1(c), (c, r) is marked by Mark(Xi) with label 1 . If (c, y) is marked with
label 1 (i.e., y ∈ N1(c) ∩ Xi), then (c, vi) can be marked with 2. Indeed, for all
z ∈ Nk(vi, G − {x, y}) ∩Xi, we have z ∈ N1(y) (by definition of the k-bidismantling
order), and thus the Xi-configuration (y, z) is marked with label 1. Hence, by setting
(x(c,vi), y(c,vi)) = (x, y), the procedure Mark(Xi) marks (c, vi) with label 2. Assume
now that the induction hypothesis holds for some 
 ≥ 1, and we will show that it still
holds for 
 + 1. Let (c, r) be a Xi+1-configuration marked by Mark(Xi+1) with label

+ 1. We first prove that (c, r) is eventually marked by Mark(Xi). By the definition
of the Mark(Xi+1), there exist y(c,r) ∈ N1(c) ∩ Xi+1 and x(c,r) ∈ (N1(y(c,r)) \ {r}) ∩
Xi+1 such that for all z ∈ Nk(r,G − {x(c,r), y(c,r)}) ∩ Xi+1, the Xi+1-configuration
(y(c,r), z) is marked with label at most 
 by Mark(Xi+1). By the induction hypothesis,
this implies that for all z ∈ Nk(r,G − {x(c,r), y(c,r)}) ∩Xi+1, the Xi+1-configuration
(y(c,r), z) is marked by Mark(Xi). If vi /∈ Nk(r,G− {x(c,r), y(c,r)}), then clearly (c, r)
is marked by Mark(Xi). Let us assume that vi ∈ Nk(r,G−{x(c,r), y(c,r)}). We aim at
proving that (y(c,r), vi) is eventually marked by Mark(Xi). We distinguish three cases:

• If y(c,r) = y, then (y(c,r), vi) is marked with label 1 since y(c,r) = y ∈ N1(vi).
• If x(c,r) = y, then (y(c,r), vi) is marked with label 1 or 2 by setting
(x(y(c,r),vi), y(y(c,r),vi)) = (x, y). Indeed, for all z ∈ Nk(vi, G − {x, y}) ∩ Xi,
we have z ∈ N1(y) (by definition of the k-bidismantling order), and thus the
Xi-configuration (y, z) is marked with label 1.

• Otherwise, we assert that (y(c,r), y) has already been marked by Mark(Xi).
By the induction hypothesis, this implies that (y(c,r), vi) was also marked.
If y ∈ Nk(r,G − {x(c,r), y(c,r)}) ∩ Xi+1 and since (c, r) is marked with label

 + 1 by the marking procedure in Xi+1, then (y(c,r), y) must be marked by
Mark(Xi+1) with label at most 
. By the induction hypothesis, this implies
that (y(c,r), y) has been marked by Mark(Xi). Hence, it remains to show that
y ∈ Nk(r,G− {x(c,r), y(c,r)}) ∩Xi+1.
Let P be a path of length at most k between r and vi in G−{x(c,r), y(c,r)}. If
x or y belongs to P, then we trivially get that y ∈ Nk(r,G−{x(c,r), y(c,r)})∩
Xi+1. Otherwise, this means that r ∈ Nk(vi, G − {x, y}) ∩ Xi and r ∈
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N1(y) holds by definition of the bidismantling order. Hence, y ∈ Nk(r,G −
{x(c,r), y(c,r)}) ∩Xi+1.

In all three cases, the pair (y(c,r), vi) is marked by Mark(Xi). Thus, for all
z ∈ Nk(r,G − {x(c,r), y(c,r)}) ∩ Xi, the Xi-configuration (y(c,r), z) has been marked.
Therefore, this is also the case for the Xi-configuration (c, r). To conclude the
proof, we need to show that once an Xi-configuration (c, y) (c 
= vi) is marked by
Mark(Xi), then (c, vi) can be marked as well. Since (c, y) has been marked, there
exist y(c,y) ∈ N1(c) ∩ Xi and x(c,y) ∈ (N1(y(c,y)) \ {y}) ∩ Xi such that for all
z ∈ Nk(y,G − {x(c,y), y(c,y)}) ∩ Xi, the Xi-configuration (y(c,y), z) is marked. Let
z′ ∈ Nk(vi, G−{x(c,y), y(c,y)})∩Xi. We prove that z′ ∈ Nk(y,G−{x(c,y), y(c,y)})∩Xi,
which shows that (y(c,y), z

′) has been already marked. Let P be a shortest path
between vi and z′ in G − {x(c,y), y(c,y)}. Note that |P | ≤ k. If y ∈ P , clearly
z′ ∈ Nk(y,G − {x(c,y), y(c,y)}) ∩ Xi; else if x ∈ P , then let P ′ be the subpath of
P from z′ to x. Then P ′ ∪ {x, y} is a path of length at most k between z′ and y
in the graph G − {x(c,y), y(c,y)}. Otherwise, z′ ∈ Nk(vi, G − {x, y}) ∩ Xi, and thus
z′ ∈ N1(y). Therefore, for any z′ ∈ Nk(vi, G − {x(c,y), y(c,y)}) ∩ Xi, (y(c,y), z

′) is
marked, and thus the pair (c, vi) can be marked as well. Summarizing, we conclude
that for all c, r ∈ Xi+1, the configurations (c, r) and (c, vi) are marked by the pro-
cedure Mark(Xi). To conclude the proof, note that any configuration (vi, r) can be
marked as well: either with 1 if r ∈ N1(vi) or by setting (x(vi,r), y(vi,r)) = (y, y)
otherwise.

Open question 3. Characterize the k-winnable graphs for k = 2, 3 and, more
generally, for all k.

To conclude, we characterize the cop-win graphs in the combined game in which
the robber can “hide and ride.” In this game, the robber is visible every k moves and
has speed s while the cop has speed 1. This means that at each step, the robber can
move to a vertex at distance at most s from his current position and that the cop can
see the robber only every k steps. We denote by CWFRW(s, k) the class of cop-win
graphs in this game. By definition, CWFRW(1, k) = CWW(k) and CWFRW(s, 1) =
CWFR(s). We can show that if s ≥ 2, k ≥ 1, and (s, k) 
= (2, 1), then CWFRW(s, k)
is the class of big brother graphs (the proof of this result is presented in [14]).
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[11] A. Brandstädt, F. F. Dragan, V. Chepoi, and V. I. Voloshin, Dually chordal graphs, SIAM

J. Discrete Math., 11 (1998), pp. 437–455.
[12] G. R. Brightwell and P. Winkler, Gibbs measures and dismantlable graphs, J. Combin.

Theory Ser. B, 78 (1999), pp. 415–435.
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