
Sequence Hypergraphs

Kateřina Böhmová1, Jérémie Chalopin2, Matúš Mihalák1,3, Guido Proietti4,
and Peter Widmayer1

1 Institute of Theoretical Computer Science, ETH Zürich, Zürich, Switzerland
{katerina.boehmova,widmayer}@inf.ethz.ch

2 LIF, CNRS & Aix-Marseille University, Marseille, France
jeremie.chalopin@lif.univ-mrs.fr

3 Department of Knowledge Engineering, Maastricht University, The Netherlands
matus.mihalak@maastrichtuniversity.nl

4 DISIM, Università degli Studi dell’Aquila, Italy; and IASI, CNR, Roma, Italy
guido.proietti@univaq.it

Abstract. We introduce sequence hypergraphs by extending the con-
cept of a directed edge (from simple directed graphs) to hypergraphs.
Specifically, every hyperedge of a sequence hypergraph is defined as a se-
quence of vertices (imagine it as a directed path). Note that this differs
substantially from the standard definition of directed hypergraphs.
Sequence hypergraphs are motivated by problems in public transporta-
tion networks, as they conveniently represent transportation lines. We
study the complexity of some classic algorithmic problems, arising (not
only) in transportation, in the setting of sequence hypergraphs. In par-
ticular, we consider the problem of finding a shortest st-hyperpath: a
minimum set of hyperedges that “connects” (allows to travel to) t from
s; finding a minimum st-hypercut : a minimum set of hyperedges whose
removal “disconnects” t from s; or finding a maximum st-hyperflow : a
maximum number of hyperedge-disjoint st-hyperpaths.
We show that many of these problems are APX-hard, even in acyclic
sequence hypergraphs or with hyperedges of constant length. However,
if all the hyperedges are of length at most 2, we show, these problems
become polynomially solvable. We also study the special setting in which
for every hyperedge there also is a hyperedge with the same sequence, but
in the reverse order. Finally, we briefly discuss other algorithmic problems
(e.g., finding a minimum spanning tree, or connected components).

Keywords: Colored Graphs, Labeled Problems, Oriented Hypergraphs,
Algorithms, Complexity

1 Introduction

Consider a public transportation network, e.g. a bus network, where each bus
line is specified as a fixed sequence of stops. Clearly, one can travel in the network
by taking a bus and following the stops in the order fixed by the corresponding
line. Note that we think of a line as a sequence of stops in one direction only,
since there might be one-way streets or other obstacles that cause that the bus

2

can travel the stops in a single direction only. Then, interesting questions arise:
How can one travel from s to t using the minimum number of lines? How many
lines must break down, so that t is not reachable from s? Are there two ways to
travel from s to t that both use different lines?

These kind of questions are traditionally modeled by algorithmic graph the-
ory, but we lacked a model that would capture all the necessary aspects of the
problems formulated as above. We propose the following non-standard, but a
very natural way to extend the concept of directed graphs to hypergraphs.

A hypergraph H = (V, E) with an ordering of the vertices of every hyperedge
is called a sequence hypergraph. Formally, the sequence hypergraph H consists
of the set of vertices V = {v1, v2, . . . , vn}, and the set of (sequence) hyperedges
E = {E1, E2, . . . , Ek}, where each hyperedge E = (vi1 , vi2 , . . . , vil) is defined as
a sequence of vertices without repetition. We remark that this definition sub-
stantially differs from the commonly used definition of directed hypergraphs [1,
2, 13], where each directed hyperedge is a pair (From,To) of disjoint subsets of
V.5 We note that the order of vertices in a sequence hyperedge does not im-
ply any order of the vertices of other hyperedges. Furthermore, the sequence
hypergraphs do not impose any global order on V.

There is another way to look at sequence hypergraphs coming from our mo-
tivation in transportation. For a sequence hypergraph H = (V, E), we construct
a directed colored multigraph G = (V,E, c) as follows. The set of vertices V
is identical to V, and for a hyperedge Ei = (v1, v2, . . . , vl) from E , the multi-
graph G contains l − 1 edges (vj , vj+1) for j = 1, . . . , l − 1, all colored with
color c(Ei). Therefore, each edge of G is colored by one of the k = |E| colors
C = {c(E1), c(E2), . . . , c(Ek) | Ei ∈ E}. Clearly, the edges of each color form a
directed path in G. We refer to G as the underlying colored graph of H.

In this paper, we study some standard graph algorithmic problems in the set-
ting of sequence hypergraphs. In particular, we consider the problem of finding
a shortest st-hyperpath: an st-path that uses the minimum number of sequence
hyperedges; finding a minimum st-hypercut : an st-cut that uses the minimum
number of sequence hyperedges; or finding a maximum st-hyperflow : a maxi-
mum number of hyperedge-disjoint st-hyperpaths. We note that the shortest
st-hyperpath problem was already considered by Böhmová et al. [5] in the set-
ting of finding good routes in public transportation networks (studied under a
quite different terminology), who mainly focused on the problem of listing short-
est paths in public transportation networks, but also showed that minimizing the
number of lines in an st-path is hard to approximate.

In the present paper we show that the shortest st-hyperpath can be found in
polynomial time if the given sequence hypergraph is acyclic. On the other hand,
we show that both maximum st-hyperflow and minimum st-hypercut are APX-
hard to find even in acyclic sequence hypergraphs. We then consider sequence
hypergraphs with sequence hyperedges of constant length (defined as the number
of vertices minus one). We note that the shortest st-hyperpath problem remains

5 To avoid confusion with directed hypergraphs, we prefer the term sequence hyper-
graphs to refer to the hypergraphs with hyperedges formed as sequences of vertices.

3

Table 1. Summary of the complexity of some classic problems in the setting of colored
(labeled) graphs and sequence hypergraphs. The last row indicates whether the sizes
of the maximum st-flow and the minimum st-cut equal in the considered setting. The
cells in gray indicate our contribution.

Colored/Labeled Graphs Sequence Hypergraphs
General Span 1 General Acyclic Backward Length≤ 2

Shortest st-path APX-hard [8, 17] P [8] APX-hard [5] P P P

Minimum st-cut APX-hard [8, 23] P [8] APX-hard APX-hard NP-hard P

Maximum st-flow APX-hard [18] P [8] APX-hard APX-hard NP-hard P

MaxFlow-MinCut Duality × [8]
√

[8] × × ×
√

hard to approximate even with hyperedges of length at most 5, and we show that
the maximum st-hyperflow problem remains APX-hard even with hyperedges of
length at most 3. On the other hand, we show that if all the hyperedges are of
length at most 2, all 3 problems become polynomially solvable. We also study
the complexity in a special setting in which for each hyperedge there also is a hy-
peredge with the same sequence, but in the opposite direction. We show that the
shortest st-hyperpath problem becomes polynomially solvable, but both maxi-
mum st-hyperflow and minimum st-hypercut are NP-hard to find also in this
setting, and we give a 2-approximation algorithm for the minimum st-hypercut
problem. Finally, we briefly study the complexity of other algorithmic problems
(finding minimum spanning tree, or connected components) in sequence hyper-
graphs. For a summary of the results see Table 1. The table also shows known
results for related labeled graphs (discussed below).

Related Work. Recently, there has been a lot of research concerning optimiza-
tion problems in (multi)graphs with colored edges, where the cost of a solution
is measured by the number of colors used, e.g., one may ask for an st-path using
the minimum number of colors. The motivation comes from applications in op-
tical or other communication networks, where a group of links (i.e., edges) can
fail simultaneously and a goal is to find resilient solutions. Similar situation may
occur in economics, when certain commodities are sold (and priced) in bundles.

Formally, colored graphs or labeled graphs, are (mostly undirected) graphs
where each edge has one color, and in general there is no restriction on a set of
edges of the same color. Some of the studies consider a slightly different definition
of a colored graphs, where to each edge corresponds a set of colors instead of a
single color. Since the computational complexity problems may differ in the two
models, the transformations between the two models have been investigated [9].

The minimum label path problem, which asks for an st-path of a minimum
number of colors, is NP-hard and hard to approximate [6–8, 15, 17, 22]. The 2
label disjoint paths problem, which asks for a pair of st-paths such that the sets
of colors appearing on the two paths are disjoint, is NP-hard [18]. The minimum
label cut problem, which asks for a set of edges of minimum number of colors that

4

forms an st-cut, is NP-hard and hard to approximate [8, 23]. The minimum label
spanning tree problem, which asks for a spanning tree using edges of minimum
number of colors, is NP-hard and hard to approximate [17, 20].

Hassin et al. [17] give a log(n)-approximation algorithm for the minimum
label spanning tree problem and a

√
n-approximation algorithm for the minimum

label path problem. Zhang et al. [23] give a
√
m-approximation algorithm for the

minimum label cut problem. Fellows et al. study the parameterized complexity
of minimum label problems [12]. Coudert et al. [8, 9] consider special cases when
the span is 1, i.e., each color forms a connected component; or when the graph
has a star property, i.e., the edges of every color are adjacent to one vertex.

Note that, since most of these results consider undirected labeled graphs,
they provide almost no implications on the complexity of similar problems in the
setting of sequence hypergraphs. In our setting, not only we work with directed
label graphs, but we also require edges of each color to form a directed path,
which implies a very specific structure that, to the best of our knowledge, has
not been considered in the setting of labeled graphs.

On the other hand, we are not the first to define hypergraphs with hyperedges
specified as sequences of vertices. However, this type of hypergraphs are usually
not explored from an algorithmic graph theory point of view. In fact, mostly,
these hypergraphs are taken merely as a tool, convenient to capture certain
relations, but they are not studied further. We shortly list a few articles where
sequence hypergraphs appeared, but we do not give details, since there is very
little relation to our area of study. Berry et al. [4] introduce and describe the
basic architecture of a software tool for (hyper)graph drawing. Wachman et
al. [21] present a kernel for learning from ordered hypergraphs, a formalization
that captures relational data as used in Inductive Logic Programming. Erdös
et al. [11] study Sperner-families and as an application of a derived result they
study the maximum number of edges of a so called directed Sperner-hypergraph.

Finally, a special case of sequence hypergraphs arose as a generalization to
tournaments [3, 16]: A k-hypertournament can be seen as a sequence hypergraph
where for every subset of k vertices there is exactly one sequence hyperedge.
Gutin et al. [16] studied the Hamiltonicity of k-hypertournaments.

2 On the Shortest st-Hyperpath

In this section, we briefly discuss the complexity of the shortest st-hyperpath
problem in general sequence hypergraphs and in acyclic sequence hypergraphs.

Definition 1 (st-hyperpath). Let s and t be two vertices of a sequence hy-
pergraph H = (V, E). A set of hyperedges P ⊆ E forms a hyperpath from s to
t, if the underlying (multi)graph G′ of the sequence subhypergraph H′ = (V, P)
contains an st-path, and P is minimal with respect to inclusion. We call such
an st-path an underlying path of P.

The length of an st-hyperpath P is defined as the number of hyperedges in P .
The number of switches of an st-hyperpath P is the minimum number of changes
between the hyperedges of P , when following an underlying st-path of P .

5

s
ta) b)

s

t

Fig. 1. In both figures, the grey-dotted curve, and the black curve depict two sequence
hyperedges. a) The length of the st-hyperpath is 2, but the number of switches is 7.
b) The st-hyperpath consists of two sequence hyperedges that also form a hypercycle.

We note that each hyperpath may have multiple underlying paths. Also note
that, even though the number of switches of an st-hyperpath P gives an upper
bound on the length of P , the actual length of P can be much smaller than the
number of switches of P (see Figure 1a).

Proposition 1. Given a sequence hypergraph, and two vertices s and t, an st-
hyperpath minimizing the number of switches can be found in polynomial time.

This can be done, e.g., by a modified Dijkstra algorithm (starting from s,
following the outgoing sequence hyperedges and for each vertex storing the min-
imum number of switches necessary to reach it).

On the other hand, by a reduction from the set cover problem, Böhmová et
al. [5] showed the following result (in a slightly different setting).

Theorem 1 ([5]). Shortest st-hyperpath in sequence hypergraphs is NP-hard to
approximate within a factor of (1− ε) lnn, unless P = NP .

However, if the given sequence hypergraph is acyclic, we show that the short-
est st-hyperpath can be found in polynomial time.

Definition 2 (acyclic sequence hypergraph). A set of hyperedges O ⊆ E
forms a hypercycle, if there are two vertices a 6= b such that O forms both
a hyperpath from a to b, and a hyperpath from b to a. A sequence hypergraph
without hypercycles is called acyclic.

Observe that an st-hyperpath may also be a hypercycle (see Figure 1b).

Definition 3 (edges of a hyperedge). Let E = (v1, v2, . . . , vk) be a hy-
peredge of a sequence hypergraph H. We call the set of directed edges {ei =
(vi, vi+1) for i = 1, . . . , k − 1} the edges of E. The edges of E are exactly the
edges of color c(E) in the underlying colored graph of H. The length of a hyper-
edge is defined as the number of its edges.

For a fixed order V O = (v1, v2, . . . , vn) of vertices V, an edge e of a hyperedge
E is called a forward edge with respect to V O, if its orientation agrees with the
order V O. Similarly, e is a backward edge, if its orientation disagrees with V O.

Theorem 2. The problem of finding the shortest st-hyperpath in acyclic se-
quence hypergraphs can be solved in polynomial time.

Proof. (Sketch.) Observe that for every st-hyperpath, there is an underlying path
where all the edges of each hyperedge appear consecutively. Thus, finding the
shortest st-hyperpath P in H is the same as finding a hyperpath minimizing the
number of switches, which can be done in polynomial time by Proposition 1. ut

6

c1

c1

c2

c2

c3

c3

c4

x1

+

−
x1

x2

+

−
x2

x3

+

−
x3

x4

+

−
x4

x5

s t

x1c1 x2c1 x3c1x1c2 x2c2

x1c3 x3c3 x4c2

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3)

Fig. 2. Deciding st-hyperflow of size 2 is as hard as 3-Sat.

3 On the Maximum st-Hyperflow

We consider the problem of finding a number of hyperedge-disjoint st-hyperpaths.
Capturing a similar relation as in graphs (between a set of k edge-disjoint st-
paths and an st-flow of size k, when all the capacities are 1), for simplicity and
brevity, we refer to a set of hyperedge-disjoint st-hyperpaths as an st-hyperflow.

Definition 4 (st-hyperflow). Let s and t be two vertices of a sequence hy-
pergraph H = (V, E). Let F ⊆ 2E be a set of pairwise hyperedge-disjoint st-
hyperpaths F = {P1, . . . , Pk}. Then, F is an st-hyperflow of size |F| = k.

We show that deciding whether the given sequence hypergraph contains an
st-hyperflow of size 2 is NP-hard, and thus finding a maximum st-hyperflow is
inapproximable within a factor 2 − ε unless P=NP. This remains true even for
acyclic sequence hypergraphs with all the hyperedges of length at most 3.

Theorem 3. Given an acyclic sequence hypergraph H = (V, E) with all hyper-
edges of length at most 3, and two vertices s and t, it is NP-complete to decide
whether there are two hyperedge-disjoint st-hyperpaths.

Proof. We construct a reduction from the NP-complete 3-Sat problem [14].
Let I be an instance of the 3-Sat problem, given as a set of m clauses C =
{c1, . . . , cm} over a set X = {x1, . . . , xn} of Boolean variables. The goal is to
find an assignment to the variables of X that satisfies all clauses of C.

From I we construct a sequence hypergraph H = (V, E) as follows (cf. Fig-
ure 2 along with the construction). The set of vertices V consists of 2 + (m +
1) + (n + 1) +

∑
ci∈C |ci| vertices: a source vertex s, and a target vertex t; a

vertex ci for each clause ci ∈ C and a dummy vertex cm+1; a vertex xj for each
variable xj ∈ X and a dummy vertex xn+1; and finally a vertex xjci for each
pair (xj , ci) such that xj ∈ ci, and similarly, xjci for each xj ∈ ci. Let us fix
an arbitrary order CO of the clauses in C. The set of hyperedges E consists of

7

4 + 2n + |I| hyperedges: There are 2 source hyperedges (s, c1) and (s, x1), and
2 target hyperedges (cm+1, t) and (xn+1, t). There are 2n auxiliary hyperedges
(xi, xick) and (xi, xick′) for i = 1, . . . , n, where ck, or ck′ is always the first
clause (with respect to CO) containing xi, or xi, respectively. In case there is no
clause containing xi (or xi), the corresponding auxiliary hyperedge is (xi, xi+1).
Finally, there are |I| lit-in-clause hyperedges as follows. For each appearance of a
variable xj in a clause ci as a positive literal there is one lit-in-clause hyperedge
(ci, ci+1, xjci, xjck), where ck is the next clause (with respect to CO) after ci
where xj appears as a positive literal (in case, there is no such ck, then the hy-
peredge ends in xj+1 instead). Similarly, if xj is in ci as a negative literal, there
is one lit-in-clause hyperedge (ci, ci+1, xjci, xjck), where ck is the next clause
containing the negative literal xj (or it ends in xj+1).

Clearly, each hyperedge is of length at most 3. We now observe that the
constructed sequence hypergraph H is acyclic. All the hyperedges of H agree
with the following order: the source vertex s; all the vertices ci ∈ C ordered
according to CO, and the dummy vertex cm+1; the vertex x1 followed by all the
vertices x1ci ordered according to CO, and then followed by the vertices x1ci
again ordered according to CO; the vertex x2 followed by all x2ci and then all
x2ci; . . . ; the vertex xn followed by all xnci and then all xnci; and finally the
dummy vertex xn+1 and the target vertex t.

We show that the formula I is satisfiable if and only if the sequence hyper-
graph H contains two hyperedge-disjoint st-hyperpaths. There are 3 possible
types of st-paths in the underlying graph of H: first one leads through all the
vertices c1, c2, . . . , cm+1 in this order; second one leads through all the vertices
x1, x2, . . . , xm+1 in this order and between xj , xj+1 it goes either through all
the xjc∗ vertices or through all the xjc∗ vertices; and the third possible st-path
starts the same as the first option and ends as the second one. Based on this ob-
servation, notice that there can be at most 2 hyperedge-disjoint st-hyperpaths:
necessarily, one of them has an underlying path of the first type, while the other
one has an underlying path of the second type.

From a satisfying assignment A of I we can construct the two disjoint st-
hyperpaths as follows. The underlying path of one hyperpath leads from s to t
via the vertices c1, c2, . . ., cm+1, and to move from ci to ci+1 it uses a lit-in-clause
hyperedge that corresponds to a pair (l, ci) such that l is one of the literals that
satisfy the clause ci in A. The second hyperpath has an underlying path of the
second type, it leads via x1, x2, . . . , xn+1 and from xj to xj+1 it uses the vertices
containing only the literals that are not satisfied by the assignment A. Thus, the
second hyperpath uses only those lit-in-clause hyperedges that corresponds to
pairs containing literals that are not satisfied by A. This implies that the two
constructed st-hyperpaths are hyperedge-disjoint.

Let P and Q be two hyperedge-disjoint st-hyperpaths of H. Let P has an
underlying path p of the first type and Q has an underlying path q of the second
type. We can construct a satisfying assignment for I by setting to FALSE the
literals that occur in the vertices on q. Then, the hyperpath P suggests how the
clauses of I are satisfied by this assignment. ut

8

s

t

Fig. 3. Acyclic sequence hypergraph with minimum st-hypercut of size 2, and no two
hyperedge-disjoint st-hyperpaths.

4 On the Minimum st-Hypercut

Quite naturally, we define an st-hypercut of a sequence hypergraph H as a set C
of hyperedges, whose removal from H leaves s and t disconnected.

Definition 5 (st-hypercut). Let s and t be two vertices of a sequence hyper-
graph H = (V, E). A set of hyperedges X ⊆ E is an st-hypercut, if the subhyper-
graph H′ = (V, E \X) does not contain any hyperpath from s to t. The size of
an st-hypercut X is |X|, that is the number of hyperedges in X.

For directed (multi)graphs, the famous MaxFlow-MinCut Duality Theorem [10]
states that the size of a maximum st-flow is equal to the size of a minimum st-
cut. In sequence hypergraphs, this duality does not hold, even in acyclic sequence
hypergraphs as Figure 3 shows. But, of course, the size of an st-hyperflow is a
lower bound on the size of an st-hypercut. We showed maximum st-hyperflow
to be APX-hard even in acyclic sequence hypergraphs. It turns out that also
minimum st-hypercut problem in acyclic sequence hypergraphs is APX-hard.

Theorem 4. Minimum st-hypercut in acyclic sequence hypergraphs is hard to
approximate within a factor 2− ε under UGC, or within a factor 7/6− ε unless
P=NP.

Proof. We construct an approximation preserving reduction from the vertex
cover problem, which has the claimed inapproximability [19]. ut

5 Sequence Hypergraphs with Hyperedges of Length ≤ 2

We have seen that some of the classic, polynomially solvable problems in (di-
rected) graphs become APX-hard in sequence hypergraphs. Note that this often
remains true even if all the hyperedges are of constant length. In particular, the
shortest st-hyperpath problem is APX-hard even if all the hyperedges are of
length at most 5 (the proof given in [5] needs just a slight modification); Fig-
ure 2 illustrates that the duality between minimum st-hypercut and maximum
st-hyperflow breaks already with a single hyperedge of length 3; and Theorem 3
holds even if all hyperedges are of length at most 3.

It is an interesting question to investigate the complexity of the problems for
hyperedge lengths smaller than 5 or 3. We show that, if all the hyperedges of the
given sequence hypergraph are of length at most 2, the shortest st-hyperpath,
the minimum st-hypercut, and the maximum st-hyperflow can all be found in
polynomial time.

9

Theorem 5. The shortest st-hyperpath problem in sequence hypergraphs with
hyperedges of length at most 2 can be solved in polynomial time.

The proof is based on similar ideas as in the proof of Theorem 2.

Theorem 6. The maximum st-hyperflow problem and the minimum st-hypercut
problem can be solved in polynomial time in sequence hypergraphs with hyperedges
of length at most 2. The size of the maximum st-hyperflow then equals the size
of the minimum st-hypercut.

Proof. Let H = (V, E) be a sequence hypergraph with hyperedges of length at
most 2, and let s and t be two of its vertices. Then, using a standard graph
algorithms we can find a maximum st-flow f in the underlying directed multi-
graph G of H with edge capacities 1. Thus, the flow f of size |f | gives us a set
of |f | edge-disjoint st-paths p1, . . . , p|f | in G (note that any directed cycles in f
can be easily removed).

We iteratively transform p1, . . . , p|f | into a set of st-paths such that all the
edges of each hyperedge appear on only one of these paths. Let E = (u, v, w)
be a hyperedge that lies on two different paths, i.e., (u, v) ∈ pi and (v, w) ∈ pj ,
for some i, j ∈ [|f |]. Then, pi consists of an su-path, edge (u, v), and a vt-path.
Similarly, pj consists of an sv-path, edge (v, w), and a wt-path. Since all these
paths and edges are pairwise edge-disjoint, by setting pi to consist of the su-
path, edge (u, v), edge (v, w), and the wt-path; and at the same time setting
pj to consist of the sv-path, and the vt-path, we again obtain two edge-disjoint
st-paths pi and pj . However, now the hyperedge E is present only on pi. At
the same time, since each hyperedge is of length at most 2, all the edges of a
hyperedge appear on any st-path consecutively, and any hyperedge that was
present on only one of pi, pj , is not affected by the above rerouting and still is
present on one of the two paths only.

Thus, the rerouting decreased the number of hyperedges present on more than
one paths, and after at most |E| iterations of this transformation we obtain |f |
hyperedge-disjoint st-paths, which gives us an st-hyperflow F of size |F | = |f |.
It is easy to observe that the size of the hyperflow is bounded from above by the
size of the flow in the underlying multigraph. Thus, we obtained a maximum
st-hyperflow in H.

Since in directed multigraphs the size of the minimum cut equals the size of
the maximum flow [10], it follows that we can find |F | edges e1, . . . , e|F | of G
that forms a minimum cut of G. Observe that each of these edges corresponds
to exactly one hyperedge. Thus, we obtain a set C of at most |F | hyperedges
that forms an st-hypercut. Since any st-hypercut is bounded from below by the
size of the hyperflow, C is a minimum st-hypercut of size |C| = |F |. ut

6 Sequence Hypergraphs with Backward Hyperedges

We consider a special class of sequence hypergraphs where for every hyperedge,
there is the exact same hyperedge, but oriented in the opposite direction.

10

Definition 6 (backward hyperedges). Let E = (v1, v2, . . . , vk) be a hyper-
edge of a sequence hypergraph H = (V, E). We say that E′ is a backward hy-
peredge6 of E, if E′ = (vk, . . . , v2, v1). If for every E of E, there is exactly one
backward hyperedge in E, we refer to H as sequence hypergraph with backward
hyperedges.

Such a situation arise naturally in urban public transportation networks,
for instance most of the tram lines have also a “backward” line (which has the
exact same stops as the “forward” line, but goes in the opposite order). We study
the complexity of shortest st-hyperpath, minimum st-hypercut, and maximum
st-hyperflow under this setting. We show that, in this setting, we can find a
shortest st-hyperpath in polynomial time. On the other hand, we show that
minimum st-hypercut and maximum st-hyperflow remain NP-hard, and we give
a 2-approximation algorithm for the minimum st-hypercut. The positive results
are based on existing algorithms for standard hypergraphs, the negative results
are obtained by a modification of the hardness proofs in Sections 3 and 4.

Theorem 7. The shortest st-hyperpath problem in sequence hypergraphs with
backward hyperedges is in P.

Proof. Let H = (V, E) be a sequence hypergraph with backward hyperedges,
and let s and t be two vertices of H. We construct a (standard) hypergraph
H∗ = (V∗ = V, E∗) from H in such a way that for each sequence hyperedge E
of E , E∗ contains a (non-oriented) hyperedge E∗ that corresponds to the set of
vertices of E. Note that E and its backward hyperedge E′ consist of the same
set of vertices, thus the corresponding E∗ and E′∗ are the same. A shortest
st-hyperpath7 P ∗ in (the standard) hypergraph H∗ can be found in polynomial
time. Observe that the size of P ∗ gives us a lower bound |P ∗| on the length of
the shortest path in the sequence hypergraph H.

In fact, we can construct from P ∗ an st-hyperpath inH of size |P ∗| as follows.
Let us fix p∗ to be an underlying path of P ∗. Let (s = v1, v2, . . . , v|P∗|+1 = t)
be a sequence of vertices, subsequence of p∗, such that for each i = 1, . . . , |P ∗|,
there is a hyperedge E∗ in P ∗ that contains both vi and vi+1, and vi is the first
vertex of E∗ seen on p∗, and vi+1 is the last vertex of E∗ seen on p∗. Since every
hyperedge E∗ of E∗ corresponds to the set of vertices of some hyperedge E of
E , there is a sequence of sequence hyperedges (E1, E2, . . . , E|P∗|), Ei ∈ E , such
that vi, vi+1 are vertices in Ei. Since H is sequence hypergraph with backward
hyperedges, for every hyperedge E of E and a pair its of vertices vi, vi+1 of E,
there is an vivi+1-hyperpath in H of size 1, which consists of E or its backward
hyperedge E′. Therefore, there is an st-hyperpath of size |P ∗| in H. ut
Theorem 8. The maximum st-hyperflow problem in sequence hypergraphs with
backward hyperedges is NP-hard.

Theorem 9. The minimum st-hypercut problem in sequence hypergraphs with
backward hyperedges is NP-hard.

6 Note, if E′ is a backward hyperedge of E, also E is a backward hyperedge of E′.
7 An st-hyperpath P ∗ and its underlying path are defined as in sequence hypergraphs.

11

Theorem 10. The minimum st-hypercut problem in sequence hypergraphs with
backward hyperedges can be 2-approximated.

7 On Other Algorithmic Problems

We briefly consider some other standard graph algorithmic problems.

Definition 7 (rooted spanning hypergraph). Let H = (V, E) be a sequence
hypergraph. We define s-rooted spanning hypergraph T as a subset of E such
that for every v ∈ V, T is an sv-hyperpath. The size of T is defined as |T |.

Theorem 11. Minimum s-rooted spanning hypergraph in acyclic sequence hy-
pergraphs is NP-hard to approximate within a factor of (1− ε) lnn, unless P =
NP .

Definition 8 (strongly connected component). Let H = (V, E) be a se-
quence hypergraph. We say that a set C ⊆ E forms a strongly connected compo-
nent if for every two vertices u, v ∈ V ′, V ′ being all the vertices of V present in
C, the set C is a uv-hyperpath. We say that the vertices in V ′ are covered by C.

Clearly, we can decide in polynomial time whether the given set of hyperedges
C forms a strongly connected component as follows. Consider the underlying
graph G of H induced by the set of sequence hyperedges C and find a maximum
strongly connected component there. If this component spans the whole G, then
C is a strongly connected component in H.

Theorem 12. Given a sequence hypergraph H = (V, E), it is NP-hard to find a
minimum number of hyperedges that form a strongly connected component C so
that a) C is any non-empty set, or b) all the vertices in V are covered by C.

Theorem 13. Given a sequence hypergraph H = (V, E), finding a maximum
number of hyperedges that form a strongly connected component C so that a) C
is any non-empty set, or b) all the vertices in V are covered by C, is polynomial-
time solvable.

Acknowledgements. Kateřina Böhmová is supported by a Google Europe
Fellowship in Optimization Algorithms. The project has been partially sup-
ported by the Swiss National Science Foundation (SNF) under the grant number
200021 156620.

TODO

References

1. Ausiello, G., Franciosa, P.G., Frigioni, D.: Directed hypergraphs: Problems, al-
gorithmic results, and a novel decremental approach. In: Theoretical Computer
Science, pp. 312–328. Springer Berlin Heidelberg (2001)

12

2. Ausiello, G., Giaccio, R., Italiano, G.F., Nanni, U.: Optimal traversal of directed
hypergraphs. Tech. rep. (1992)

3. Barbut, E., Bialostocki, A.: A generalization of rotational tournaments. Discrete
mathematics 76(2), 81–87 (1989)

4. Berry, J., Dean, N., Goldberg, M., Shannon, G., Skiena, S.: Graph drawing and
manipulation with link. In: DiBattista, G. (ed.) GD 1997. pp. 425–437. Springer
Berlin Heidelberg (1997)

5. Böhmová, K., Mihalák, M., Pröger, T., Sacomoto, G., Sagot, M.F.: Computing and
listing st-paths in public transportation networks. In: Kulikov, S.A., Woeginger,
J.G. (eds.) CSR 2016. pp. 102–116. Springer International Publishing (2016)

6. Broersma, H., Li, X., Woeginger, G., Zhang, S.: Paths and cycles in colored graphs.
Australasian journal of combinatorics 31, 299–311 (2005)

7. Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.V.: On the red-blue set cover
problem. In: SODA 2000. vol. 9, pp. 345–353. Citeseer (2000)

8. Coudert, D., Datta, P., Pérennes, S., Rivano, H., Voge, M.E.: Shared risk resource
group complexity and approximability issues. Parallel Processing Letters 17(02),
169–184 (2007)

9. Coudert, D., Pérennes, S., Rivano, H., Voge, M.E.: Combinatorial optimization in
networks with Shared Risk Link Groups. Research report, INRIA (Oct 2015)

10. Elias, P., Feinstein, A., Shannon, C.E.: A note on the maximum flow through a
network. Information Theory, IRE Transactions on 2(4), 117–119 (1956)

11. Erdős, P.L., Frankl, P., Katona, G.O.: Intersecting sperner families and their convex
hulls. Combinatorica 4(1), 21–34 (1984)

12. Fellows, M.R., Guo, J., Kanj, I.A.: The parameterized complexity of some minimum
label problems. In: Paul, C., Habib, M. (eds.) WG 2009. pp. 88–99. Springer Berlin
Heidelberg (2010)

13. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and appli-
cations. Discrete applied mathematics 42(2), 177–201 (1993)

14. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness. W. H. Freeman & Co., New York, NY, USA (1979)

15. Goldberg, P.W., McCabe, A.: Shortest paths with bundles and non-additive
weights is hard. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. vol. 7878, pp.
264–275. Springer Berlin Heidelberg (2013)

16. Gutin, G., Yeo, A.: Hamiltonian paths and cycles in hypertournaments. Journal of
Graph Theory 25(4), 277–286 (1997)

17. Hassin, R., Monnot, J., Segev, D.: Approximation algorithms and hardness results
for labeled connectivity problems. J. Comb. Opt. 14(4), 437–453 (2007)

18. Hu, J.Q.: Diverse routing in optical mesh networks. Communications, IEEE Trans-
actions on 51(3), 489–494 (2003)

19. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon.
Journal of Computer and System Sciences 74(3), 335–349 (2008)

20. Krumke, S.O., Wirth, H.C.: On the minimum label spanning tree problem. Infor-
mation Processing Letters 66(2), 81–85 (1998)

21. Wachman, G., Khardon, R.: Learning from interpretations: a rooted kernel for
ordered hypergraphs. In: Proceedings of the 24th international conference on Ma-
chine learning. pp. 943–950. ACM (2007)

22. Yuan, S., Varma, S., Jue, J.P.: Minimum-color path problems for reliability in mesh
networks. In: INFOCOM 2005. vol. 4, pp. 2658–2669. IEEE (2005)

23. Zhang, P., Cai, J.Y., Tang, L.Q., Zhao, W.B.: Approximation and hardness results
for label cut and related problems. J. Comb. Opt. 21(2), 192–208 (2011)

