
Int. Journ. of Unconventional Computing, Vol. 0, pp. 1–32 ©2012 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group.

Population Protocols that Correspond to
Symmetric Games∗

OLIVIER BOURNEZ1, JÉRÉMIE CHALOPIN2, JOHANNE COHEN3,
XAVIER KOEGLER4 AND MIKAËL RABIE5

1Ecole Polytechnique & Laboratoire d’Informatique (LIX), 91128 Palaiseau Cedex, France
E-mail: Olivier.Bournez@lix.polytechnique.fr

2CNRS & Laboratoire d’Informatique Fondamentale de Marseille, CNRS & Aix-Marseille Université,
39 rue Joliot Curie, 13453 Marseille Cedex 13, France

E-mail: Jeremie.Chalopin@lif.univ-mrs.fr
3CNRS & PRiSM, 45 Avenue des Etats Unis, 78000 Versailles, France

E-mail: Johanne.Cohen@prism.uvsq.fr
4École Normale Supérieure & Université Paris Diderot, Paris 7, Case 7014,

75205 Paris Cedex 13, France
Xavier.Koegler@liafa.jussieu.fr

5École Normale Supérieure de Lyon & 46 Allée d’Italie, 69007 Lyon, France
E-mail: Mikael.Rabie@ens-lyon.fr

Received: July 18, 2012. Accepted: November 11, 2012.

Population protocols have been introduced by Angluin et al. as a model
of networks consisting of very limited mobile anonymous agents that
interact in pairs but with no control over their own movement. The
model has been considered as a computational model.

In an orthogonal way, several distributed systems have been termed
in literature as being realizations of games in the sense of game theory.
In this paper, we investigate under which conditions population proto-
cols, or more generally pairwise interaction rules, can be considered as
the result of a symmetric game.

We prove that not all symmetric rules can be considered as symmet-
ric games. We prove that some basic protocols can be realized using
symmetric games.

Keywords: Population protocols, computation theory, distributed computing,
algorithmic game theory

∗ This work and all authors were partly supported by ANR Project SOGEA and by ANR Project
SHAMAN, Xavier Koegler was partly supported by COST Action 295 DYNAMO and ANR Project
ALADDIN

1

IJUC˙JDL˙01˙BOURNEZ˙V1 1



2 OLIVIER BOURNEZ et al.

1 INTRODUCTION

The population protocol model of Angluin et al. [3] describes a population of
anonymous finite-state agents that interact in pairs according to a transition
function. The agents are identically programmed finite state machines. Inter-
actions between pairs of agents cause the two agents to update their states.
These interactions are under the control of an adversary scheduler subject to a
fairness constraint. Input values are initially distributed to the agents, and the
agents must eventually converge to a common output value that represents
the result of the computation. A protocol is said to (stably) compute a pred-
icate on the initial states of the agents if, in any fair execution, after finitely
many interactions, all agents reach a common output that corresponds to the
value of the predicate. The population protocols do not halt but they stabilize.

The population protocol model [4] is motivated to represent sensor net-
works consisting of very limited mobile agents with no control over their
own movement. In the seminal paper [3], the canonical example corresponds
to sensors attached to a flock of birds and that must be programmed to check
some global properties, like determining whether more than 5% of the pop-
ulation has elevated temperature. Motivating scenarios also include models
of the propagation of trust [16]. This model can represent sensor networks,
ad-hoc networks, or models from chemistry. All these systems have highly
mobile objects.

This goal of our work is to understand when the pairwise interactions of
the population protocol can be viewed as the result of a symmetric game.
This is inspired by [17, 18, 24] that consider the dynamics of a particular set
of rules termed the PAVLOV behavior in the iterated prisoner’s dilemma. The
PAVLOV behavior is sometimes also termed WIN-STAY, LOSE-SHIFT [9,28].
Our original motivation was to consider rules corresponding to two-player
games, and population protocols arose quite incidentally. The main advantage
of the setting introduced in [3] is that it provides a clear understanding of
what is called a computation by the model. Many distributed systems have
been described as the result of games.

In this spririt, we recently discussed the general case of population pro-
tocols corresponding to Pavlovian strategies obtained from games and we
showed that all predicates computable by protocols can actually be computed
by protocols corresponding to games [12]. However, in this paper, we con-
sider the impact of restricting ourselves to symmetric games in which both
players have the same set of possible strategies and the result of one instance
of the game does not depend on the order in which the players interact. Such
a symmetric game yields symmetric transition rules for the corresponding
population protocols. As far as we know, the constraint of restricting tran-
sitions in a population protocol to symmetric rules has not been explicitly
considered, nor has restricting to rules that correspond to symmetric games.

IJUC˙JDL˙01˙BOURNEZ˙V1 2



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 3

Related work The seminal work [3] proposes a simple version of the pop-
ulation protocol model. In this model, any pair of agents may interact and
these interactions are scheduled by an adversary, subject to a fairness con-
straint. The predicates computable by the unrestricted population protocols
have been characterized as being precisely the semi-linear predicates, that is
those predicates on counts of input agents definable in first-order Presburger
arithmetic [30]. Semi-linearity was shown to be sufficient in [3] and neces-
sary in [5].

Variants of the original model considered so far include restriction to one-
way communications [1], restriction to particular interaction graphs [2], ran-
dom interactions [3], with “speed” [10]. Various kinds of fault tolerance have
been considered for population protocols [15], including the search for self-
stabilizing solutions [7]. Solutions to classical problems of distributed algo-
rithms have also been considered in this model (see [26]).

Certain works extend this model. On the one hand, the edges of the inter-
action graph may have states that belong to a constant-size set. This model
called the mediated population protocol is presented in [25]. The class of sta-
bly computable predicates in this model is understood. On the other hand,
probabilistic population protocols were proposed in [4], in which the sched-
uler selects randomly and uniformly the next interaction pair. Some works
have concentrated on performance (see e.g. [6]) and focus on a generic defi-
nition of probabilistic schedulers [13].

The population protocol model shares many features with other models
already considered in the literature. In particular, models of pairwise interac-
tions have been used to study the propagation of diseases [21], or rumors [14].
In chemistry, the chemical master equation has been justified using (stochas-
tic) pairwise interactions between the finitely many molecules [20,27]. In that
sense, the model of population protocols may be considered as fundamental
in several fields of study, since it appears as soon as anonymous agents inter-
act pairwise.

In this paper, we turn two player games into dynamics over agents, by
considering PAVLOV behavior. The pairwise interactions between finite-state
agents are sometimes motivated by the study of the dynamics of particular
two-player games from game theory. For example, Dyer et al. [17] considers
the dynamics of the so-called PAVLOV behavior in the iterated prisoner’s
dilemma. Several results about the time of convergence of this particular
dynamics towards the stable state can be found in [17], and [18], for rings,
and complete graphs.

This is clearly not the only way to associate a dynamic to a game.
There are several famous classical approaches: The first consists in repeat-
ing games: see for example [11,29]. The second corresponds to models from
evolutionary game theory: refer to [22, 31] for a presentation of this lat-
ter approach. The approach here considers dynamics obtained by selecting

IJUC˙JDL˙01˙BOURNEZ˙V1 3



4 OLIVIER BOURNEZ et al.

at each step some players and let them play a fixed game. Alternatives to
PAVLOV behavior could include MYOPIC dynamics (at each step each player
chooses the best response to previously played strategy by its adversary), or
the well-known and studied FICTIOUS-PLAYER dynamics (at each step each
player chooses the best response to the statistics of the past history of strate-
gies played by its adversary). We refer to [11,19] for a presentation of results
known about the properties of the obtained dynamics according to the prop-
erties of the underlying game. This is clearly non-exhaustive, and we refer
to [9] for an incredible zoology of possible behaviors for the particular iter-
ated prisoner’s dilemma game, with discussions of their comparative merits
in experimental tournaments.

Recently Jaggard et al. [23] studied a distributed model similar to protocol
populations where the interactions between pairs of agents correspond to a
game. Unlike in our model, there each agent has its own pay-off matrix and
has some knowledge of the history. This work gives several non-convergence
results.

Results We want to understand if restricting to rules that come from a sym-
metric game is a limitation, and in particular whether restricting to rules that
can be termed PAVLOV in the spirit of [17] is a limitation. We show that
directly restricting the definitions introduced in [12] indeed yields a strong
limitation of the computational power of such protocols as they become
unable to detect if three or more occurrences of a single input symbol are
present in the population. However, a slight modification of the PAVLOV
behaviour, forcing dissatisfied agents to change even if their current strat-
egy is already the Best Response to their opponent’s allows us to circumvent
this limitation. We call this new behavior the Exclusive PAVLOV Behavior.
We then show the solutions to several basic problems using rules of inter-
actions associated to a symmetric game by the exclusive PAVLOV behavior,
and discuss the power of such rules. We prove that they can count up to 2,
they can compute MAJORITY and more generally that they can count to any
threshold 2k for any given k.

In Section 2, we briefly recall population protocols and we discuss the
power of computation in population protocols using only the symmetric rules.
In Section 3, we recall some basics from game theory. In Section 4, we dis-
cuss how a game can be turned into a dynamic, and introduce the notion of
symmetric Pavlovian population protocols and give an impossibility result
for symmetric Pavlovian population protocols. In Section 5 we introduce
exclusive Pavlovian population protocols. In Section 6, we prove that any
symmetric deterministic 2-state population protocol is exclusive Pavlovian,
and that the problem of computing the O R of inputs, the AN D of inputs and
the majority problem admit exclusive Pavlovian solutions. In Section 7, we

IJUC˙JDL˙01˙BOURNEZ˙V1 4



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 5

describe some exclusive Pavlovian population protocols that count up to any
threshold of form 2k for any given k.

2 POPULATION PROTOCOLS

2.1 Formal Model
A protocol [3, 8] is given by (Q, �, ι, ω, δ) with the following components.
Q is a finite set of states. � is a finite set of input symbols. ι : � → Q is the
initial state mapping, and ω : Q → {0, 1} is the individual output function.
δ ⊆ Q4 is a joint transition relation that describes how pairs of agents can
interact. Relation δ is sometimes described by listing all possible interactions
using the notation (q1, q2) → (q ′

1, q ′
2), or even the notation q1q2 → q ′

1q ′
2,

for (q1, q2, q ′
1, q ′

2) ∈ δ (with the convention that (q1, q2) → (q1, q2) when no
rule is specified with (q1, q2) in the left-hand side). The protocol is said
deterministic if for all pairs (q1, q2) there is only one pair (q ′

1, q ′
2) with

(q1, q2) → (q ′
1, q ′

2). In that case, we write δ1(q1, q2) for the unique q ′
1 and

δ2(q1, q2) for the unique q ′
2.

Notice that, in general, rules can be non-symmetric: if (q1, q2) → (q ′
1, q ′

2),
it does not necessarily follow that (q2, q1) → (q ′

2, q ′
1).

2.2 Computation
Computations of a protocol proceed in the following way. n ≥ 2 agents take
part in this computation. A configuration of the system is a multiset of ele-
ments of Q. Since the agents are anonymous, the agents with the same state
are indistinguishable and thus we can see a configuration as a vector of inte-
gers of length |Q| corresponding to counts of agents for each state.

To start the computation, we give to each agent an input, which is an ele-
ment of �. To get the initial configuration, we just need to apply ι to each
agent’s input.

Two agents q1 and q2 interact together if they both change their state into
q ′

1 and q ′
2, where these two new states are such as (q1, q2, q ′

1, q ′
2) is in δ. A

step in the computation is a transition between two configurations C and C ′

(noted C → C ′), where two agents have interacted together. An execution
for a protocol from an initial configuration C0 is a sequence of configurations
(Ci )i∈N, where, for each i in N, Ci → Ci+1.

An execution is fair if, for each configuration C appearing infinitely often,
if one can reach C ′ from C in one step, then C ′ also appears an infinite num-
ber of times in the execution.

The output of a state of Q is its image through ω, hence either 0 or 1.
The output of a configuration is 0 (respectively 1) if all the individual outputs
are 0 (respectively 1). If the individual outputs are mixed 0s and 1s then the
output of the configuration is undefined.

IJUC˙JDL˙01˙BOURNEZ˙V1 5



6 OLIVIER BOURNEZ et al.

2.3 Computable Predicates
Let p be a predicate over multisets of elements of �. Predicate p can be con-
sidered as a function whose range is {0, 1} and whose domain is the collec-
tion of these multisets. The predicate is said to be computed by the protocol
if, for every multiset I , and every fair execution that starts from the initial
configuration corresponding to I , the output value of every agent eventually
stabilizes to p(I ).

Multisets of elements of � are in clear one-to-one correspondence with
elements of N

|�|: a multiset over � can be identified by a vector of |�|
components, where each component represents the multiplicity of the cor-
responding element of � in this multiset. It follows that predicates can also
be considered as functions whose range is {0, 1} and whose domain is N|�|.

The following was then proved in [3, 5].

Theorem 1 [3, 5]. A predicate is computable in the population protocol
model if and only if it is semilinear.

Recall that semilinear sets are known to correspond to predicates on
counts of input agents definable in first-order Presburger arithmetic [30].

We will use the following notation as in [1]: the set of all functions from
a set X to a set Y is denoted by Y X . Let � be a finite non-empty set. For all
f, g ∈ R

� , we define the usual vector space operations

( f + g)(σ ) = f (σ ) + g(σ ) for all σ ∈ �

( f − g)(σ ) = f (σ ) − g(σ ) for all σ ∈ �

(c f )(σ ) = c f (σ ) for all σ ∈ �, c ∈ R

( f.g)(σ ) = ∑
σ f (σ )g(σ ) for all σ ∈ �.

Abusing notation as in [1], we will write σ for the function σ (σ ′) = [σ =
σ ′], for all σ ′ ∈ �, where [condition] is 1 if condition is true, 0 otherwise.

Corollary 1 [3, 5]. All semilinear predicates can be computed by a deter-
ministic population protocol.

2.4 Symmetric Rules
A Population protocol is symmetric if, for all (q1, q1, q ′

1, q ′
2) in δ, q ′

1 = q ′
2 and

for all (q1, q2, q ′
1, q ′

2) in δ, (q2, q1, q ′
2, q ′

1) is in δ. The remainder of this sec-
tion is devoted to proving that the predicates computable by the Symmetric
population protocols are the same as those computable by the unrestricted
population protocols.

First, we can notice that

IJUC˙JDL˙01˙BOURNEZ˙V1 6



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 7

Proposition 1. Any population protocol can be simulated by a symmetric
population protocol, as soon as the population is of size ≥ 3.

Proof. The idea of the proof is to construct a symmetric Population Protocol
simulating a given (asymmetric) population protocol by using two copies
of the set of states from the original protocol and using them to determine
whether an agent should be the first or the second agent in an asymmetric
interaction. The key to the proof is to have agents alternate between both
roles (that is between the two copies of the set of states) when they encounter
another agent trying to play the same role in the interaction. Thus when two
agents trying to act as first members of a transition interact, they both move
to try to act as second members of a transition the next time they are picked
to interact (without changing their state with relation to the first protocol),
and vice-versa. Note that we assume all protocols to be deterministic here.

Let P = (Q, �, ι, ω, δ) be some (asymmetric) Population Protocol. We
will now construct a symmetric Population Protocol P ′ = (Q′, �, ι′, ω′, δ′)
such that any computation in P ′ can be mapped to a computation in P and,
conversely, any computation in P for a population of size ≥ 3 can be sim-
ulated in P ′. We will then say that P ′ simulates P and it is clear that P ′

computes the same predicate as P . This, of course implies that we use the
same input alphabet � for both protocols.

We define Q′ = Q × {1, 2} to have two copies of Q. For any state
q ∈ Q we call an agent in state (q, 1) (resp. (q, 2)) a first-minded (resp.
second-minded) agent in state q . We use natural extensions for ι and ω:
for any symbol σ ∈ �, ι′(σ ) = (ι(σ ), 1) and for any state q ∈ Q, we set
ω′(q, 1) = ω′(q, 2) = ω(q). Finally, we define δ′ from δ as follows. For any
pair (u, v) ∈ Q, let (u′, v′) = δ(u, v). Then set:

� δ′((u, 1), (v, 1)) = ((u, 2), (v, 2)) and δ′((u, 2), (v, 2)) = ((u, 1), (v, 1))
� δ′((u, 1), (v, 2)) = ((u′, 1), (v′, 2)) and δ′((v, 2), (u, 1)) = ((v′, 2),

(u′, 1)).

This defines P ′ as a symmetric protocol. To see that any valid computation
in P ′ corresponds to a valid computation in P, simply project the states of
all agents according to their first coordinate (that is, disregard whether they
are first- or second-minded). Any computation C1 → . . . → Ck → . . . in P ′

becomes a valid computation in P with a few additional stagnations in the
same configuration (when two identically-minded agents change from first-
to second-minded or the other way around).

Conversely, consider a possible transition C1 → C2 in P where C1 and
C2 are two configurations of a population of size n ≥ 3. Then for any config-
uration C ′

1 of the same population of agents but over states in Q′, such that

IJUC˙JDL˙01˙BOURNEZ˙V1 7



8 OLIVIER BOURNEZ et al.

we have C ′
1(w) ∈ C(w) × {1, 2} for any agent w in the population. (Recall

that, for a configuration C and an agent w, C(w) denotes the state of w in C.)
That is, any configuration in which we only added a first- or second-minded
state to each agent satisfies that there is a configuration C ′

2 reachable from C ′
1

such that, for any agent w, C ′
2(w) ∈ C2(w) × {1, 2}. Indeed, let (u, v) be two

agents such that C1
u,v→ C2. We have (C2(u), C2(v)) = δ(C1(u), C1(v)) and,

by definition of δ′,

δ′((C1(u), 1), (C1(v), 2)) = ((C2(u), 1), (C2(v), 2)).

If C ′
1(u) = (C1(u), 1) and C ′

1(v) = (C1(v), 2), then by having agents u, v

interact we directly get a satisfactory configuration C ′
2. Otherwise, we will

show that we can, using a third agent w (hence the condition that n ≥ 3)
change the mind of agents u and v to get to this case.

1. If u, v, w are all identically-minded, then having w interact with who-
ever is of the wrong mind (v if they are all first-minded, u otherwise)
results in the desired configuration for u and v.

2. If u, v are identically-minded but w is differently-minded, then having
u, v interact brings us back to case 1.

3. If u is second-minded and v is first-minded, then having w interact
with whoever is like-minded brings us back to case 1.

This proves that any valid computation in P can be simulated by a valid
configuration in P ′ (with the addition of at most two “mind changes” at each
computation step).

Corollary 2. A predicate is computable by a symmetric population protocol
if and only if it is semilinear.

3 GAME THEORY

We now recall the simplest concepts from Game Theory. In this paper, we
will restrict to symmetric games. In the presentation, we focus on symmetric
non-cooperative games, with complete information, in normal form.

Definition 1 Symmetric two-player game. A symmetric two-player game
is a couple (S, A) in which both players are endowed with the same finite
set of pure actions S. For each player, the payoff function is denoted by A :
S × S → R where A(i, j) denotes the payoff to the player choosing the first
argument when his opponent chooses the second argument.

IJUC˙JDL˙01˙BOURNEZ˙V1 8



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 9

In the remainder of this paper, the payoff function is viewed as the payoff
matrix. With some abuse of notation, Ai, j denotes the payoff to the player
choosing the first argument when his opponent chooses the second argument.

Example 1 Prisoner’s dilemma. The prisoner’s dilemma game is a couple
(S, A) where S = {C, D} and the matrix A is as follows :

Opponent
C D

Player
C 1 −3
D 3 −1

We will also introduce some game theory concepts: best response and
Nash equilibrium.

Definition 2 Best reponse. Let G be a symmetric two-player game (S, A).

� A strategy x ∈ S is said to be a best response to strategy y ∈ S, denoted
by x ∈ B R(y) if for all strategies z ∈ S, we have

Az,y ≤ Ax,y (1)

� A strategy x ∈ S is said to be a best response to strategy y among
those different from x ′, denoted by x ∈ B R 	=x ′ (y) if for all strategies
z ∈ S\{x ′}, we have

Az,y ≤ Ax,y (2)

Given some strategy x ′ ∈ Strat(I ), a strategy x ∈ Strat(I ) for all strategies
z ∈ Strat(I ), z 	= x ′.

Example 2 Prisoner’s dilemma. B R(C) = B R(D) = D, B R 	=D(D) = C.

Definition 3 Pure Nash equilibrium. Let G be a symmetric two-player
game (S, A). A pair (x, y) is a (pure) Nash equilibrium if x ∈ B R(y) and
y ∈ B R(x).

In other words, two strategies (x, y) form a Nash equilibrium if in that
state, no player has a unilateral interest to deviate from it. Note that a pure
Nash equilibrium does not always exist.

IJUC˙JDL˙01˙BOURNEZ˙V1 9



10 OLIVIER BOURNEZ et al.

Example 3 Prisoner’s dilemma. Since B R(C) = D and B R(D) = D,
(D, D) is the unique pure Nash equilibrium. In it, each player has score
−1. The well-known paradox is that if they had played (C, C) (cooperation)
they would have had score 1. The social optimum (C, C), is different from
the equilibrium that is reached by rational players (D, D), since in any other
state, each player fears that the adversary plays D.

Repeating Games In this paper, we consider that the players play the same
game again and again. After each game, they can decide to change or not
their strategy. They do not have any memory about their previous games nor
their past strategies.

Repeating k times the same game, is equivalent to extending the space of
choices into Sk : player I (respectively I I ) chooses his or her action x(t) ∈ S,
(resp. y(t) ∈ S)) at time t for t = 1, 2, · · · , k. Hence, this is equivalent to
a two-player game with nk choices for players, where n is the cardinality
of S. To avoid confusion, we will call actions the choices x(t), y(t) of each
player at time t , and strategies the sequences X = x(1), · · · , x(k) and Y =
y(1), · · · , y(k), that is to say the strategies for the global game.

Behaviors In practice, player I (respectively I I ) has to solve the following
problem at each time t : given the history of the game up to now, that is to
say Xt−1 = x(1), · · · , x(t − 1) and Yt−1 = y(1), · · · , y(t − 1) what should
player I (resp. I I ) play at time t? In other words, how to choose x(t) ∈ S?
(resp. y(t) ∈ S?). It is natural to assume that this is given by some behavior
rules:

x(t) = f (Xt−1, Yt−1)and y(t) = g(Xt−1, Yt−1)

for some particular functions f and g.

The Specific Case of the Prisoner’s Dilemma The question of the best
behavior rule to use for the prisoner’s dilemma gave birth to an important
literature. In particular, after the book [9], that describes the results of tourna-
ments of behavior rules for the iterated prisoner’s dilemma, and that argues
that there exists a best behavior rule called TIT-FOR-TAT. This consists in
cooperating at the first step, and then do the same thing as the adversary at
subsequent times.

Among possible behaviors there is PAVLOV behavior: in the iterated pris-
oner’s dilemma, a player cooperates if and only if both players opted for the
same alternative in the previous move. This name [9, 24, 28] stems from the
fact that this strategy embodies an almost reflex-like response to the payoff:

IJUC˙JDL˙01˙BOURNEZ˙V1 10



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 11

it repeats its former move if it was rewarded by 1 or 3 points, but switches
behavior if it was punished by receiving only −1 or −3 points. We refer
to [28] for a study of this strategy in the spirit of Axelrod’s tournaments.

The PAVLOV behavior can also be termed WIN-STAY, LOSE-SHIFT since
if the play on the previous round results in a success, then the agent plays the
same strategy on the next round. Alternatively, if the play resulted in a failure
the agent switches to another action [9, 28].

Example 4 Prisoner’s dilemma. If players i and j play the prisoner’s
dilemma having a PAVLOV behavior, then it is easy to see that this corre-
sponds to executing the following rules:

⎧⎪⎪⎨
⎪⎪⎩

CC → CC
C D → DD
DC → DD
DD → CC.

(3)

PAVLOV behavior is Markovian: a behavior f is Markovian, if
f (Xt−1, Yt−1) depends only on x(t − 1) and y(t − 1). From such a behav-
ior, it is easy to obtain a distributed dynamic. For example, let’s follow [17],
for the prisoner’s dilemma.

There are several works on the prisoner’s dilemma dynamic. In these
studies, the interactions between players correspond to a connected graph
G = (V, E), with N vertices corresponding to players and with edges rep-
resenting interaction. An instantaneous configuration of the system is given
by an action of {C, D}N , that is to say by the state C or D of each vertex.
At each time t , one chooses randomly and uniformly one edge (i, j) of the
graph. At this moment, players i and j play the prisoner’s dilemma with the
PAVLOV behavior. The goal of these work is to answer the following ques-
tion: what is the final state reached by the system? Several results about the
time of convergence towards this stable state can be found in [17], and [18],
for rings, and complete graphs.

What is interesting in this example is that it shows how to go from a game,
and a behavior to a distributed dynamic on a graph, and in particular to a
population protocol when the graph is the complete graph.

4 FROM GAMES TO POPULATION PROTOCOLS

In the spirit of the previous discussion, to any symmetric game, we can asso-
ciate a population protocol as follows.

IJUC˙JDL˙01˙BOURNEZ˙V1 11



12 OLIVIER BOURNEZ et al.

Definition 4 Associating a Protocol to a Game. Let (S, A) be a symmet-
ric two-player game where S (resp. A) is a set of actions (resp. the payoff
matrix). Let � be some threshold.

The protocol associated to the game is a population protocol whose set
of states is Q, where Q = S is the set of strategies of the game, and whose
transition rules δ are given as follows:

(q1, q2, q ′
1, q ′

2) ∈ δ

where

� q ′
1 = q1 when Aq1,q2 ≥ �

� q ′
1 ∈ B R(q2) when Aq1,q2 < �

and

� q ′
2 = q2 when Aq2,q1 ≥ �

� q ′
2 ∈ B R(q1) when Aq2,q1 < �,

Remark 1. By subtracting � from each entry of the payoff matrix A, we get
a new game, to which the same population protocol is associated when the
satisfaction threshold is considered to be 0. Therefore we can assume without
loss of generality that � = 0. We will do so from now on.

This definition corresponds to the direct adaptation of Definition 1
from [12] to symmetric games. A population protocol obtained from a game
as above must be symmetric. Indeed, whenever (q1, q2, q ′

1, q ′
2) ∈ δ, one has

(q2, q1, q ′
2, q ′

1) ∈ δ.

Definition 5 Deterministic Pavlovian population protocol.. A population
protocol is said to be deterministically obtained from a game as per Defini-
tion 4 if the best responses of the game are assumed to be unique, that is, if for
any strategy q1, B R(q1) is reduced to a singleton. Indeed, the rules obtained
from such a game are deterministic: for all q1, q2, there is a unique q ′

1 and a
unique q ′

2 such that (q1, q2, q ′
1, q ′

2) ∈ δ.

Definition 6 symmetric Pavlovian Population Protocol. A symmetric
Pavlovian population protocol is a population protocol that can be obtained
deterministically from a game as per Definition 4.

Theorem 2. There is no symmetric Pavlovian protocol that computes the
threshold predicate [x .σ ≥ 3], which is true when there are at least 3 occur-
rences of input symbol σ in the input x.

IJUC˙JDL˙01˙BOURNEZ˙V1 12



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 13

Proof. The proof is by contradiction. Assume that there exists such a sym-
metric Pavlovian protocol P . Without loss of generality, we may assume that
� = {0, σ } is a subset of the set of states Q. Let A be the payoff matrix from
a symmetric game associated with this protocol. In keeping with a previous
remark, we may assume without loss of generality that � = 0 is the gain
threshold for the PAVLOV behaviour corresponding to P . We will derive
a contradiction by showing that P cannot possibly distinguish between the
inputs x3 = {σ, σ } and x4 = {σ, σ, σ, σ }.

Since the protocol is symmetric, for any q ∈ Q, the rule qq → q ′q ′′, is
such that q ′ = q ′′, that is to say of the form qq → q ′q ′. Let us consider
the sequence of rules such that σσ → q1q1 → q2q2 → · · · → qkqk → . . .

where σ, q1q2, q3, . . . , qk ∈ Q. Since Q is finite, there exist two distinct inte-
gers k and � such that qk = q� and k < �.

The case k + 1 = � is not possible. Indeed, we would have the rule
qkqk → qkqk . Then, consider the inputs x3 = {σ, σ } and x4 = {σ, σ, σ, σ }.
x4 must be accepted. From x4 there is a derivation x4 → {q1, q1, σ, σ } →
{q1, q1, q1q1} →∗ {qk, qk, qk, qk}. This latter configuration is terminal from
the above rule. Since x4 must be accepted, we must have ω(qk) = 1. However,
from x3 there is a derivation x3 → {q1, q1} →∗ {qk, qk}, where the last con-
figuration is also terminal. We reach a contradiction, since the output of this
last configuration would be ω(qk) = 1, whereas x3 must be rejected. Hence,
k + 1 < �, and qkqk → qk+1qk+1 → · · · → q�q� = qkqk . Let T be the set of
states T = {qi : k ≤ i ≤ �}. Since qi qi → qi+1qi+1 is among the rules, by
definition of Pavlovian behaviour, we have qi+1 = B R(qi ).

Let us discuss the rules

qi q j → q ′
i q

′
j (4)

for (qi , q j ) ∈ T 2. There are two possibilities for the value of q ′
i :

q ′
i =

{
q ′

i = qi if Aqi q j ≥ 0

q ′
i = B R(q j ) = q j+1 otherwise.

In any case, the value of q ′
i is in T . Symmetrically, we have two possibilities

for q ′
j , all of them in T . Hence, all rules of the form (4) preserve T : we have

q ′
i , q ′

j ∈ T , as soon as qi , q j ∈ T .
Similarly to what we did in the case k + 1 = �, there is a derivation

x4 → {q1, q1, σ, σ } → {q1, q1, q1q1} →∗ {qk, qk, qk, qk}.

From the last configuration, by the previous remark, the state of all agents
will be in T . Since x4 must be accepted, ultimately all agents will be in states

IJUC˙JDL˙01˙BOURNEZ˙V1 13



14 OLIVIER BOURNEZ et al.

that belong to T and such that their image by ω is 1. Consider now x3. There
is a derivation

x3 → {q1, q1} →∗ {qk, qk}

that will go through all configurations {qi qi }, for all qi ∈ T . This cannot even-
tually stabilize to elements whose image by ω is 0, because some of the ele-
ments of T have image 1 by ω, and hence x3 is not accepted. This yields the
desired contradiction.

Remark 2. We can also prove, using a similar proof, that there is no symmet-
ric Pavlovian protocol that computes the threshold predicate [x .σ ≥ 2k + 1]
for k > 2 if we use two populations of respective size 2k and 2k + 1.

Remark 3. No similar proof seems possible for exclusive pavlovian popula-
tion protocols (to be defined in next section).

5 EXCLUSIVE PAVLOVIAN POPULATION PROTOCOLS

We denote by B R 	=x ′ (y) the set of best responses to strategy y, different from
strategy x . Similarly to what was done in Definition 4, we can then define an
Exclusive Pavlovian Protocol to be a Protocol obtained from a game by fol-
lowing the Exclusive PAVLOV behaviour instead of the traditional PAVLOV
behaviour.

Definition 7 Exclusive Pavlovian Protocol. Let (S, A) be a symmetric game
and let � be some threshold. A protocol exclusively associated to the game is
a population protocol whose set of states is Q = S the set of strategies of the
game, and whose transition rules δ are given by: (q1, q2, q ′

1, q ′
2) ∈ δ if and

only if

q ′
1 =

{
q1 if Aq1,q2 ≥ �

x ∈ B R 	=q1 (q2) otherwise,

q ′
2 =

{
q2 if Bq2,q1 ≥ �

x ∈ B R 	=q2 (q1) otherwise.

An exclusive Pavlovian protocol is a population protocol exclusively and
deterministically associated to a symmetric game.

IJUC˙JDL˙01˙BOURNEZ˙V1 14



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 15

Note that Definition 7 only differs from Definition 4 by the use of exclu-
sive Best Responses B R 	=q instead of B R. Again, we may assume without
loss of generality that the satisfaction threshold � is 0 and will do so in the
rest of this paper.

6 SOME SIMPLE EXCLUSIVE PAVLOVIAN PROTOCOLS

We now discuss the computational power of exclusive Pavlovian population
protocols. We start with an easy consideration.

Theorem 3. Any symmetric deterministic 2-state population protocol is
exclusive Pavlovian.

Proof. Consider a deterministic symmetric 2-state population protocol. Note
Q = {+,−} its set of states. Its transition function can be written as follows:

⎧⎪⎪⎨
⎪⎪⎩

++ → α++α++
+− → α+−α−+
−+ → α−+α+−
−− → α−−α−−

(5)

for some α++, α+−, α−+, α−−.
This corresponds to the symmetric game given by the following pay-off

matrix A

Opponent

+ -

Player
+ β++ β+−

- β−+ β−−

where for all q1, q2 ∈ {+,−},

� βq1q2 = 1 if αq1q2 = q1,
� βq1q2 = −1 otherwise.

To prove this, we just need to notice that :

� if αq1q2 = q1, the first agent keeps its state. With βq1q2 = 1, Aq1,q2 ≥ 0,
so the first agent will keep its state.

IJUC˙JDL˙01˙BOURNEZ˙V1 15



16 OLIVIER BOURNEZ et al.

� if αq1q2 = q2, the first agent switches its state. With βq1q2 = −1,
Aq1,q2 < 0, so the first agent will chose B R 	=q1 (q2). Because there are
only 2 states, the agent’s new state with our exclusive Pavlovian proto-
col will be the same that the one with the original symmetric protocol.

The proof is enough for the second agent because the protocols are sym-
metric.

Unfortunately, not all rules correspond to a game.

Proposition 2. Some symmetric population protocols are not Pavlovian.

Proof. Consider for example a deterministic 3-state population protocol with
set of states Q = {q0, q1, q2} and a joint transition function δ such that
δ1(q0, q0) = q1, δ1(q1, q0) = q2 , δ1(q2, q0) = q0.

Assume by contradiction that there exists a 2-player game corresponding
to this 3-state population protocol. Consider its payoff matrix A. Let Aq0,q0 =
β0, Aq1,q0 = β1 , Aq2,q0 = β2. We must have β0, β1, β2 < 0 since all agents
that interact with an agent in state q0 must change their state. Now, since
q0 changes to q1, q1 must be a strictly better response to q0 than q2: hence,
we must have β1 > β2. In a similar way, since q1 changes to q2, we must
have β2 > β0 , and since q2 changes to q0, we must have β0 > β1. From
β1 > β2 > β0 we reach a contradiction.

This indeed motivates the following study, where we discuss which prob-
lems admit a Pavlovian solution.

6.1 Basic Protocols

Proposition 3. There is an exclusive Pavlovian protocol that computes the
logical O R (resp. AN D) of input bits.

Proof. Consider the following protocol to compute O R,

⎧⎪⎪⎨
⎪⎪⎩

01 → 11
10 → 11
00 → 00
11 → 11

(6)

and the following protocol to compute AN D,

IJUC˙JDL˙01˙BOURNEZ˙V1 16



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 17

⎧⎪⎪⎨
⎪⎪⎩

01 → 00
10 → 00
00 → 00
11 → 11

(7)

Since they are both deterministic 2-state population protocols, they are
Pavlovian.

Remark 4. Notice that O R (respectively AN D) protocol corresponds to the
predicate [x .1 ≥ 1] (resp. [x .0 = 0]), where x is the input. A simple change
of notation yields a protocol to compute [x .σ ≥ 1] and [x .σ = 0] for any
input symbol σ .

Remark 5. All previous protocols are “naturally broadcasting” i.e., eventu-
ally all agents agree on some (the correct) value. With previous definitions
(which are the classical ones for population protocols), the following proto-
col does not compute the X O R or input bits, or equivalently does not com-
pute predicate [x .1 ≡ 1 (mod 2)].⎧⎪⎪⎨

⎪⎪⎩
01 → 01
10 → 10
00 → 00
11 → 00

(8)

With this protocol, the answer is not eventually known by all the agents.
Even if this protocol might look good, you can notice that if [x .1 ≡
0 (mod 2)], all agents finish in the state 0, so ω(0) = 0. If [x .1 ≡ 1 (mod 2)],
at some point, then all agents but one will be in state 0 (the last one being in
state 1). Even if ω(1) = 1, this configuration does not have an output.

It computes the X O R in a weaker form i.e., eventually, all agents will be
in state 0, if the X O R of input bits is 0, or eventually only one agent will be
in state 1, if the X O R of input bits is 1.

Proposition 4. There is an exclusive Pavlovian protocol that computes the
threshold predicate [x .σ ≥ 2], which is true when there are at least 2 occur-
rences of input symbol σ in the input x.

Proof. The following protocol is a solution taking

� � = {0, σ }, Q = {0, σ, 2},
� ω(0) = ω(σ ) = 0,
� ω(2) = 1.

IJUC˙JDL˙01˙BOURNEZ˙V1 17



18 OLIVIER BOURNEZ et al.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

00 → 00
0σ → 0σ

σ0 → σ0
02 → 22
20 → 22
σσ → 22
σ2 → 22
2σ → 22
22 → 22

(9)

Indeed, if there are at least two σ , then by fairness and by the rule σσ → 22,
then they will ultimately be changed into two 2s. Then 2s will turn all other
agents into 2s. Now, this is the only way to create a 2.

This is a Pavlovian protocol since it corresponds to the following payoff
matrix.

Opponent

0 σ 2

Player
0 0 0 −1

σ 0 −1 −1

2 1 1 1

7 SOME NOT SO SIMPLE PAVLOVIAN PROTOCOLS

7.1 Some Structural Properties on Pavlovian Rules
We are now going to describe some not so simple Pavlovian protocols. Before
doing so, and in order to help to prove that a given set of rules is Pavlovian,
without building explicitly possibly intricate matrices, we start with some
structural properties on Pavlovian protocols.

Proposition 5. Consider a set of rules. For all rules ax → a′x ′, we denote
δa(x) = x ′ and δx (a) = a′.

Let Stable(a) = {x ∈ Q|δa(x) = x}.
Then the set of rules is deterministic Pavlovian iff there exists a function

max : Q → Q such that ∀a ∈ Q:

� Stable(a) 	= ∅ implies that max(a) ∈ Stable(a)
� ∀b 	∈ Stable(a), b 	= max(a) implies δa(b) = max(a).

IJUC˙JDL˙01˙BOURNEZ˙V1 18



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 19

Proof. First, we consider a Pavlovian population protocol P obtained from
corresponding matrix A. For each state a in Q, let q be the best response
to strategy a for matrix A (i.e q = B R(a)). We set max(a) = q, i.e. max
corresponds to B R.

If Stable(a) is not empty, then there exists some b such that ab →
a′′b. By Definition 4, we have Mb,a ≥ 0. MB R(a),a ≥ Mb,a ≥ 0, so B R(a) =
max(a) ∈ Stable(a).

Let b 	∈ Stable(a), b 	= max(a). We have Ab,a < 0 (otherwise, b ∈
Stable(a)). We focus on the rule ab → a′′b′. Ab,a < 0 implies b′ 	= b.
We have b′ = B R 	=b(a). Because b 	= max(a), b 	= B R(a), so B R 	=b(a) =
B R(a). We deduce that δa(b) = max(a).

The function max with the restrictions exists.
Conversely, consider a population protocol P satisfying the properties of

the proposition. All rules ab → a′b′ are such that δa(b) = b′ and δb(a) = a′.
We focus on the construction of a two-player game having the corresponding
matrix A.

� If Stable(a) = Q, then ∀x ∈ Q, Ax,a = 0.
� If Stable(a) = ∅, then we have Amax(a),a = −1 and Aδa (max(a)),a = −2.

Moreover, Ax,a = −3 for each state x except max(a),δa(max(a)).
� If ∅ ⊂ Stable(a) ⊂ Q then the value Ax,a of each element x depends

on the set Stable(a) and max(a).

– Amax(a),a = 1.

– If x ∈ Stable(a) and if x 	= max(a), then Ax,a = 0.

– If x /∈ Stable(a), then Ax,a = −1.
It is easy to see that this game describes all rules of P . So, P is a Pavlo-
vian population Protocol.

Remark 6. As a consequence, a protocol can be given by describing for any
state a:

1. the set Stable(a),

2. the value of max(a),

3. and whenever Stable(a) = ∅, the value of δa(max(a)).

Note that if Stable(a) is not ∅, then δa(max(a)) = max(a) otherwise
δa(max(a)) 	= max(a).

IJUC˙JDL˙01˙BOURNEZ˙V1 19



20 OLIVIER BOURNEZ et al.

7.2 Counting up to 3
We provide a logical characterization of rules that correspond to Pavlovian
protocols.

Proposition 6. There is an exclusive Pavlovian protocol that computes the
threshold predicate [x .σ ≥ 3], which is true when there are at least 3 occur-
rences of input symbol σ in the input x.

Proof. We give a population protocol that computes the threshold predicate
[x .σ ≥ 3]:

� Q = {0, 1, 2+, 2−, X, Y,�}.
� � = {x, y}.
� ι(x) = 1, ι(y) = 0.
� ω = 1{�}.
� with interaction rules defined as follow :

00→00
01→01

02+→2−0
02−→2+0
0X→0X
0Y→0Y
0�→��

11→2+2+
12+→2−2+
12−→2+2−
1X→�X
1Y→�Y
1�→��

2+2+→2−2−
2+2−→Y X
2+ X→�2−
2+Y→�2−
2+�→2+2−

2−2−→2+2+
2− X→�2+
2−Y→�2+
2−�→2−2+

X X→��
XY→XY
X�→��

Y Y→��
Y�→�� ��→��

We now show that the protocol is Pavlovian. Therefore, we will prove that
it computes the threshold predicate [x .σ ≥ 3].

Now, this protocol is Pavlovian as it corresponds to the following payoff
matrix :

Opponent
0 1 2+ 2− X Y �

0 1 0 -3 -3 0 0 −1
1 0 -1 -3 -3 -1 -1 −1
2+ -1 1 -3 -1 -1 -1 0

Player 2− -1 0 -1 -3 -1 -1 0
X 0 0 -2 -3 -1 0 −1
Y 0 0 -3 -2 0 -1 −1
� 0 0 -3 -3 1 1 1

IJUC˙JDL˙01˙BOURNEZ˙V1 20



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 21

As said in the previous remark, it can be described by the parameters
Stable(a), max(a), δa(max(a)) for each state a:

a Stable(a) max(a) δa(max(a))
0 {0, 1, X, Y,�} 0 0
1 {0, 2+, 2−, X, Y,�} 2+ 2+

2+ ∅ 2− X
2− ∅ 2+ Y
X {0, Y,�} � �
Y {0, X,�} � �
� {2+, 2−,�} � �

Now, we prove that this Pavlovian protocol computes the threshold predi-
cate [x .σ ≥ 3] using the number of occurrences of input symbol σ .

If there is no occurrence of input symbol σ in the input x , then the starting
configuration is (0. . . 0). In this case, no interaction allows agents to change
their state. This argument can be also applied for the case where there is one
occurrence of input symbol σ in the input x : the starting configuration is
(1)(0. . . 0).

Now we consider the case where there are two occurrences of input sym-
bol σ in the input x . If the number of agents is 2, then, after the first inter-
action, the system switches between two configurations (2+2+) and (2−2−).
Otherwise, i.e. if there are three or more agents in the population, then Fig-
ure 7.2 shows the graph of possible configurations (where 0̄ designates an
arbitrary number of agents in state 0) and the possibility to switch from one
configuration to another. All possible interactions in any of these configura-
tions not shown in Figure 7.2 leave the configuration unchanged. Thus, in any
reachable configuration from the initial 110̄ configuration, all agents agree on
output 0.

Finally, we consider the case where there are at least three occurrences of
input symbol σ in the input x . First of all, the number of the agents being in
state 0 never increases, so there are always, in any reachable configuration,
at least three elements in {1, 2+, 2−, X, Y,�}. Additionally, no agent can go
to state 1 from any other given state. The principle of the proof of correct-
ness is as follows: we will prove that from any configuration with at least
three agents with states in {1, 2+, 2−, X, Y,�}, there is a sequence of inter-
actions increasing the number of agents in state � by at least one. This in
turn means that, by iterating on such sequences, we can construct a sequence
which leads us to a configuration where all agents are in state �, which is
a stable configuration in which everyone agrees on the correct output. The
fairness hypothesis then ensures that any valid computation eventually leads
to this configuration which will conclude the proof.

IJUC˙JDL˙01˙BOURNEZ˙V1 21



22 OLIVIER BOURNEZ et al.

110̄ 2+2+0̄

2−2−0̄

2+2−0̄

XY 0̄

11 → 2+2+

2+2+ → 2−2−

2−2− → 2+2+

02+ → 2−0

02− → 2+0

02− → 2+0

02+ → 2−0

2+2− → XY

FIGURE 1
Graph of configurations for two occurrences of symbol σ in the input.

So, let us prove that from any configuration with at least three agents with
states in {1, 2+, 2−, X, Y,�}, there exists a series of interaction between
those three agents which will increase the number of agents in state �
by one. First let us consider the case where three agents are in states in
{1, 2+, 2−, X, Y }. We will show that we can turn one of these agents to state
�. If two of these agents are in state 1, the rule 11 → 2+2+ guarantees that
we can have at least two agents with states in {2+, 2−, X, Y } which we will
assume from now on.

If three agents are in states X or Y , then at least two are in the same state.
Thus, by transition rule X X → �� or Y Y → ��, a � can appear. If this
is not the case, then at least one agent has a state s in {1, 2+, 2−}. If there is
another agent in state s′ ∈ {X, Y }, the interaction between s and s′ creates a
�.

The final case is when all agents have states in {1, 2+, 2−} (recall that at
least two are in states 2+ or 2−). Then the remaining possible configurations,
and their derivations are as follow where i ∈ {+,−} (the underlined pairs
interact):

� 12i 2i → 2ī 2i 2i → XY 2i → X�2ī

� 12+2− → 1XY → �XY
� 2i 2i 2i → 2ī 2ī 2i → 2ī XY → �2i Y
� 2i 2i 2ī → 2i XY → �2ī Y

IJUC˙JDL˙01˙BOURNEZ˙V1 22



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 23

In any case, we can bring one of the three agents to state �. Thus if there
are at least three agents in states {1, 2+, 2−, X, Y }, then we can increase the
number of agents in state � by at least one.

If there are at most two agents in states {1, 2+, 2−, X, Y }, then there is
necessarily at least one agent in state �, because at least three agents are
in non-0 states. If one of the agents in states {1, 2+, 2−, X, Y } is actually in
state 1 (resp. X and Y ) then, by pairing it with the agent in state �, it will be
converted to �. This again increases the number of agents in state � by one.

Otherwise, if exactly two agents are in states {2+, 2−} and at least one
agent is in state �, then one of the following sequences of interactions will
increase the number of agents in state � by at least one.

� 2+2+� → 2+2+2− → 2+Y X → �2− X → ��2+
� 2+2−� → XY� → X�� → ���
� 2−2−� → 2−2−2+ → 2− XY → �2+Y → ��2−.

If only one agent is in state 2+ (resp. 2−) and every other agent is either in
state � or in state 0, then there are at least two agents in state �. In this case,
the following sequence of interactions will increase the number of agents in
state � by one (the other case is symmetric).

� 2+�� → 2+2−� →→ Y X� → Y�� → ���

Finally, if no agents are in states {1, 2+, 2−, X, Y }, then every agent is in
state 0 or � with at least three of them being in state �. The rule 0� → ��
then allows us to convert the 0s to �.

Thus, from any configuration with at least three non-0 agents, the number
of agents in state � can be strictly increased which, according to what we
said earlier concludes our proof.

7.3 Majority

Proposition 7. The majority problem (given some population of input sym-
bols σ and σ ′, determine whether there are more σ than σ ′, i.e. [x .σ ≥ x .σ ′])
can be solved by an exclusive Pavlovian population protocol.

Proof. We claim that the following protocol outputs 1 if there are more σ

than σ ′ in the initial configuration and 0 otherwise,

IJUC˙JDL˙01˙BOURNEZ˙V1 23



24 OLIVIER BOURNEZ et al.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NY → Y Y
Y N → Y Y
Nσ → Yσ

σ N → σY
Yσ ′ → Nσ ′

σ ′Y → σ ′N
σσ ′ → NY
σ ′σ → Y N

(10)

taking

� � = {σ, σ ′}, Q = {σ, σ ′, Y, N },
� ω(σ ) = ω(Y ) = 1,
� ω(σ ′) = ω(N ) = 0.

In this protocol, the states Y and N are “neutral” elements for our predicate
but they should be understood as Yes and No. They are the “answers” to the
question: are there more 0s than 1s.

This protocol is made such that the numbers of σ and σ ′ are preserved
except when a σ meets a σ ′. In that latter case, the two agents are deleted and
transformed into a Y and a N .

If there are initially strictly more σ than σ ′, from the fairness condition,
each σ ′ will be paired with a σ and at some point no σ ′ will left. By fairness
and since there is still at least a σ , a configuration containing only σ and
Y s will be reached. Since in such a configuration, no rule can modify the
state of any agent, and since the output is defined and equals to 1 in such a
configuration, the protocol is correct in this case

By symmetry, one can show that the protocol outputs 0 if there are initially
strictly more σ ′ than σ .

Assume now that initially, there are exactly the same number of σ and
σ ′. By fairness, there exists a step when no more agents in the state σ or σ ′

left. Note that at the moment where the last σ is matched with the last σ ′,
a Y is created. Since this Y can be “broadcasted” over the Ns, in the final
configuration all agents are in the state Y and thus the output is correct.

This protocol is Pavlovian, since it corresponds to the following payoff
matrix.

Opponent
N Y σ σ ′

N 1 −1 −1 1
Player Y 0 1 1 −1

σ 0 0 0 −1
σ ′ 0 0 −1 0

IJUC˙JDL˙01˙BOURNEZ˙V1 24



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 25

7.4 Counting up to 2k

This section is devoted to proving the following theorem.

Theorem 4. There is an exclusive Pavlovian protocol that computes the
threshold predicate [x .σ ≥ 2k], with the integer k ∈ N which is true when
there are at least 2k occurrences of input symbol σ in the input x.

The case where k = 0 corresponds to the O R protocol in Proposition 3,
and the case where k = 1 has been treated in Proposition 4. We now prove
that the following protocol P is a solution for k ≥ 2.

� Q = {0,�}
2k−1⋃
i=1

{i+, i−}.
� � = {0, σ }.
� ι(σ ) = 1+, ι(0) = 0.
� ω = 1{�}.
� Its transition function can be written as follows:

00→00
0n+→n−0
0n−→n+0
0�→��

n−m+→m−n+
n+m−→m+n−
n−m−→m+n+
n+m+→m−n−

whenever m 	= n

n+n+→n−n−
n−n−→n+n+

n−n+→(2n)+(2n + 1)+ whenever n < 2k−1

n−n+→�� whenever 2k−1 ≤ n < 2k

n−�→n−n+
n+�→n+n−

��→��

First, we will prove that this protocol is is Pavlovian because we can define
Stable(q), m(q) and δq (m(q)) for any state q as follows:

Stable(0) = {0,�} Stable(�) = Q \ {0} Stable(n+) = ∅
max(0) = 0 max(�) = � max(n+) = n−

δn+ (n−) = (2n + 1)+
Stable(n−) = ∅
max(n−) = n+
δn− (n+) = (2n)+

Second, in order to simplify the proof, we transform protocol P into P ′.
Protocol P ′ differs from P only in its transition function given by:

00→00
0n+→0n−

n−m+→n+m−
n+m−→n−m+

IJUC˙JDL˙01˙BOURNEZ˙V1 25



26 OLIVIER BOURNEZ et al.

0n−→0n+
0�→��

n−m−→n+m+
n+m+→n−m−

whenever m 	= n

n+n+→n−n−
n−n−→n+n+

n−n+→(2n)+(2n + 1)+ whenever n < 2k−1

n−n+→�� whenever 2k−1 ≤ n < 2k

n−�→n−n+
n+�→n+n−

��→��.

The transition function of P ′ is the transition function of P in which transi-
tion rules of form ab → a′b′ have sometimes been replaced by corresponding
(and computationally equivalent) rule ab → b′a′. The anonymity of agents in
a population protocol implies that from a population protocol point of view,
protocols P and P ′ are equivalent and compute the exact same predicate (if
any). The difference is that P ′ is not Pavlovian.

Thus, proving that P ′ computes the desired predicate will yield that the
same holds for P . We will now study P ′ instead of P .

Let a be an arbitrary agent of the population. Let q and C be respectively
a state in Q and a configuration. We introduce several notations :

� C(a) is the state of agent a in configuration C
� C#(q) is the number of agents in state q in configuration C .
� v(q) is the level of a state q corresponding to the integer number defined

for n ∈ {1...2k} by v(0) = 0, v(n+) = v(n−) = n, v(�) = 2k .

Lemma 1. For any two configurations C and C ′ such that C → C ′ in proto-
col P ′, v(C ′(a)) ≥ v(C(a)) or v(C(a)) = 2k .

Proof. To prove the lemma, it is sufficient to check each rule.

The previous lemma means that the level of each agent can not decrease
during an execution as long as no � has appeared. Note that this lemma does
not hold for P and will allow us to simplify the following proofs.

Lemma 2. Let C0, ..., Ci1 be an execution of configurations such that ∀i, 0 ≤
i ≤ i1, Ci → Ci+1, C#

0 (�) = ... = C#
i1

(�) = 0 and ∀q 	∈ {0, 1+}, C#
0 (q) = 0.

Then ∀n, 1 ≤ n ≤ 2k−1,∀i ≤ i1, C#
i (n+) + C#

i (n−) ≤ C#
0 (1+)2−�log(n)�.

Proof. We prove the following statement by induction on n: in the execution
of configurations C0, . . . , Ci1 , at most C#

0 (1+)2−�log(n)� agents may ever reach
states n+ or n−.

IJUC˙JDL˙01˙BOURNEZ˙V1 26



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 27

Let S(n), be the set of agents that ever reach states n+ or n− in this com-
putation. We will prove that Card(S(n)) ≤ C#

0 (1+)2−�log(n)�.
First, from the assumptions of this lemma, in this execution, no agent can

be in state �. From Lemma 1, an agent can only increase the value of its
level in the execution C0, ..., Ci1 . In addition, agents initially in state 0 can
not change their state. Thus, the set of agents having state different from 0 is
the same in every configuration in the execution. It follows naturally that at
most C#

0 (1+) agents may ever reach states 1+ or 1−.
Second, to prove the statement for a given n ≥ 2, we assume by induction

that it is true for all k < n. From the transition rules, we can deduce that
S(k) ⊆ S(� k

2�) by looking at the state an agent was before it ever reached
level k. This also holds for level n. In fact, every agent in S(n) first reaches
level n through an interaction of type n

2 +
n
2 − → n+(n + 1)+ if n is even (and

n−1
2 +

n−1
2 − → (n − 1)+n+ if n is odd). Thus, it appears that at most half the

agents in S(� n
2 �) ever reach level n (the other half either being sent to level

n − 1 or n + 1 depending on the parity of n or never going beyond level � n
2 �).

Therefore |S(n)| ≤ |S( n
2 )|

2 ≤ C#
0 (1+)2−�log(n)�.

Now, we will focus on the state �: we discuss when this state appears in
a execution according to the initial configuration.

Lemma 3. Let C0, C1, . . . , Ci , . . . be a correct execution of protocol P ′.
If C#

0 (1+) < 2k then ∀i ≥ 0, C#
i (�) = 0.

Proof. We prove the lemma by contradiction. We assume that C#
0 (1+) < 2k

and that there exists at least one configuration Ci with at least one agent in
state �. Let us consider Ci0 , the earliest such configuration. This means that
the transition Ci0−1 → Ci0 happens through an encounter of two agents n+n−
with n ∈ [2k−1...2k − 1].

Then C0, . . . , Ci0−1 is a non-empty execution fitting the condi-
tions of Lemma 1. Thus, C#

i0−1(n+) + C#
i0−1(n−) ≤ 2−�log(n)�C#

0 (1+). Since
C#

i0−1(n+) ≥ 1 and C#
i0−1(n−) ≥ 1, we have C#

0 (1+) ≥ 2�log(n)� ≥ 2k . This
implies a contradiction with the assumption C#

0 (1+) < 2k .

We have now proved that if strictly less than 2k agents are in state 1+
initially, no agent will ever reach state � and thus all agents will always agree
on output 0 and the computation will be correct. We will now prove that the
computation will be correct if at least 2k agents are initially in state 1+.

Lemma 4. For any configuration C in which at least 2k agents are in
non-zero states, there exists a configuration C ′ such that C →∗ C ′ and
C ′#(�) ≥ 1.

IJUC˙JDL˙01˙BOURNEZ˙V1 27



28 OLIVIER BOURNEZ et al.

Proof. If C#(�) ≥ 1, then C ′ is C . Now, we assume C#(�) = 0 and the
pigeonhole principle insures that there are at least 2 agents at the same level.
Let k be the smallest level with at least 2 agents. We will now prove that
there is a finite sequence of configurations forming valid computation steps
that increases the value of k. We shall now differentiate the cases where
C#(k+) + C#(k−) > 2 and C#(k+) + C#(k−) = 2.

If C#(k+) + C#(k−) > 2, there is always a way to have a configuration
having at least one agent in state k+ and one agent in state k− : Either
2 of them have different states, either all these agents have the same set
and we apply k+k+ → k−k− to two of them (if there are all in state k+,
otherwise we apply k−k− → k+k+). Now we can perform the interaction
k+k− → 2k+(2k + 1)+ to diminish the number of agents in level k by two
(and not create agents in lower levels). By iterating this process, we can bring
the number of agents at level k to two or less. If only one remains, then we
have achieved our goal, otherwise, we handle the two remaining agents as
follows.

If C#(k+) + C#(k−) = 2, we again, differentiate: if C#(k+) = C#(k−) = 1
then selecting the two agents in states k+ and k− and perform the interaction
k+k− → 2k+(2k + 1)− will yield the desired result. Otherwise, if both agents
at level k are in the same state, then we can break this symmetry by having
one interact with any other non-zero agent to come back to the previous case.
Such a non-zero and non-level-k agent exists since there are at least 2k non
zero agents.

Thus, from configuration C we have an execution C →∗ C1 where
C#

1 (k−) + C#
1 (k+) < 2. If C#

1 (�) > 0 we have achieved our desired result,
otherwise, we can reiterate on C1, knowing that the minimal level with at
least two agents in C1 is k1 > k by construction. Iterating this process gives
us an execution C →∗ C1 →∗ ... →∗ C j such that either an agent in state �
appears or we have a corresponding execution k < k1 < ... < k j of minimal
level with at least two agents. Since this strictly growing execution is upper
bounded by 2k it is finite which guarantees that after a certain number of
iterations, at least one agent will reach state �.

Definition 8. For any configuration C with at least one agent in a non-zero
state, we define m(C) the smallest level with non-zero count in C.

Note that m(C) can never decrease: no interaction rule can create agents
in a level lower than those already existing in the system.

Lemma 5. For any configuration C such that C#(�) ≥ 1, and m(C) < 2k,

there exists a configuration C ′ such that C → ∗C ′ and m(C ′) > m(C).

IJUC˙JDL˙01˙BOURNEZ˙V1 28



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 29

Proof. Similarly to what was done before, if there are at least two agents at
level m(C) then we can reduce the number of agents at level m(C) by two
and, iterating the process bring it to at most 1. Note that this process can be
done by preserving the existence of agents in state �. If we are left with no
agents in state m(C), we have achieved our goal. If not, we are left with a
single agent a in state m(C) and all other agents in states greater than m(C),
including at least one agent a′ in state �. Assume that a is in state k+ (with,
k = m(C)), the case k− being symmetric). Then we can eliminate our final
agent a through two interactions with a′ :

k+� → k+k− → 2k+(2k + 1)+.

This brings us to a configuration C ′ such that C ′#(m(C)) = 0 and thus,
m(C ′) > m(C).

Lemma 6. From any configuration C in which at least 2k agents are in non-
zero states, there exists a computation execution leading to a configuration
in which all agents are in state �.

Proof. This is achieved mainly by iteration of the previous two lemmas: from
configuration C, following Lemma 4, one can reach a configuration C ′ where
there is at least one agent in state �. If some non-zero agents are not in state
�, increase the minimal non-zero level in the system by Lemma 5. Iterate
until the minimal non-zero level is 2k, ie. all agents are either in state �
or in state 0. Then use the transition rule 0� → �� to convert all remain-
ing agents from state 0 to state �. Note that such a configuration is trivially
stable.

Theorem 5. Protocol P computes the predicate [x .σ ≥ 2k].

Proof. From Lemma 6, the fairness property ensures that any fair computa-
tion of protocol P ′ starting in a configuration with at least 2k agents in state
1+ stably converges to a configuration in which all agents are in state � and
thus agree on output 1. Contrariwise, if the initial configuration holds strictly
fewer than 2k agents in state 1+ then Lemma 3 guarantees that all agents will
always agree on output 0.

Thus protocol P ′ computes the predicate [x .σ ≥ 2k] and, since they are
equivalent, so does P .

8 CONCLUSION

We proved that predicates [x .σ = 0], [x .σ ≥ 1], [x .σ ≥ 2] can be com-
puted by some simple exclusive Pavlovian population protocols, as well as

IJUC˙JDL˙01˙BOURNEZ˙V1 29



30 OLIVIER BOURNEZ et al.

[x .σ ≥ x .σ ′]. We also prove that [x .σ ≥ 3], [x .σ ≥ 2k] can be computed in
this model.

It is clear that the subset of the predicates computable by exclusive Pavlo-
vian population protocols is closed under negation: just switch the value of
the individual output function of a protocol computing a predicate to get a
protocol computing its negation.

Notice that, unlike what happens for general population protocols, com-
posing exclusive Pavlovian population protocols into a exclusive Pavlovian
population protocol is not easy. It is not clear whether Pavlovian computable
predicates are closed under conjunctions: classical constructions for general
population protocols can not be used directly, because there is no possible
merging of the game matrices to create the conjunction game. We removed
this difficulty in [12] by introducing the idea of Multigames. But in it, we
proved that all basic semilinear predicate (like [x .σ ≡ 1[2]]) can be com-
puted, and we did not find such a protocol in the case of exclusive Pavlovian
population protocols.

We conjecture that some semilinear predicate cannot be computed by the
symmetric PAVLOV population protocol model. A proof seems to require
new techniques to get these impossibility results. Moreover, we can also
focus on the non-deterministic symmetric PAVLOV population protocol
model. We believe that the computing power is the same as the determin-
istic PAVLOV population protocol model.

REFERENCES

[1] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. (2007). The computational power of
population protocols. Distributed Computing, 20(4):279–304.

[2] Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer, Hong Jiang, and René
Peralta. (June 2005). Stably computable properties of network graphs. In Viktor K.
Prasanna, Sitharama Iyengar, Paul Spirakis, and Matt Welsh, editors, Distributed Com-
puting in Sensor Systems: First IEEE International Conference, DCOSS 2005, Marina del
Rey, CA, USE, June/July, 2005, Proceedings, volume 3560 of Lecture Notes in Computer
Science, pages 63–74. Springer-Verlag.

[3] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. (July
2004). Computation in networks of passively mobile finite-state sensors. In Twenty-Third
ACM Symposium on Principles of Distributed Computing, pages 290–299. ACM Press.

[4] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. (2006).
Computation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253.

[5] Dana Angluin, James Aspnes, and David Eisenstat. (2006). Stably computable predicates
are semilinear. In PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on
Principles of distributed computing, pages 292–299, New York, NY, USA. ACM Press.

[6] Dana Angluin, James Aspnes, and David Eisenstat. (2008). Fast computation by population
protocols with a leader. Distributed Computing, 21(3):183–199.

IJUC˙JDL˙01˙BOURNEZ˙V1 30



POPULATION PROTOCOLS THAT CORRESPOND TO SYMMETRIC GAMES 31

[7] Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. (December 2005).
Self-stabilizing population protocols. In Ninth International Conference on Principles of
Distributed Systems (OPODIS’2005), Lecture Notes in Computer Science, pages 79–90.
Springer. To appear.

[8] James Aspnes and Eric Ruppert. (2007). An introduction to population protocols. In Bul-
letin of the EATCS, volume 93, pages 106–125.

[9] Robert M. Axelrod. (1984). The Evolution of Cooperation. Basic Books.

[10] Joffroy Beauquier, Janna Burman, Julien Clément, and Shay Kutten. (2010). On utilizing
speed in networks of mobile agents. In Proceedings of the 29th Annual ACM Symposium
on Principles of Distributed Computing, PODC, pages 305–314.

[11] Ken Binmore. (1999). Jeux et Théorie des jeux. DeBoeck Université, Paris-Bruxelles.
Translated from ‘Fun and Games: a text on game theory” by Francis Bismans and Eulalia
Damaso.

[12] Olivier Bournez, Jérémie Chalopin, Johanne Cohen, Xavier Koeger, and Rabie Mikaël.
(2011). Computing with pavlovian oopulations. In 15th International Conference On Prin-
ciples Of Distributed Systems (OPODIS)., LNCS, pages 409–420.

[13] Ioannis Chatzigiannakis, Shlomi Dolev, Sándor P. Fekete, Othon Michail, and Paul G.
Spirakis. (2009). Not all fair probabilistic schedulers are equivalent. In Principles of Dis-
tributed Systems, 13th International Conference, OPODIS, pages 33–47.

[14] DJ Daley and DG Kendall. (1965). Stochastic Rumours. IMA Journal of Applied Mathe-
matics, 1(1):42–55.

[15] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Eric Ruppert. (2006).
When birds die: Making population protocols fault-tolerant. In Phillip B. Gibbons, Tarek F.
Abdelzaher, James Aspnes, and Ramesh Rao, editors, Distributed Computing in Sensor
Systems, Second IEEE International Conference, DCOSS 2006, San Francisco, CA, USA,
June 18-20, 2006, Proceedings, volume 4026 of Lecture Notes in Computer Science, pages
51–66. Springer.

[16] Z. Diamadi and M.J. Fischer. (2001). A simple game for the study of trust in distributed
systems. Wuhan University Journal of Natural Sciences, 6(1-2):72–82.

[17] Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, Gabriel Istrate, and Mark
Jerrum. (2002). Convergence of the iterated prisoner’s dilemma game. Combinatorics,
Probability & Computing, 11(2).

[18] Laurent Fribourg, Stéphane Messika, and Claudine Picaronny. (2004). Coupling and self-
stabilization. In Rachid Guerraoui, editor, Distributed Computing, 18th International Con-
ference, DISC 2004, Amsterdam, The Netherlands, October 4-7, 2004, Proceedings, vol-
ume 3274 of Lecture Notes in Computer Science, pages 201–215. Springer.

[19] Drew Fudenberg and David K. Levine. (December 1996). The theory of learning in games.
Levine’s Working Paper Archive 624, UCLA Department of Economics.

[20] D.T. Gillespie. (1992). A rigorous derivation of the chemical master equation. Physica A,
188(1-3):404–425.

[21] Herbert W. Hethcote. (December 2000). The mathematics of infectious diseases. SIAM
Review, 42(4):599–653.

[22] J. Hofbauer and K. Sigmund. (2003). Evolutionary game dynamics. Bulletin of the Ameri-
can Mathematical Society, 4:479–519.

[23] Aaron D. Jaggard, Michael Schapira, and Rebecca N. Wright. (2011). Distributed comput-
ing with adaptive heuristics. In Proceedings of Innovations in Computer Science ICS.

[24] D. Kraines and V. Kraines. (1988). Pavlov and the prisoner’s dilemma. Theory and Deci-
sion, 26:47–79.

IJUC˙JDL˙01˙BOURNEZ˙V1 31



32 OLIVIER BOURNEZ et al.

[25] Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. (2011). Mediated popula-
tion protocols. Theor. Comput. Sci., 412(22):2434–2450.

[26] Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. (2011). New Models for
Population Protocols. Morgan & Claypool Publishers.

[27] James Dickson Murray. (2002). Mathematical Biology. I: An Introduction. Springer, third
edition.

[28] M. Nowak and K. Sigmund. (1993). A strategy of win-stay, lose-shift that outperforms
tit-for-tat in the Prisoner’s Dilemma game. Nature, 364(6432):56–58.

[29] Martin J. Osbourne and Ariel Rubinstein. (1994). A Course in Game Theory. MIT Press.

[30] M. Presburger. (1929). Uber die Vollstandig-keit eines gewissen systems der Arithmetik
ganzer Zahlen, in welchemdie Addition als einzige Operation hervortritt. Comptes-rendus
du I Congres des Mathematicians des Pays Slaves, pages 92–101.

[31] Jörgen W. Weibull. (1995). Evolutionary Game Theory. The MIT Press.

IJUC˙JDL˙01˙BOURNEZ˙V1 32


