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Abstract: In this article, we characterize the graphs G that are the retracts
of Cartesian products of chordal graphs. We show that they are exactly the
weakly modular graphs that do not contain K2,3, the 4-wheel minus one
spoke W −

4 , and the k-wheels Wk (for k ≥ 4) as induced subgraphs. We
also show that these graphs G are exactly the cage-amalgamation graphs
as introduced by Brešar and Tepeh Horvat (Cage-amalgamation graphs, a
common generalization of chordal and median graphs, Eur J Combin 30
(2009), 1071–1081); this solves the open question raised by these authors.
Finally, we prove that replacing all products of cliques of G by products of
Euclidean simplices, we obtain a polyhedral cell complex which, endowed
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with an intrinsic Euclidean metric, is a CAT(0) space. This generalizes similar
results about median graphs as retracts of hypercubes (products of edges)
and median graphs as 1-skeletons of CAT(0) cubical complexes. C© 2012 Wiley

Periodicals, Inc. J. Graph Theory XX: 1–20, 2012

Keywords: median graph; chordal graph; retract; Cartesian product; CAT(0) cubical complexes

1. INTRODUCTION

Median graphs constitute one of the most important classes of graphs investigated in
metric graph theory and occur in different areas of discrete mathematics, metric geometry,
and computer science. Median graphs and related median structures (median algebras
and median complexes) have many nice properties and admit numerous characterizations.
All median structures are intimately related to hypercubes: median graphs are isometric
subgraphs of hypercubes; in fact, by a classical result of Bandelt [1], they are the retracts
of hypercubes into which they embed isometrically. It was also shown by Isbell [25]
and van de Vel [33] that every finite median graph G can be obtained by successive
applications of gated amalgamations from hypercubes, thus showing that the only prime
median graph is the two-vertex complete graph K2 (a graph with at least two vertices
is said to be prime if it is neither a Cartesian product nor a gated amalgam of smaller
graphs). A related construction of median graphs via convex expansions is given in [27,
28]. Median graphs also have a remarkable algebraic structure, which is induced by the
ternary operation on the vertex set that assigns to each triplet of vertices the unique
median vertex, and their algebra can be characterized using four natural axioms [7, 25]
among all discrete ternary algebras. Finally, it was shown in [16], [29] that the cubical
complexes derived from median graphs by replacing graphic cubes by solid cubes are
exactly the CAT(0) cubical complexes. Thus, due to a result of Gromov [22], median
complexes can be characterized as simply connected cubical complexes with triangle-free
links of vertices. For more detailed information about median structures, the interested
reader can consult the survey [6] and the books [19, 24, 28, 34].

This structure theory of graphs based on two fundamental operations, viz., Cartesian
multiplication and gated amalgamation, was further elaborated for more general classes
of graphs. Some of the results for median graphs have been extended to quasi-median
graphs introduced by Mulder [28] and further studied in [8, 10, 35]: quasi-median graphs
are precisely the weakly modular graphs not containing induced K2,3 and K4 − e; they
can also be characterized as the retracts of Hamming graphs (Cartesian products of
complete graphs) and can be obtained from complete graphs by Cartesian products and
gated amalgamations. More recently, Bandelt and Chepoi [3]–[5] presented a similar
decomposition scheme of weakly median graphs and characterized the prime graphs
with respect to this decomposition: the hyperoctahedra and their subgraphs, the 5-wheel
W5, and the 2-connected plane triangulations in which all inner vertices have degrees ≥ 6.
Using these results and a result of Chastand [13, 14], they further showed that weakly
median graphs are the retracts of the Cartesian products of their primes and presented an
axiomatic characterization of underlying weakly median algebras. The extensive research
on generalizations of median graphs leads to a general framework for the study of classes
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of graphs, closed for Cartesian products and gated amalgamations, proposed in [9, 13,
14].

In this article, we continue this line of research and characterize the graphs G which
are retracts of Cartesian products of chordal graphs. We show that they are exactly the
weakly modular graphs which do not contain K2,3, W −

4 and the k-wheels Wk for k ≥ 4 as
induced subgraphs. We establish that these graphs G are exactly the cage-amalgamation
graphs as introduced by Brešar and Tepeh Horvat [11], that is, the graphs which can
be obtained via successive gated amalgamations from Cartesian products of chordal
graphs; this solves the open question raised in [11]. This result along with definitions and
preliminary observations is presented in the next section, while its proof is the contents
of Section 3. Finally in Section 4, we show that replacing all products of cliques of G
by products of Euclidean simplices, we will obtain a polyhedral cell complex which,
endowed with an intrinsic l2-metric, is a CAT(0) space. This generalizes similar results
about median graphs as retracts of hypercubes (products of edges) and median graphs as
1-skeletons of CAT(0) cubical complexes.

2. PRELIMINARIES AND THE CHARACTERIZATIONS

In this section, we present all the necessary definitions and preliminary results so that at
the end we formulate two characterizations of the retracts of products of chordal graphs.

All graphs G = (V, E ) occurring in this article are undirected, connected, and without
loops or multiple edges. The distance d(u, v) between two vertices u and v is the length of
a shortest (u, v)-path, and the interval I(u, v) between u and v consists of all vertices on
shortest (u, v)-paths, that is, of all vertices (metrically) between u and v: I(u, v) = {x ∈
V : d(u, x) + d(x, v) = d(u, v)}. An induced subgraph of G (or the corresponding vertex
set A) is called convex if it includes the interval of G between any pair of its vertices. An
induced subgraph H of a graph G is said to be gated if for every vertex x outside H there
exists a vertex x′ (the gate of x) in H such that each vertex y of H is connected with x
by a shortest path passing through the gate x′ (i.e., x′ ∈ I(x, y)). The smallest convex (or
gated, respectively) subgraph containing a given subgraph S is the convex hull (or gated
hull, respectively) of S. A graph G = (V, E ) is isometrically embeddable into a graph
H = (W, F ) if there exists a mapping ϕ : V → W such that dH (ϕ(u), ϕ(v)) = dG(u, v)

for all vertices u, v ∈ V . A retraction ϕ of H is an idempotent nonexpansive mapping
of H into itself, that is, ϕ2 = ϕ : W → W with d(ϕ(x), ϕ(y)) ≤ d(x, y) for all x, y ∈ W .
The subgraph of H induced by the image of H under ϕ is referred to as a retract of H.

A graph G is a gated amalgam of two graphs G1 and G2 if G1 and G2 are (isomorphic
to) two intersecting gated subgraphs of G whose union is all of G. The Cartesian
product [24] G = G1� · · · �Gn of n graphs G1, . . . , Gn has the n-tuples (x1, . . . , xn) as
its vertices (with vertex xi from Gi) and an edge between two vertices x = (x1, . . . , xn)

and y = (y1, . . . , yn) if and only if, for some i, the vertices xi and yi are adjacent in
Gi, and x j = y j for the remaining j �= i. Obviously, dG(u, v) = ∑n

i=1 dGi (ui, vi) for any
two vertices u = (u1, . . . , un) and v = (v1, . . . , vn) of G. In regard to a decomposition
scheme involving multiplication and amalgamation, a graph with at least two vertices
is said to be prime if it is neither a Cartesian product nor a gated amalgam of smaller
graphs. For instance, the only prime median graph is the two-vertex complete graph K2

[25, 33] and the prime quasi-median graphs are exactly the complete graphs [8, 25].
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FIGURE 1. Triangle and quadrangle conditions.

A graph G is weakly modular [2, 15] if its distance function d satisfies the following
triangle and quadrangle conditions (see Fig. 1):

Triangle condition: For any three vertices u, v, w with 1 = d(v, w) < d(u, v) = d(u, w)

there exists a common neighbor x of v and w such that d(u, x) = d(u, v) − 1.
Quadrangle condition: For any four vertices u, v, w, z with d(v, z) = d(w, z) = 1 and

2 = d(v, w) ≤ d(u, v) = d(u, w) = d(u, z) − 1, there exists a common neighbor x of v
and w such that d(u, x) = d(u, v) − 1.

A weakly median graph is a weakly modular graph in which the vertex x defined in
the triangle and quadrangle conditions is always unique. Equivalently, weakly median
graphs can be defined as the weakly modular graphs in which each triplet of vertices
has a unique quasi-median. Median graphs are the bipartite weakly median graphs and,
equivalently, can be defined as the graphs in which each triplet of vertices u, v, w has a
unique median vertex, that is, |I(u, v) ∩ I(u, w) ∩ I(v, w)| = 1. Bridged graphs constitute
another important subclass of weakly modular graphs. Recall that a graph is called
bridged [17, 18, 31] if it does not contain any isometric cycle of length greater than 3, or
alternatively, if the closed neighborhood N[A] = A ∪ {y ∈ V : y is adjacent to some x ∈
A} of every convex set A of G is convex. Chordal graphs constitute the most famous
subclass of bridged graphs. A graph is said to be chordal if it does not contain induced
cycles of length greater than 3. In this article, we will investigate the finite graphs G,

which are obtained from Cartesian products of chordal graphs via gated amalgamations.
These graphs have been introduced by Brešar and Tepeh Horvat [11] and are called cage-
amalgamation graphs. More precisely, the Cartesian products of connected cutvertex-
free chordal graphs were called in [11] cages, and the graphs that can be obtained by a
sequence of gated amalgamations from cages were called cage-amalgamation graphs.
It can be easily shown that cage-amalgamation graphs are weakly modular graphs and
that they do not contain induced K2,3, wheels Wk, and almost-wheels W −

k (the wheel Wk

is a graph obtained by connecting a single vertex—the central vertex—to all vertices
of the k-cycle; the almost-wheel W −

k is the graph obtained from Wk by deleting a spoke
(i.e., an edge between the central vertex and a vertex of the k-cycle), see Figure 2
for examples. It was conjectured in [11] that in fact this list of forbidden subgraphs
completely characterizes the cage-amalgamation graphs. The main result of our article
proves this conjecture (in fact, we note that just W −

4 suffices in the list of forbidden almost
wheels).
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FIGURE 2. The complete bipartite graph K2,3, the wheel W5, and the
almost-wheel W −

5 .

Theorem 1. For a finite graph G = (V, E ), the following conditions are equivalent:

(i) G is a retract of the Cartesian product of chordal graphs.
(ii) G is a weakly modular graph not containing induced K2,3, W −

4 and wheels Wk, for
k ≥ 4.

(iii) G is a cage-amalgamation graph, that is, it can be obtained by successive appli-
cations of gated amalgamations from Cartesian products of 2-connected chordal
graphs and K2’s.

The proof of this theorem is provided in the following section. The most difficult part
of the proof is the implication (ii) ⇒ (iii), which we establish in two steps. First, we
show that if G is a weakly modular graph not containing induced K2,3, wheels Wk, and
almost-wheels W −

k for k ≥ 3, then all its prime graphs are 2-connected chordal graphs
or a K2. In the second part, using the techniques developed in [3], we show that G can be
obtained via gated amalgamations from Cartesian products of prime graphs.

3. PROOF OF THEOREM 1

The implication (i) ⇒ (ii) is obvious: chordal graphs are weakly modular and do not
contain induced K2,3, wheelsWk, and almost-wheelsW −

k (k ≥ 4). Weakly modular graphs
are closed by taking Cartesian products. If a Cartesian product of k graphs H1, . . . , Hk

contains an induced K2,3,Wk, or W −
k , then necessarily this graph occurs in one of the

factors Hi. As a consequence, Cartesian products H = H1� · · · �Hk of chordal graphs
do not contain induced K2,3,Wk, and W −

k . If G is a retract of H = H1� · · · �Hk, then G
is an isometric subgraph of H and therefore G does not contain induced K2,3,Wk, and
W −

k either. It remains to notice that triangle and quadrangle conditions are preserved by
Cartesian products and retractions, thus G is a weakly modular graph, establishing that
(i) ⇒ (ii).

The implication (iii) ⇒ (i) is a particular case of Theorem 1 and Corollary 4 of [4]
(the proof of Corollary 4 also follows from a more general result of Chastand [14]).
By Theorem 1 of [4], any cage-amalgamation graph G embeds isometrically into the
Cartesian product H = H1� · · · �Hk of its prime graphs. Corollary 4 of [4] then shows
that there exists a retraction from H to G, establishing (iii) ⇒ (i).

The proof of the implication (ii) ⇒ (iii) is the main contribution of this section. We
start with the lemma that shows that only W −

4 suffices in the list of forbidden almost
wheels.

Journal of Graph Theory DOI 10.1002/jgt
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Lemma 1. Let G be a weakly modular graph without induced W4 and W −
4 . Then G does

not contain an induced W −
n for n > 4.

Proof. Suppose by way of contradiction that W −
n is an induced subgraph of G and sup-

pose that G does not contain any induced W −
k for any 3 < k < n. Let (x1, x2, . . . , xn, x1)

be the outer cycle C of W −
n and consider a vertex c adjacent to all vertices of C ex-

cept x1. We apply the triangle condition to the triple x1, x2, xn−1 and find a vertex
a ∈ N(x1) ∩ N(x2) ∩ N(xn−1). Note that if a ∼ c, then x1, x2, c, xn, a induce a W4 if
a is adjacent to xn or a W −

4 otherwise. Assume now that a �∼ c. If n = 5, then the vertices
x4, a, x2, c, x3 induce either a W4 if x3 is adjacent to a, or a W −

4 otherwise. Now, if n ≥ 6,
the subgraph induced by the vertices a, x2, x3, . . . , xn−1, c is isomorphic to one of the
forbidden induced subgraphs W −

k , where k < n, unless a is adjacent to x3, x4, . . . , xn−2.
Thus, a is adjacent to all vertices of C except maybe xn. The vertices a, x3, c, xn−1, x4

induce a W4, if n = 6, or a W −
4 otherwise, a contradiction. �

The proof of (ii) ⇒ (iii) employs the fact that each finite chordal graph admits a
perfect elimination scheme, which can be computed by maximum cardinality search
(MCS) algorithm [20, 30, 32]. Running a modification of MCS on the gated hull of a
triangle in a graph G satisfying the condition (ii) of Theorem 1, we show that the level
subgraphs returned by MCS are all convex subgraphs of G. This allows us to show that the
gated hull of each triangle of G is a 2-connected chordal graph, thus identifying the prime
graphs of G. To show that G can be obtained from Cartesian products of 2-connected
chordal graphs and edges using successive amalgamations, we adapt the second part of
the proof of Theorem 1 of [3].

A simplicial vertex of a graph G is a vertex v such that its neighborhood N(v) =
{u ∈ V (G) : u is adjacent to v} induces a complete subgraph of G. A perfect elimination
ordering (PEO) of a graph G = (V, E ) with n vertices is a total ordering v1, . . . , vn of its
vertices such that each vi is a simplicial vertex in the subgraph Gi induced by the level
set Li = {v1, . . . , vi}. It is well known (see [20]) that a finite graph G admits a PEO if and
only if G is chordal. A PEO of a chordal graph G can be found (in linear time) either using
Lexicographic Breadth-First-Search (LexBFS) [30] or MCS introduced by Tarjan and
Yannakakis [32]. MCS algorithm works as follows: the first vertex is chosen arbitrarily,
and the (i + 1)th vertex is the unlabeled vertex that has the largest number of already
numbered neighbors, breaking ties arbitrarily. We will denote by α(v) the number of v in
a total ordering v1, . . . , vn, that is, if α(v) = i, then v = vi. We start with two properties
of MCS in chordal graphs.

The following result is a part of folklore, and we give its short proof only to make the
article self-contained.

Lemma 2. Let G be a chordal graph and α an ordering of vertices produced by
MCS. If a vertex z belongs to an induced path between two vertices x, y, then α(z) <

max{α(x), α(y)}.

Proof. Assume without loss of generality that α(x) < α(y) and let P be an induced
path between x and y. Suppose by way of contradiction that P contains a vertex z such
that α(z) > α(y) and suppose without loss of generality that z is the vertex of P with
the largest index i = α(z). Then among all vertices of P the vertex z was labeled last.
Hence z and its neighbors z′, z′′ in P all belong to the subgraph Gi. Since z′ and z′′ are not

Journal of Graph Theory DOI 10.1002/jgt
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adjacent, z is not a simplicial vertex of Gi, contradicting the fact that on chordal graphs
MCS returns a PEO. �

A minimal (vertex) separator of a graph G = (V, E ) is a subset of vertices K of G such
that the subgraph of G induced by V − K contains at least two connected components A
and B, and that K is minimal by inclusion with respect to this separating property. Then
K necessarily separates any two vertices x ∈ A and y ∈ B in the sense that all (x, y)-paths
share a vertex with K. It is well known [20] that any minimal separator K of a chordal
graph G induces a complete subgraph of G and, moreover, K separates two vertices x and
y such that both x and y are adjacent to all vertices of K.

Lemma 3. Let K be a minimal separator of a chordal graph G, let A and B be two
connected components of G − K, and let u ∈ A be a vertex that is adjacent to all vertices
of K. Let α be an ordering of vertices produced by MCS. If α labels some vertex of A
before any vertex of B is labeled, then α labels u before any vertex of B.

Proof. Let a0 ∈ A be the vertex with the smallest index α(a0) among all vertices of
A ∪ B. Since A is connected, we can choose P := (a0, a1, . . . , ak = u) to be a shortest
(and therefore induced) path connecting the vertices a0 and u in A. Suppose by the way
of contradiction that there exists b ∈ B that was labeled before u, that is α(b) < α(u),
and let b be the first such vertex with respect to α. Denote by L(x) the set of labeled
neighbors of a vertex x at the moment of time when b was labeled. Let K0 := L(b). Since
K separates A from b ∈ B, from the choice of b and our assumption we conclude that
K0 ⊆ K (see also Fig. 3).

We assert that for each vertex ai of P, the inequality α(ai) < α(b) holds. Indeed,
let t be an arbitrary vertex in K0 and let Pt := (a0, . . . , ak, t) be the path from a0 to t,
obtained from P by adding t at the end. Since α(u) > α(b) > α(t) by the assumption
and α(u) > α(a0) from the choice of a0, by Lemma 2 the path Pt is not induced. Since
P is induced, the only possible chords on this path are the chords of the form tai,
where 0 ≤ i < k. Let it be the smallest index such that t and ait are adjacent. To avoid
induced cycles of length greater than 3 in G, for all j comprised between it + 1 and
k, the vertices t and a j must be adjacent as well. Since the subpath (a0, . . . , ait , t) of
Pt is induced, by Lemma 2 we infer that all vertices of this path must be labeled either
before t or before a0, but in either case we have α(a j) < α(b) for all 0 ≤ j ≤ it because
α(b) > max{α(t), α(a0)}. Set q = max{it : t ∈ K0}. As a result, we obtain the following
property for the vertices of P: every vertex a j ∈ {a0, . . . , aq} was labeled before b, that
is, α(a j) < α(b). On the other hand, all vertices aq+1, . . . , ak = u are adjacent to all

FIGURE 3. Illustration of the proof of Lemma 3.
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vertices of K0, that is, K0 ⊆ ∩k
j=q+1L(a j). We assert that the inclusions K0 ⊆ L(a j),

j = q + 1, . . . , k, are strict. Since aq ∈ L(aq+1), this inclusion is indeed strict for aq+1.
Let � > q + 1 be the smallest index for which L(a�) = K0. Then, as L(b) = K0 is a
proper subset of L(a�−1), MCS must label a�−1 before b, that is, α(a�−1) < α(b). Hence
a�−1 ∈ L(a�), a contradiction. This implies, in particular, that the vertices aq+1, . . . , ak

have been all labeled by MCS before b, that is, α(a j) < α(b) for q < j ≤ k. The claimed
assertion is thus proven. Now, since ak = u, this assertion implies that α(u) < α(b), as
desired. �

For the remainder of this section, let G be a weakly modular graph that does not
contain any of K2,3, Wk, and W −

k , k ≥ 4, as an induced subgraph. We will show that G can
be obtained by a sequence of gated amalgamations from Cartesian products of chordal
graphs. We commence by establishing a number of auxiliary results. A subgraph H of
G is said to be �–closed if, for every triangle having two vertices in H, the third vertex
belongs to H as well; then the smallest �-closed subgraph containing S is the �-closure
of S. In order to check whether a given subgraph of G is convex or gated the following
lemma is useful. This essentially coincides with Theorem 7 of [15] and can be proved
quite easily by induction.

Lemma 4. A connected subgraph H of a weakly modular graph G is convex if and
only if H is locally convex, that is, for every pair of nonadjacent vertices u, v of H all
common neighbors of u and v belong to H whenever at least one common neighbor does.
Moreover, a convex subgraph is gated if and only if it is �-closed.

Now we will prove that the gated hull H of each triangle T = {a, b, c} of G is a
convex chordal subgraph of G. For this, we perform a (partial) MCS α in G starting with
α(a) = 1, α(b) = 2, α(c) = 3 until the moment when all yet unlabeled vertices have at
most one previously labeled neighbor. Denote by H the subgraph of G induced by all
labeled vertices at the end of the procedure, and let Hi be the subgraph of H induced by
the first i labeled vertices.

Proposition 1. For any i, Hi is a chordal and convex subgraph of G.

Proof. We proceed by induction on i. Clearly, H1, H2, and H3 are all chordal and
convex subgraphs of G. By way of contradiction, assume that for some i ≥ 3, Hi is
convex and chordal but Hi+1 = Hi ∪ {vi+1} is not convex. By Lemma 4, Hi+1 is not
locally convex. Then there exists u ∈ V (Hi) such that dHi+1 (u, vi+1) = dG(u, vi+1) = 2
and two vertices x ∈ V (Hi), v �∈ V (Hi), which are both adjacent to u and vi+1. Now, we
will prove that any vertex in Hi, adjacent to vi+1 is also adjacent to v.

Claim 1. N(vi+1) ∩ Hi ⊆ N(v).
Proof of Claim 1. Let y ∈ Hi be any neighbor of vi+1 in Hi different from x. From the

definition of the labeling α, we know that such a vertex exists. By induction assumption,
Hi is convex, hence x and y are adjacent because they have a common neighbor vi+1 not
in Hi. First, suppose that the vertices u and y are adjacent. To avoid forbidden W −

4 and
W4, the vertex v must be adjacent to x and to y, and we are done. Thus, we may assume
that u and y are not adjacent. We distinguish two cases.

Case 1. v and x are not adjacent.
If v and y are adjacent, then we obtain a forbidden induced W −

4 . Thus, we may further
assume that the vertices v and y are not adjacent (see Fig. 4, left). By the triangle
condition, there exists a common neighbor t of u, v, and y. Since Hi is convex and

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 4. Different cases in the proof of Claim 1.

t ∈ I(u, y), necessarily t ∈ V (Hi). To avoid an induced C4 in Hi (which is chordal by the
induction hypothesis) formed by vertices u, t, y, x, the vertex t must be adjacent to x since
u is not adjacent to y. But this leads to a contradiction, since, as v is not adjacent to x and
vi+1 is not adjacent to u, the vertices u, v, vi+1, x, t induce a W −

4 or a W4.
Case 2. v and x are adjacent.
By construction, the graph Hi is 2-connected, thus the vertices u and y can be connected

in Hi by an induced path P that avoids x. Since Hi is chordal and the path P is induced,
to avoid an induced cycle of length ≥ 4 formed by some vertices of P ∪ {x}, the vertex x
must be adjacent to all vertices of P. To avoid a forbidden wheel Wk induced by v, vi+1, x
and the vertices of P, necessarily v or vi+1 is adjacent to some vertex of P. Since P is
induced and Hi is convex, v can be adjacent only with the neighbor u′ of u in P and
vi+1 can be adjacent only with the neighbor y′ of y in P. If u′ �= y′ (see Fig. 4, center)
or only one of the edges vu′ or vi+1y′ exists, then still we can find there an induced
wheel Wk, k ≥ 4. Hence, u′ = y′ and v, vi+1 are both adjacent to u′ = y′ (see Fig. 4, right).
Since the induced path P is arbitrary, we infer that each induced path in Hi between u
and y is of length 2, and all common neighbors of u and y are adjacent to both v and
vi+1 . As a conclusion, the set K = {z ∈ Hi : u, y ∈ N(z)} is a minimal (by inclusion)
(u, y)-separator of the chordal graph Hi, and thus is a clique. Both vertices v and vi+1 are
adjacent to all vertices of K. Let A be the connected component of Hi − K containing
u, and let B be the connected component of Hi − K containing y. Suppose that the first
vertex of A ∪ B labeled by α belongs to A. By Lemma 3, u was labeled before any vertex
of B. Let b be the first vertex labeled by α in B. Let L(x) denote the set of labeled vertices
at the moment of time when b is labeled. Then L(b) ⊆ K. Since, K ∪ {u} ⊆ L(v), we
obtain a contradiction with the choice of MCS to label b before v. By symmetry of v
and vi+1, a similar contradiction is obtained when the first vertex of A ∪ B labeled by α

belongs to B. This concludes the proof of the claim.
Now, Claim 1 yields N(vi+1) ∩ Hi ⊆ N(v) ∩ Hi. Since u ∈ Hi is adjacent to v but not

to vi+1, we obtain a contradiction with the fact that MCS labels vi+1 before v. Hence Hi+1

is locally convex and, therefore, a convex subgraph of G. It is easy to see that Hi+1 is also
chordal. Indeed, since Hi is convex, the neighborhood of vi+1 in Hi induces a complete
subgraph, thus vi+1 is a simplicial vertex of Hi+1. On the other hand, by the induction
assumption Hi is chordal and therefore the ordering v1, . . . , vi returned by MCS is a PEO
of Hi. As a consequence, v1, . . . , vi, vi+1 is a PEO of Hi+1, when Hi+1 is chordal. �

Proposition 2. The gated hull of T = {a, b, c} in G is the chordal subgraph H.

Proof. From Proposition 1 and the definition of H (H is the last of the subgraphs Hi)
we infer that H is a chordal convex subgraph of G. H is �-closed because every vertex
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FIGURE 5. The fibers Wa,Wb of the vertices a, b ∈ V (H ).

in G − H has at most one neighbor in H, and, since H is convex, by Lemma 4, H is a
gated subgraph of G. On the other hand, if H = Hk, then for any index i ≤ k, the vertex
vi has at least two neighbors in Hi−1, thus vi belongs to the gated hull of Hi−1. Now, if
by induction assumption Hi−1 is included in the gated hull of the triangle T = {a, b, c},
then vi belongs to this gated hull as well, when Hi is contained in the gated hull of T,

establishing the induction assertion. This shows that H is contained in the gated hull of
T . Hence, H is indeed the gated hull of T . �

Let uv be an edge in G and, from now on, let H be the gated hull of the graph induced
by {u, v} in G. If uv does not belong to a triangle of G, then {u, v} is convex and �-closed,
thus {u, v} itself is a gated set of G. In this case, H is isomorphic to K2 and is clearly
chordal. If u, v lie in a triangle T , then H coincides with the gated hull of T and can
obtained by the (partial) MCS procedure as described above. By Proposition 2, H is
chordal as well.

Any gated subset S of G gives rise to a partition Wa (a ∈ S) of the vertex set of G;
viz., the fiber Wa of a relative to S consists of all vertices x (including a itself) having a
as their gate in S. For adjacent vertices a, b of S, let Uab be the set of vertices from Wa

which are adjacent to vertices from Wb. Let also Ua = {x ∈ Wa : ∃y �∈ Wa, xy ∈ E(G)}.
By some abuse of notation, Wa,Ua, and Uab will denote both the sets and the subgraphs
induced by these sets. An example is given in Figure 5 .

Lemma 5. Each fiber Wa relative to H is gated. There exists an edge between two
distinct fibers Wa and Wb if and only if a and b are adjacent.

Proof. To show that Wa is gated, since Wa is connected because I(u, a) ⊂ Wa for any
u ∈ Wa, by Lemma 4, it suffices to prove that Wa is locally convex and �-closed. Let
x, y ∈ Wa have a common neighbor z, and, for the purposes of contradiction, suppose that
z �∈ Wa. Hence z ∈ Wb for some b ∈ V (H) different from a. Since a (resp. b) is the unique
vertex that minimizes the distance from x (resp. z) to H, we infer that d(x, a) = d(z, b) =
k and analogously that d(y, a) = d(z, b) = k. We claim that a and b are adjacent. Indeed,
since z ∈ Wb, there must be a shortest path from z to a, going through b. Since d(z, b) = k
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and d(z, a) = d(x, a) + 1 = k + 1, we infer d(a, b) ≤ 1 which implies that a and b are
adjacent.

By using the quadrangle condition for a, x, y, and z (or, if x and y are adjacent, using
the triangle condition for a, x, and y), we conclude that x and y have a common neighbor t
such that d(a, t) = k − 1. Since t ∈ I(x, a), clearly t ∈ Wa and thus d(b, t) = k. Applying
the quadrangle condition for b, t, z, and x, we infer that t and z have a common neighbor
s such that d(b, s) = k − 1. It is easy to see that t is not adjacent to z and that s is not
adjacent to x and y. Consequently, the vertices x, y, z, s, and t induce a K2,3 if x and y
are not adjacent, or a W −

4 otherwise. This leads to a contradiction. Hence Wa is locally
convex and �-closed, when each fiber Wa is gated.

Now suppose that there exists an edge uv with u ∈ Wa and v ∈ Wb. Since a is the gate
of u in H and b is the gate of v in H, we conclude that d(u, a) + d(a, b) = d(u, b) ≤
1 + d(v, b) and d(v, b) + d(b, a) = d(v, a) ≤ 1 + d(u, a). From these two inequalities,
we deduce that d(a, b) = 1. �

Lemma 6. Let a, b ∈ V (H) be two adjacent vertices. Then Uab = Ua and Uba = Ub.

Proof. If H has only two vertices, the assertion is trivial. Otherwise, since H is a
2-connected chordal subgraph, there exists a vertex c ∈ V (H) such that a, b, c form a
triangle. We first claim that Uab = Uac. Let x ∈ Uab. Then there exists y ∈ Ub that is
adjacent to x and clearly d(a, x) = d(b, y). Since c ∈ Wc, we have d(c, x) = d(c, y) =
k ≥ 2, and by the triangle condition there exists a common neighbor z of x and y such that
d(c, z) = k − 1. It is easy to see that z ∈ Wc, which implies that x ∈ Uac. By symmetry, we
infer that Uab = Uac. Now, let x ∈ Ua. Then x ∈ Uad for some d ∈ N(a) ∩ H. Since H is
2-connected and chordal, there exists a sequence of vertices b = c0, c1, . . . , cm = d of H
such that a, ci, and ci+1 form a triangle for all i = 0, . . . m − 1. By the previous reasoning,
this implies that Uab = Uaci = Uad . In particular, x ∈ Uab, showing that Uab = Ua. �

By Lemma 5, we infer that any vertex x ∈ Uab = Ua has exactly one neighbor in
Uba = Ub. Indeed, since each fiber Wb is gated, there cannot be a vertex not in Wb adjacent
to two vertices of Wb. This fact combined with Lemma 6 gives rise to the following
natural mapping: fab : Ua −→ Ub that maps x ∈ Ua to the neighbor of x in Ub.

Lemma 7. Let a, b be two adjacent vertices of H. Then Ua and Ub are isomorphic
subgraphs of G and fab is an isomorphism between the graphs Ua and Ub.

Proof. Let x, y be two adjacent vertices of Ua, and suppose that their neighbors x′, y′

in Ub are not adjacent. By Lemma 5 each Wa is gated, thus convex. Since Wb is convex,
we infer that dWb(x

′, y′) = 2. Let z′ ∈ Wb be a common neighbor of x′ and y′. Since
d(y, z′) = d(y, x′) = 2, by the triangle condition we infer that there exists a common
neighbor u of y, x′, and z′. Since Wb is �-closed, we conclude that u ∈ Wb. But then
y ∈ Ua has two neighbors u and y′ in Ub, which is impossible. �

Lemma 8. The subgraphs Ua are gated for all a ∈ V (H) and are mutually isomorphic.
Their union is isomorphic to H�U , where U is any of Ua.

Proof. Since H is connected, from Lemma 7, we immediately infer that the subgraphs
Ua are all mutually isomorphic. Since each fiber Wa is gated, to prove that Ua is gated it
suffices to show that Ua is locally convex and �-closed in the subgraph Wa.
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Let x, y ∈ Ua be two vertices having a common neighbor z ∈ Ua and suppose that
there is a vertex s ∈ Wa \ Ua that is adjacent to both x and y but not to z (the case
when s is adjacent to z is covered by �-closedness of Ua established below). Let b be
a neighbor of a in H and let x′, z′, y′ ∈ Ub be the neighbors of x, z, y, respectively. By
Lemma 7, we conclude that z′ is adjacent to x′ and y′ but x′ and y′ are not adjacent. Then
d(s, x′) = d(s, y′) = d(s, z′) − 1 = 2 and by the quadrangle condition we find that x′, y′

and s have a common neighbor s′. Since Wb is convex, s′ ∈ Ub which in turn implies that
s ∈ Ua, a contradiction. This shows that Ua is locally convex.

Let x, y ∈ Ua be two adjacent vertices and suppose that there is a vertex s ∈ Wa \ Ua

adjacent to both x and y. Let b be a neighbor of a in H and let x′, y′ ∈ Ub be the
neighbors of x, y, respectively. By Lemma 7, we know that x′ is adjacent to y′. Then
d(s, x′) = d(s, y′) = 2 and by the triangle condition we find that x′, y′, and s have a
common neighbor s′. Since N(s) ⊆ Ua, it implies that either x′ or y′ has two neighbors in
Ua, a contradiction. This shows that Ua is �-closed. Thus Ua is indeed gated.

The structure of the union of all Ua,a ∈ V (H), is now completely described. Its vertex
set is isomorphic to V (H) × V (U ), where U is isomorphic to Ua for any a ∈ V (H). For
any vertices a, c ∈ V (H) and any x ∈ Ua, y ∈ Uc, x is adjacent to y if and only if either
a = c and xy ∈ E(Ua), or a and c are adjacent and y is the unique neighbor of x in Uc.
Hence, the union of Ua over all a ∈ V (H) is isomorphic to H�U . �

We collected all results to conclude the proof of the implication (ii) ⇒ (iii) of Theorem
1. We proceed by induction on the cardinality of G. First, if H (the gated hull of {u, v}
in G) is equal to whole graph G, then G is chordal, hence G is a cage-amalgamation
graph. Therefore, we can suppose that H is a proper subgraph of G. Now, suppose
that for any a ∈ V (H), the set Wa coincides with Ua. By Lemma 8, G is isomorphic to
H�Wa = H�Ua, where H is a chordal graph. Since Wa has smaller cardinality than G and
since Wa is a weakly modular graph without K2,3, Wk, and W −

k , k ≥ 4 (as a gated subgraph
of G), by induction hypothesisWa is a cage-amalgamation graph. Since Cartesian products
and gated amalgams commute (see also Lemma 3.1 of [11]), G = H�Wa is a cage-
amalgamation graph as well. Finally, suppose that for some a ∈ V (H) the set Wa − Ua

is nonempty. Since Ua is gated and is a separator of G, we conclude that G is the gated
amalgam of Wa and G − (Wa − Ua) along the common gated subgraph Ua. Since both
those graphs Wa and G − (Wa − Ua) have smaller cardinality that G, they are cage-
amalgamation graphs, and thus so is G. This concludes the proofs of the implication
(ii) ⇒ (iii) and of Theorem 1.

4. THE PRISM COMPLEXES OF CAGE-AMALGAMATION GRAPHS

The second result of this article concerns the geometry of prism complexes derived
from cage-amalgamation graphs. Namely, we show that all such complexes endowed
with intrinsic l2-metric are CAT(0) metric spaces. We continue with the definition of
piecewise Euclidean (PE) cell complexes and of CAT(0) metric spaces.

A Euclidean cell is a convex polytope in some Euclidean space. By a PE cell complex,
we will mean a space X formed by gluing together Euclidean cells via isometries of
their faces, together with the decomposition of X into cells. Additionally, we assume
that the intersection of two cells is either empty or a single face of each of the cells.
If all cells of X are Euclidean simplexes (respectively, cubes), we will say that X is a
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simplicial (respectively, cubical) cell complex. If all cells of X are Euclidean prisms,
that is, Cartesian products of simplices, then X is called a prism complex; the precise
definition is given below. For a PE complex X denote by V (X) and E(X) the vertex set
and the edge set of X, namely, the set of all zero-dimensional and one-dimensional faces
of X. The pair (V (X), E(X)) is called the (underlying) graph or the 1-skeleton of X and
is denoted by G(X).

With each simplicial or cubical PE complex X one can associate in a canonical way
an abstract simplicial or cubical complex. Recall that an abstract simplicial complex X
is a collection of sets (called simplices) such that σ ∈ X and σ ′ ⊆ σ implies σ ′ ∈ X. A
cubical complex X is a set of (graph) cubes of any dimensions that is closed under taking
subcubes and nonempty intersections. Simplices or cubes of the respective complexes
are called faces. The link of a vertex x in a simplicial complex X, denoted link(x, X) is
simplicial complex consisting of all simplexes σ of X such that x /∈ σ and σ together with
x defines a simplex of X. A simplicial complex X is a flag complex (or a clique complex) if
any set of vertices is included in a face of X whenever each pair of its vertices is contained
in a face of X (in the theory of hypergraphs, this condition is called conformality). A
flag complex can therefore be recovered by its underlying graph G(X): the complete
subgraphs of G(X) are exactly the simplices of X. Conversely, for a graph G one can
derive a simplicial complex X(G) by taking all complete subgraphs (simplices) as faces
of the complex. Analogously, for a graph G one can also derive a cubical complex C(G)

by taking all induced subhypercubes as faces. If G is a median graph, then C(G) consists
of all hypercubes which are obtained as Cartesian products of the prime graphs (as we
noticed above, they are all two-vertex complete graphs K2). The simplicial complexes
arising as clique complexes of bridged graphs were characterized in [16] as simply
connected simplicial complexes in which the links of vertices do not contain induced 4-
and 5-cycles (these complexes have been rediscovered and investigated by Januszkiewicz
and Swiatkowski [26], who called them “systolic complexes” and considered them as
simplicial complexes satisfying combinatorial nonpositive curvature property, see the
definition below).

In the context of graphs G obtained via Cartesian products and gated amalgamations
from prime graphs containing cliques of arbitrary size, it is natural to associate to each
prime graph Gi of G a PE simplicial complex X(Gi) obtained by replacing each simplex of
the clique complex of Gi by an Euclidean simplex. Then the prism complex of G is the PE
cell complex H(G) obtained by taking all Hamming subgraphs of G (Cartesian products
of complete subgraphs of prime graphs) and replacing them by respective Euclidean
prisms. Then each face τ of H(G) is the Cartesian product τ = σ1 × · · · × σk, where
σi is a simplex of X(Gi), i = 1, . . . , k. This is consistent with the standard definition
of the product of two (or more) polytopes given on pp. 9-10 of the book of Ziegler
[36]: given two polytopes P ⊂ R

n and Q ⊂ R
m, the product of P and Q is the set

P × Q = {(x, y) : x ∈ P, y ∈ Q}. P × Q is a polytope of dimension dim(P) + dim(Q),
whose nonempty faces are the products of nonempty faces of P and nonempty faces of
Q. It is well known (see e.g., p. 110 of [36]) that the product σ1 × · · · × σk of Euclidean
simplices σ1, . . . , σk is a convex polyhedron τ, called a prism. Notice that if G is a median
graph (or more generally, a triangle-free graph), then the prism complex of G coincides
with the cubical complex C(G) defined before.

Let (X, d) be a metric space. The interval between two points x, y of X is the set
I(x, y) = {z ∈ X : d(x, y) = d(x, z) + d(z, y)}; for example, in Euclidean spaces, the
interval I(x, y) is the closed line segment having x and y as its endpoints. The space
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(X, d) is called Menger-convex if for any two distinct points x, y ∈ X there exists a point
z ∈ I(x, y) different from x, y. A geodesic joining two points x and y from X is the image of
a (continuous) map γ from a line segment [0, 1] ⊂ R to X such that γ (0) = x, γ (1) = y
and d(γ (t), γ (t ′)) = |t − t ′| for all t, t ′ ∈ [0, 1]. The space (X, d) is said to be geodesic
if every pair of points x, y ∈ X is joined by a geodesic (which is necessarily included
in I(x, y)) [12]. Every complete Menger-convex metric space is geodesic [12]. Any
finite PE cell complex X can be endowed with an intrinsic l2-metric [12], transforming
X into a complete geodesic space. Suppose that inside every cell of X the distance is
measured according to the Euclidean l2-metric. The intrinsic l2-metric d2 of X is defined
by assuming that the distance between two points x, y ∈ X lying in different cells equals
to the infimum of the lengths of the paths joining them. Here a path in X from x to y is
a sequence P of points x = x0, x1 . . . xm−1, xm = y such that for each i = 0, . . . , m − 1,

there exists a cell τi containing xi and xi+1; the length of P is l(P) = ∑m−1
i=0 d(xi, xi+1),

where d(xi, xi+1) is computed inside τi according to the Euclidean l2-metric.
Now, we will briefly review the definitions and some characterizations of CAT(0)

metric spaces (geodesic metric spaces of global nonpositive curvature). This theory orig-
inates from the classical papers of Alexandrov, Busemann, Bruhat, Cartan, Hadamard,
Tits, Toponogov, and others. In most generality it has been defined in the seminal pa-
per of Gromov [22]. CAT(0) spaces represent a far-reaching common generalization
of Euclidean spaces, classical real-hyperbolic spaces (which are spaces with negative
curvature), and Riemannian manifolds of strictly negative sectional curvature. CAT(0)
spaces play a vital role in modern combinatorial group theory, where various versions
of hyperbolicity are related to group-theoretic properties [21], [22]; many arguments in
this area have a strong metric graph-theoretic flavor. For a survey in more depth and
background, the reader should refer to the book of Bridson and Haefliger [12], whose
terminology we follow.

A geodesic triangle �(x1, x2, x3) in a geodesic metric space (X, d) consists of three
distinct points in X (the vertices of �) and a geodesic between each pair of vertices
(the sides of �). A comparison triangle for �(x1, x2, x3) is a triangle �(x′

1, x′
2, x′

3) in the
Euclidean plane E

2 such that dE2 (x′
i, x′

j) = d(xi, x j) for i, j ∈ {1, 2, 3}. A geodesic metric
space (X, d) is defined to be a CAT(0) space [22] if all geodesic triangles �(x1, x2, x3)

of X satisfy the comparison axiom of Cartan–Alexandrov–Toponogov (this explains the
acronym CAT(0)):

If y is a point on the geodesic between x1 and x2 in the triangle �(x1, x2, x3) and y′

is the unique point on the line segment [x′
1, x′

2] of the comparison triangle �(x′
1, x′

2, x′
3)

such that dE2 (x′
i, y′) = d(xi, y) for i = 1, 2, then d(x3, y) ≤ dE2 (x′

3, y′).
This simple axiom turns out to be very powerful, because CAT(0) spaces have many

properties and can be characterized in several natural ways. For example, a geodesic
metric space (X, d) is CAT(0) if and only if the distance function f (t) = d(α(t), β(t))
is convex for any geodesics α and β. From this property, one can immediately conclude
that in CAT(0) spaces (such as in bridged graphs) the r-neighborhoods Br(A) = {x :
d(x, A) ≤ r} of convex sets A are convex. The convexity of balls yields that CAT(0)
spaces are contractible. The convexity of the distance function also implies that CAT(0)
spaces do not contain isometrically embedded cycles. Any two points of a CAT(0) space
can be joined by a unique geodesic; furthermore, a PE complex X is CAT(0) if and only
if any two points of X can be joined in X by a unique geodesic. Other characterizations
(in particular, via links) and properties of CAT(0) PE complexes can be found in the
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book [12]. In the case of cube complexes, Gromov [22] presented a nice combinatorial
characterization of CAT(0) condition: a cube complex X is CAT(0) if and only if X is
simply connected and the links of vertices are flag simplicial complexes.

Now, we formulate the second result of this article.

Theorem 2. If G is a cage-amalgamation graph, then any prism complex H(G) derived
from G and equipped with the intrinsic l2-metric d2 is a CAT(0) metric space.

It was already noticed in [16], [23] that clique complexes of chordal graphs lead to
CAT(0) simplicial complexes. Gromov called them (p. 121 of [23]) tree-like polyhedra
and also noticed to be CAT(0). In the rest of this section, we prove Theorem 2.

The proof of Theorem 2 uses the decomposition scheme from Theorem 1 and runs in
three steps: first we show that a PE simplicial complex derived from the clique complex
of a chordal graph is CAT(0), then we establish that the prism complex of a Cartesian
product of chordal graphs is CAT(0) as well, and finally we show that gated amalgams of
cage-amalgamation graphs preserve the CAT(0) property of their prism complexes. The
proof employs the following known property of CAT(0) spaces due to Reshetnyak and
which is a particular case of the basic gluing theorem 11.1 of [12].

Gluing Theorem. If (X1, d1) and (X2, d2) are two CAT(0) spaces, Ai is a convex
nonempty subset of (Xi, di), i = 1, 2, and there exists an isometry ϕ between A1 and A2,
then the metric space (X1 ∪ X2, d) obtained by gluing X1 and X2 along the sets A1 and
A2 is CAT(0).

The metric space (X1 ∪ X2, d) is obtained by identifying A1 and A2 according to ϕ and
d is defined to be d1 on X1, d2 on X2, and d(x, y) = inf{d1(x, a) + d2(a, y) : a ∈ A2 =
ϕ(A1)} if x ∈ A1 and y ∈ A2.

We first recall the proof of Corollary 8.4 of [16] showing that any simplicial complex
X(G) derived from the clique complex of a finite chordal graph G is CAT(0). We recall
this short proof here because the proof of Theorem 2 is based on the same principle.
We proceed by induction on the number of vertices of G. Let x be a simplicial vertex of
G. Then x belongs to the unique maximal by inclusion simplex σ of X(G) induced by
x and all its neighbors in G. Consequently, X(G) can be obtained by gluing σ and X′,
where X′ is the subcomplex of X(G) spanned by the facet σ ′ of σ not containing x (i.e.,
by link(x, X(G)) and the maximal simplexes of X(G) distinct from σ (in fact, X′ is a
simplicial complex derived from the clique complex of the chordal graph G′ := G − {x}).
Since the gluing is performed along a convex set σ ′ of both complexes σ and X′, from
the result of Reshetnyak mentioned above, we obtain that X(G) is CAT(0) if and only if
σ and X′ are CAT(0). Since X′ = X(G′) and the graph G′ is chordal, by the induction
assumption, X′ is CAT(0), and we are done. In view of perfect elimination schemes of
chordal graphs G, X(G) can be written as a directed union

⋃n
i=1 Xi where Xi = Xi−1 ∪ σi

and the simplex σi meets Xi−1 over a single face σ ′
i .

Now suppose that G is a cage-amalgamation graph whose prime graphs are the chordal
graphs G1, . . . , Gm. Each of these graphs occurs as a gated subgraph of G. Let x be a
simplicial vertex of G1. Denote by σx the unique maximal by inclusion simplex of X(G1)

induced by x and all its neighbors in G1 and let σ ′
x be the facet of σx not containing the

vertex x. For each vertex a of G1, denote by Wa its fiber in G relative to some copy of the
gated subgraph G1. From Lemma 5, each such fiber Wa is gated. From Lemmas 7 and 8,
we conclude that the boundaries Ua of these fibers Wa are isomorphic gated subgraphs of
G. Denote by Hσx (resp. Hσ ′

x
) the prism complexes of the subgraphs of G induced by the
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FIGURE 6. To the proof of Lemma 9.

unions
⋃

a∈σx
Ua (resp.

⋃
a∈σ ′

x
Ua). Notice that Hσ ′

x
is a subcomplex of Hσx and that both

Hσ ′
x

and Hσx are subcomplexes of H(G).

Lemma 9. If p, q are two points of Hσ ′
x
, then any geodesic connecting p and q in Hσx

is contained in Hσ ′
x
.

Proof. Suppose by way of contradiction that such a geodesic γ (p, q) contains a point
in the set Hσx − Hσ ′

x
(see Fig. 6 for an illustration). Let π1, . . . , πk be the maximal by

inclusion prisms of Hσx intersected by γ (p, q) labeled in order in which they are traversed
by γ (p, q). Let π ′

i be the facet of πi in Hσ ′
x
, that is, π ′

i = πi ∩ Hσ ′
x
. The intersection of any

two consecutive prisms πi and πi+1 is a face τi of each of them. Let τ ′
i denote the facet

of τi in π ′
i (and π ′

i+1). Let ri ∈ γ (p, q) ∩ τi. The orthogonal projection of each prism πi

on its facet π ′
i is a nonexpansive map fi. Moreover, each point ri is mapped by fi and

fi+1 to the same point r′
i belonging to τ ′

i . As a result, the length of the path γ ′(p, q)

between p = r′
0 and q = r′

k consisting of line segments connecting the consecutive points
p, r′

1, r′
2, . . . , r′

k−1, q is at most the length of γ (p, q). Since p, q ∈ Hσ ′
x

and γ (p, q) passes
via a point of Hσx − Hσ ′

x
, at least one of the orthogonal projections r′

ir
′
i+1 must be strictly

smaller than the length of γ (ri, ri+1) (the portion of γ (p, q) comprised between ri
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and ri+1), thus γ ′(p, q) is strictly shorter than γ (p, q), completing the proof of the
lemma. �

Now, by induction on the number of vertices of G, we will establish that if G is a
Cartesian product of chordal graphs G1, . . . , Gm, then H(G) is CAT(0). This is obviously
true if each Gi is a clique. So, suppose without loss of generality that G1 is not a clique. Let
x be a simplicial vertex of G1. From Lemma 9, we know that the subcomplex Hσ ′

x
is convex

(with respect to the d2-metric) in Hσx . Let G′
1 := G1 − {x} and G′ := G′

1�G2� . . . �Gm.
By induction assumption, Hσx and H(G′) are CAT(0) spaces. Since H(G) is obtained
by gluing Hσx and H(G′) along Hσ ′

x
and Hσ ′

x
is convex in Hσx , to apply the basic gluing

theorem, it suffices to show that Hσ ′
x

is convex in H(G′). This is obviously true when
G′

1 = σ ′
x. Otherwise, G′

1 contains a simplicial vertex y /∈ σ ′
x. Let G′′ = G′

1 − {y} and
assume by induction assumption that Hσ ′

x
is convex in H(G′′). Therefore, if Hσ ′

x
is not

convex in H(G′
1), then we can find two points p, q ∈ Hσ ′

x
and a geodesic γ (p, q) between

p and q in H(G′
1) containing at least one point z ∈ H(G′

1) − H(G′′) = Hσy − Hσ ′
y
. Then

γ (p, q) contains two points p′, q′ ∈ Hσ ′
y

such that z belongs to the portion γ (p′, q′) of
γ (p, q) comprised between p′ and q′. Since γ (p, q) is a geodesic, necessarily γ (p′, q′)
is a geodesic between p′ and q′. This however contradicts the convexity of Hσ ′

y
in Hσy

established in Lemma 9. This shows that Hσ ′
x

is convex in H(G′) as well, and therefore
we can apply the gluing theorem.

Finally, suppose that a graph G is a gated amalgam of two cage-amalgamation graphs
G′ and G′′ along a gated subgraph G0. Suppose by induction assumption that H(G′)
and H(G′′) are CAT(0) spaces. To use the gluing theorem again, it suffices to show that
H(G0) is convex (with respect to the intrinsic d2-metric) in both H(G′) and H(G′′), say
in H(G′).

Lemma 10. If G0 is a gated subgraph of a cage-amalgamation graph G′, then H(G0)

is convex in H(G′).

Proof. We proceed by induction on the number of vertices of G′. Since G0 is different
from G′, there exists a vertex y of G0 that has a neighbor y′ ∈ V (G′) \ V (G0). Let H be
the gated hull of the edge yy′. Consider the partition of G′ into fibers Wa with respect to
the vertices a of H. Clearly, the gated subgraph G0 is completely contained in the fiber
Wy of y. By Proposition 2, H is either a 2-connected chordal graph or an edge. In both
cases, H contains a simplicial vertex x different from y. Denote by σx the simplex defined
by the unique maximal complete subgraph of H containing x and let σ ′

x be the facet of
σx not containing the vertex x. Let D be the subgraph of G′ induced by all vertices not
belonging to the fiber Wx. Since x is a simplicial vertex of H, it can be easily seen that D is
an isometric (in fact a convex) subgraph of G′. D is a cage-amalgamation graph: its prime
graphs are the same as those of G′ with the single exception that H is replaced by H − {x}.
Moreover, G0 is a gated subgraph of D. Thus, by induction assumption, we can suppose
that H(G0) is a convex subcomplex of H(D). Now, suppose by way of contradiction that
H(G0) is not convex in H(G′). Then there exist two points p, q ∈ H(G0) such that the
geodesic γ (p, q) connecting p and q in H(G′) does not belong to H(G0) (see Fig. 7 for
an illustration). Since H(G0) is convex in H(D), γ (p, q) contains at least one point z
not belonging to H(D). Then γ (p, q) necessarily contains two points p′, q′ ∈ Hσ ′

x
(where

Hσ ′
x

is defined as before) such that z belongs to the part γ (p′, q′) of γ (p, q) comprised
between the points p′ and q′. Since γ (p′, q′) is a part of a geodesic, γ (p′, q′) is a geodesic
itself. If γ (p′, q′) (and therefore z) is contained in the subcomplex Hσx of H(Wx), then
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FIGURE 7. To the proof of Lemma 10.

we obtain a contradiction with Lemma 9 asserting the convexity of Hσ ′
x

in Hσx . Thus,
we can suppose that γ (p′, q′) contains some points (say z itself) in H(Wx) − Hσx . Then
necessarily γ (p′, q′) contains two points p′′, q′′ ∈ H(Ux) such that z belongs to the portion
γ (p′′, q′′) between p′′ and q′′. Again, γ (p′′, q′′) is a geodesic as a part of a larger geodesic.
But this means that H(Ux) is not a convex subcomplex of H(Wx), contrary to the fact
that Ux is a gated subgraph of a cage-amalgamation graph Wx having less vertices than
the graph G′. This contradiction establishes Lemma 10. �

From Lemma 10 we conclude that H(G0) is convex in H(G′) and H(G′′), therefore
the gated amalgamation of G′ and G′′ along G0 translates into gluing two CAT(0) spaces
H(G′) and H(G′′) along a convex subspace H(G0), thus H(G) is CAT(0) by the gluing
theorem. This concludes the proof of Theorem 2.

We conclude the article with two open questions.

Question 1. Is it true that the graphs G which can be obtained by successive gated
amalgams from Cartesian products of bridged graphs are exactly the weakly modular
graphs not containing K2,3, the wheels W4 and W5, and the almost-wheels W −

k for k ≥ 4?

Question 2. Characterize the triangle–square complexes (i.e., the two-dimensional
complexes obtained by taking all graph triangles C3 and squares C4 as faces) of cage-
amalgamation graphs and, more generally, of graphs obtained by gated amalgams from
Cartesian products of bridged graphs (i.e., graphs from Question 1)? In particular, is it
true that those complexes are exactly the simply connected triangle-square complexes
whose underlying graphs do not contain K2,3, the wheels Wk, and the almost-wheels
W −

k for k ≥ 4 in the cage-amalgamation case and the simply connected triangle-square
complexes whose underlying graphs do not contain K2,3, the wheels W4,W5, and the
almost-wheels W −

k for k ≥ 4 in the second case? In other words, is it possible to replace
the global metric condition of “weak modularity” by a topological condition of “simple
connectivity”?
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