
ar
X

iv
:0

90
6.

32
56

v1
 [

cs
.G

T
]

 1
7

Ju
n

20
09

T. Neary, D. Woods, A.K. Seda and N. Murphy (Eds.):
The Complexity of Simple Programs 2008.
EPTCS 1, 2009, pp. 3–15, doi:10.4204/EPTCS.1.1

c© O. Bournez, J. Chalopin, J. Cohen, X. Koegler

Playing With Population Protocols∗

Olivier Bournez

Olivier.Bournez@lix.polytechnique.fr

Ecole Polytechnique & Laboratoire d’Informatique (LIX),
91128 Palaiseau Cedex, France

Jérémie Chalopin

Jeremie.Chalopin@lif.univ-mrs.fr

CNRS & Laboratoire d’Informatique Fondamentale de Marseille, CNRS & Aix-Marseille Université,
39 rue Joliot Curie, 13453 Marseille Cedex 13, France

Johanne Cohen

Johanne.Cohen@prism.uvsq.fr

CNRS & PRiSM,
45 Avenue des Etats Unis, 78000 Versailles, France

Xavier Koegler

Xavier.Koegler@liafa.jussieu.fr

École Normale Supérieure & Université Paris Diderot - Paris 7,
Case 7014, 75205 Paris Cedex 13, France

Population protocols have been introduced as a model of sensor networks consisting of very
limited mobile agents with no control over their own movement: A collection of anonymous
agents, modeled by finite automata, interact in pairs according to some rules.

Predicates on the initial configurations that can be computed by such protocols have
been characterized under several hypotheses.

We discuss here whether and when the rules of interactions between agents can be seen
as a game from game theory. We do so by discussing several basic protocols.

1 Introduction

The computational power of networks of anonymous resource-limited mobile agents has been
investigated in several recent papers.

In particular, Angluin et al. proposed in [1] a new model of distributed computations. In this
model, called population protocols, finitely many finite-state agents interact in pairs chosen by
an adversary. Each interaction has the effect of updating the state of the two agents according
to a joint transition function.

A protocol is said to (stably) compute a predicate on the initial states of the agents if, in
any fair execution, after finitely many interactions, all agents reach a common output that
corresponds to the value of the predicate.

The model was originally proposed to model computations realized by sensor networks in
which passive agents are carried along by other entities. The canonical example of [1] corresponds
to sensors attached to a flock of birds and that must be programmed to check some global

∗This work and all authors were partly supported by ANR Project SOGEA and by ANR Project SHAMAN,
Xavier Koegler was partly supported by COST Action 295 DYNAMO and ANR Project ALADDIN

http://arxiv.org/abs/0906.3256v1
http://dx.doi.org/10.4204/EPTCS.1.1

4 Playing With Population Protocols

properties, like determining whether more than 5% of the population has elevated temperature.
Motivating scenarios also include models of the propagation of trust [8].

Much of the work so far on population protocols has concentrated on characterizing which
predicates on the initial states can be computed in different variants of the model and under
various assumptions. In particular, the predicates computable by the unrestricted population
protocols from [1] have been characterized as being precisely the semi-linear predicates, that is
to say those predicates on counts of input agents definable in first-order Presburger arithmetic
[18]. Semilinearity was shown to be sufficient in [1] and necessary in [2].

Variants considered so far include restriction to one-way communications, restriction to par-
ticular interaction graphs, to random interactions, with possibly various kind of failures of agents.
Solutions to classical problems of distributed algorithmics have also been considered in this
model. Refer to survey [3] for a complete discussion.

The population protocol model shares many features with other models already considered
in the literature. In particular, models of pairwise interactions have been used to study the
propagation of diseases [12], or rumors [7]. In chemistry the chemical master equation has been
justified using (stochastic) pairwise interactions between the finitely many molecules present
[16, 11]. In that sense, the model of population protocols may be considered as fundamental in
several fields of study.

Pairwise interactions between finite-state agents are sometimes motivated by the study of
the dynamics of particular two-player games from game theory. For example, paper [9] considers
the dynamics of the so-called PAV LOV behaviour in the iterated prisoner lemma. Several results
about the time of convergence of this particular dynamics towards the stable state can be found
in [9], and [10], for rings, and complete graphs.

The purpose of the following discussion is to better understand whether and when pairwise
interactions, and hence population protocols, can be considered as the result of a game. We
want to understand if restricting to rules that come from a (symmetric) game is a limitation,
and in particular whether restricting to rules that can be termed PAV LOV in the spirit of [9] is a
limitation. We do so by giving solutions to several basic problems using rules of interactions as-
sociated to a symmetric game. As such protocols must also be symmetric, we are also discussing
whether restricting to symmetric rules in population protocols is a limitation.

In Section 2, we briefly recall population protocols. In Section 3, we recall some basics
from game theory. In Section 4, we discuss how a game can be turned into a dynamics, and
introduce the notion of Pavlovian population protocol. In Section 5 we prove that any symmetric
deterministic 2-states population protocol is Pavlovian, and that the problem of computing the
OR, AND, as well as the leader election and majority problem admit Pavlovian solutions. We
then discuss our results in Section 6.

2 Population Protocols

A protocol is given by (Q,Σ, ι ,ω ,δ) with the following components. Q is a finite set of states.
Σ is a finite set of input symbols. ι : Σ → Q is the initial state mapping, and ω : Q → {0,1} is
the individual output function. δ ⊆ Q4 is a joint transition relation that describes how pairs of
agents can interact. Relation δ is sometimes described by listing all possible interactions using
the notation (q1,q2)→ (q′1,q

′
2), or even the notation q1q2 → q′1q′2, for (q1,q2,q′1,q

′
2) ∈ δ (with the

convention that (q1,q2) → (q1,q2) when no rule is specified with (q1,q2) in the left-hand side).

O. Bournez, J. Chalopin, J. Cohen, X. Koegler 5

The protocol is termed deterministic if for all pairs (q1,q2) there is only one pair (q′1,q
′
2) with

(q1,q2)→ (q′1,q
′
2). In that case, we write δ1(q1,q2) for the unique q′1 and δ2(q1,q2) for the unique

q′2.
Notice that, in general, rules can be non-symmetric: if (q1,q2) → (q′1,q

′
2), it does not neces-

sarily follow that (q2,q1) → (q′2,q
′
1).

Computations of a protocol proceed in the following way. The computation takes place
among n agents, where n ≥ 2. A configuration of the system can be described by a vector of all
the agents’ states. The state of each agent is an element of Q. Because agents with the same
states are indistinguishable, each configuration can be summarized as an unordered multiset of
states, and hence of elements of Q.

Each agent is given initially some input value from Σ: Each agent’s initial state is determined
by applying ι to its input value. This determines the initial configuration of the population.

An execution of a protocol proceeds from the initial configuration by interactions between
pairs of agents. Suppose that two agents in state q1 and q2 meet and have an interaction. They
can change into state q′1 and q′2 if (q1,q2,q′1,q

′
2) is in the transition relation δ . If C and C′ are

two configurations, we write C →C′ if C′ can be obtained from C by a single interaction of two
agents: this means that C contains two states q1 and q2 and C′ is obtained by replacing q1 and q2

by q′1 and q′2 in C, where (q1,q2,q′1,q
′
2) ∈ δ . An execution of the protocol is an infinite sequence

of configurations C0,C1,C2, · · · , where C0 is an initial configuration and Ci → Ci+1 for all i ≥ 0.
An execution is fair if for all configurations C that appear infinitely often in the execution, if
C →C′ for some configuration C′, then C′ appears infinitely often in the execution.

At any point during an execution, each agent’s state determines its output at that time. If
the agent is in state q, its output value is ω(q). The configuration output is 0 (respectively 1) if
all the individual outputs are 0 (respectively 1). If the individual outputs are mixed 0s and 1s
then the output of the configuration is undefined.

Let p be a predicate over multisets of elements of Σ. Predicate p can be considered as
a function whose range is {0,1} and whose domain is the collection of these multisets. The
predicate is said to be computed by the protocol if, for every multiset I, and every fair execution
that starts from the initial configuration corresponding to I, the output value of every agent
eventually stabilizes to p(I).

The following was proved in [1, 2]

Theorem 1 ([1, 2]). A predicate is computable in the population protocol model if and only if
it is semilinear.

Recall that semilinear sets are known to correspond to predicates on counts of input agents
definable in first-order Presburger arithmetic [18].

3 Game Theory

We now recall the simplest concepts from Game Theory. We focus on non-cooperative games,
with complete information, in extensive form.

The simplest game is made up of two players, called I and II, with a finite set of options,
called pure strategies, Strat(I) and Strat(II). Denote by Ai, j (respectively: Bi, j) the score for
player I (resp. II) when I uses strategy i ∈ Strat(I) and II uses strategy j ∈ Strat(II).

The scores are given by n×m matrices A and B, where n and m are the cardinality of Strat(I)
and Strat(II). The game is termed symmetric if A is the transpose of B: this implies that n = m,

6 Playing With Population Protocols

and we can assume without loss of generality that Strat(I) = Strat(II).

Example 1 (Prisoner’s dilemma). The case where A and B are the following matrices

A =

(

R S
T P

)

,B =

(

R T
S P

)

with T > R > P > S and 2R > T + S, is called the prisoner’s dilemma. We denote by C (for
cooperation) the first pure strategy, and by D (for defection) the second pure strategy of each
player.

As the game is symmetric, matrix A and B can also be denoted by:

Opponent
C D

Player
C R S
D T P

A strategy x ∈ Strat(I) is said to be a best response to strategy y ∈ Strat(II), denoted by
x ∈ BR(y) if

Az,y ≤ Ax,y (1)

for all strategies z ∈ Strat(I).
A pair (x,y) is a (pure) Nash equilibrium if x ∈ BR(y) and y ∈ BR(x). A pure Nash equilibrium

does not always exist.
In other words, two strategies (x,y) form a Nash equilibrium if in that state neither of the

players has a unilateral interest to deviate from it.

Example 2. On the example of the prisoner’s dilemma, BR(y) = D for all y, and BR(x) = D for
all x. So (D,D) is the unique Nash equilibrium, and it is pure. In it, each player has score P.
The paradox is that if they had played (C,C) (cooperation) they would have had score R, that is
more. The social optimum (C,C), is different from the equilibrium that is reached by rational
players (D,D), since in any other state, each player fears that the adversary plays C.

We will also introduce the following definition: Given some strategy x′ ∈ Strat(I), a strategy
x ∈ Strat(I) is said to be a best response to strategy y ∈ Strat(II) among those different from x′,
denoted by x ∈ BR 6=x′(y) if

Az,y ≤ Ax,y (2)

for all strategy z ∈ Strat(I),z 6= x′.
Of course, the role of II and I can be inverted in the previous definition.
There are two main approaches to discussing dynamics of games. The first consists in

repeating games. The second in using models from evolutionary game theory. Refer to [13, 19]
for a presentation of this latter approach.

Repeating Games. Repeating k times a game, is equivalent to extending the space of choices
into Strat(I)k and Strat(II)k: player I (respectively II) chooses his or her action x(t) ∈ Strat(I),
(resp. y(t) ∈ Strat(II)) at time t for t = 1,2, · · · ,k. Hence, this is equivalent to a two-player game
with respectively nk and mk choices for players.

To avoid confusion, we will call actions the choices x(t),y(t) of each player at a given time,
and strategies the sequences X = x(1), · · · ,x(k) and Y = y(1), · · · ,y(k), that is to say the strategies
for the global game.

O. Bournez, J. Chalopin, J. Cohen, X. Koegler 7

If the game is repeated an infinite number of times, a strategy becomes a function from
integers to the set of actions, and the game is still equivalent to a two-player game1.

Behaviours. In practice, player I (respectively II) has to solve the following problem at each
time t: given the history of the game up to now, that is to say

Xt−1 = x(1), · · · ,x(t −1)

and

Yt−1 = y(1), · · · ,y(t −1)

what should I play at time t? In other words, how to choose x(t) ∈ Strat(I)? (resp. y(t) ∈
Strat(II)?)

Is is natural to suppose that this is given by some behaviour rules:

x(t) = f (Xt−1,Yt−1),

y(t) = g(Xt−1,Yt−1)

for some particular functions f and g.

The Specific Case of the Prisoner’s Lemma. The question of the best behaviour rule to
use for the prisoner lemma gave birth to an important literature. In particular, after the book
[4], that describes the results of tournaments of behaviour rules for the iterated prisoner lemma,
and that argues that there exists a best behaviour rule called T IT −FOR−TAT . This consists in
cooperating at the first step, and then do the same thing as the adversary at subsequent times.

A lot of other behaviours, most of them with very picturesque names have been proposed
and studied: see for example [4], [5], [15].

Among possible behaviours is PAV LOV : in the iterated prisoner lemma, a player cooperates
if and only if both players opted for the same alternative in the previous move. This name
[14, 17, 4] stems from the fact that this strategy embodies an almost reflex-like response to the
payoff: it repeats its former move if it was rewarded by R or T points, but switches behaviour if
it was punished by receiving only P or S points. Refer to [17] for some study of this strategy in
the spirit of Axelrod’s tournaments.

The PAV LOV behaviour can also be termed WIN-STAY, LOSE-SHIFT as if the play on the
previous round resulted in a success, then the agent plays the same strategy on the next round.
Alternatively, if the play resulted in a failure the agent switches to another action [17, 4].

Going From 2 Players to N Players. PAV LOV behaviour is Markovian: a behaviour f is
Markovian, if f (Xt−1,Yt−1) depends only on x(t −1) and y(t −1).

From such a behaviour, it is easy to obtain a distributed dynamic. For example, let’s follow
[9], for the prisoner’s dilemma.

Suppose that we have a connected graph G = (V,E), with N vertices. The vertices correspond
to players. An instantaneous configuration of the system is given by an element of {C,D}N , that
is to say by the state C or D of each vertex. Hence, there are 2N configurations.

1but whose matrices are infinite.

8 Playing With Population Protocols

At each time t, one chooses randomly and uniformly one edge (i, j) of the graph. At this
moment, players i and j play the prisoner dilemma with the PAV LOV behaviour. It is easy to
see that this corresponds to executing the following rules:

CC → CC
CD → DD
DC → DD
DD → CC.

(3)

What is the final state reached by the system? The underlying model is a very large Markov
chain with 2N states. The state E∗ = {C}N is absorbing. If the graph G does not have any isolated
vertex, this is the unique absorbing state, and there exists a sequence of transformations that
transforms any state E into this state E∗. As a consequence, from well-known classical results
in Markov chain theory, whatever the initial configuration is, with probability 1, the system will
eventually be in state E∗ [6]. The system is self-stabilizing.

Several results about the time of convergence towards this stable state can be found in [9],
and [10], for rings, and complete graphs.

What is interesting in this example is that it shows how to go from a game, and a behaviour
to a distributed dynamics on a graph, and in particular to a population protocol when the graph
is the complete graph.

4 From Games To Population Protocols

In the spirit of the previous discussion, to any symmetric game, we can associate a population
protocol as follows.

Definition 1 (Associating a Protocol to a Game). Assume a symmetric two-player game is
given. Let ∆ be some threshold.

The protocol associated to the game is a population protocol whose set of states is Q, where
Q = Strat(I) = Strat(II) is the set of strategies of the game, and whose transition rules δ are given
as follows:

(q1,q2,q
′
1,q

′
2) ∈ δ

where

• q′1 = q1 when Mq1,q2 ≥ ∆

• q′1 ∈ BR 6=q1(q2) when Mq1,q2 < ∆

and

• q′2 = q2 when Mq2,q1 ≥ ∆

• q′2 ∈ BR 6=q2(q1) when Mq2,q1 < ∆,

where M is the matrix of the game.

Definition 2 (Pavlovian Population Protocol). A population protocol is Pavlovian if it can be
obtained from a game as above.

Remark 1. Clearly a Pavlovian population protocol must be symmetric: indeed, whenever
(q1,q2,q′1,q

′
2) ∈ δ , one has (q2,q1,q′2,q

′
1) ∈ δ .

O. Bournez, J. Chalopin, J. Cohen, X. Koegler 9

5 Some Specific Pavlovian Protocols

We now discuss whether assuming protocols Pavlovian is a restriction.

We start by an easy consideration.

Theorem 2. Any symmetric deterministic 2-states population protocol is Pavlovian.

Proof. Consider a deterministic symmetric 2-states population protocol. Note Q = {+,−} its
set of states. Its transition function can be written as follows:

++ → α++α++

+− → α+−α−+

−+ → α−+α+−

−− → α−−α−−

(4)

for some α++,α+−,α−+,α−−.

This corresponds to the symmetric game given by the following pay-off matrix M

Opponent

+ -

Player
+ β++ β+−

- β−+ β−−

taking threshold ∆ = 1, where for all q1,q2 ∈ {+,−},

• βq1q2 = 2 if αq1q2 = q1,

• βq1q2 = 0 otherwise.

Unfortunately, not all rules correspond to a game.

Proposition 1. Some symmetric population protocols are not Pavlovian.

Proof. Consider for example a deterministic 3-states population protocol with set of states Q =
{q0,q1,q2} and a joint transition function δ such that δ1(q0,q0) = q1, δ1(q1,q0) = q2 , δ1(q2,q0) =
q0.

Assume by contradiction that there exists a 2-player game corresponding to this 3-states pop-
ulation protocol. Consider its payoff matrix M. Let M(q0,q0) = β0, M(q1,q0) = β1 , M(q2,q0) = β2.
We must have β0 ≥ ∆,β1 ≥ ∆ since all agents that interact with an agent in state q0 must change
their state. Now, since q0 changes to q1, q1 must be a strictly better response to q0 than q2:
hence, we must have β1 > β2. In a similar way, since q1 changes to q2, we must have β2 > β0 , and
since q2 changes to q0, we must have β0 > β1. From β1 > β2 > β0 we reach a contradiction.

This indeed motivates the following study, where we discuss which problems admit a Pavlo-
vian solution.

10 Playing With Population Protocols

5.1 Basic Protocols

Proposition 2. There is a Pavlovian protocol that computes the logical OR (resp. AND) of
input bits.

Proof. Consider the following protocol to compute OR,

01 → 11
10 → 11
00 → 00
11 → 11

(5)

and the following protocol to compute AND,

01 → 00
10 → 00
00 → 00
11 → 11

(6)

Since they are both deterministic 2-states population protocols, they are Pavlovian.

Remark 2. Notice that OR (respectively AND) protocol corresponds to the predicates on counts
of input agents n0 ≥ 1 (resp. n1 = 0) where n0, n1 are the number of input agents in state 0 and
1 respectively.

Remark 3. All previous protocols are “naturally broadcasting” i.e., eventually all agents agree on
some (the correct) value. With previous definitions (which are the classical ones for population
protocols), the following protocol does not compute the XOR or input bits, or equivalently does
not compute predicate n1 ≡ 1 (mod 2).

01 → 01
10 → 10
00 → 00
11 → 00

(7)

Indeed, the answer is not eventually known by all the agents. It computes the XOR in a
weaker form i.e., eventually, all agents will be in state 0, if the XOR of input bits is 0, or
eventually only one agent will be in state 1, if the XOR of input bits is 1.

5.2 Leader Election

The classical solution [1] to the leader election problem (starting from a configuration with ≥ 1
leaders, eventually exactly one leader survives) is the following:

LL → LN
LN → LN
NL → NL
NN → NN

(8)

Unfortunately, this protocol is non-symmetric, and hence non-Pavlovian.

O. Bournez, J. Chalopin, J. Cohen, X. Koegler 11

Remark 4. Actually, the problem is with the first rule, since one wants two leaders to become
only one. If the two leaders are identical, this is clearly problematic with symmetric rules.

However, the leader election problem can actually be solved by a Pavlovian protocol, at the
price of a less trivial protocol.

Proposition 3. The following Pavlovian protocol solves the leader election problem, as soon as
the population is of size ≥ 3.

L1L2 → L1N
L1N → NL2

L2N → NL1

NN → NN
L2L1 → NL1

NL1 → L2N
NL2 → L1N
L1L1 → L2L2

L2L2 → L1L1

(9)

Proof. Indeed, starting from a configuration containing not only Ns, eventually after some time
configurations will have exactly one leader, that is one agent in state L1 or L2.

Indeed, the first rule and the fifth rule decrease strictly the number of leaders whenever there
are more than two leaders. Now the other rules, preserve the number of leaders, and are made
such that an L1 can always be transformed into an L2 and vice-versa, and hence are made such
that a configuration where first or fifth rule applies can always be reached whenever there are
more than two leaders. The fact that it solves the leader election problem then follows from the
hypothesis of fairness in the definition of computations.

This is a Pavlovian protocol, since it corresponds to the following payoff matrix, with thresh-
old ∆ = 4

Opponent

L1 L2 N

Player
L1 1 4 1

L2 3 1 1

N 2 1 4

5.3 Majority

Proposition 4. The majority problem (given some population of 0s and 1s, determine whether
there are more 0s than 1s) can be solved by a Pavlovian population protocol.

If one prefers, the predicate n0 ≥ n1 on counts of input agents can be computed by a Pavlovian
population protocol.

12 Playing With Population Protocols

Proof. We claim that the following protocol outputs 1 if there are more 0s than 1s in the initial
configuration and 0 otherwise,

NY → YY
Y N → YY
N0 → Y 0
0N → 0Y
Y 1 → N1
1Y → 1N
01 → NY
10 → Y N

(10)

taking

• Σ = {0,1},Q = {0,1,Y,N},

• ω(0) = ω(Y) = 1,

• ω(1) = ω(N) = 0.

In this protocol, the states Y and N are “neutral” elements for our predicate but they should
be understood as Yes and No. They are the “answers” to the question: are there more 0s than
1s.

This protocol is made such that the number of 0s and 1s is preserved except when a 0 meets
a 1. In that latter case, the two agents are deleted and transformed into a Y and a N.

If there are initially strictly more 0s than 1s, from the fairness condition, each 1 will be
paired with a 0 and at some point no 1 will left. By fairness and since there is still at least a
0, a configuration containing only 0 and Y s will be reached. Since in such a configuration, no
rule can modify the state of any agent, and since the output is defined and equals to 1 in such
a configuration, the protocol is correct in this case

By symmetry, one can show that the protocol outputs 0 if there are initially strictly more 1s
than 0s.

Suppose now that initially, there are exactly the same number of 0s and 1s. By fairness,
there exists a step when no more agents in the state 0 or 1 left. Note that at the moment where
the last 0 is matched with the last 1, a Y is created. Since this Y can be “broadcast” over the
Ns, in the final configuration all agents are in the state Y and thus the output is correct.

This protocol is Pavlovian, since it corresponds to the following payoff matrix with thresh-
old 2.

Opponent
N Y 0 1

N 3 1 1 3
Player Y 2 3 3 1

0 2 2 2 1
1 2 2 1 2

O. Bournez, J. Chalopin, J. Cohen, X. Koegler 13

6 Discussions

We proved that predicates on counts of input agents n ≥ 0, n = 0, n ≥ m, where n,m are some
counts of input agents, can be computed by some Pavlovian population protocols.

It is clear that the subset of the predicates computable by Pavlovian population protocols
is closed by negation: just switch the value of the individual output function of a protocol
computing a predicate to get a protocol computing its negation.

However, some work remains to be done to fully characterize which predicates can be com-
puted by a Pavlovian population protocol. The first steps would be to understand the following
questions.

Question 1. Is mod 2, or equivalently the predicate n ≡ 1 (mod 2), computable by a Pavlovian
population protocol?

Question 2. Is ≥ k, or equivalently the predicate n ≥ k, for fixed k, computable by a Pavlovian
population protocol?

Notice that, unlike what happens for general population protocols, composing Pavlovian
population protocols into a Pavlovian population protocol is not easy. It is not clear whether
Pavlovian computable predicates are closed by conjunctions: classical constructions for general
population protocols can not be used directly.

As we said, Pavlovian Population protocols are symmetric. We however know that assuming
population protocols symmetric is not a restriction.

Proposition 5. Any population protocol can be simulated by a symmetric population protocol,
as soon as the population is of size ≥ 3.

Before proving this proposition, we state the (immediate) main consequence.

Corollary 1. A predicate is computable by a symmetric population protocol if and only if it is
semilinear.

Proof (of proposition): To a population protocol (Q,Σ, ι ,ω ,δ), with Q = {q1, · · · ,qn} associate
population protocol (Q∪Q′,Σ, ι ,ω ,δ ′) with Q′ = {q′1, · · · ,q

′
n}, ω(q′) = ω(q) for all q ∈ Q, and for

all rules

qq → αβ

in δ , the following rules in δ ′:

qq′ → αβ
q′q → βα
qq → q′q′

q′q′ → qq
qγ → q′γ
q′γ → qγ
γq → γq′

γq′ → γq

for all γ ∈ Q∪Q′,γ 6= q,γ 6= q′, and for all pairs of rules

{

qr → αβ
rq → δε

14 Playing With Population Protocols

with q,r ∈ Q, the following rules in δ ′:

qr′ → αβ
r′q → βα
rq′ → δε
q′r → εδ .

The obtained population protocol is clearly symmetric. Now the first set of rules guarantees
that a state in Q can always be converted to its primed version in Q′ and vice-versa. By fairness,
whenever a rule qq → αβ (respectively qr → αβ) can be applied, then the corresponding two
first rules of the first set of rules (resp. of the second set of rules) can eventually be fired after
possibly some conversions of states into their primed version or vice-versa.

References

[1] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation in
networks of passively mobile finite-state sensors. In Twenty-Third ACM Symposium on Principles
of Distributed Computing, pages 290–299. ACM Press, July 2004.

[2] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are semilinear.
In PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed
computing, pages 292–299, New York, NY, USA, 2006. ACM Press.

[3] James Aspnes and Eric Ruppert. An introduction to population protocols. In Bulletin of the EATCS,
volume 93, pages 106–125, 2007.

[4] Robert M. Axelrod. The Evolution of Cooperation. Basic Books, 1984.

[5] Bruno Beaufils. Modèles et simulations informatiques des problèmes de coopération entre agents.
PhD thesis, Université de Lille I, 2000.

[6] Pierre Brémaud. Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer-
Verlag, New York, 2001.

[7] DJ Daley and DG Kendall. Stochastic Rumours. IMA Journal of Applied Mathematics, 1(1):42–55,
1965.

[8] Z. Diamadi and M.J. Fischer. A simple game for the study of trust in distributed systems. Wuhan
University Journal of Natural Sciences, 6(1-2):72–82, 2001.

[9] Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, Gabriel Istrate, and Mark Jerrum.
Convergence of the iterated prisoner’s dilemma game. Combinatorics, Probability & Computing,
11(2), 2002.

[10] Laurent Fribourg, Stéphane Messika, and Claudine Picaronny. Coupling and self-stabilization. In
Rachid Guerraoui, editor, Distributed Computing, 18th International Conference, DISC 2004, Ams-
terdam, The Netherlands, October 4-7, 2004, Proceedings, volume 3274 of Lecture Notes in Computer
Science, pages 201–215. Springer, 2004.

[11] D.T. Gillespie. A rigorous derivation of the chemical master equation. Physica A, 188(1-3):404–425,
1992.

[12] Herbert W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42(4):599–653, De-
cember 2000.

[13] J. Hofbauer and K. Sigmund. Evolutionary game dynamics. Bulletin of the American Mathematical
Society, 4:479–519, 2003.

[14] D. Kraines and V. Kraines. Pavlov and the prisoner’s dilemma. Theory and Decision, 26:47–79,
1988.

[15] Ouassila Labbani. Comparaison des théories des jeux pour l’étude du comportement d’agents. Mas-
ter’s thesis, Université de Lille I, 2003.

O. Bournez, J. Chalopin, J. Cohen, X. Koegler 15

[16] James Dickson Murray. Mathematical Biology. I: An Introduction. Springer, third edition, 2002.

[17] M. Nowak and K. Sigmund. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the
Prisoner’s Dilemma game. Nature, 364(6432):56–58, 1993.

[18] M. Presburger. Uber die Vollstandig-keit eines gewissen systems der Arithmetik ganzer Zahlen, in
welchemdie Addition als einzige Operation hervortritt. Comptes-rendus du I Congres des Mathe-
maticians des Pays Slaves, pages 92–101, 1929.

[19] Jörgen W. Weibull. Evolutionary Game Theory. The MIT Press, 1995.

	Introduction
	Population Protocols
	Game Theory
	From Games To Population Protocols
	Some Specific Pavlovian Protocols
	Basic Protocols
	Leader Election
	Majority

	Discussions

