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Abstract. We study the task of gathering k energy-constrained mo-
bile agents in an undirected edge-weighted graph. Each agent is initially
placed on an arbitrary node and has a limited amount of energy, which
constrains the distance it can move. Since this may render gathering at
a single point impossible, we study three variants of near-gathering :
The goal is to move the agents into a configuration that minimizes either
(i) the radius of a ball containing all agents, (ii) the maximum distance
between any two agents, or (iii) the average distance between the agents.
We prove that (i) is polynomial-time solvable, (ii) has a polynomial-time
2-approximation with a matching NP-hardness lower bound, while (iii)
admits a polynomial-time 2(1− 1

k
)-approximation, but no FPTAS, unless

P = NP. We extend some of our results to additive approximation.

Keywords: mobile agents · power-aware robots · limited battery · gath-
ering · graph algorithms · approximation · computational complexity

1 Introduction

The problem of gathering is one of the fundamental problems in dis-
tributed computing with mobile entities, which includes mobile agents
moving in a graph or robots moving in a continuous geometric space. In
both cases, the objective is to bring together multiple autonomous agents
? This work was partially supported by the SNF (project 200021L_156620) and by
the ANR (project ANCOR anr-14-CE36-0002-01), while A.Bärtschi was working
at ETH Zürich, and E.Bampas and C.Karousatou were working at Aix-Marseille
Université. The Los Alamos National Laboratory report number is LA-UR-19-23906.
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to a single point (not predetermined). Gathering helps in coordination
between the mobile agents, sharing of information between the entities,
reassignment of duties among the entities, and even for protection of the
agents (a group of robots gathered together is easier to protect than those
dispersed in large area). Moreover, there are also theoretical reasons for
studying gathering as the problem of selecting a gathering point is akin to
problems of leader election and consensus in distributed systems. However,
in some cases, it may be impossible to solve the problem of gathering, e.g.
due to limitations in the capabilities of the agents, or due to symmetries
in their perception of the environment. In some cases it may be desirable
for the agents to get close to each other without actually meeting [27].

In this paper, we consider mobile agents moving on a graph, with
severe limitations on their movements. We assume that the agents have
limited energy resources and traversing any edge of the graph consumes
some of this energy which can not be replenished. In other words, each
agent has an initial energy budget which limits the total distance it can
move in the graph. Under such constraints, it is not always possible to
gather the agents at a single point. Thus, we consider the problem of
moving the agents as close as possible to each other while respecting the
movement constraints, defined below as the near-gathering problem.

Near-Gathering. A collection of k mobile agents is initially located at an
arbitrary set of nodes of an undirected edge-weighted graph G = (V,E, ω).
Each agent i, i = 1, . . . , k, has an energy capacity bi, which represents the
maximum distance the agent can move in the graph. The agents have
global knowledge of the graph and are controlled by a central entity. The
goal is to move the agents to a configuration where they are as close to
each other as possible under their respective limitations of movement.
Closeness criteria can be measured, e.g., as the size of the smallest region
enclosing all the agents, or as the maximum or average pairwise distance
between the agents. We look at each of these criteria and give a more
precise definition of the problem below.

Our Model. We consider an undirected graph G = (V,E, ω), where each
edge e ∈ E has a positive weight ω(e) > 0. As usual, the length of a path
is the sum of the weights of its edges. We think of every edge e = {u, v}
as a segment of infinitely many points, where every point in the edge is
uniquely characterized by its distance from u, which is between 0 and
w(e). We consider every such point to subdivide the edge {u, v} into two
edges of lengths proportional to the position of the point on the edge.
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Thus, the distance d(p, q) between two points p and q (nodes or points
inside edges) is the length of a shortest path from p to q in G (with edges
subdivided by p, q, respectively). For a point p inside an edge e ∈ E we
write p ∈ G and p ∈ seg(e).

A collection of k mobile agents is initially located at an arbitrary set
of nodes p1, . . . , pk ∈ V . Each agent i is equipped with an energy budget
bi > 0 and can move along edges of the graph, for a distance of at most
bi. In the Near-Gathering problem, the goal is to relocate every agent into
a new position such that the resulting configuration minimizes one of the
following objectives: (i) the radius of a smallest ball containing all agents,
(ii) the maximum distance between any two agents, or (iii) the average
distance between the agents (or, equivalently, the sum of all distances).
We are further interested in two variants of the problem, where agents
can: (I) only be relocated to reachable nodes of the graph, or (II) in a
more general scenario, where the agents are allowed to be relocated to
reachable points (i.e., nodes or points inside edges).

Definition 1 (Near-Gathering).
Instance: I = 〈G, k, (pi)i=1,...,k, (bi)i=1,...,k〉, where G = (V,E, ω) is an

undirected edge-weighted graph, k denotes the total number of agents, pi
denotes the initial positions of the agents and bi denotes the total amount
of energy each agent initially has at its disposal.

Feasible solution: Any configuration C = (c1, . . . , ck) of agent end
positions ci, in which for each agent i, 1 ≤ i ≤ k, we have d(pi, ci) ≤ bi.
In the node-stop variant, we additionally require ci ∈ V .

Goals: (i) MinBall: Minimize Radius(C, c) of a smallest ball con-
taining C around an optimally chosen center c, where Radius(C, c) =
maxi d(c, ci). We consider both the scenario with node centers only, and
the scenario with arbitrary point centers.
(ii) MinDiam: Minimize Diam(C), where Diam(C) = maxi,j d(ci, cj).
(iii) MinSum: Minimize Sum(C), where Sum(C) =

∑
i

∑
j d(ci, cj).

Related Work. The gathering problem has been studied in two very
different scenarios (i) Gathering of mobile agents in a connected (finite
or infinite) graph, and (ii) Gathering of mobile robots in a (bounded or
unbounded) plane or other geometric spaces. In the context of distributed
robotics or swarm robotics [23], the problem of gathering many robots at
a single point has been studied as an agreement problem, where the main
issue is feasibility of gathering starting from arbitrary configurations [12]
or gathering without full knowledge of the configuration [24,26]. The prob-
lem of convergence requires the robots to converge towards a point [13],
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without actually arriving at the gathering point. When the robots are not
allowed to collide, the problem of moving the robots closer avoiding any
collisions has been studied by Pagli et al. [27]. In all these studies, the
robots can move freely in any direction. For mobile agents on the graph
that are restricted to move along the edges, gathering has been studied
under different models (see e.g. [15,28]). In particular, the gathering of two
agents, often called rendezvous, has attracted a lot of attention, well doc-
umented in [1]. The problem of gathering with the objective of minimizing
movements has been studied in [11]. However to the best of our knowl-
edge, there have no previous studies on gathering with fixed constraints
(budgets) on energy required for movements.

The model of energy-constrained agents was introduced in [7,3] for sin-
gle agent exploration of graphs. Duncan et al. [20] consider a similar model
where the agent is tied with a rope of length b to the starting location.
Multi-agent exploration under uniform energy constraint of b, has been
studied for trees [25,21] with the objective of minimizing the energy bud-
get per agent [22] or the number k of agents [16] required for exploration,
while time optimal exploration was studied by Dereniowski et al. [19] un-
der the same model. Demaine et al. [17,18] studied problems of optimizing
the total or maximum energy consumption of the agents when the agents
need to place themselves in desired configurations (e.g. connected or in-
dependent configurations); they provided approximation algorithms and
inapproximability results. Similar problems have been studied for agents
moving in the visibility graphs of simple polygons [8].

For the model studied in this paper, where each agent has a distinct en-
ergy budget, the problem of Broadcast and Convergecast was studied in [2]
who provided hardness results for trees and approximation algorithms for
arbitrary graphs. The problem of delivering packages by multiple agents
having energy constraints was studied in [9,10,5,6]. All of these problems
were shown to be NP-hard for general graphs even if the agents are allowed
to exchange energy when they meet [14,4].

Our Contribution and Paper Organization. In Section 2, we estab-
lish a few preliminaries and prove that MinBall is solvable in polynomial-
time. In Section 3 we give a 2-approximation algorithm for MinDiam, to-
gether with a matching NP-hardness lower bound; additionally we show
that MinDiam is polynomial-time solvable on tree graphs. In Section 4,
we prove that MinSum admits a 2(1− 1

k )-approximation algorithm but no
FPTAS, unless P = NP. We show that the analysis of the approximation
ratio of the provided algorithm is tight.
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We conclude with remarks on future research opportunities, including
preliminary approximation hardness results for additive approximation of
MinDiam, in Section 5. All our results – with the exception of additive ap-
proximation – hold for both node-stop as well as arbitrary-stop scenarios.
Omitted proofs are deferred to the full version of the paper.

2 Preliminaries and Minimizing the Radius

Preliminaries. We first point out some differences in the two scenarios
we consider throughout this paper and our general approach on how to
tackle and distinguish those. In the node stop scenario, where each agent i
is only allowed to move to nodes v with distance d(pi, v) ≤ bi, there is a
finite number of feasible configurations C. For the scenario with arbitrary
final positions, where agents are also allowed to move to points p inside
edges (as long as d(pi, p) ≤ bi), we discretize the set of configurations.
In the MinBall variant of Near-Gathering, the discretization turns out
to contain at least one optimum solution, for MinDiam and MinSum it
will at least contain a configuration approximating an optimum solution
within a factor of 2 or 2(1 − 1

k ), respectively. To this end, we define sets
of reachable nodes and “maximally reachable” in-edge points as follows:

Definition 2 (Balls, Spheres). For an instance I = 〈G, k, (pi), (bi)〉
with i ∈ 1, . . . , k, we define

– B(i) := {v ∈ V | d(pi, v) ≤ bi}, i.e. the ball containing all nodes that
agent i can reach from its initial position pi, and

– S(i) := ∅ for node stops, and S(i) := {p ∈ G | d(pi, p) = bi} \B(i) for
arbitrary stops, i.e. the sphere of all in-edge points that agent i can
reach from its initial position pi only by spending its whole budget bi.

In the same spirit, we can study MinBall-Gathering for centers c
being restricted to nodes in V , or for the continuous set of center points
being allowed to be placed both on nodes as well as the inside of edges
of G. To discretize this set, it will be useful to define a set of midpoints,
intuitively consisting of “points m lying in the middle of a trail between
points p and q”:

Definition 3 (Midpoints). Given a set S of points in G, denote by
G′ = (V ′, E′, ω′) the graph we get from G = (V,E, ω) by subdividing the
edges in E with points from S, i.e. V ′ = V ∪ S. We define the midpoint



6 A. Bärtschi et al.

Algorithm 1 MinBall (node centers)
Input: An instance 〈G, k, (pi)i∈1,...,k, (bi)i∈1,...,k〉.
Output: Configuration C and center c ∈ V with minimum radius Radius(C, c).
1: for each v ∈ V do
2: Compute Cv := (cv1 , . . . , c

v
k), where cvi ∈ argmin{d(v, ci) | ci ∈ B(i) ∪ S(i)}

3: is a point in B(i)∪S(i) minimizing the distance to v, breaking ties arbitrarily.
4: Compute Radius(Cv, v).
5: end for
6: Return argmin

Cv, v : v∈V
Radius(Cv, v).

set M(S) of points in G′ – and by bijection also of G – as:

M(S) :=
{
m ∈ V ′ | ∃ p, q ∈ S : d(p,m) = d(m, q)

}
∪
{
m ∈ seg(e) | e = {u, v} ∈ E′, ∃ p, q ∈ S :

d(p, u) + d(u,m) = d(m, v) + d(v, q)} .

Lemma 1. The sets B(i), S(i) and M(S) can be computed in time poly-
nomial in |V |, k and |V |, |S|, respectively.

MinBall for node centers. Having defined balls and spheres of reach-
able points for the agents, we can immediately give an exhaustive search
algorithm for MinBall for centers restricted to nodes. The main idea of
Algorithm 1 is to fix a node in graph G as a gathering point and then for
each agent i compute the minimum distance to this fixed center it can
reach, given its starting position pi and its energy budget bi. Iterating
over all possible center nodes, we find an optimal solution:

Theorem 1 (MinBall, node centers). Algorithm 1 is a polynomial-
time algorithm for MinBall with node centers.

The polynomial running time follows immediately from the fact that
B(i), S(i) can be computed in polynomial time and have polynomial size
by Lemma 1. As the algorithm iterates over all possible center nodes, we
can establish correctness by characterizing optimum stopping positions:

Lemma 2. There exists an optimum solution (COpt, cOpt) for MinBall
where every agent i either stops on cOpt or on a point in B(i) ∪ S(i),
independent of whether cOpt is contained in

⋃
i(B(i) ∪ S(i)) or not.

MinBall for arbitrary centers. As can be seen from Lemma 2, when
testing for a fixed center c, in addition to checking the points in B(i)∪S(i)
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Algorithm 2MinBall (arbitrary centers), MinDiam (2–apx / on Trees)
Input: An instance 〈G, k, (pi)i∈1,...,k, (bi)i∈1,...,k〉.
Output: Configuration C and center c ∈ G with minimum radius Radius(C, c).
1: for each p ∈M

(
V ∪

⋃
i S(i)

)
do

2: Compute Cp := (cp1, . . . , c
p
k), where either cpi = p if d(pi, p) ≤ bi, or

3: cpi ∈ argmin{d(p, ci) | ci ∈ B(i)∪ S(i)} (breaking ties arbitrarily) otherwise.
4: Compute Radius(Cp, p).
5: end for
6: Return argmin

Cp, p : p∈M(V ∪
⋃

i S(i))
Radius(Cp, p).

we should also consider whether agent i can reach c itself. As candidates
for the center c we take all points in the midpoint set M(V ∪

⋃
i S(i)):

Theorem 2 (MinBall, arbitrary centers). Algorithm 2 is a poly-time
algorithm for MinBall with arbitrary centers.

As before, polynomial running time follows from the polynomial size
of the candidate set M(V ∪

⋃
i S(i)). Building upon Algorithm 1 and

Theorem 1, it remains to show that this set contains an optimum center:

Lemma 3. There exists an optimum solution (COpt, cOpt) for MinBall
where cOpt is contained in M(V ∪

⋃
i S(i)).

3 Minimizing the Diameter

In this Section, we prove that Algorithm 2, which computes an optimum
solution for MinBall, also computes a 2-approximation for MinDiam.
As we will show, this is likely best-possible, as there is no polynomial-time
(2− o(1))-approximation for MinDiam, unless P = NP. Nonetheless, for
the special case of tree graphs, Algorithm 2 even computes an optimum
solution for MinDiam. We start with the positive results:

Theorem 3 (MinDiam, 2-apx). Algorithm 2 is a polynomial-time 2-
approximation algorithm for MinDiam.

Proof. Let configurationC∗ = (c∗1, . . . , c
∗
k) with center c∗ be the MinBall

solution computed by Algorithm 2. We denote the radius of (C∗, c∗) by
r∗ = Radius(C∗, c∗) = maxj d(c

∗, c∗j ) and the diameter of C∗ by d∗ :=
Diam(C∗) = maxi,j d(c

∗
i , c
∗
j ). Using the triangle inequality, we have for all

configuration points c∗i , c
∗
j that d(c∗i , c

∗
j ) ≤ d(c∗i , c

∗) + d(c∗j , c
∗) and thus

d∗ ≤ 2 · r∗. Now let COpt = (o1, . . . , ok) be an optimum configuration
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Fig. 1. (left) MinDiam-instance where agent 3’s final position in the (unique) opti-
mum solutionCOpt = (o1, o2, o3) is not in B(3)∪S(3). (right) Replacing Radius(Cp, p)
in Lines 4&6 of Algorithm 2 with Diam(Cp) (yielding configurations depicted by × vs
�) improves the quality of a MinDiam solution for certain instances by a factor of 2.

for MinDiam with diameter dOpt := Diam(COpt) = maxi,j d(oi, oj). We
choose an arbitrary point o ∈ COpt and compute the radius of a smallest
ball around o containing COpt, ro = Radius(COpt, o) = maxj d(o, oj) ≤
dOpt. By Theorem 2, we have r∗ ≤ ro (even though o might not have been
considered as a center candidate, see e.g. Figure 1 (left)). Combining all
inequalities, we get d∗ ≤ 2 · r∗ ≤ 2 · ro ≤ 2 · dOpt, hence C∗ is a 2-
approximation for MinDiam. ut

Theorem 4 (MinDiam, on Trees). Algorithm 2 is a polynomial-time
algorithm for MinDiam on trees.

Proof. First note that if there is a configuration COpt with maximum dis-
tance Diam(COpt) = 0, it also has radius Radius(COpt, c) = 0 for some
center c, and thus will be found by Algorithm 2 as proven in Theorem 2.
Otherwise the diameter Diam(COpt) of an optimum solution COpt is
lower bounded by the largest diameter among all optimal solutions of the
instance reduced to pairs of agents i, j:

d∗ :=


max
i,j

min
qi∈B(i), qj∈B(j)

d(qi, qj) for the node stop scenario,

max
i,j

d(pi, pj)− bi − bj for arbitrary final positions.

We show that, indeed, Algorithm 2 computes a configuration C∗ with
Diam(C∗) = d∗. To this end, denote by a, b two agents giving rise to d∗,
and let qa ∈ B(a)∪S(a), qb ∈ B(b)∪S(b) be two points with d(qa, qb) = d∗.
Since we consider tree graphs here, there is a unique shortest path from qa
to qb and thus a unique midpoint c∗ ∈ G with d(c∗, qa) = d(c∗, qb) :=

d∗

2 .
As c∗ is contained in M(V ∪

⋃
i S(i)), Algorithm 2 will use c∗ as a center

point candidate for which it computes a configuration C∗ = (c∗1, . . . , c
∗
k).

By definition, we have d(c∗, c∗a) = d(c∗, qa) =
d∗

2 = d(c∗, qb) = d(c∗, c∗b).
It is enough to show that for all other agents i we have d(c∗, c∗i ) ≤ d∗

2 ,
too. Assume for the sake of contradiction that this is not the case and that
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there is an agent i with d(c∗, c∗i ) >
d∗

2 . Consider the shortest c
∗
i -c
∗-path Pi,

the shortest c∗a-c∗-path Pa and the shortest c∗b -c
∗-path Pb. By definition of

d∗ and c∗, the paths Pa and Pb must be interiorly disjoint, Pa∩Pb = {c∗}.
Since Pi is a path on a tree ending in the same node c∗, it must be
interiorly disjoint with at least one of the two paths Pa, Pb, without loss
of generality with Pa. Because any two points in a tree are connected by
a unique path, we have d(c∗i , c

∗
a) = d(c∗i , c

∗)+ d(c∗, c∗a) > d∗ and thus also
minqi∈B(i)∪S(i), qa∈B(a)∪S(a) d(qi, qa) > d∗, contradicting the maximality
of d∗. Hence we have Diam(C∗) ≤ maxi,j d(c

∗
i , c
∗) + d(c∗, c∗j ) = d∗. ut

Replacing the computation of Radius(Cp, p) in Lines 4 and 6 of Al-
gorithm 2 by a computation of Diam(Cp) can improve the quality of a
MinDiam solution by a factor of up to 2 for some instances, see for ex-
ample Figure 1 (right). However, this does not translate to the worst-case
approximation guarantee, as one can see in the instance constructed in
the following matching approximation hardness result.

Theorem 5. There exists no deterministic polynomial-time
(
2 − o(1)

)
-

approximation algorithm for MinDiam, unless P = NP. This holds even
in unweighted graphs with uniform budgets bi = 1, i = 1, . . . , k.

Proof (Sketch). We prove Theorem 5 by a reduction from 3Sat to Min-
Diam: Let φ be an arbitrary boolean formula in conjunctive normal form,
where each clause contains 3 different literals, and let x1, . . . , xn be the n
many variables and C1, . . . , Cm be the m many clauses of φ. We show that
any polynomial-time (2 − o(1))-approximation algorithm for MinDiam
can be used to decide whether φ is satisfiable. From φ, we construct an
instance I = 〈G, k, (pi)i∈1,...,k, (b)i∈1,...,k〉 with k agents of uniform bud-
get b = 1 and a graph G = (V,E, ω) with uniform edge weights ω = 1 in
the following manner.

Set of nodes V : Using T = true and F = false, we first define the set
of all possible truth assignments of a clause C containing 3 literals, L :=
{TTT,TTF,TFT,TFF,FTT,FTF,FFT,FFF}. Note that every clause C
is satisfiable by exactly 7 of the 8 possible truth assignments in L (e.g.
x1 ∨ x2 ∨ xn is satisfied by x1, x2, xn ∈ L \ {FFT}). Now, let V :=
Vx ∪ V` ∪ VC ∪ VL, where

– Vx = {vi | 1 ≤ i ≤ n} are nodes corresponding to variables x1, . . . , xn,
– V` = {vTi | 1 ≤ i ≤ n} ∪ {vFi | 1 ≤ i ≤ n} are nodes corresponding to

literals, i.e. true-value and false-value assignments of the variables xi,
– VC = {cj | 1 ≤ j ≤ m} are nodes corresponding to clauses C1, . . . , Cm,
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– VL = {clj | 1 ≤ j ≤ m, ∀l ∈ L} are nodes corresponding to all possible
truth assignments of each clause Ci.

Agents & reduction idea: On each of the nodes in Vx∪VC we place
one agent with a budget of b = 1, for a total of n +m agents. The main
idea is to initially space the agents by a pairwise distance of 3. We then
let agents on Vx “pick the value assignment of the variables xi” by walking
to their respective node in V`, whereas we let agents on VC “pick the
truth assignment of the clauses Cj” by walking to their respective node
in VL. Then a satisfiable assignment of φ exists, if and only if the variable
agents and the clause agents “agree in their choice” which corresponds to
an optimum MinDiam configuration COpt of diameter 1. Furthermore,
any other configuration should have diameter ≥ 2. This gives rise to the

Set of edges E := Ex` ∪ E`L ∪ ECL ∪ E`` ∪ ELL, where:

– Ex` = {{vi, vTi }, {vi, vFi } | 1 ≤ i ≤ n : vi ∈ Vx, vTi , vFi ∈ V`} are edges
connecting each variable node xi to its two literal nodes,

– ECL = {{cj , clj} | 1 ≤ j ≤ m : cj ∈ VC , c
l
j ∈ VL, c

l
j satisfies Cj}

are edges connecting each clause node cj with all nodes representing
satisfying assignments for clause Cj ,

– E`L = {{vi, clj} | i ≤ n, j ≤ m : vi ∈ {vTi , vFi } ⊂ Vx, clj ∈ Vl, such that
- either xi does not appear in Cj , or
- xi appears in Cj and vi agrees with clj}

are edges connecting unrelated literals and clause truth-assignments,
as well as matching literals and clause truth-assignments.

– E`` = {{u, v} | u, v ∈ V`} and ELL = {{u, v} | u, v ∈ VL} are edges
pairwise connecting nodes in V`, and nodes in VL, respectively.

Figure 2 shows a part of an instance of MinDiam which is constructed
from an instance of 3Sat as described above. Before continuing with our
proof we need to argue that no agent would stop in the middle of an edge:

Lemma 4. For any configuration C′ = (c′1, . . . , c
′
k) with an agent i for

which c′i /∈ {V` ∪ VL}, there exists another configuration C′′ = (c′′1, . . . , c
′′
k)

with diameter Diam(C′′) ≤ Diam(C′) for which ∀i : c′′i ∈ {V` ∪ VL}.

⇒ Continuing with our proof of Theorem 5, we first show that if φ is
satisfiable then there exists a configuration C of diameter Diam(C) = 1.
Since φ is satisfiable we have a truth assignment to the variables which
satisfies every clause of φ. For each variable xi, we let agent a(vi) move to
node vTi if xi = true and to node vFi otherwise. Next, for each clause Cj ,
we let agent a(cj) move to the node cli, which corresponds to the correct
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Fig. 2. A part of an instance of MinDiam, constructed from the 3-SAT instance
C1 ∧ · · · ∧ Cm with variables x1, . . . , xn, displaying the connections between nodes
v1, v2, vn, c1 and cm. Notice that nodes cFFT

1 and cFFF
m are not connected to nodes c1

and cm, respectively. The location of mobile agents is denoted by squares (�).

true/false-assignment picked by the three agents of the variables in Cj .
Note that both types of moves can be done with an energy of b = 1. By
construction of the instance, the maximum distance of any two agents in
this final configuration is 1.

⇐ We now show that if φ is not satisfiable then every solution to
MinDiam is of size greater than or equal to 2.
By Lemma 4, we may assume that every agent starting on some node vi ∈
Vx moves to one of the nodes vTi , v

F
i , and every agent starting on some

node cj ∈ VC moves to one of the nodes clj , l ∈ L (otherwise, if an agent
does not move, its distance is clearly at least 2 from any other agent).
Therefore, by inspection of the final positions of agents starting in Vx,
every MinDiam solution corresponds to a truth assignment. Since φ is
not satisfiable, this truth assignment must leave at least one clause Cy,
involving variables xr, xs, xt, unsatisfied. By construction of the instance,
and in particular in view of the fact that the edge {cy, cl

?

y } is missing
(where l? is the assignment to xr, xs, xt falsifying Cy), the agent that
started on cy cannot move to cl?y , and thus it will have a distance of 2 in
the final configuration from at least one of the agents starting on vr, vs, vt.

Since a polynomial-time (2− o(1))-approximation algorithm for Min-
Diam could distinguish between instances with an optimum solution with
diameter 1 and instances with an optimum solution with diameter 2, it
would also be able to decide whether φ is satisfiable of not. ut
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Algorithm 3 MinSum (2(1− 1
k )–apx)

Input: An instance 〈G, k, (pi)i∈1,...,k, (bi)i∈1,...,k〉.
Output: Configuration C with Sum(C) ≤ 2(1− 1

k
) ·minfeasible C′ Sum(C′).

1: for each p ∈ V ∪
⋃

i S(i) do
2: Compute Cp := (cp1, . . . , c

p
k), where either cpi = p if d(pi, p) ≤ bi, or

3: cpi ∈ argmin{d(p, ci) | ci ∈ B(i)∪ S(i)} (breaking ties arbitrarily) otherwise.
4: Compute Sum(Cp).
5: end for
6: Return argmin

Cp : p∈V ∪
⋃

i S(i)

Sum(Cp).

4 Minimizing the Average Distance

In this Section we describe and analyze an algorithm for minimizing the
average pairwise distance between agents. We complement its approxima-
tion ratio of 2(1 − 1

k ) with a tight analysis and rule out an FPTAS for
MinSum. The main idea of the presented Algorithm 3 for MinSum is sim-
ilar to the idea of Algorithm 2 for MinDiam. We fix a point p in the graph
G as a gathering point and move each agent i as close as possible to p with
respect to its energy constraint, breaking ties arbitrarily. Algorithm 3 ex-
haustively tests all points in V ∪

⋃
i S(i) as possible gathering points and

selects the point p for with a configuration C = (c1, . . . , ck) of minimum
sum of pairwise distances between the agents, Sum(C) =

∑
i

∑
j d(ci, cj).

The choice of the search space for gathering points is based on a charac-
terization of optimum solutions, similar in look to Lemmata 2 and 3:

Lemma 5. There exists an optimum solution COpt for MinSum where
every agent stops on a point in V ∪

⋃
i S(i).

Theorem 6 (MinSum, 2(1− 1
k )-apx). Algorithm 3 is a polynomial-time

2(1− 1
k )-approximation algorithm (and the approximation ratio is tight).

Proof (Upper bound only). Let C∗ = (c∗1, . . . , c
∗
k) denote the configuration

computed by Algorithm 3. We denote with s∗ := Sum(C∗) the sum of
all pairwise agent distances in C∗. Furthermore, let COPT = (o1, . . . , ok)
be an optimum MinSum solution in which each agent j stops on a point
oj ∈ V ∪

⋃
i S(i) and let sOpt = Sum(COpt) =

∑
i

∑
j d(oi, oj). Choosing

a point o ∈ argminoi∈COpt

∑
j d(oi, oj) we get∑

j

d(o, oj) =
1
k · k

∑
j

d(o, oj) ≤ 1
k ·
∑
i

∑
j

d(oi, oj) =
1
k · sOpt.
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Consider now the configuration Co = (co1, . . . , c
o
k) which Algorithm 3 com-

puted for point o in Step 2 and let so := Sum(Co) =
∑

i

∑
j d(c

o
i , c

o
j).

Clearly, we have s∗ ≤ so. Furthermore, o is reachable by at least one
agent a, thus by Step 2 we also have coa = o. Finally, as Step 2 moves
agents as close to o as possible, we have d(o, coj) ≤ d(o, oj). Using the
triangle inequality, we rewrite so to get

s∗ ≤ so =
∑
i

∑
j

d(coi , c
o
j) ≤ 2

∑
j

d(coa, c
o
j) +

∑
i 6=a

∑
j 6=a
j 6=i

d(coi , o) + d(o, coj)

= 2
∑
j

d(o, coj) + (k − 2)
∑
i 6=a

d(coi , o) + (k − 2)
∑
j 6=a

d(o, coj)

= (2k − 2)
∑
j

d(o, coj) ≤ (2k − 2)
∑
j

d(o, oj) ≤ 2(1− 1
k )sOpt. ut

Theorem 7. There is no FPTAS for MinSum, unless P = NP.

Proof. Assume for the sake of contradiction that there is a polynomial-
time approximation scheme for MinSum which for all ε > 0 computes a
(1+ ε)-approximation in time poly(k, 1ε ). We reuse the reduction to 3Sat
already given in Theorem 5. Recall from its proof that (i) the underlying
3Sat-formula φ is satisfiable if and only if there is a Near-Gathering so-
lution C∗ in which all agents have pairwise distance 1, and that (ii) any
other solution C has at least one pair of agents with distance 2.

Summing up the pairwise distances we get for (i) that Sum(C∗) =
k(k − 1), while for (ii) we have Sum(C) ≥ k(k − 1) + 1. The existence of
an FPTAS, using ε ≤ 1

k2
, means that we can approximate Sum(C∗) to

within (1 + 1
k2
) · k(k − 1) = k2 − k + 1 − 1

k < k(k − 1) + 1 ≤ Sum(C).
Hence we could distinguish the existence of a solution C∗ from any other
solution and thus decide satisfiability of φ in time poly(k, 1

1/k2
) = poly(k),

in contradiction to the assumption P 6= NP. ut

5 Additive Approximation and Conclusion

In this paper, we explored the task of Near-Gathering a group of energy-
constrained agents, whose movements are restricted by their energy bud-
get. We showed how to compute, in polynomial time, an optimum solu-
tion for MinBall (minimizing the radius of a smallest ball containing all
agents), a 2-approximation for MinDiam (minimizing the maximum dis-
tance between any two agents), and a 2(1− 1

k )-approximation for MinSum
(minimizing the average distance between any two agents). For MinDiam,
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we provided a matching hardness result, while for MinSum, we ruled out
the existence of an FPTAS, unless P = NP. Hence for future work, a major
open problem is to improve upon the (in)approximability of MinSum.

A second possible research direction for Near-Gathering is an analysis
of additive approximation. For this, we briefly review how we can reuse
our hardness construction of multiplicative approximation of MinDiam:

Theorem 8. Unless P = NP, there is no deterministic polynomial-time
additive +(2maxi bi − o(1))-approximation algorithm for MinDiam with
node stops, and no deterministic polynomial-time additive +(43 maxi bi −
o(1))-approximation algorithm for MinDiam with arbitrary stops.

This is surprising for two reasons. On the one hand, not moving the agents
at all is already an additive +(2maxi bi)-approximation. On the other
hand, this is the only result in this paper, in which the two scenarios
of (I) node stops and (II) arbitrary stops differ. The difference in the
hardness result boils down to the loss of Lemma 4 in the adaption of the
proof of Theorem 5, which we can only fully salvage for the case of node
stops. Does this mean that there is a polynomial-time +(2maxi bi−o(1))-
approximation for the scenario with arbitrary final positions? This remains
completely open.

Finally, we aim to study the reverse problem of Spreading energy-
constrained mobile agents, with the respective goals of (i) maximizing the
radius of a smallest ball containing all agents, (ii) maximizing the mini-
mum distance between any two agents, and (iii) maximizing the average
distance between any two agents.
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