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Abstract A set of identical, mobile agents is deployed in a weighted network. Each
agent has a battery – a power source allowing it to move along network edges. An agent
uses its battery proportionally to the distance traveled. We consider two tasks : con-
vergecast, in which at the beginning, each agent has some initial piece of information,
and information of all agents has to be collected by some agent; and broadcast in which
information of one specified agent has to be made available to all other agents. In both
tasks, the agents exchange the currently possessed information when they meet.

The objective of this paper is to investigate what is the minimal value of power,
initially available to all agents, so that convergecast or broadcast can be achieved. We
study this question in the centralized and the distributed settings. In the centralized
setting, there is a central monitor that schedules the moves of all agents. In the dis-
tributed setting every agent has to perform an algorithm being unaware of the network.
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In the centralized setting, we give a linear-time algorithm to compute the optimal
battery power and the strategy using it, both for convergecast and for broadcast,
when agents are on the line. We also show that finding the optimal battery power for
convergecast or for broadcast is NP-hard for the class of trees. On the other hand,
we give a polynomial algorithm that finds a 2-approximation for convergecast and a
4-approximation for broadcast, for arbitrary graphs.

In the distributed setting, we give a 2-competitive algorithm for convergecast in
trees and a 4-competitive algorithm for broadcast in trees. The competitive ratio of
2 is proved to be the best for the problem of convergecast, even if we only consider
line networks. Indeed, we show that there is no (2 − ε)-competitive algorithm for
convergecast or for broadcast in the class of lines, for any ε > 0.

1 Introduction

1.1 The model and the problem

A set of agents is deployed in a network represented by a weighted graph G. An edge
weight is a positive real representing the length of the edge, i.e., the distance between
its endpoints along the edge. The agents start simultaneously at different nodes of G.
Every agent has a battery: a power source allowing it to move in a continuous way
along the network edges. An agent may stop at any point of a network edge (i.e. at
any distance from the edge endpoints, up to the edge weight). The movements of an
agent use its battery proportionally to the distance traveled. We assume that all agents
move at the same speed that is equal to one, i.e., we can interchange the notions of
the distance traveled and the time spent while traveling. In the beginning, the agents
start with the same amount of power noted P , allowing all agents to travel the same
distance P .

We consider two tasks: convergecast, in which at the beginning, each agent has
some initial piece of information, and information of all agents has to be collected by
some agent, not necessarily predetermined; and broadcast in which information of one
specified agent has to be made available to all other agents. In both tasks, agents notice
when they meet (at a node or inside an edge) and they exchange the currently held
information at every meeting.

The task of convergecast is important, e.g., when agents have partial information
about the topology of the network and the aggregate information can be used to con-
struct a map of it, or when individual agents hold measurements performed by sensors
located at their initial positions and collected information serves to make some global
decision based on all measurements. The task of broadcast is used, e.g., when a pre-
selected leader has to share some information with others agents in order to organize
their collaboration in future tasks.

Agents try to cooperate so that convergecast (respectively broadcast) is achieved
with the smallest possible agent’s initial battery power P cOPT (respectively P bOPT ),
i.e., minimizing the maximum distance traveled by an agent. We investigate these two
problems in two possible settings, centralized and distributed.

In the centralized setting, the optimization problems must be solved by a central
authority knowing the network and the initial positions of all the agents. We call
strategy a finite sequence of movements executed by the agents. During each movement,
starting at a specific time, an agent walks between two points belonging to the same
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network edge. A strategy is a convergecast strategy if the sequence of movements results
in one agent getting the initial information of every agent. A strategy is a broadcast
strategy if the sequence of movements results in all agents getting the initial information
of the source agent. We consider two different versions of the problem : the decision
problem, i.e., deciding if there exists a convergecast strategy or a broadcast strategy
using power P (where P is the input of the problem) and the optimization problem,
i.e., computing the smallest amount of power that is sufficient to achieve convergecast
or broadcast.

In the distributed setting, the task of convergecast or broadcast must be approached
individually by each agent. Each agent is unaware of the network, of its position in the
network and of the positions (or even the presence) of any other agents. The agents are
anonymous and they execute the same deterministic algorithm. Each agent has a very
simple sensing device allowing it to detect the presence of other agents at its current
location in the network. Each agent is also aware of the degree of the node at which
it is located, as well as the port through which it enters a node, called an entry port.
We assume that the ports of a node of degree d are represented by integers 1, 2, . . . , d.
Agents can meet at a node or inside an edge. When two or more agents meet at a node,
each of them is aware of the direction from which the other agent is coming, i.e., the
last entry port of each agent.

Since the measure of efficiency in this paper is the battery power (or the maximum
distance traveled by an agent, which is proportional to the battery power used) we do
not try to optimize the other resources (e.g. global execution time, local computation
time, memory size of the agents, communication bandwidth, etc.). In particular, we
conservatively suppose that, whenever two agents meet, they automatically exchange
the entire information they hold (rather than the new information only). This infor-
mation exchange procedure is never explicitly mentioned in our algorithms, supposing,
by default, that it always takes place when a meeting occurs. The efficiency of a dis-
tributed solution is expressed by the competitive ratio, which is the worst-case ratio
of the amount of power necessary to solve the convergecast or the broadcast problem
by the distributed algorithm with respect to the amount of power computed by the
optimal centralized algorithm, which is executed for the same agents’ initial positions.

It is easy to see, that in the optimal centralized solution for the case of the line
and the tree, the original network may be truncated by removing some portions and
leaving only the connected part of it containing all the agents (this way all leaves of
the remaining tree contain initial positions of agents). We make this assumption also in
the distributed setting, since no finite competitive ratio is achievable if this condition
is dropped. Indeed, two nearby anonymous agents inside a long line need to travel, in
the worst case, a long distance to one of its endpoints in order to meet.

1.2 Related work

Rapidly developing network and computer industry fueled the research interest in mo-
bile agents computing. Mobile agents are often interpreted as software agents, i.e.,
programs migrating from host to host in a network, performing some specific tasks.
However, the recent developments in computer technology bring up problems related
to physical mobile devices. These include robots or motor vehicles and various wireless
gadgets. Examples of agents also include living beings: humans (e.g. soldiers in the
battlefield or disaster relief personnel) or animals (e.g. birds, swarms of insects).
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In many applications the involved mobile agents are small and have to be produced
at low cost in massive numbers. Consequently, in many papers, the computational
power of mobile agents is assumed to be very limited and feasibility of some important
distributed tasks for such collections of agents is investigated. For example [6] intro-
duced population protocols, modeling wireless sensor networks by extremely limited
finite-state computational devices. The agents of population protocols move accord-
ing to some mobility pattern totally out of their control and they interact randomly
in pairs. This is called passive mobility, intended to model, e.g., some unstable envi-
ronment, like a flow of water, chemical solution, human blood, wind or unpredictable
mobility of agents’ carriers (e.g. vehicles or flocks of birds). On the other hand, [38]
introduced anonymous, oblivious, asynchronous, mobile agents which cannot directly
communicate, but they can occasionally observe the environment. Gathering and con-
vergence [5,21–23], as well as pattern formation [24,27,38,39] were studied for such
agents.

Apart from the feasibility questions for limited agents, the optimization problems
related to the efficient usage of agents’ resources have been also investigated. Energy
management of (not necessarily mobile) computational devices has been a major con-
cern in recent research papers (cf. [1]). Fundamental techniques proposed to reduce
power consumption of computer systems include power-down strategies (see [1,8,31])
and speed scaling (introduced in [40]). Several papers proposed centralized [19,37,40]
or distributed [1,4,8,31] algorithms. However, most of this research on power efficiency
concerned optimization of overall power used. Similar to our setting, assignment of
charges to the system components in order to minimize the maximal charge has a
flavor of another important optimization problem which is load balancing (cf. [12]).

In wireless sensor and ad hoc networks the power awareness has been often related
to the data communication via efficient routing protocols (e.g. [4,37]. However in many
applications of mobile agents (e.g. those involving actively mobile, physical agents) the
agent’s energy is mostly used for it’s mobility purpose rather than communication, since
active moving often requires running some mechanical components, while communica-
tion mostly involves (less energy-prone) electronic devices. Consequently, in most tasks
involving moving agents, like exploration, searching or pattern formation, the distance
traveled is the main optimization criterion (cf. [2,3,10,13,17,18,25,26,28,34]). Single
agent exploration of an unknown environment has been studied for graphs, e.g. [2,25],
or geometric terrains, [13,18].

While a single agent cannot explore a graph of unknown size unless pebble (land-
mark) usage is permitted (see [16]), a pair of robots are able to explore and map a
directed graph of maximal degree d in O(d2n5) time with high probability (cf. [15]).
In the case of a team of collaborating mobile agents, the challenge is to balance the
workload among the agents so that the time to achieve the required goal is minimized.
However this task is often hard (cf. [29]), even in the case of two agents in a tree, [9]. On
the other hand, the authors of [28] study the problem of agents exploring a tree, show-
ing O(k/ log k) competitive ratio of their distributed algorithm provided that writing
(and reading) at tree nodes is permitted.

Assumptions similar to our paper have been made in [10,18,26] where the mobile
agents are constrained to travel a fixed distance to explore an unknown graph [10,
18], or tree [26]. In [10,18] a mobile agent has to return to its home base to refuel (or
recharge its battery) so that the same maximal distance may repeatedly be traversed.
[26] gives an 8-competitive distributed algorithm for a set of agents with the same
amount of power exploring the tree starting at the same node.
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The convergecast problem is sometimes viewed as a special case of the data aggre-
gation question (e.g. [33,35]) and it has been studied mainly for wireless and sensor
networks, where the battery power usage is an important issue (cf. [32,7]). Recently
[20] considered the online and offline settings of the scheduling problem when data has
to be delivered to mobile clients while they travel within the communication range
of wireless stations. [32] presents a randomized distributed convergecast algorithm for
geometric ad-hoc networks and study the trade-off between the energy used and the
latency of convergecast. The broadcast problem for stationary processors has been ex-
tensively studied both for the message passing model, see e.g. [11], and for the wireless
model, see e.g. [14]. To the best of our knowledge, the problem of the present paper,
when the mobile agents perform convergecast or broadcast by exchanging the held in-
formation when meeting, while optimizing the maximal power used by a mobile agent,
has never been investigated before.

1.3 Our results

In the centralized setting, we give a linear-time algorithm to compute the optimal
battery power and the strategy using it, both for convergecast and for broadcast,
when agents are on the line. We also show that finding the optimal battery power for
convergecast or for broadcast is NP-hard for the class of trees. In fact, the respective
decision problem is strongly NP-complete. On the other hand, we give a polynomial
algorithm that finds a 2-approximation for convergecast and a 4-approximation for
broadcast, for arbitrary graphs.

In the distributed setting, we give a 2-competitive algorithm for convergecast in
trees and a 4-competitive algorithm for broadcast in trees. The competitive ratio of
2 is proved to be the best for the problem of convergecast, even if we only consider
line networks. Indeed, we show that there is no (2 − ε)-competitive algorithm for
convergecast or for broadcast in the class of lines, for any ε > 0.

The following table gives the summary of our results.

Setting
Problems

Convergecast Broadcast

Centralized

• linear-time algorithm to compute optimal battery power and
strategy on lines
• proof that the above problem is NP-hard on trees
• polynomial 2-approximation
on arbitrary graphs

• polynomial 4-approximation
on arbitrary graphs

Distributed
• 2-competitive algorithm for
trees

• 4-competitive algorithm for
trees

• proof that there is no (2− ε)-competitive algorithm on lines,
for any ε > 0

Table 1 Summary of our results

Roadmap
In Section 2, we show that we can restrict the search for the optimal strategy

for convergecast or broadcast on the line to some smaller subclass of strategies called
regular strategies. In Section 3, we present our centralized algorithms for convergecast
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and broadcast on lines. Section 4 is devoted to centralized convergecast and broadcast
on trees and graphs. In Section 5, we investigate convergecast and broadcast in the
distributed setting. Section 6 contains conclusions and open problems.

2 Regular strategies for convergecast and broadcast on lines

In this section, we show that if we are given a convergecast (respectively broadcast)
strategy for some initial positions of agents in the line, then we can always modify it
in order to get another convergecast (respectively broadcast) strategy, using the same
amount of maximal power for every agent, satisfying some simple properties. Such
strategies will be called regular. These observations permit to restrict the search for
the optimal strategy to some smaller and easier to handle subclass of strategies.

We order agents according to their positions on the line. Hence we can assume
w.l.o.g., that agent ai, for 1 ≤ i ≤ n is initially positioned at point Pos[i] of the line
of length ` and that 0 ≤ Pos[1] < Pos[2] < . . . < Pos[n] ≤ `. The set Pos[1 : n] will
be called a configuration for the line of length `.

2.1 Regular carry strategies

Given a configuration Pos[1 : n], a starting point s, a target point t (s < t), and an
amount of power P , we want to know if there exists a strategy S for the agents enabling
them to move the information from s to t so that the amount of power spent by each
agent is at most P . Strategies that move information from point s to point t will be
called carry strategies for (Pos[1 : n], s, t, P ). We restrict attention to configurations
Pos[1 : n] such that |s− Pos[1]| < P and |t− Pos[n]| < P because otherwise either
Pos[1] (respectively Pos[n]) is useless or it is impossible to carry information from s
to t. A regular carry strategy for (Pos[1 : n], s, t, P ) is the set of moves for agents
a1, a2, . . . , an defined as follows: agent ai first goes back to a point bi ≤ Pos[i], getting
there the information from the previous agent (except a1 that has to go to s), then
it goes forward to a point fi ≥ bi. Moreover, we require that each agent travels the
maximal possible distance, i.e., it spends all its power.

Lemma 1 If there exists a carry strategy for (Pos[1 : n], s, t, P ), then there exist
the following two regular carry strategies.

The pull strategy that can be computed iteratively (in linear time) starting with
the last agent:

1. b1 ≤ s, fn = t,
2. bi = fi−1, ∀2 ≤ i ≤ n,
3. fi = P + 2bi − Pos[i] ≥ bi, ∀1 ≤ i ≤ n.

The push strategy that can be computed iteratively (in linear time) starting with
the first agent:

1. b1 = min{Pos[1], s}, fn ≥ t,
2. bi = min(fi−1, Pos[i]),∀2 ≤ i ≤ n,
3. fi = P + 2bi − Pos[i] ≥ bi, ∀1 ≤ i ≤ n.
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Proof We first show that there exists a pull strategy. Consider (Pos[1 : n], s, t, P )
with the minimum number of agents such that there exists a carry strategy, but no
pull strategy. We consider the smallest value s such that (Pos[1 : n], s, t, P ) admits a
carry strategy but no pull strategy.

If Pos[1] < s, then either Pos[1] + P < s, or Pos[1] + P ≥ s. In the first case,
a1 cannot move the information between s and t, and then (Pos[2 : n], s, t, P ) admits
a carry strategy but not a pull strategy and has fewer agents. In the second case, S
is also a carry strategy for (Pos[1 : n], Pos[1], t, P ) and there is no pull strategy for
(Pos[1 : n], Pos[1], t, P ), contradicting our choice of s.

Hence, we may suppose that Pos[1] ≥ s. Since there exists a carry strategy S,
let ai be the first agent that reaches s. The rightmost point where ai can move the
information from s is s′ = 2s+P−Pos[i]. Since S is a carry strategy, when considering
all the agents except i, S is a carry strategy for (Pos[S\{i}], s′, t, P ). By minimality of
the number of agents, the pull strategy solves the subproblem on (Pos[S\{i}], s′, t, P ).
Consequently, we can assume that S is a pull strategy on (Pos[S \ {i}], s′, t, P ). If
i = 1, by minimality of s, we have s′ = b2 and thus S is a pull strategy which is
a contradiction. Hence, suppose that i > 1. Note that if Pos[i] = Pos[1], we can
exchange the roles of ai and a1 and we are in the previous case. Hence, suppose that
Pos[i] > Pos[1] and let [b1, f1] be the interval that a1 traverses with the information
when S is applied; by minimality of s, b1 = s′ and consequently we have P = Pos[i]+
b1−2s = Pos[1]+f1−2b1, and thus s = (2Pos[i]+Pos[1]+f1−3P )/4. Consider now
the strategy where we exchange the roles of a1 and ai: a1 gets the information from s,
gives it to ai, and ai goes to f1. More formally, let f ′i = f1, b′i = (Pos[i] + f ′i −P )/2,
f ′1 = b′i and b′1 = (Pos[1] + f ′1 − P )/2. From our definition of f ′1 and s′1 and the
first part of the proof, there exists a carry strategy for (Pos[1 : n], b′1, t, P ). However,
b′1 = (2Pos[1] + Pos[i] + f1 − 3P )/4 = s + (Pos[1] − Pos[i])/4 < s, contradicting
the minimality of s.

Consequently, if there exists a carry strategy S for (Pos[1 : n], s, t, P ), then there
exists a pull strategy on (Pos[1 : n], s, t, P ).

Now suppose that (Pos[1 : n], s, t, P ) admits a carry strategy. From the first part
of the proof, we know that it admits a pull strategy. The push strategy for (Pos[1 :
n], s, t, P ) can be obtained inductively from the pull strategy. Let [bi, fi] for i = 1, ..., n
be the set of intervals that induces the pull strategy for (Pos[1 : n], s, t, P ). Notice
that [bi, fi] for i = 1, ..., n− 1 induces the pull strategy for (Pos[1 : n− 1], s, bn, P ).
By induction, there exists a set of intervals [b′i, f

′
i ] that induces a push strategy for

(Pos[1 : n − 1], s, bn, P ) with f ′n−1 ≥ bn. We define b′n = min{Pos[n], f ′n−1} and
f ′n = P + 2b′n − Pos[n]. Since b′n ≥ f ′n−1 ≥ bn, we deduce that f ′n ≥ fn ≥ t and
therefore the set of intervals [b′i, f

′
i ] induces a push strategy for (Pos[1 : n], s, t, P ).

Remark 1 Note that the pull strategy is uniquely defined by a configuration Pos[1 : n],
a target point t, and an amount of power P and enables to compute the smallest s
such that (Pos[1 : n], s, t, P ) admits a carry strategy.

Similarly, the push strategy is uniquely defined by a configuration Pos[1 : n], a
starting point s, and an amount of power P and enables to compute the largest t such
that (Pos[1 : n], s, t, P ) admits a carry strategy.

Note that carry strategies are defined for the target t larger than the starting point
s. A carry strategy will be called reverse if the target t is smaller than s and all moves
to the right are replaced by moves to the left and vice-versa.
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2.2 Regular convergecast strategies

We now define the notion of a regular convergecast strategy for Pos[1 : n] on the
segment [0, `], using power at most P . Without loss of generality, we suppose that
Pos[1] = 0 and Pos[n] = `. Intuitively, a regular convergecast strategy divides the set
of all agents into the set of left agents and the set of right agents such that left agents
execute a push strategy from Pos[1] and right agents execute a reverse push strategy
from Pos[n].

More formally, a regular convergecast strategy is given by a partition of the agents
into two sets LR = {ai | i ≤ p} and RL = {ai | i > p} for some p, and by two points
bi, fi of segment [0, `] for each agent ai, such that

(1) if ai ∈ LR, bi = min{fi−1, Pos[i]} and fi = 2bi + P − Pos[i],
(2) if ai ∈ RL, bi = max{fi+1, Pos[i]} and fi = 2bi − P − Pos[i],
(3) FLR = max{fi | ai ∈ LR} ≥ FRL = min{fi | ai ∈ RL}.

Suppose that we are given a partition of the agents into two disjoint sets LR and
RL and values bi, fi for each agent ai satisfying conditions (1)-(3). Then the following
moves define a regular convergecast strategy: first, every agent ai ∈ LR∪RL moves to
bi; subsequently, every agent in LR moves to fi once it learns the initial information of
a1; then, every agent in RL moves to fi once it learns the initial information of an. Let
ak be an agent from LR such that fk is maximum. Once ak has moved to fk, it knows
the initial information of all the agents ai such that bi ≤ fk. If fk ≥ `, convergecast is
achieved. Otherwise, since fk = max{fi | ai ∈ LR} ≥ min{fi | ai ∈ RL}, we know
that there exists an agent aj ∈ RL such that fj ≤ fk < bj . When aj reaches fk it
knows the initial information of all the agents such that bi ≥ fk and thus, aj and ak
know the initial information of all agents, which accomplishes convergecast.

The following lemma shows that we can restrict attention to regular convergecast
strategies.

Lemma 2 If there exists a convergecast strategy for a configuration Pos[1 : n]
using power at most P then there exists a regular convergecast strategy for the
configuration Pos[1 : n] using power at most P .

Proof Consider a convergecast strategy S for a configuration Pos[1 : n] using power
at most P . Suppose that convergecast occurred at time t at some point q. If an agent
ai does not get the initial information of a1, then at time t it must have been in the
segment [q, Pos[n]]. Hence, by time t, it must have learned the initial information of
an. It follows that every agent ai, for 1 < i < n, must learn either the initial infor-
mation of agent a1 or of an. Therefore, we can partition the set of agents performing
a convergecast strategy into two subsets LR and RL, such that each agent ai ∈ LR
learns the initial information of agent a1 before learning the initial information of agent
an (or not learning at all the information of an). All other agents belong to RL. We
denote by [bi, fi] the interval of all points visited by ai ∈ LR and by [fj , bj ] the
interval of points visited by aj ∈ RL.

Let FLR = max{fi | ai ∈ LR} and FRL = min{fj | aj ∈ RL}. Since S is a
convergecast strategy, we have FLR > FRL. Observe that the agents in LR move the
initial information of a1 from Pos[1] to FLR and that the agents in RL move the
initial information of an from Pos[n] to FRL. From Lemma 1, we can assume that the
agents in LR (resp. RL) execute a push strategy (resp. a reverse push strategy) and
thus conditions (1)-(3) hold.
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Suppose now that there exists an agent ai ∈ RL such that ai+1 ∈ LR. Let
fRL(i) = min{fj | aj ∈ RL, j > i} and fLR(i + 1) = max{fj | aj ∈ LR, j < i};
note that bi = max{fRL(i), Pos[i]} and bi+1 = min{fLR(i+1), Pos[i+1]}. Consider
the strategy where we exchange the roles of ai and ai+1, i.e., we put ai ∈ LR and
ai+1 ∈ RL. Let b′i = min{fLR(i + 1), Pos[i]}, b′i+1 = max{fRL(i), Pos[i + 1]},
f ′i = 2b′i + P − Pos[i] and f ′i+1 = 2b′i+1 − P − Pos[i+ 1].

If fRL(i) ≤ Pos[i + 1], then f ′i+1 = Pos[i+ 1] − P ≤ bi+1 ≤ fLR(i + 1). If
fLR(i+1) ≥ Pos[i], then f ′i = Pos[i]+P ≥ bi ≥ fRL(i). In both cases, we still have
a convergecast strategy.

If fRL(i) ≥ Pos[i + 1] and fLR(i + 1) ≤ Pos[i], then f ′i = 2fLR(i + 1) + P −
Pos[i] > 2fLR(i+1)+P−Pos[i+1] = fi+1, and f ′i+1 = 2fRL(i)−P−Pos[i+1] <
2fRL(i)− P − Pos[i] = fi. Consequently, we still have a convergecast strategy.

Applying this exchange a finite number of times, we get a regular convergecast
strategy.

2.3 Regular broadcast strategies

We now define the notion of a regular broadcast strategy for Pos[1 : n] where the source
agent is ak, on the segment [0, `], using power at most P . Without loss of generality,
we suppose that Pos[1] = 0 and Pos[n] = `. Intuitively, a regular broadcast strategy
divides the set of all agents into the set of left agents and the set of right agents such
that left agents execute a reverse pull strategy from Pos[k] and right agents execute a
pull strategy from Pos[k].

More formally, a regular broadcast strategy is given by points bi, fi of segment
[0, `] defined for each agent ai such that

1. b1 = f1 = Pos[1] + P , bn = fn = Pos[n]− P ,
2. if 1 < i < k, fi = bi−1 and bi = (fi + Pos[i] + P )/2,
3. if k < i < n, fi = bi+1 and bi = (fi + Pos[i]− P )/2,
4. {bk, fk} = {bk−1, bk+1} and |2bk − Pos[k]− fk| ≤ P

Suppose that we are given points bi, fi for each agent ai, satisfying conditions (1)-(4).
Then the following moves define a regular broadcast strategy: initially every agent ai
moves to bi. Once ai learns the source information, ai moves to fi. Since (1)-(4) hold,
this is a broadcast strategy and the maximum amount of power spent is at most P .

Before proving that it is enough to only consider regular broadcast strategies, we
need to prove the following technical lemma.

Lemma 3 There exists a broadcast strategy S for a configuration (Pos[1 : n], k, P )
if and only if for every i, there exist positions li, xi, ri such that

(1) for each i, li ≤ xi ≤ ri
(2) xk = Pos[k];
(3) for each i, |xi − Pos[i]|+min(xi + ri − 2li, 2ri − xi − li) ≤ P .
(4) for each i, if xi < Pos[k] (resp. xi > Pos[k]), there exists j such that xi ∈

[lj , rj ] and xj > xi (resp. xj < xi).

Proof Consider a broadcast strategy S where the maximum amount of power spent is
P . For every agent ai, let xi be the position where ai learns the information that has
to be broadcast, and let li (resp. ri) be the leftmost (resp. rightmost) position reached
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by ai once it got the information. By definition of li, xi, ri, (1) and (2) hold. Since
the maximum amount of power spent by an agent is at most P , and since the agent
has to go from Pos[i] to xi and then to ri and li, (3) holds. Since every agent learns
the information, for every agent ai, either xi = Pos[k], or ai meets an agent aj in xi
such that aj already has the information. Assume that xi < Pos[k] (the other case
is symmetric). If xi < xj , then (4) holds for i. Suppose now that xj ≤ xi ≤ Pos[k]
and let A be the non-empty set of agents aj such that xj ≤ xi and aj learns the
information before ai. Let aj ∈ A be the agent that is first to learn the information.
Since xj ≤ xi < Pos[k], aj learns the information from an agent aj′ that does not
belong to A. Consequently, xj′ > xi ≥ xj and thus xi ∈ [xj , xj′ ] ⊆ [lj′ , rj′ ]. Thus (4)
holds for i.

Conversely, if we are given values xi, li, ri satisfying (1)-(4), we can exhibit a strat-
egy for broadcast: initially every agent ai moves to xi. Once ai learns the information, if
xi+ri−2li ≤ 2ri−xi−li, then ai moves to li and to ri and if xi+ri−2li > 2ri−xi−li,
then ai moves to ri and to li. Since (4) holds, this is a broadcast strategy and since
(3) holds, the maximum amount of power spent is at most P .

The following lemma shows that we can restrict attention to regular broadcast
strategies.

Lemma 4 If there exists a broadcast strategy for a configuration Pos[1 : n] with
source agent ak, using power at most P , then there exists a regular broadcast
strategy for the configuration Pos[1 : n] with source agent ak, using power at most
P .

Proof Suppose that there exists a broadcast strategy for (Pos[1 : n], k, P ). For every
agent ai, i 6= k we define bi, fi as in the definition of a regular broadcast strategy. Note
that the agents {ai | 1 < i < k} execute a reverse pull strategy between bk−1 and
Pos[1]+P . Similarly, the agents {ai | k < i < n} execute a pull strategy between bk+1

and Pos[n]−P . By Remark 1, it means that there exists i > k (resp. i < k) such that
ai reaches bk−1 (resp. bk+1) with the information from ak. Moreover, since the agents
execute either a reverse pull strategy or a pull strategy, we have Pos[k − 1] ≤ bk−1,
and Pos[k + 1] ≥ bk+1.

Suppose the lemma does not hold. This means that 2bk+1 − Pos[k]− bk−1 > P ,
and bk+1 +Pos[k]− 2bk−1 > P . Consequently, ak cannot reach both bk−1 and bk+1,
i.e., there exists i < k such that ai reaches bk+1, or there exists i > k such that ai
reaches bk−1. If Pos[k] ≤ bk−1, it implies that bk+1 > Pos[k] +P , and consequently,
there cannot exist a broadcast strategy since there is no carry strategy on (Pos[k :
n − 1], Pos[k], Pos[n] − P, P ). Consequently, we can assume that Pos[k] > bk−1.
Using a similar argument we can also assume that Pos[k] < bk+1.

Among all broadcast strategies, consider the strategy that minimizes the size of
A = {ai | i < k and ai reaches bk+1} ∪ {ai | i > k and ai reaches bk−1}. Without
loss of generality, assume that ak does not reach bk−1, and let i > k such that ai
reaches bk−1. For each agent aj , let xj , lj , rj be defined as in Lemma 3. Note that
rk ≤ Pos[k] +P and ri ≤ li+P ≤ bk−1 +P ≤ Pos[k] +P . Moreover, Pos[i]−P ≤
li ≤ bk−1 ≤ lk.

Consider the new strategy defined as follows: for each agent j /∈ {i, k}, let x′j =
xj , l

′
j = lj and rj = r′j ; let x

′
k = xk = Pos[k], r′k = (Pos[k] + Pos[i])/2 and

l′k = Pos[i] − P ; let x′i = l′i = (Pos[k] + Pos[i])/2 and r′i = Pos[k] + P . Note
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that r′i + Pos[i] − 2l′i ≤ P and 2r′k − Pos[k] − l′k ≤ P . Since [li, ri] ∪ [lk, rk] ⊆
[Pos[i] − P, Pos[k] + P ] = [l′k, r

′
k] ∪ [l′i, r

′
i], this is still a broadcast strategy, in view

of Lemma 3. However, in this new strategy, there is one agent less in A′ = {ai | i <
k and ai reaches bk+1} ∪ {ai | i > k and ai reaches bk−1} than in A, contradicting
the choice of our strategy.

Consequently, either 2bk+1 − Pos[k]− bk−1 > P , or bk+1 + Pos[k]− 2bk−1 > P
and the lemma holds.

3 Centralized convergecast and broadcast on lines

3.1 Centralized convergecast on lines

In this section we consider the centralized convergecast problem for lines. We give
an optimal, linear-time, deterministic centralized algorithm, computing the optimal
amount of power needed to solve convergecast for line networks and we provide a regular
convergecast strategy for this amount of power. As the algorithm is quite involved, we
start by observing some properties of the optimal strategies.

3.1.1 Properties of a convergecast strategy

In the following, we only consider regular convergecast strategies. Note that a regular
convergecast strategy is fully determined by the value of P and by the partition of the
agents into the two sets LR and RL. For each agent ai ∈ LR (resp. ai ∈ RL), we
denote fi by ReachcLR(i, P ) (resp. ReachcRL(i, P )). Observe that ReachcLR(i, P ) is
the rightmost point on the line to which the set of i agents at initial positions Pos[1 : i],
each having power P , may transport their total information. Similarly, ReachcRL(i, P )
is the leftmost such point for agents at positions Pos[i : n].

Lemma 2 permits to construct a linear-time decision procedure verifying if a given
amount P of battery power is sufficient to design a convergecast strategy for a given
configuration Pos[1 : n] of agents. We first compute two lists ReachcLR(i, P ), for
1 ≤ i ≤ n and ReachcRL(i, P ), for 1 ≤ i ≤ n. Then we scan them to determine if
there exists an index j, such that ReachcLR(j, P ) ≥ ReachcRL(j + 1, P ). In such a
case, we set LR = {ar | r ≤ j} and RL = {ar | r > j} and we apply Lemma 2 to
obtain a regular convergecast strategy where agents aj and aj+1 meet and exchange
their information which at this time is the entire initial information of the set of agents.
If there is no such index j, no convergecast strategy is possible. This implies

Corollary 1 In O(n) time we can decide if a configuration of n agents on the
line, each having a given maximal power P , can perform convergecast.

The remaining lemmas of this subsection bring up observations needed to construct
an algorithm finding the optimal power P cOPT and designing an optimal convergecast
strategy.

Note that if the agents are not given enough power, then it can happen that
some agent ap may never learn the information from a1 (resp. from an). In this
case, ap cannot belong to LR (resp. RL). We denote by ActcLR(p) the minimum
amount of power needed to ensure that ap can learn the information from a1: if
p > 0, ActcLR(p) = min{P | ReachcLR(p − 1, P ) + P ≥ Pos[p]}. Similarly, we
have ActcRL(p) = min{P | ReachcRL(p+ 1, P )− P ≤ Pos[p]}.
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Given a strategy using power P , for each agent p ∈ LR, we have P ≥ ActcLR(p)
and either ReachcLR(p − 1, P ) ≥ Pos[p], or ReachcLR(p − 1, P ) ≤ Pos[p]. In the
first case, ReachcLR(p, P ) = Pos[p] + P , while in the second case, ReachcLR(p, P ) =
2ReachcLR(p− 1, P ) + P − Pos[p].

We define threshold functions THc
LR(p) and TH

c
RL(p) that compute, for each in-

dex p, the minimal amount of power ensuring that agent ap does not go back when ap ∈
LR (respectively ap ∈ RL), i.e., such that ReachcLR(p− 1, P ) = Pos[p] (respectively
ReachcRL(p+1, P ) = Pos[p]). For each p, let THc

LR(p) = min{P | ReachcLR(p, P ) =
Pos[p] + P} and THc

RL(p) = min{P | ReachcRL(p, P ) = Pos[p] − P}. Clearly,
THc

LR(1) = THc
RL(n) = 0.

The next lemma shows how to compute ReachcLR(q, P ) and ReachcRL(q, P ) if we
know THc

LR(p) and TH
c
RL(p) for every agent p.

Lemma 5 Consider an amount of power P and an index q. If p = max{p′ ≤
q | THc

LR(p
′) < P}, then ReachcLR(q, P ) = 2q−pPos[p] + (2q−p+1 − 1)P −∑q

i=p+1 2
q−iPos[i]. Similarly, if p = min{p′ ≥ q | THc

RL(p
′) < P}, then

ReachcRL(q, P ) = 2p−qPos[p]− (2p−q+1 − 1)P −
∑p−1
i=q 2i−qPos[i].

Proof We prove the first statement of the lemma; the proof of the other statement is
similar. We first show the following claim.
Claim. If for every i ∈ [p+ 1, q], P ≤ THc

LR(i), then

ReachcLR(q, P ) = 2q−pReachcLR(p, P ) + (2q−p − 1)P −
q∑

i=p+1

2q−iPos[i].

We prove the claim by induction on q − p. Note that since P ≤ THc
LR(q),

ReachcLR(q, P ) = 2ReachcLR(q−1, P )+P −Pos[q]. Thus if q = p+1, the statement
holds. Suppose now that q > p+ 1. Since q − 1 > p, by the induction hypothesis, we
have

ReachcLR(q−1, P ) = 2q−1−pReachcLR(p, P )+(2q−1−p−1)P−
q−1∑
i=p+1

2q−1−iPos[i].

Consequently, we have

ReachcLR(q, P ) = 2ReachcLR(q − 1, P ) + P − Pos[q]
= 2q−pReachcLR(p, P ) + (2q−p − 2)P

−
q−1∑
i=p+1

2q−iPos[i] + P − Pos[q]

= 2q−pReachcLR(p, P ) + (2q−p − 1)P −
q∑

i=p+1

2q−iPos[i].

This concludes the proof of the claim.
If p = max{p′ ≤ q | THc

LR(p
′) < P}, then for each p′ ∈ [p+1, q], THc

LR(p
′) ≥ P

and ReachcLR(p, P ) = Pos[p] + P . Consequently,
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ReachcLR(q, P ) = 2q−pPos[p] + (2q−p+1 − 1)P −
q∑

i=p+1

2q−iPos[i].

In the following, we denote ScLR(p, q) =
∑q
i=p+1 2

q−iPos[i] and ScRL(p, q) =∑p−1
i=q 2i−qPos[i].

Remark 2 For every p ≤ q ≤ r, we have ScLR(p, r) = 2r−qScLR(p, q) + ScLR(q, r).

We now show that for an optimal convergecast strategy, the last agent of LR and
the first agent of RL meet at some point between their initial positions and that they
need to use all the available power to meet.

Lemma 6 Suppose there exists an optimal convergecast strategy for a configura-
tion Pos[1 : n], where the maximum power used by an agent is P . Then, there exists
an integer 1 ≤ p < n such that Pos[p] < ReachcLR(p, P ) = ReachcRL(p + 1, P ) <
Pos[p+ 1].

Moreover, ∀q ≤ p, ActcLR(q) < P < THc
RL(q) and ∀q > p, ActcRL(q) < P <

THc
LR(q).

Proof In the proof we need the following claim.

Claim. For every 1 ≤ p ≤ n, the function ReachcLR(p, ·) which assigns the value
ReachcLR(p, P ) for any argument P , is an increasing, continuous, piecewise linear
function with at most p pieces on [ActcLR(p),+∞).

For every 1 ≤ p ≤ n, the function ReachcRL(p, ·) which assigns the value
ReachcRL(p, P ) for any argument P , is a decreasing continuous piecewise linear func-
tion with at most p pieces on [ActcRL(p),+∞).

We prove the first statement of the claim by induction on p. For p = 1,
ReachcLR(1, P ) = Pos[1] + P and the claim holds. Suppose that ReachcLR(p, ·) is
a continuous piecewise linear function on [ActcLR(p),+∞) and consider ReachcLR(p+
1, ·).

First note that ActcLR(p) < ActcLR(p+1). Since ReachcLR(p, ·) is a continuous, in-
creasing function, there exists a unique P = ActcLR(p+1) such that ReachcLR(p, P )+
P = Pos[p+1] and for every P ′ > ActcLR(p+1), ReachcLR(p, P

′)+P ′ > Pos[p+1].
Consequently, ReachcLR(p+ 1, ·) is well defined on [ActcLR(p+ 1),+∞).

Since ReachcLR(p, ·) is a continuous, increasing function, there exists a unique
P = THc

LR(p+ 1) such that ReachcLR(p, P ) = Pos[p+ 1]. If ActcLR(p+ 1) ≥ P ≥
THc

LR(p + 1), ReachcLR(p + 1, P ) = 2ReachcLR(p, P ) + P − Pos[p + 1] and thus
ReachcLR(p+1, ·) is an increasing, continuous, piecewise linear function on [ActcLR(p+
1), THc

LR(p+1)] with at most p pieces. If P ≥ THc
LR(p+1), ReachcLR(P ) = Pos[p+

1] + P and thus, ReachcLR(p + 1, ·) is an increasing, continuous, linear function on
[THc

LR(p+1),+∞). Since 2ReachcLR(p, TH
c
LR(p+1))+THc

LR(p+1)−Pos[p+1] =
Pos[p+1]+THc

LR(p+1), the function ReachcLR(p+1, ·) is an increasing, continuous,
piecewise linear function on [ActcLR(p+ 1),+∞) with at most p+ 1 pieces.

One can show the second statement of the claim using similar arguments. This ends
the proof of the claim.

Suppose we are given p and consider the partition of the agents into LR = {aq |
q ≤ p} and RL = {aq | q > p}. Consider a regular convergecast strategy for this
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partition and where the maximum amount of power P used by an agent is minimized.
We first show that ReachcLR(p, P ) = ReachcRL(p+ 1, P ).

Let Q = max{ActcLR(p), ActcRL(p+1)}. Since ReachcLR(p, ·) is an increasing con-
tinuous function on [ActcLR(p),+∞) and ReachcRL(p+1, ·) is a decreasing continuous
function on [ActcRL(p + 1),+∞), the difference ReachcLR(p, ·) − ReachcRL(p + 1, ·)
is a continuous increasing function on [Q,+∞).

Consider the case where Q = ActcRL(p + 1) ≥ ActcLR(p) (the other case is
similar). Since ReachcRL(p + 1, Q) = ReachcRL(p + 2, Q) = Pos[p + 1] + Q,
ReachcLR(p,Q) ≤ Pos[p] + Q < Pos[p + 1] + Q = ReachcRL(p + 1, Q) and thus,
ReachcLR(p,Q) − ReachcRL(p + 1, Q) < 0. By definition of a regular convergecast
strategy, there exists Q′ such that ReachcLR(p,Q

′) − ReachcRL(p + 1, Q′) ≥ 0.
Consequently, since the difference ReachcLR(p, ·) − ReachcRL(p + 1, ·) is a continu-
ous increasing function on [Q,+∞), there exists a unique Q < P ≤ Q′ such that
ReachcLR(p, P ) = ReachcRL(p+ 1, P ).

Consider an optimal regular convergecast strategy and let P be the maximum
amount of power used by any agent. By definition of a regular convergecast strategy,
there exists an index p such that ReachcLR(p, P ) = ReachcRL(p+ 1, P ).

Suppose that ReachcLR(p, P ) ≤ Pos[p]. In this case, we have ReachcRL(p, P ) =
Pos[p] − P < ReachcLR(p − 1, P ) since P > ActcLR(p). Consequently, according
to what we have shown above, there exists P ′ < P such that ReachcRL(p, P

′) ≤
ReachcLR(p−1, P ′) and P is not the optimal value needed to solve convergecast. This
contradiction shows that Pos[p] < ReachcLR(p, P ).

For similar reasons, if ReachcRL(p+1, P ) ≥ Pos[p+1], P is not the optimal value
needed to solve convergecast. This contradiction shows that ReachcRL(p + 1, P ) >
Pos[p+ 1].

We now prove that for each q ∈ [1, p], ActcLR(q) < P . This follows from the fact
that for each aq ∈ LR such that q > 1, we have ActcLR(q) > ActcLR(q − 1). Conse-
quently, for each q ∈ [1, p − 1], ActcLR(q) > ActcLR(p). Moreover, if ReachcLR(p, P )
is defined, then P ≥ ActcLR(p). If P = ActcLR(p), then Reach

c
LR(p, P ) = Pos[p]−P

and thus, ReachcRL(p + 1, P ) ≥ Pos[p + 1] − P > Pos[p] − P ≥ ReachcLR(p, P ).
This contradicts the first statement of the lemma. Hence, we have P > ActcLR(p).

For similar reasons, for each q ∈ [p+ 1, n], ActcRL(q) < P .

We finally prove that for each q ∈ [1, p], P < THRL(q). Suppose there exists q such
that P ≥ THRL(q) and consider LR = {ar | r ≤ q − 1} and RL = {ar | r ≥ q}.
Since P > ActcLR(q), Reach

c
LR(q − 1, P ) > Pos[q] − P = ReachcRL(q, P ) and

consequently, the first statement of the lemma implies that there exists P ′ < P such
that ReachcLR(q − 1, P ′) > ReachcRL(q, P

′). This implies that P is not the optimal
value needed to solve convergecast. This contradiction implies that for each q ∈ [1, p],
P < THRL(q).

For similar reasons, for each q ∈ [p+ 1, n], P < THLR(q).

3.1.2 A linear algorithm to compute the optimal power needed for convergecast

We first sketch a suboptimal but much easier algorithm and later present and analyze in
detail a more involved linear-time solution to our problem. First, we need to compute
the functions ReachcLR(p, ·) and ReachcRL(p, ·) for all p such that 1 ≤ p ≤ n. By
Lemma 5, the function ReachcLR(p, ·) can be computed from the values THc

LR(q)
for all q such that 1 ≤ q ≤ p. Starting from p = 1, one can compute all these
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functions ReachcLR(p, ·), since each value THc
LR(p) = min{P | ReachcLR(p−1, P ) =

Pos[p]} can be deduced from ReachcLR(p−1, ·). The computation at step p has a time
complexity in O(p) and so the computation of all the functions ReachcLR(p, ·) takes
time O(n2). Similarly, it is possible to compute all the functions ReachcRL(p, ·), for
all p such that 1 ≤ p ≤ n, in time O(n2). Since ReachcLR(p, ·) and ReachcRL(p+1, ·)
are increasing, continuous, piecewise linear functions with at most n pieces, by the
claim from the proof of Lemma 6, it is possible to compute the value P such that
ReachcLR(p, P ) = ReachcRL(p+1, P ) in time O(n). Hence the optimal value of power
needed to achieve convergecast on lines, which is min1≤p≤n{P | ReachcLR(p, P ) =
ReachcRL(p+ 1, P )} by Lemma 6, can be computed in time O(n2).

The following result shows that the optimal power needed for convergecast on the
line can in fact be computed in linear time.

Theorem 1 In O(n) time it is possible to compute the optimal power needed to
achieve convergecast on the line for configuration Pos[1 : n] and to compute the
optimal convergecast strategy.

We first explain how to compute a stack of couples (p, THc
LR(p)) that we can

subsequently use to calculate ReachcLR(p, P ) for any given P . Then, we present a
linear algorithm that computes the value needed to solve convergecast when the last
index r ∈ LR is provided: given an index r, we compute the optimal power needed to
solve convergecast assuming that LR = {aq | q ≤ r} and RL = {aq | q > r}. Finally,
we explain how to use techniques introduced in the two previous algorithms in order
to compute the optimal power needed to solve convergecast.

Computing the threshold values. In order to describe explicitly the function
ReachcLR(q, ·), we need to identify the indices p such that for every r ∈ [p+ 1, q], we
have THc

LR(r) > THc
LR(p). They correspond to the breakpoints at which the slopes of

the piecewise linear function ReachcLR(q, ·) change. Indeed, if we are given such an in-
dex p, then for every P comprised between THc

LR(p) andmin{THc
LR(r) | p < r ≤ q},

we have ReachcLR(q, P ) = 2q−pPos[p] + (2q−p+1 − 1)P − ScLR(p, q). We denote by
XLR(q) this set of indices {p ≤ q | ∀r ∈ [p+ 1, q], THc

LR(r) > THc
LR(p)}.

In particular, if we want to compute THc
LR(q + 1), we just need to find p =

max{r ≤ q | ReachcLR(q, THc
LR(r)) < Pos[q + 1]}, and then THc

LR(q + 1) is the
value of power P such that 2q−pPos[p] + (2q−p+1 − 1)P − ScLR(p, q) = Pos[q + 1].
Moreover, by the choice of p, we have XLR(q+1) = {r ∈ XLR(q) | r ≤ p}∪ {q+1}.

Using these remarks, the function ThresholdLR, with an input index r of an
agent, returns a stack THcLR containing couples (p, P ) such that p ∈ XLR(r) and
P = THc

LR(p). Note that in the stack THcLR, the elements (p, P ) are sorted along both
components, the largest being on the top of the stack.

The function is described as follows. Initially, the stack THcLR contains only the
couple (1, THc

LR(1)). At each iteration, given the stack corresponding to the index q,
in order to compute the stack for the index q + 1, we first pop out all elements (p, P )
such that ReachcLR(q, P ) > Pos[q + 1]. After that, the integer p needed to compute
THc

LR(q+1) is located on the top of the stack. Finally, the couple (q+1, THc
LR(q+1))

is pushed on the stack before we proceed with the subsequent index q. The function
returns the stack THcLR corresponding to the index r.

Below, we give the pseudo-code of the function.
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Function ThresholdLR(array Pos[1 : n] of real; r:integer):stack
THcLR = empty_stack;
push (THcLR,(1, 0));
for q = 1 to r − 1 do

(p, P ) = pop(THcLR); /* p = q and P = THc
LR(p) */

while 2q−p ∗ Pos[p] + (2q−p+1 − 1) ∗ P − ScLR(p, q) ≥ Pos[q + 1] do
(p, P ) = pop(THcLR);

// while ReachcLR(q, P ) ≥ Pos[q + 1] we consider the next element in THcLR
push (THcLR,(p, P ));
Q = (2q−p ∗ Pos[p]− Pos[q + 1]− ScLR(p, q))/(2q−p+1 − 1);
/* Q is the solution of ReachcLR(q, P ) = Pos[q + 1] */
push (THcLR,(q + 1, Q));

return (THcLR);

The number of stack operations performed during the execution of this function is
O(r). However, in order to obtain a linear number of arithmetic operations, we need
to be able to compute 2q−p and ScLR(p, q) in constant time.

In order to compute 2q−p efficiently, we can store the values of 2i, i ∈ [1, n − 1]
in an auxiliary array, that we have precomputed in O(n) time. We cannot precompute
all values of ScLR(p, q) since this requires calculating Θ(n2) values. However, from
Remark 2, we know that ScLR(p, q) = ScLR(1, q)− 2q−pScLR(1, p). Consequently, it is
enough to precompute ScLR(1, i) for each i ∈ [2, n]. Since ScLR(1, i+1) = 2ScLR(1, i)+
Pos[i+ 1], this can be done using O(n) arithmetic operations.

Similarly, we can define the function ThresholdRL (array Pos[1 : n] of real,
r:integer):stack that returns a stack THcRL containing all pairs (q, THc

RL(q)) such
that for every p ∈ [r, q − 1], we have THc

RL(p) > THc
RL(q).

Computing the optimal power when LR and RL are known. To facilitate further
reading, we first show how to compute the optimal power P cOPT , if the sets LR and
RL are known. This will be done by function OptimalAtIndex which will be not used
in our final algorithm to compute optimal power but whose role is to explain some of
the techniques under these additional assumptions.

Suppose that we are given an agent index r and we want to compute the optimal
power needed to solve convergecast when LR = {ap | p ≤ r} and RL = {aq |
q > r}. From Lemma 6, we know that there exists a unique value P cOPT such that
ReachcLR(r, P

c
OPT ) = ReachcRL(r + 1, P cOPT ).

As previously, by Lemma 5, we know that the value of ReachcLR(r, P
c
OPT ) depends

on p = max{p′ ≤ r | THc
LR(p

′) < P cOPT }. Similarly,ReachcRL(r+1, P cOPT ) depends
on q = max{q′ ≥ r + 1 | THc

RL(q
′) < P cOPT }. If we are given the values of p and q,

then P cOPT is the unique value of P such that

2r−pPos[p]−(2r−p+1−1)P−ScLR(p, r) = 2q−r−1Pos[q]−(2q−r−1)P−ScRL(q, r+1).

In Function OptimalAtIndex, we first use functions ThresholdLR and
ThresholdRL to compute the two stacks THcLR and THcRL containing respectively
{(p, THc

LR(p)) | p ∈ XLR(r)} and {(q, THc
RL(q)) | q ∈ XRL(r + 1)}. Then

at each iteration, we consider the two elements (p, PLR) and (q, PRL) that are on
top of both stacks. If PLR ≥ PRL (the other case is symmetric), we check whether
ReachcLR(r, PLR) ≥ ReachcRL(r + 1, PLR). In this case, we have P > P cOPT , so
we remove (p, PLR) from the stack THcLR and we proceed to the next iteration. If
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ReachcLR(r, PLR) < ReachcRL(r+ 1, PLR), we know that P cOPT ≥ PLR ≥ PRL and
we can compute the value of P cOPT using Lemma 5.

Let YLR(r, P ) denote {(p, THc
LR(p)) | p ∈ XLR(r) and THc

LR(p) < P} and
YRL(r + 1, P ) = {(q, THc

RL(q)) | q ∈ XRL(r + 1) and THc
RL(q) < P}.

Remark 3 At the end of the execution of Function OptimalAtIndex, THcLR and THcRL
contain respectively YLR(r, P cOPT ) and YRL(r + 1, P cOPT ).

Moreover, if initially the two stacks THcLR and THcRL contain respectively YLR(r, P )
and YRL(r + 1, P ) for some P ≥ P cOPT , then the value computed by the function is
also P cOPT .

The pseudo-code of the of Function OptimalAtIndex is given below.

Function OptimalAtIndex(array Pos[1 : n] of real; r:integer):stack
THcLR = ThresholdLR(r); THcRL = ThresholdRL(r + 1);
(p, PLR) = pop(THcLR); (q, PRL) = pop(THcRL); P = max{PLR, PRL};
/* p = r, PLR = THc

LR(r), q = r + 1, PRL = THc
RL(r + 1). */

while
2r−pPos[p] + (2r−p+1− 1)P −ScLR(p, r) ≥ 2q−r−1Pos[q]− (2q−r − 1)P −ScRL(q, r+1)
do /* While ReachcLR(r, P ) ≥ ReachcRL(r + 1, P ) do */

if PLR ≥ PRL then (p, PLR) = pop(THcLR);
else (q, PRL) = pop(THcRL);
P = max{PLR, PRL};

P cOPT = (2q−r−1Pos[q]−ScRL(q, r+1)−2r−pPos[p]+ScLR(p, r))/(2
r−p+1+2q−r−2);

/* P cOPT is the solution of ReachcLR(r, P
c
OPT ) = ReachcRL(r + 1, P cOPT ) */

return (P cOPT );

Computing the optimal power for convergecast. We now explain how to compute
the optimal amount of power needed to achieve convergecast using a linear number of
operations. Notice that Function OptimalAtIndex does it only provided the partition
of the agents in LR and RL.

Let P<r be the optimal value needed to solve convergecast when max{s | as ∈
LR} < r, i.e., when the two agents whose meeting results in merging the entire infor-
mation are ai and ai+1 for some i < r. If ReachcLR(r, P<r) ≤ ReachcRL(r+1, P<r),
then P<r+1 = P<r. However, if ReachcLR(r, P<r) > ReachcRL(r + 1, P<r), then
P<r+1 < P<r and P<r+1 is the unique value of P such that ReachcLR(r, P ) =
ReachcRL(r + 1, P ). This corresponds to the value returned by function OptimalAt-
Index (Pos, r).

The general idea of Function ComputeOptimal is to iteratively compute the value
of P<r. If we need a linear time algorithm, we cannot call repeatedly the func-
tion OptimalAtIndex. However, from Remark 3, in order to compute P<r+1 when
P<r+1 ≤ P<r, it is enough to know YLR(r, P<r) and YRL(r + 1, P<r). If we
know YLR(r, P<r) and YRL(r + 1, P<r), then we can use the same algorithm as in
OptimalAtIndex in order to compute P<r+1. Moreover, from Remark 3, we also get
YLR(r, P<r+1) and YRL(r + 1, P<r+1) when we compute P<r+1.

Before proceeding to the next iteration, we need to compute YLR(r + 1, P<r+1)
and YRL(r + 2, P<r+1) from YLR(r, P<r+1) and YRL(r + 1, P<r+1). Note that if
THc

LR(r) > P<r+1, then YLR(r + 1, P<r+1) = YLR(r, P<r+1). If THc
LR(r) ≤
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P<r+1, we can use the same function as in ThresholdLR to compute YLR(r +
1, P<r+1) = {(p, THc

LR(p)) | p ∈ XLR(r)} from YLR(r, P<r+1). Consider now
YRL(r+2, P<r+1). If THc

RL(r+1) > P<r+1, then (r+1, THc
RL(r+1)) /∈ YRL(r+

1, P<r+1), and YRL(r+ 2, P<r+1) = YRL(r+ 1, P<r+1). If THc
RL(r+ 1) ≤ P<r+1,

then either Pos[r + 1] − P<r+1 ≥ ReachcRL(r + 1, P<r+1) if P<r+1 = P<r, or
Pos[r + 1] − P<r+1 = ReachcRL(r + 1, P<r+1) = ReachcLR(r, P<r+1) if P<r+1 <
P<r. In both cases, it implies that ActcLR(r + 1) ≥ P<r+1. Therefore, by Lemma 6,
P<i = P<r+1 for every i ≥ r + 1 and we can return the value of P<r+1.

In Function ComputeOptimal, at each iteration, the stack THcLR contains
YLR(r, P<r) (except its top element) and the stack THcRL contains YRL(r + 1, P<r)
(except its top element). Initially, THcLR is empty and THcRL contains O(n) elements. In
each iteration, at most one element is pushed into the stack THcLR and no element is
pushed into the stack THcRL. Consequently, the number of stack operations performed
by Function ComputeOptimal is linear.

Function ComputeOptimal(array Pos[1 : n] of real):real
THcLR = empty_stack; THcRL = ThresholdRL(Pos);
(q, PRL) = pop(THcRL); P cOPT = PRL;
/* q = 1, PRL = THc

RL(1) */
(q, PRL) = pop(THcRL); p = 1;PLR = 0;
for r = 1 to n− 1 do

/* P cOPT = P<r ≥ PLR, PRL */
if 2r−pPos[p] + (2r−p+1 − 1)P cOPT − ScLR(p, r) >

2q−r−1Pos[q]− (2q−r − 1)P cOPT − ScRL(q, r + 1) then
/* If ReachcLR(r, P

c
OPT ) > ReachcRL(r + 1, P cOPT ) then P cOPT is larger

than the value needed to solve convergecast at position r. We
apply now the same algorithm as in function OptimalAtIndex. */

P = max{PLR, PRL};
while 2r−pPos[p] + (2r−p+1 − 1)P − ScLR(p, r) ≥

2q−r−1Pos[q]− (2q−r − 1)P − ScRL(q, r + 1) do
if PLR ≥ PRL then (p, PLR) = pop(THcLR);
else (q, PRL) = pop(THcRL);
P = max{PLR, PRL};

P cOPT =

(2q−r−1Pos[q]−ScRL(q, r+1)− 2r−pPos[p] +ScLR(p, r))/(2
r−p+1 +2q−r − 2);

/* P cOPT = P<r+1 is the solution of
ReachcLR(r, P

c
OPT ) = ReachcRL(r + 1, P cOPT ) */

if q = r + 1 then return P cOPT ;
/* In this case, P cOPT ≥ THc

RL(r + 1) and thus
P cOPT = P<r = ActcLR(r + 1): for any s > r, P<s = P<r */

if 2r−p ∗ Pos[p] + (2r−p+1 − 1) ∗ P cOPT − ScLR(p, r) ≥ Pos[r + 1] then
/* If ReachcLR(r, P

c
OPT ) ≥ Pos[r + 1] then THc

LR(r + 1) ≤ P cOPT and we
update THcLR, using the same algorithm as in function ThresholdLR.
*/

while 2r−p ∗ Pos[p] + (2r−p+1 − 1) ∗ PLR − ScLR(p, r) do
(p, PLR) = pop(THcLR);

push (THcLR,(p, PLR));
PLR = (Pos[r + 1] + ScLR(p, r)− 2r−p ∗ Pos[p])/(2r−p+1 − 1);
p = r + 1;
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Notice that the partition of agents into sets LR and RL is given by the value of
index r when P cOPT is returned by Function ComputeOptimal. Since an optimal regular
convergecast strategy is fully determined by the value of P cOPT and by the partition of
the agents into the sets LR and RL, Function ComputeOptimal also yields an optimal
convergecast strategy. Hence, this concludes the proof of Theorem 1.

3.2 Centralized broadcast on lines

In this section we consider the centralized broadcast problem for lines. We give an opti-
mal, linear-time, deterministic centralized algorithm, computing the optimal amount of
power needed to solve broadcast for line networks and computing an optimal broadcast
strategy.

3.2.1 Properties of a broadcast strategy

In the following, we only consider regular broadcast strategies. Note that a regular
broadcast strategy is fully determined by the value of P and by the two possible values
of bk for the source agent ak (bk = bk−1 or bk = bk+1).

Let LR = {a1, a2, . . . , ak−1} and RL = {ak+1, ak+2, . . . , an}. (Note that we
slightly abuse notation by using the same names LR and RL for subsets of agents
as in convergecast.) For each agent ai ∈ LR (resp. ai ∈ RL ), we denote bi by
ReachbLR(i, P ) (resp. ReachbRL(i, P )). Observe that ReachbLR(i, P ) is the rightmost
point on the line from which the set of i agents at initial positions Pos[1 : i], each having
power P , may pick the information and bring it back to a1. Similarly, ReachbRL(i, P )
is the leftmost point from which the agents at positions Pos[i : n] may pick the
information and bring it back to an.

Lemma 4 permits to construct a linear-time decision procedure verifying if a given
amount P of battery power is sufficient to design a broadcast strategy for a given
configuration Pos[1 : n] of agents and a specified source agent ak. We first com-
pute bk−1 = ReachbLR(k − 1, P ) and bk+1 = ReachbRL(k + 1, P ). Then we test if
|2ReachbLR(k − 1, P ) − Pos[k] − ReachbRL(k + 1, P )| or |2ReachbRL(k + 1, P ) −
Pos[k]−ReachbLR(k−1, P )| are less or equal than P . If one of the inequalities is true
then there is a broadcast strategy. Otherwise, broadcast is not possible. This implies

Corollary 2 In O(n) time we can decide if a configuration Pos[1 : n] of n agents
on the line, each having a given maximal power P , can perform broadcast for a
given source agent.

Note that if the agents are not given enough power, then it can happen that some
agent ap, 1 ≤ p ≤ k (resp. k ≤ q ≤ n) cannot reach the point ReachbLR(p − 1, P )
(resp. ReachbRL(q + 1, P )). We denote by ActbLR(p) (resp. ActbRL(q)) the minimum
amount of power P we have to give the agents to ensure that ap (resp. aq) can reach
ReachbLR(p−1, P ) (resp. ReachbRL(q+1, P )). We have : ActbLR(1) = ActbRL(n) = 0
and if 2 ≤ p ≤ k, ActbLR(p) = min{P | ReachbLR(p−1, P ) ≥ Pos[p]−P}. Similarly,
if k ≤ q ≤ n− 1, we have ActbRL(q) = min{P | ReachbRL(q + 1, P ) ≤ Pos[q] + P}.

In a regular broadcast strategy using power P , for each agent p ∈ LR such that
P ≥ ActbLR(p), we have ReachbLR(p, P ) = (ReachbLR(p − 1, P ) + P + Pos[p])/2.
Similarly, for each agent q ∈ RL such that P ≥ ActbRL(q), we have ReachbRL(q, P ) =
(ReachbRL(q + 1, P ) − P + Pos[q])/2. The next lemma shows how to compute
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ReachbLR(p, ·) on the interval [ActbLR(p),+∞) for every p ∈ {1, 2, . . . , k} and
ReachbRL(q, ·) on the interval [ActbRL(q),+∞) for every q ∈ {k, k + 1, . . . , n}.

Lemma 7 Consider an index p ∈ {1, 2, . . . , k} and an amount of power P ≥
ActbLR(p), then Reach

b
LR(p, P ) = ReachbLR(p,Act

b
LR(p)) + P − ActbLR(p). Analo-

gously, for an index q ∈ {k, k+1, . . . , n}, and an amount of power P ≥ ActbRL(q),
we have ReachbRL(q, P ) = ReachbRL(q,Act

b
RL(q))− P +ActbRL(q).

Proof First, we show by induction on p that for any p ∈ {1, 2, . . . , k} and an amount
of power P ≥ ActbLR(p), we have ReachbLR(p, P ) = ReachbLR(p,Act

b
LR(p)) + P −

ActbLR(p). This is true for p = 1 since ReachbLR(1, P ) = P , ActbLR(1) = 0 and
ReachbLR(1, Act

b
LR(1)) = 0. Now, assume by induction that ReachbLR(p − 1, P ) =

ReachbLR(p−1, ActbLR(p−1))+P−ActbLR(p−1). By definition of a regular broadcast
strategy, we have for all P ≥ ActbLR:

ReachbLR(p, P ) =
ReachbLR(p− 1, P ) + Pos[p] + P

2

=
ReachbLR(p− 1, ActbLR(p− 1)) + P −ActbLR(p− 1) + Pos[p] + P

2

= P +
ReachbLR(p− 1, ActbLR(p− 1))−ActbLR(p− 1) + Pos[p]

2

Observe that for P = ActbLR(p), we have:

ReachbLR(p,Act
b
LR(p)) =

ReachbLR(p− 1, ActbLR(p− 1))−ActbLR(p− 1) + Pos[p]

2

+ActbLR(p).

Hence we have:

ReachbLR(p, P ) = ReachbLR(p,Act
b
LR(p)) + P −ActbLR(p).

This concludes the proof by induction.
Similarly, we can show by induction on q that for any ∈ {k, k + 1, . . . , n} and an

amount of power P ≥ ActbLR(p), we haveReachbLR(q, P ) = ReachbLR(q,Act
b
LR(q))−

P +ActbLR(q).

3.2.2 A linear algorithm to compute the optimal power needed for broadcast

In this section, we prove the following theorem.

Theorem 2 In O(n) time it is possible to compute the optimal power needed to
achieve broadcast for a configuration Pos[1 : n] of n agents on the line for any
source agent and to compute an optimal broadcast strategy.



Convergecast and Broadcast by Power-Aware Mobile Agents 21

Function OptimalBroadcast(array Pos[1 : n] of real; r:integer):real

ActbLR(1) = 0, ReachbLR(1, Act
b
LR(1)) = 0, p = 1;

while p < k − 1 do
while (p < k − 1) and (Pos[p+ 1]−ActbLR(p) ≤ ReachbLR(p,ActbLR(p))) do

ActbLR(p+ 1) = ActbLR(p);
ReachbLR(p+ 1, ActbLR(p+ 1)) =

(Pos[p+ 1] +ActbLR(p+ 1) +ReachbLR(p,Act
b
LR(p+ 1)))/2;

p = p+ 1;

if (p < k − 1) then
δLR = (Pos[p+ 1]−ActbLR(p)−ReachbLR(p,ActbLR(p)))/2;
ActbLR(p+ 1) = ActbLR(p) + δLR;
ReachbLR(p+ 1, ActbLR(p+ 1)) = Pos[p+ 1];
p = p+ 1;

ActbRL(n) = 0, ReachbRL(n,Act
b
RL(n)) = Pos[n], q = n;

while q > k + 1 do
while (q > k + 1) and (Pos[q − 1] +ActbRL(q) ≥ ReachbRL(q,ActbRL(q)) do

ActbRL(q − 1) = ActbRL(q);
ReachbRL(q − 1, ActbRL(q − 1)) =

(Pos[q − 1]−ActbRL(q − 1) +ReachbRL(q − 1, ActbRL(q − 1))/2;
q = q − 1;

if (q > k + 1) and (p = k − 1 or δLR < δLR) then
δRL = (ReachbRL(q,Act

b
RL(q))−ActbRL(q)− Pos[q − 1])/2;

ActbRL(q − 1) = ActbRL(q);
ReachbRL(q − 1, ActbRL(q − 1)) = Pos[q − 1];
q = q − 1;

P = max(ActbLR(k − 1), ActbRL(k + 1));
if ActbLR(k − 1) > ActbRL(k + 1)) then

Xb
LR = ReachbLR(k − 1, ActbLR(k − 1));

Y bRL = ReachbRL(k + 1, ActbRL(k + 1)) +ActbLR(k − 1)−ActbRL(k + 1));

else
Xb
LR = ReachbLR(k − 1, ActbLR(k − 1))−ActbRL(k + 1) +ActbLR(k − 1));

Y bRL = ReachbRL(k + 1, ActbRL(k + 1));

if Pos[k] ≤ Xb
LR then

δ = (Y bRL − Pos[k]− P )/2;

if Xb
LR < Pos[k] < Y bRL then
δ = (min(Pos[k]−Xb

LR, Y
b
RL − Pos[k]) + (Y bRL −Xb

LR)− P )/2;

if Y bRL ≤ Pos[k] then
δ = (Pos[k]−Xb

LR − P )/2;

return P +max(0, δ)

Proof We formulate Function OptimalBroadcast which computes in linear time the
optimal power for the broadcast in the line.

In order to compute this value, Function OptimalBroadcast first computes the
minimal amount of power Q such that all agents in LR ∪ RL are activated, i.e.,
Q = max(ActbLR(k−1), ActbRL(k+1)). In order to computeQ, the function iteratively
increases the power sufficient to activate all agents in LR. Then, it does the same with
agents in RL. The function computes iteratively for each agent ai from a1 to ak−1 in
LR (respectively from an to ak+1 in RL), the value ActbLR(i) (respectively Act

b
RL(i))
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and the value ReachbLR(i, Act
b
LR(i)) (respectively Reach

b
RL(i, Act

b
RL(i))). Once Q is

known, the function computes the minimal amount of power P ≥ Q that enables the
agent ak to reach ReachbLR(k− 1, P ) and ReachbRL(k+1, P ). This will be proved to
be the minimal power to accomplish broadcast.

Notice that in order to accomplish broadcast, agent ak−1 must be able to reach
ReachbLR(k− 2, ActbLR(k − 2)). Hence the optimal value P bOPT of power sufficient to
accomplish broadcast must be at least ActbLR(k−1). Similarly, P bOPT must be at least
ActbRL(k + 1). Hence, we will first prove that the values of ReachbLR(p,Act

b
LR(p)),

ActbLR(p), Reach
b
RL(q,Act

b
RL(q)) and Act

b
RL(q) are correctly computed for 1 ≤ p <

k and k < q ≤ n.
We only prove that the values of ReachbLR(p,Act

b
LR(p)) and ActbLR(p) are cor-

rectly computed for 1 ≤ p < k, as the proof that ReachbRL(q,Act
b
RL(q)) and

ActbRL(q) are correctly computed for k < q ≤ n is similar. The proof is by in-
duction on p. For p = 1, the values of ReachbLR(p,Act

b
LR(p)) and ActbLR(p) are

correctly computed since ReachbLR(1, Act
b
LR(1)) = 0 and ActbLR(1) = 0. Sup-

pose that the values of ReachbLR(p,Act
b
LR(p)) and ActbLR(p) are correctly com-

puted. If ReachbLR(p,Act
b
LR(p)) ≥ Pos[p + 1] − P , then ActbLR(p + 1) =

ActbLR(p). By Lemma 7, all functions ReachbLR(p, P ) are linear with coefficient 1
on [ActbLR(p),+∞). Hence, if ReachbLR(p,Act

b
LR(p)) < Pos[p+ 1]− ActbLR(p), we

have ActbLR(p + 1) = ActbLR(p) + (Pos[p + 1] − P − ReachbLR(p,Act
b
LR(p)))/2.

This shows that ActbLR(p + 1) is correctly computed. It remains to show that
ReachbLR(p+1, ActbLR(p+1)) is correctly computed. By definition of a regular broad-
cast strategy, we have ReachbLR(p+1, ActbLR(p+1)) = (ReachbLR(p,Act

b
LR(p+1))+

ActbLR(p+ 1) + Pos[p+ 1])/2. If ReachbLR(p,Act
b
LR(p)) ≥ Pos[p+ 1]−ActbLR(p),

then ReachbLR(p+1) is correctly computed as the above formula is used by the func-
tion. Otherwise, we have : ActbLR(p + 1) = ActbLR(p) + (Pos[p + 1] − ActbLR(p) −
ReachbLR(p,Act

b
LR(p)))/2. Using the notation r = ReachbLR(p,Act

b
LR(p)), r

′ =
ReachbLR(p,Act

b
LR(p+ 1)), a = ActbLR(p), a

′ = ActbLR(p+ 1) we have :

ReachbLR(p+ 1, ActbLR(p+ 1)) =
r′ + a′ + Pos[p+ 1]

2

=
(r + a′ − a) + (a+ (Pos[p+ 1]− a− r)/2) + Pos[p+ 1]

2

=
(r + (Pos[p+ 1]− a− r)/2)) + (a+ (Pos[p+ 1]− a− r)/2) + Pos[p+ 1]

2

= Pos[p+ 1].

This completes the proof by induction.
Again, using the fact that all functions ReachbLR(p, P ) are linear with coefficient

1 on [ActbLR(p),+∞), the function OptimalBroadcast computes correctly the value
Xb
LR = ReachbLR(k−1, Q). The same is true for Y bRL = ReachbRL(k+1, Q). Finally,

we consider three cases : Pos[k] ≤ Xb
LR, X

b
LR < Pos[k] < Y bRL or Y bRL ≤ Pos[k] to

compute the additional power δ that has to be used. By definition ofReachbLR(k−1, P )
and ReachbRL(k + 1, P ), we conclude that P is the optimal value of power to achieve
broadcast by a regular strategy. In view of Lemma 4, this concludes the proof that P is
the optimal value of power to achieve broadcast. The complexity O(n) of the function
is straightforward by its formulation.

Since a regular broadcast strategy is fully determined by the value of P and by the
two possible values of bk for the source agent ak (bk = bk−1 or bk = bk+1), computing
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the optimal power P yields an optimal broadcast strategy. This concludes the proof of
Theorem 2.

4 Centralized convergecast and broadcast on trees and graphs

We start the section by showing that for arbitrary trees the centralized convergecast
problem and the centralized broadcast problem are substantially harder than on lines.

A configuration for convergecast on arbitrary graphs is a couple (G,A) where G
is a n-node weighted graph representing the network and A of size k is the set of the
starting nodes of the agents. A configuration for broadcast additionally specifies the
starting node of the source agent. We consider the centralized convergecast decision
problem and the broadcast decision problem formalized as follows.

Centralized convergecast decision problem
Instance: a configuration (G,A) and a real P .
Question: Is there a convergecast strategy for (G,A), in which each agent uses at most
P battery power ?

Centralized broadcast decision problem
Instance: a configuration (G,A) with a specified source agent and a real P .
Question: Is there a broadcast strategy for (G,A) with the specified source agent, in
which each agent uses at most P battery power ?

We will prove that both these problems are strongly NP-complete. In order to do
this, we consider star configurations, i.e., configurations (G,A) in which G is a star,
i.e., a tree of diameter 2. We define a class of strategies in a star called simple that
consist of the following two phases :

– The strategy starts with a gathering phase lasting time P , in which each agent
uses all its available power to move towards the center of the star and then waits
until time P . The agents that have used all their power during this phase without
reaching the center are called depleted.

– In the second phase, the agents does not move past depleted agents, i.e., never
enter the segment between a leaf and a depleted agent.

The following lemma shows that it is enough to consider simple strategies for converge-
cast and broadcast.

Lemma 8 If there exists a convergecast strategy (respectively a broadcast strategy)
in a star using power P , then there exists a simple convergecast strategy (respec-
tively a simple broadcast strategy) using power P .

Proof Let S be a convergecast or a broadcast strategy. We construct a simple strategy
S′ as follows. In S′, each agent moves towards the center of the star until it has used
all its battery power or has reached the center of the star. This gathering phase lasts
from time 0 to time P . If an agent has not reached the center in strategy S, then it
stops forever in S′. Otherwise, consider time t at which it arrives at the center in S.
Then, in strategy S′, the agent executes at time t′ + P each movement performed at
time t′ ≥ t in strategy S. However, if a movement of an agent would result in the agent
moving past a depleted agent from time r to r′ in S, then in strategy S′ the agent
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waits at the position of the depleted agent instead of moving past it. By construction,
S′ is a simple strategy. Observe that in strategy S′, the non-depleted agents share all
their information at the center of the star at time P . Since two depleted agents cannot
meet, it remains to show that when a non-depleted agent b meets a depleted agent a
at time t in strategy S, they meet at time t+P in S′. The final position of agent a is
not farther from the center in S′ than in S. Hence, any agent b that meets agent a at
time t is at the new position of a in S′ at time t + P . Hence, the meeting between a
and b occurs in S′ as well. If S was a convergecast strategy (respectively a broadcast
strategy) then S′ is a simple convergecast strategy (respectively a simple broadcast
strategy).

Theorem 3 The centralized convergecast decision problem and the centralized
broadcast decision problem are strongly NP-complete for trees.

The proof of Theorem 3 is split into three lemmas. We first show that the centralized
convergecast decision problem is strongly NP-hard, then that the centralized broadcast
decision problem is strongly NP-hard, and finally that both problems are in NP.

Lemma 9 The centralized convergecast decision problem is strongly NP-hard for
trees.

Proof We construct a polynomial-time many to one reduction from the following
strongly NP-Complete problem [30].

3-Partition problem
Instance: a multiset S of 3m positive integers xi such that for 1 ≤ i ≤ 3m,R/4 <

xi < R/2 with R =
∑3m
i=1 xi
m .

Question: Can S be partitioned into m disjoint sets S1, S2, . . . , Sm of size 3, such
that

∑
x∈Sj x = R for 1 ≤ j ≤ m ?

We construct an instance (G,U) of the centralized convergecast problem from an
instance of 3-Partition as follows. The graph G is a star with 4m+ 2 leaves and U is
the set of leaves of G. Hence, there are 4m+2 agents, each located at a leaf of the star.
We consider a partition of the set of agents into three subsets: A, B and C. The subset
A = {ai | 1 ≤ i ≤ m+ 1} contains m+ 1 agents. The leaves containing these agents
are incident to an edge of weight 1. The subset B = {bi | 1 ≤ i ≤ 3m} contains 3m
agents. For 1 ≤ i ≤ 3m, the weight of the edge incident to the leaf containing agent
bi is 2R+1+ xi. The subset C = {c} contains one agent. The leaf containing agent c
is incident to an edge of weight 4R+1. Figure 1 depicts the star obtained in this way.
The battery power P allocated to each agent is equal to 2R+1. The construction can
be done in polynomial time. We show that the constructed instance of the centralized
convergecast problem gives answer yes if and only if the original instance of 3-partition
gives answer yes.

First, assume that there exists a solution S1, S2, . . . , Sm for the instance of the
3-partition problem. We show that the agents can solve the corresponding instance of
the centralized convergecast problem using the following strategy. Agent c moves at
distance 2R from the center and for each 1 ≤ i ≤ 3m, agent bi moves at distance
xi from the center. At this point, all these agents have used all their battery power.
Each agent in A moves to the center of the star. For 1 ≤ i ≤ m and for each of the
three agents bj such that xj ∈ Si, agent ai moves to meet bj and goes back to the
center of the star. The cost of this movement is 2

∑
xj∈Si = 2R, which is exactly
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Fig. 1 Instance of the centralized convergecast decision problem constructed from an instance
of 3-partition.

the remaining battery power of agent ai. Observe that since agents in A have met all
agents in B, agents in A, located at the center of the star, have the information of all
agents except agent c. Then agent am+1 moves to meet agent c. Agents am+1 and c
have the information of all the agents. Hence, this is a solution of the instance of the
centralized convergecast problem.

Now assume that there exists a solution (strategy) to the convergecast problem. By
Lemma 8, we can assume that the convergecast strategy is simple. Consider the star G
after the gathering phase of the simple strategy. Each agent in A is at the center of the
star. For 1 ≤ i ≤ m+1, the agent ai has the remaining power of 2R. For 1 ≤ i ≤ 3m,
the agent bi is at distance xi from the center of the star and agent c is at distance
2R from the center. Since the agents in A are the only agents with remaining battery
power, they must move to collect the information of agents in B∪C. We call this phase
the collecting phase. Observe that since agent c is at distance 2R from the center, it is
impossible for agents in A to transport this information. Indeed, when an agent reaches
c, it has used all its battery power. Hence, the entire information must be collected at
the position of c. In order to collect the information, agents in Amust go to the position
of each agent in B and transport the information of these agents to the center. The
total cost to move these information is at least twice the sum of the distances between
each agent in B and the center. This is equal to 2

∑
i=1 3mxi = 2Rm. Then, this

information must be moved to the position of c. This costs at least 2R. Hence, the
total cost of collecting information after the gathering phase is at least 2R(m + 1).
The amount of power available to the agents for the collecting phase is equal to the
amount of power needed to collect the information, since there are m+ 1 agents each
having power 2R. This means that during the collecting phase, for 1 ≤ j ≤ 3m, agents
cannot collectively use a power larger than 2xi to collect the information of bi.

Suppose by contradiction that during the collecting phase, more than one agent
in A enters an edge f to collect the information of agent bi at distance xi from the
center, for some i such that 1 ≤ i ≤ 3m. Let w be the agent that has reached the
position of bi. If w comes back to the center, it has used at least power 2xi. Since at
least one other agent has used some power to enter edge f , these agents have used
more than 2xi battery power to collect information of agent bi. If w does not come
back to the center, then some other agent has to move the information to the center.
If the agent w stops at distance r from the center, then at least one other agent has to
go to this position (at distance r from the center) and come back. Thus, the cost is at
least (2xi − r) + 2r > 2xi. In both cases, the agents have used more power than 2xi,
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which leads to a contradiction. Hence, for each 1 ≤ i ≤ 3m, there is only one agent
that collects the information of agent bi and enters the corresponding edge.

We can assume, without loss of generality, that agent am+1 is the agent that
transports the information to c. Observe that am+1 cannot collect information from
other nodes since moving to c uses exactly all its remaining power. Hence, only agents
in A′ = A \ {am+1} can collect the information of agents in B. Let S1, S2, . . . , Sm be
the partition of S defined by Si = {xj | the information of bj is collected by ai}, for
each 1 ≤ i ≤ m. We have 2

∑
x∈Si x ≤ 2R since each agent from A′ has battery power

at most 2R. The power needed to collect information of agents in B is 2mR which is
exactly equal to the combined power available to agents in A′. This means that each
agent in A′ must use all its power to collect information and 2

∑
x∈Si x = 2R. Hence,

S1, S2, . . . , Sm is a solution to the instance of 3-partition.

Lemma 10 The centralized broadcast decision problem is strongly NP-hard for
trees.

Proof Again, we construct a polynomial-time many to one reduction from 3-Partition.
The general structure of the proof is similar as in Lemma 9 but details differ.

We construct an instance (G,U) of the centralized broadcast problem from an
instance of 3-Partition as follows. The graph G is a star with 5m leaves and U is the
set of leaves of G. Hence, there are 5m agents, each located at a leaf of the star. We
consider a partition of the set of agents into three subsets: A, B and C. The subset
A = {ai | 1 ≤ i ≤ m} contains m agents. The leaves containing these agents are
incident to an edge of weight 1. The subset B = {bi | 1 ≤ i ≤ 3m} contains 3m
agents. For 1 ≤ i ≤ 3m, the weight of the edge incident to the leaf containing agent
bi is 4R + 1 + xi. The subset C = {ci | 1 ≤ i ≤ m} contains m agents. All leaves
containing an agent in C are incident to an edge of weight 6R + 1. Figure 2 depicts
the star obtained in this way. The battery power P allocated to each agent is equal to
4R+ 1 and agent a1 is the source agent. The construction can be done in polynomial
time. We show that the constructed instance of the centralized broadcast problem gives
answer yes if and only if the original instance of 3-partition gives answer yes.
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Fig. 2 Instance of centralized broadcast problem from an instance of 3-partition.

First, assume that there exists a solution S1, S2, . . . , Sm for the instance of the
3-partition problem. We show that the agents can solve the corresponding instance of
the centralized broadcast problem using the following strategy. For each i, agent ci
moves at distance 2R from the center and for each 1 ≤ i ≤ 3m, agent bi moves at
distance xi from the center. At this point, all these agents have used all their battery
power. Each agent in A moves to the center of the star. Hence, each agent ai obtains
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the information of a1. For 1 ≤ i ≤ m and each of the three agents bj such that xj ∈ Si,
agent ai moves to meet bj and goes back to the center of the star. The cost of this
movement is 2

∑
xj∈Si = 2R. Observe that since agents in A have met all agents in

B, all agents except those in C have the information of a1. Each agent ai moves to
meet agent ci. Each agent ci obtains the information of a1. Hence, this is a solution
to the instance of the centralized broadcast problem.

Now assume that there is a solution (strategy) to the broadcast problem. By
Lemma 8, we can assume that the centralized broadcast strategy is simple. Consider
the star G after the gathering phase of the simple strategy. Each agent in A is at the
center of the star. For 1 ≤ i ≤ m, the agent ai has the remaining power of 4R. For
1 ≤ i ≤ 3m, the agent bi is at distance xi from the center of the star. For 1 ≤ i ≤ m,
agent ci is at distance 2R from the center. Since the agents in A are the only agents
with remaining battery power, they must move to give the information to agents in
B ∪ C. Observe that since each agent ci is at distance 2R from the center, an agent
in A that moves to meet an agent ci has not enough power to meet another depleted
agent afterwards. Hence, each agent ai must meet exactly one agent cj . Without loss of
generality, we can assume that each agent ai meets ci. Before agents in A meet agents
in C, they must meet agents in B. The total cost to give the information to all agents
in B is at least twice the sum of the distances between each agent in B and the center.
This is equal to 2

∑
i=1 3mxi = 2Rm. The total cost to give the information to agents

in C is 2Rm. The amount of power available to the agents in A is 4Rm, which is
exactly the power needed for broadcast. Assume for the sake of contradiction that two
or more agents in A enter the same edge incident to the leaf of an agent bi. In this case,
one of the agents must meet bi. This costs the agent 2xi and other agents have used
some power to enter this edge. This gives a contradiction because the total cost is more
than the available power. Thus, we can assume that each agent bj meets exactly one
agent ai. Let S1, S2, . . . , Sm be the partition of S defined by Si = {xj | bj met ai},
for each 1 ≤ i ≤ m. We have 2

∑
x∈Si x ≤ 2R since the total power that agents in A

can use to meet agents in B is at most 2Rm. The power needed to give information to
agents in B is 2mR which is exactly equal to the combined power available to agents
in A. This means that each agent in A must use all its power to meet agents in B and
2
∑
x∈Si x = 2R. Hence, S1, S2, . . . , Sm is a solution to the instance of 3-partition.

Lemma 11 The centralized convergecast decision problem and the centralized
broadcast decision problem are in NP.

Proof We consider the verifier-based definition of NP. Consider the strategy S of the
agents for an instance of the centralized convergecast or centralized broadcast problems.
We construct the certificate for the instance as follows. We say that a meeting of two or
more agents is useful if at least one of the agents received a new piece of information
during this meeting. Each agent participates in at most k − 1 useful meetings where
k is the number of agents. Hence, there are at most k(k − 1) useful meetings. The
certificate contains the list of all useful meetings in chronological order. For the i-th
meeting, the certificate encodes the identities of the meeting agents and the location of
the meeting: a node xi or an edge (ui, vi) of the graph G. If the meeting has occurred
on an edge, the certificate encodes a variable di. The variable di represents the distance
between ui and the meeting point pi. If a previous meeting of number j has occurred
on the same edge, the certificate encodes if di < dj , or di = dj or di > dj . For
each of the meeting agents, the certificate also encodes the node from which it has
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entered the edge (ui or vi) just before the meeting and the node from which it exits
the edge just after the meeting. We consider the strategy S′ defined as follows. For each
useful meeting in chronological order, the meeting agents move to the meeting location
following a shortest path from their previous position. If the meeting occurs on an edge,
the meeting agents enter and exit the edge using the node encoded in the certificate.
S′ is a convergecast strategy since each time an agent has collected a new piece of
information in S, it collects the same information during the corresponding meeting in
S′. Moreover, the agents use at most as much power in S′ as in S since they move to
the same meeting points using shortest paths. The verifier simulates the strategy S′
defined by the certificate. The verifier first checks that all the agents possess the entire
information at the end of the algorithm. This can be done in polynomial time. Then,
the verifier computes the distance traveled by each agent. These distances are linear
sums of variables di with 1 ≤ i ≤ k(k − 1) and of a constant. Finding an assignment
of the variables, such that the distance traveled by each agent is less or equal than P ,
can be done in polynomial time using linear programming. Thus, the certificate can be
verified in polynomial time.

Theorem 3 is a direct consequence of Lemmas 9, 10 and 11.
Since both decision problems concerning convergecast and broadcast are NP-hard

for the class of trees, the same is true for their optimization counterparts, i.e., comput-
ing the smallest amount of power that is sufficient to achieve convergecast or broadcast.
In spite of that, we will show how to obtain, in polynomial time, a 2-approximation
of the power needed to achieve centralized convergecast on arbitrary graphs and a
4-approximation of the power needed to achieve centralized broadcast on arbitrary
graphs.

Let D(G,A) = max∅(X(A{minx∈X,y∈A\X{dG(x, y)}}, where dG(x, y) is the
distance between x and y in G. The following proposition shows a relation between
D(G,A) and the above optimal power values.

Proposition 1 Consider a configuration (G,A) for convergecast and a configu-
ration (G,A) with a specified source agent for broadcast. Then D(G,A) ≤ 2P cOPT
and D(G,A) ≤ 2P bOPT for any source agent in (G,A).

Proof We prove the proposition for the case of convergecast. The proof for broadcast
is similar. Suppose, by contradiction, that there is a partition of A into X and A \X
such that for each x ∈ X and y ∈ A \X the distance between x and y is greater than
2P cOPT . It means that no agents in X can meet an agent in A\X using power P cOPT .
This contradicts the fact that there is a convergecast strategy in G using battery power
P cOPT . Hence, for every partition of A into X and A \ X, there exist agents x ∈ X
and y ∈ A \X that are at distance at most 2P cOPT .

In view of Proposition 1, the following theorem shows that the convergecast problem
has a polynomial-time 2-approximation.

Theorem 4 Consider a configuration (G,A). There is a polynomial algorithm
computing a convergecast strategy in which each agent uses power D(G,A).

Proof We formulate algorithm KnownGraph which produces the desired convergecast
strategy. The parameters of the algorithm are the graphG and the nodes corresponding
to the initial positions of agents (stored in A[1 : k]).
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Algorithm 1: KnownGraph(a weighted graph G, an array A[1:k] of nodes)
strategy = empty_stack;
V := {A[1]};
P := 0;
repeat

choose a couple (u, v) ∈ V × (A \ V ) such that d(u, v) is minimal;
V := V ∪ {v};
Path := shortest path between u and v;
push(strategy, (v, Path, u));
P = max{P, d(u, v)};

until V = A;
repeat

(v, Path, u) = pop(strategy);
agent starting in v moves to u following path Path;

until strategy = empty_stack;

Let (ui, vi) be the nodes chosen at the i-th iteration of the first loop and let Vi be
the value of V at the end of the i-th iteration. We set u0 = A[1] and V0 = {v0}. We
show, by induction, that at the start of the i-th iteration of the second loop, agents
that started in Vk−i hold collectively all the information. It is clearly true for i = 1.
Assume by induction that it is true for i. The agent that started at vk−i moves to
node uk−i = vk−j for some j > i, during the i-th iteration of the second loop. After
this move, the agent that started at vk−j has the information of the agent that started
at vk−i. Agents in Vk−(i+1) collectively hold all the information. Hence, the property
is true for i + 1 and this concludes the argument by induction. At the end of the
algorithm, the agent at A[1] has all the information since V0 = {A[1]}.

Let A be the set of agents. Consider the partition of A into sets Vi−1 and A\Vi−1.
We have d(ui, vi) ≤ D(G,A) since (ui, vi) is the couple (u, v) ∈ Vi−1 × (A \ Vi−1)
such that d(u, v) is minimal. Hence, no agent will traverse distance larger than 2P cOPT
by Proposition 1.

In O(n3) time, it is possible to precompute all shortest paths between u and v for
all u, v ∈ A. Each iteration of the first repeat loop can be computed in O(n2) time and
there are k− 1 such iterations where k ≤ n is the number of agents. Hence, executing
the first repeat loop takes time O(n3). The execution the second repeat loop takes
time O(n2). Hence, the overall complexity of the algorithm is O(n3).

The above theorem gives the following corollary for the broadcast problem on
arbitrary graphs.

Corollary 3 The broadcast problem on arbitrary graphs has a polynomial-time
4-approximation.

Proof Let (G,A) be a configuration with an arbitrary source agent a. By Theorem 4,
there is a convergecast strategy S for (G,A) using power at most D(G,A) that can
be computed in polynomial time. Let b be the agent that collects all information upon
completion of this strategy. Consider the strategy S′ which consists of performing the
reverse of all moves of S in the reverse order. The strategy S′ is a broadcast strategy
for source agent b. Hence, the strategy S followed by S′ is a broadcast strategy for
source agent a. The required power is at most 2D(G,A) which gives a 4-approximation
of the broadcast problem in view of Proposition 1.
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5 Distributed convergecast and broadcast on trees

In this section, we consider the convergecast and the broadcast problem in the dis-
tributed setting. As explained in the introduction, we consider weighted trees with
agents at every leaf. In view of Proposition 1, the following theorem implies that there
exists a 2-competitive distributed algorithm for the convergecast problem on trees.

Theorem 5 Consider a configuration (T,A) where T is a tree and A contains all
the leaves of T . There exists a distributed convergecast algorithm in which each
agent uses power at most D(T,A).

Proof The idea behind the algorithm is similar to the saturation technique used for
message passing systems (see chapter 2.6.1 of [36]). Each agent starting at a leaf moves
until it reaches the neighbor of its starting position. When an agent reaches a node,
it waits until an agent has arrived from each incident edge except one. When this
happens, the agent with the most remaining power moves via the edge from which no
agent has arrived. One can show that each agent will not move more than D(T,A)
and thus twice P cOPT by Proposition 1. At some point, the saturation occurs, i.e., two
agents meet inside an edge or agents meet at a node coming from all incident edges.
At this point, the convergecast is achieved.

The pseudocode of the algorithm (executed distributedly by all agents) is the fol-
lowing.

Algorithm 2: UnknownTree
collecting = false;
while collecting = false do

Wait until there is at most one port unused by an agent incoming at the current
node;
if all ports of the current node were used by incoming agents then

collecting = true
if the agent has used less power than any other agent present at the node and
collecting = false then

Move through the unused incoming port until you meet another agent or
reach a node;

else collecting = true;
if the agent is inside an edge then collecting = true;

First, we show that if each agent executes Algorithm 2 then, eventually, one agent
will hold all the information. Consider an agent a executing the algorithm. Let Ta(t)
be the subtree rooted at the last visited node and containing all nodes accessible from
the current position of a by shortest paths containing a non-null part of the last edge
traversed by agent a. Hence, when a enters a new node u, u is added to Ta. We show
by induction on the number of nodes of Ta that a has the initial information of every
agent that started at a node of Ta. For |Ta| = 1, this is true since a is the only agent
that started in Ta. The size of Ta grows only when a enters or exits some node v.
When a enters a new node v, we show that any agent that started at v did not move
yet. Assume by contradiction that there is an agent b that started at v and has moved
before the arrival of a. It means that agents have arrived from all but one edge incident
to v. In that case, agent b follows the edge from which no agent has arrived. Hence,
the only possible edge that agent b can follow is the edge taken by agent a to arrive
at v. This leads to a contradiction since agents a and b must have met inside the edge
and agent a would have stopped before reaching v.



Convergecast and Broadcast by Power-Aware Mobile Agents 31

When an agent a moves from a node v of degree δ, there were δ − 1 agents
b1, b2, . . . , bδ−1 that have arrived at v before. By the induction hypothesis, each agent
bi, for 1 ≤ i ≤ δ − 1, has collected all the information from agents starting inside the
subtree Tbi . Since agent a moves in the only direction from which no agent has arrived,
it has the information of every agent that started in Ta = Tb1 ∪Tb2 ∪ · · · ∪Tbδ−1

. This
concludes the proof by induction.

Observe that for each 1 ≤ i ≤ k the tree Tai grows until either ai meets agents
that have arrived from all incoming ports of its current position, or another agent aj
with more power moves in a yet unexplored direction. In the latter case, Tai ⊆ Taj and
the tree Taj will grow under the same conditions. Thus, ∪ki=1Tai will eventually be
equal to T . This happens when either two agents u1, u2 meet inside an edge or δ agents
u1, u2, . . . , uδ meet at a node of degree δ. These agents have the entire information
since Tu1 ∪ Tu2 ∪ · · · ∪ Tuδ = T (δ = 2 if the meeting occurs on an edge).

It remains to show that the agents do not use more battery power than D(T,A).
Let p be the point where some agent a has finished the execution of the algorithm
(when the value of collecting becomes true for this agent) and let v be the last node
visited by a before reaching p. Consider Ta when a exited v. Agent a is the agent
starting in Ta for which the distance between its initial position and the node v was
the smallest, since it was the agent that has used the least power when it arrived at v.
Thus, the distance between the initial position of an agent in Ta and an agent in G\Ta
is less or equal than D(G,A). Hence we conclude that P ≤ D(T,A). By Property 1,
we have that D(T,A) ≤ 2P cOPT and hence the algorithm is 2-competitive.

Again in view of Proposition 1, the following corollary implies that there exists a
4-competitive distributed algorithm for the broadcast problem on trees.

Corollary 4 Consider a configuration (T,A) with a specified source agent, where
T is a tree and A contains all the leaves of T . There exists a distributed broadcast
algorithm in which each agent uses power at most 2D(T,A).

Proof Let (T,A) be a configuration with a specified source agent a. All agents execute
the following algorithm consisting of two phases. In the first phase, each agent executes
algorithm UnknownTree from the proof of Theorem 5 to achieve convergecast. Suppose
that B is the set of agents that get the total information at the end of the execution of
this phase. All agents inB are aware of this fact. Agents inB start the second phase. We
call them active agents. Each active agent backtracks to its initial position, by walking
along the path reverse to the one used in phase 1. On its way, it activates all agents
it meets and conveys all the information to each of them. The process continues until
each agent is activated and is back at its initial position. At this time, all information
and in particular information of the source agent a is known to all agents. The energy
spent is at most 2D(T,A).

The following theorem shows that no distributed algorithm may offer a better
competitive ratio than 2 for convergecast or for broadcast, even if we only consider line
networks.

Theorem 6 Consider any δ > 0, and any value of power P . There exists an
integer n and a configuration Pos[1 : n] of n agents on the line such that :

– there exists a centralized convergecast strategy using power P and there is no
deterministic distributed strategy allowing the agents to solve convergecast when
the amount of power given to each agent is (2− δ)P .
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– there exists a centralized broadcast strategy using power P for source agent
starting at Pos[1] and there is no deterministic distributed strategy for source
agent starting at Pos[1] allowing the agents to solve broadcast when the amount
of power given to each agent is (2− δ)P .

Before proving Theorem 6, we prove two technical lemmas.

Lemma 12 Consider any ε > 0, an amount of power P , and a set {a1, a2, . . . ,
ak, ak+2} of k + 2 agents located at positions Pos[1 : k + 2]. If Pos[k + 2] −
ReachcLR(1, P ) ≤ P − ε, and if k ≥ log(P/ε), there exists i ≤ k + 1 such that
ReachcLR(i, P ) ≥ Pos[i+ 1].

Proof Suppose, by contradiction, that the lemma does not hold. It means that for each
1 ≤ i ≤ k + 1, ReachcLR(i, P ) < Pos[i+ 1]. Therefore, in view of the claim from the
proof of Lemma 5, we have

ReachcLR(k + 1, P ) = 2kReachcLR(1, P ) + (2k − 1)P −Σki=12
k−iPos[i]

= ReachcLR(1, P ) + (2k − 1)P

−Σki=12
k−i(Pos[i]−ReachcLR(1, P ))

≥ ReachcLR(1, P ) + (2k − 1)P −Σki=12
k−i(P − ε)

≥ ReachcLR(1, P ) + (2k − 1)P − (2k − 1)(P − ε)
≥ ReachcLR(1, P ) + (2k − 1)ε

Consequently, if k ≥ log(P/ε), we have ReachcLR(k + 1, P ) ≥ ReachcLR(1, P ) +
P − ε ≥ Pos[k + 2], a contradiction.

Lemma 13 Consider an amount of power P , a distance d > 0, and a set
{a1, a2, . . . , ak} of k agents located at positions Pos[1 : k]. Let R1 be the clos-
est point from Pos[2] that a1 reached. Assume that Pos[2]−R1 = d.

Suppose that all the agents execute the same distributed deterministic al-
gorithm and do not know their initial position, and assume that some agent
a ∈ {a2, a3 . . . , ak} meets agent a1 before any couple of agents in {a1, a2, . . . , ak}
meet. Then, a = a2 and when a2 meets a1, for each 2 ≤ i ≤ k, agent ai is located
on Pos[i]− d.

Moreover, if Rmax is the rightmost point reached by some agent knowing the
initial information of agent a1, then Rmax ≤ Pos[k] + P − 2d.

Proof Since all agents are executing the same distributed deterministic algorithm, let
us consider the execution of the algorithm until some agent meets agent a1. During
this period, all the agents perform exactly the same moves. Since they started simulta-
neously, no agent meets another agent before agent a2 meets a1 at point R1 or to the
left of R1. When agent a2 meets a1, it has moved at least a distance of d. Until this
meeting between a1 and a2, every other agent has also moved a distance of at least d,
and is located at distance d to the left of its starting position. Consequently, no agent
can go further than P − 2d to the right of Pos[k].

Proof of Theorem 6 : Let ε = δP/4 and σ = ε/2 = δP/8. Let l = blog(8/δ)c,
k = l + 2 and n = 2l(l + 2) + 2.
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Fig. 3 The configuration in the proof of Theorem 6.

Consider a set of n agents positioned on a line as follows (See Figure 3). There is
an agent a1 (resp. an) on the left (resp. right) end of the line on position s′0 = 0 (resp.
s2l+1 = `). For each 1 ≤ i ≤ 2l, there is a set Ai of k agents that start on distinct
positions within a segment [si, s′i] of length σ such that for each 1 ≤ i ≤ 2l + 1, the
distance between si and s′i−1 is 2(P−ε). In other words, for each i, si = (2P−3σ)i−σ
and s′i = (2P − 3σ)i.

First, let us consider the execution of the optimal convergecast centralized algo-
rithm for this configuration. We claim that if the amount of power given to each agent
is P , then convergecast is achievable. We show by induction on i that for every i,
ReachcLR(ik + 1, P ) ≥ s′i + P − ε = si+1 − P + ε. For i = 0, ReachcLR(1, P ) =
Pos[1] + P > P − ε = s1 − P + ε. Suppose that ReachcLR((i − 1)k + 1, P ) ≥
si − P + ε. Consider the agents in Ai, i.e., the agents aik+1−j , j ∈ [0, k − 1]. Since
s′i−ReachcLR((i−1)k+1, P ) ≤ P − ε+σ = P −σ < P , and since l+1 ≥ log(P/σ),
we know by Lemma 12 that ReachcLR(k(i − 1) + l + 2, P ) ≥ Pos[k(i − 1) + l + 3].
Since k > l + 1, it follows that ReachcLR(ik, P ) = Pos[ik] + P ≥ si + P =
s′i + P − σ ≥ s′i + P − ε. Consequently, this concludes the proof by induction. Since
ReachcLR(2lk+1, P ) ≥ s2l+1−P + ε ≥ ReachcRL(2lk+2, P ), P is sufficient to solve
convergecast. Notice that the same strategy guarantees broadcast for source agent a1
for configuration Pos[1 : n] and power P .

Consider any distributed deterministic algorithm where the amount of power given
to each agent is (2− δ)P , yielding a strategy S of the agents. A step in S is a moment
when two agents meet. Let tl,i (resp. tr,i) be the first step where an agent from Ai
meets an agent from Ai′ with i′ < i (resp. i′ > i). Let Ri (resp. Li) be the rightmost
point (resp. the leftmost point) reached by any agent from Ai after some agent in Ai
has met an agent from Ai′ with i′ < i (resp. i′ > i). For any 1 ≤ i < j ≤ 2l + 1, let
Ai,j = Ai ∪Ai+1 . . . ∪Aj .

We show by induction on time t that for each i ∈ [1, l] such that tl,i ≤ t and for
each j ∈ [l + 1, 2l] such that tr,j ≤ t, the following properties hold:

(i) tl,i < tl,i′ for each i′ ∈ [i+ 1, l] and tr,j < tr,j′ for each j′ ∈ [l + 1, j − 1],
(ii) for each i′ ∈ [i+ 1, l], if tl,i′ > t then tr,i′ > t, and for each j′ ∈ [l + 1, j − 1],

if tr,j′ > t then tl,j′ > t
(iii) Ri ≤ si+1 − (2i+2 − 2)ε and Lj ≥ s′j−1 + (22l−1−j − 2)ε,
(iv) no agent inAi′ , i′ ≥ lmeets any agent fromA1,l−1 and no agent inAj′ , j′ ≤ l+1

meets any agent from Al+2,2l+1.

First, consider t = 0. Clearly, R1 ≤ s′0 + 2P − δP = 2P − 4ε = s1 − 2ε and
L2l+1 ≥ s2l+1 − 2P + δP = s2l + 2ε. Since all agents in A1,2l execute the same
algorithm, they all perform the same moves until either the leftmost agent of A1 meets
a0 (at step tl,1), or the rightmost agent of A2l meets a2l+1 (at step tr,2l). In the
first case, it shows that tl,1 < tl,i and tl,1 < tr,i for any i ≥ 2. By Lemma 13,
R1 ≤ s′1 + (2 − δ)P − 2(s1 − R0) ≤ s2 − 2P + 2ε + 2P − 4ε − 2(2ε) = s2 − 6ε.
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By symmetry, in the second case, tr,2l < tr,i and tr,2l < tl,i for any i ≤ 2l − 1 and
L2l ≥ s′2l−1 + 6ε. In both cases, properties for (i)− (iii) hold for t = 0. Notice that
for any i, j ∈ [1, 2l], no agent in Ai has met an agent of Aj . Hence, property (iv) hold
for t = 0.

Suppose that the induction hypothesis holds for all t′ < t and let i = max{i′ |
tl,i′ < t}+1 and j = min{j′+1 | tr,j′ < t}− 1. Note that by (iv), we have i ≤ l− 1
and j ≥ l + 2. By (i) and (ii), before step t, no agent in Ai′ , i ≤ i′ ≤ j has met
any other agent from a set Ai′′ , i′ 6= i′′. Thus, since all agents in Aij execute the
same deterministic distributed algorithm starting simutaneously, they have performed
exactly the same moves and they have not met any other agent before step t. Suppose
that an agent from Aij meets another agent at step t. Then, either the leftmost agent
ai from Ai meets an agent ai′ from Ai′ with i′ < i, or the rightmost agent from Aj
meets an agent from Aj′ with j′ > j.

By symmetry, it is enough to consider only one case. In the following, we assume
that ai ∈ Ai meets an agent ai′ ∈ Ai′ with i′ < i at step t. In this case, t = tl,i and
thus tl,i < tl,i′ and tl,i < tr,i′ for each i < i′ ≤ j; consequently, properties (i) and (ii)
hold for t. Moreover, by induction hypothesis, the meeting between ai and ai′ occurs at
a point p ≤ Ri′ ≤ Ri−1 ≤ si−(2i+1−2)ε. First suppose that i ≤ l−1. By Lemma 13,
we have Ri ≤ s′i+2P −δP −2(2i+1−2)ε = si+1−2P +2ε+2P −4ε−2i+2ε+4ε =
si+1 − (2i+2 − 2)ε, and thus property (iii) and (iv) holds for t. Then suppose that
i = l ≥ log(8/δ) − 1. We have R′i ≤ sl − (8/δ − 2)δP/4 = sl − 2P + δP/2 <
sl − 2P + δP . But this is impossible since the initial position of the leftmost agent a
of Al is Pos[lk + 1] ≥ sl and the power available to a is 2P − δP . This concludes
the proof by induction. In particular, no agent from A1,l ever meets any agent from
Al+1,2l+1 and consequently, S is neither a distributed convergecast strategy nor a
distributed broadcast strategy for any source agent. ut

Theorems 5 and 6 show that for the distributed convergecast problem on the class
of trees, the competitive ratio 2 is optimal.

6 Conclusion and open problems

In the centralized setting, we showed that the breaking point in complexity between
polynomial and NP-hard, both for the convergecast and for the broadcast problem,
is already present inside the class of trees. Namely, agents’ optimal power and the
strategy using it can be found in polynomial time for the class of lines but it is NP-
hard for the class of arbitrary trees. Nevertheless, we found polynomial approximation
algorithms for both these problems. It remains open if better approximation constants
can be found.

The problem of a single information transfer by mobile agents between two station-
ary points of the network, which we called carry in the case of lines, is also interesting.
In particular, it is an open question whether the problem of finding optimal power for
this task is NP-hard for arbitrary tree networks or if a polynomial-time algorithm is
possible in this case. Our reduction from 3-partition is no longer valid for this problem.

In the distributed setting, we showed that 2 is the best competitive ratio for the
problem of convergecast. However, our distributed algorithm for the broadcast prob-
lem is only 4-competitive. It remains open to find the best competitive ratio for the
broadcast problem.
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Additional natural questions related to our research include other variations of the
agent model, e.g., agents with unequal power, agents with non-zero visibility, labeled
agents in the distributed setting, as well as fault-tolerant issues, such as unreliable
agents or networks with possibly faulty components.
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