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FEATURED REVIEW

This paper proves a number of spectacularly strong results on subanalyticity properties of
Carnot-Carathéodory distances arising from generic real analytic subriemannian metrics.
The main theorems say that: (T1) generically, the germ at a point q0 of the function
q 7→ ρ(q) def= dist(q, q0) is subanalytic if the dimension n of the manifold and the dimension
k of the distribution satisfy n ≤ (k − 1)k + 1, (T2) generically (and, in fact, on the
complement of a set of distributions of infinite codimension), small balls {q : ρ(q) ≤ r}
are subanalytic if k ≥ 3, and (T3) generically, the germ of ρ at q0 is not subanalytic if
n ≥ (k − 1)

(
k2

3 + 5k
6 + 1

)
. Furthermore, several of the paper’s results are much more

concrete than the word “generically” might suggest, since they are proved by exhibiting
a very explicit set of conditions on the distribution—which happen to be generic—
under which the conclusion holds. For example, (T1) is a consequence of the much
stronger result asserting that (T4) for every real analytic subriemannian structure whose
distribution is “medium fat,” ρ is subanalytic at q0, together with the observation (proved
in [1]) that medium fatness is a generic property if n ≤ (k−1)k+1. Statement T4 is a far-
reaching generalization of earlier work on the subject, where subanalyticity was proved
for “strongly bracket-generating” (also known as “fat”) distributions, a very restrictive
class introduced by R. Strichartz, cf. [5, 6].

These results continue the work by several authors (e.g., Sussmann [7], Ge [3],
Agrachev-Sarychev [1], Jacquet [4]) who had investigated the subanalyticity of Carnot-
Carathéodory distances and proved similar conclusions for much more restrictive classes
of metrics. In a broader sense, the paper belongs to a program of research espoused by
some differential-geometric control theorists, who proposed to study properties of optimal
controls going beyond the first-order conditions given by the Pontryagin Maximum
Principle, with the objective of establishing compactness results that might lead to
conclusions about the structure of the value function. What makes this paper a truly
remarkable tour de force is how far-reaching the new results are, and how the proofs
combine a rich variety of techniques in ingenious and often unexpected ways.

I will now state the main definitions and results more precisely, and then outline the
main ideas of some the proofs.

If ν = +∞ or ν = ω, a distribution of class Cν on a manifold M of class Cν is a linear
subbundle ∆ of the tangent bundle TM of M . The dimension—or rank— of ∆ is its fiber
dimension. A distribution ∆ is bracket-generating if the Lie algebra L(∆) of vector fields
generated by the set Γ∞(∆) of all sections of ∆ of class C∞ satisfies the “Hörmander
condition” that {V (q) : V ∈ L(∆)} = TqM at every q ∈ M , where TqM is the tangent
space of M at q. A subriemannian manifold of class Cν is a tripleM = (M,∆, g), where
M is a manifold of class Cν , ∆ is a bracket-generating distribution of class Cν on M , and
g is a Riemannian metric on ∆ (i.e., a map q 7→ gq such that gq is a symmetric positive
definite bilinear form on ∆(q) for each q) of class Cν . An admissible path is a Lipschitz
integral arc of ∆. Clearly, an admissible path γ : [a, b] 7→ M has a well-defined length
‖γ‖, given by ‖γ‖def=

∫ b
a

√
gγ(t)(γ̇(t), γ̇(t)) dt. If M is connected, then any two points q, q′

can be joined by an admissble path γ, so we can define the distance dM(q, q′) to be the
infimum of the lengths of all admissible paths from q to q′ Given q, if q′ is sufficiently
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close to q, then the infimum defining dM(q, q′) is in fact a minimum.
A distance function dM arising from a subriemannian manifold M = (M,∆, g) of

class Cν with M connected is a Carnot-Carathéodory distance of class Cν .
Finally, if M is a real-analytic manifold, then a subriemannian structure on M with

a k-dimensional distribution is a section of class C∞ of the bundle SBRk(M) over M
whose fiber SBRk

q (M) at each point q of M is the set of pairs (S, g) consisting of a k-
dimensional subspace of the tangent space Tq and a positive definite quadratic form g on
S. The set Sec∞(SBRk(M)) of all such sections can be endowed with the C∞ Whitney
topology. A property of real analytic subriemannian structures holds generically if there
is an open dense subset G of Sec∞(SBRk(M)) such that the property holds for all real
analytic members of G.

I now move on to the proofs. To convey the flavor, and show the rich and varied
ideas and techniques that are brought together by the authors, I shall limit myself to
one of the results, namely, (T2).

Since the results are local, we may take M to be Rn and work on a neighborhood
N of q0 on which there is a g-orthonormal basis X = (X1, . . . , Xk) of Cω sections of the
distribution ∆. The admissible curves are then exactly the Lipschitz curves ξ : Iξ 7→ N
defined on some compact interval Iξ = [aξ, bξ] that satisfy ξ̇(t) =

∑k
i=1 ui(t)Xi(ξ(t)) for

a.e. t ∈ Iξ for some “control” uξ = (u1
ξ , . . . , u

k
ξ ) ∈ L∞(Iξ,Rk), which is then uniquely

determined by ξ. Clearly, if ξ : [a, b] 7→ N is admissible, then the subriemannian length
ΛM(ξ) of ξ is the L1 norm of uξ. Furthermore, ξ can be reparametrized so as to yield
an admissible curve γ : [0, 1] 7→ N which is PCAL (parametrized by constant times arc-
length), i.e., having the property that ‖uγ(t)‖ = ΛM(ξ) = ΛM(γ) for a.e. t ∈ [0, 1].
Then the L2 norm of uγ is also equal to ΛM(γ). If γ : [0, 1] 7→ N is a PCAL
length-minimizer, and ζ : [0, 1] 7→ N is an arbitrary admissible curve with the same
endpoints, then ‖uγ‖L2 = ‖uγ‖L1 = ΛM(γ) ≤ ΛM(ζ) = ‖uζ‖L1 ≤ ‖uζ‖L2 , so γ is also
an energy-minimizer, i.e., γ minimizes the L2 norm of the control among all admissible
curves ζ : [0, 1] 7→ N with the same endpoints as γ. Conversely, if γ is an energy-
minimizer, then γ must be PCAL (for otherwise its PCAL reparametrization η would
satisfy ‖uη‖L2 = ‖uη‖L1 = ‖uγ‖L1 < ‖uγ‖L2 ), and γ is a lenght-minimizer. (Indeed,
let ζ : [0, 1] 7→N be admissible with the same endpoints as γ. Let η be its PCAL
reparametrization. Then ΛM(γ)=‖uγ‖L1 =‖uγ‖L2 ≤‖uη‖L2 =ΛM(η)=ΛM(ζ). ) Let

Ydef=L2([0, 1],Rk), and let Ω be the set of all u ∈ Y such that the Cauchy problem
q̇(t) =

∑k
i=1 ui(t)Xi(q(t)), q(0) = q0, has a solution ξu : [0, 1] 7→ N (which is obviously

unique). Then Ω is open in Y, and the map u 7→ ξu is continuous from (Ω, weak) to
C0([0, 1],Rn). Define the “endpoint map” f : Ω 7→ N by f(u) = ξu(1) for u ∈ Ω. For
R > 0, let BR = {u ∈ Y : ‖u‖

L2 ≤ R}, UR = {u ∈ Y : ‖u‖
L2 = R}, BMR

def={q ∈ M :

ρ(q) ≤ R}, SMR
def={q ∈ M : ρ(q) = R}. Fix R such that BR ⊆ Ω. Then BMR ⊆ N , and

BMR is compact, because BMR = f(BR), BR is weakly compact, and f is continuous from
(Ω, weak) to Rn.

For 0 < r < R, let Ωmin
r be the set of energy-minimizing controls of norm r, that

is, the set of all u ∈ Ω such that ‖u‖
L2 = r and ρ(f(u)) = r. Then Ωmin

r is strongly
compact and SMr = f(Ωmin

r ). (Indeed, if û = {uj}∞j=1 is a sequence in BR, then û
has a subsequence ũ = {uj(`)}∞`=1 that weakly converges to a control u ∈ BR, and then
f(uj(`)) → f(u) as ` → ∞. If 0 < r < R and q ∈ SMr , then we can pick the uj such
that ‖uj‖L2 ≤ r + 2−j and f(uj) = q. It follows that ‖u‖

L2 ≤ r and f(u) = q. But
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then ‖u‖
L2 = r, because ρ(q) = r, so u ∈ Ωmin

r , and then q ∈ f(Ωmin
r ), showing that

SMr = f(Ωmin
r ). If û is a sequence in Ωmin

r then the weak limit u of the weakly convergent
subsequence ũ will satisfy ‖u‖

L2 = r, because ρ(f(u)) = lim`→∞ ρ(f(uj(`))) = r. So ũ
converges strongly to u, proving the compactness of Ωmin

r .)
Since SMr = f(Ωmin

r ), the subanalyticity of SMr would follow if we could somehow
replace Ωmin

r by a compact subanalytic subset of some finite-dimensional space Rs. To
do this, a more detailed analysis of the minimizing controls is needed. Let fr denote
the restriction of f to the sphere Ur. Then Ur is a C∞ Hilbert submanifold of Y of
codimension one, and fr is a map of class C∞, depending smoothly on r for 0 < r < R
(i.e., the map ]0, R[×U1 3 (r, u) 7→ f(ru) is smooth). Let Crit(fr) denote the set of
critical points of fr. Then Ωmin

r ⊆ Crit(fr). (Reason: if u ∈ Ωmin
r but u /∈ Crit(fr), then

we can let us(t) = su(st) for 0 < s ≤ 1, 0 ≤ t ≤ 1; then ‖us‖L2 = sr, f(us) = ξu(s),
and us → u as s ↑ 1; therefore us /∈ Crit(fsr) if 1− s is small enough; if we pick such an
s, then f(us+h) ∈ f(Usr) if 0 < h < 1− s and h is small enough, so ρ(f(us+h)) ≤ sr for
such h, contradicting the fact that us+h ∈ Ωmin

(s+h)r, since u ∈ Ωmin
r .)

The inclusion Ωmin
r ⊆ Crit(fr), which is a special case of the “Pontryagin Maximum

Principle” of optimal control theory, is the basic necessary condition for a control u to
be an energy-minimizer. Controls that belong to ∪rCrit(fr) are called “extremal.” For
u ∈ Ω\{0}, let Eu = {v ∈ Y : 〈v, u〉 = 0}, and write Au = Df(u)(Eu), Bu = Df(u)(Y).
Then a control u ∈ Ur is extremal iff Au 6= Rk. This can happen in three mutually
exclusive ways: (1) Au 6= Rk but Bu = Rk, (2) Au = Bu 6= Rk, (3) Au 6= Bu 6= Rk. If
u satisfies (1) or (3) then u (or its corresponding trajectory ξu) is a normal extremal. If
u satisfies (2) or (3) then u is an abnormal extremal. (Thus if u satisfies (3) then it is
both normal and abnormal. If u satisfies (1) then it is strictly normal, and if it satisfies
(2) then it is strictly abnormal.) Clearly, a control u is extremal iff there exists a vector
λ ∈ Rk\{0} such that 〈λ, Df(u)v〉 = 0 for all v ∈ Eu. In that case, there exists a unique
ν ∈ R such that 〈λ, Df(u)v〉 = ν〈u, v〉 for all v ∈ Y. Then u is normal if λ can be chosen
so that ν 6= 0, and abnormal if λ can be chosen so that ν = 0.

The functional Y 3 v 7→ 〈λ, Df(u)v〉 can be represented as follows. Let Rk be the
space of k-dimensional real row vectors. Let µλ : [0, 1] 7→ Rk be the unique solution µ
of the “adjoint equation” µ̇(t) = −

∑k
i=1 uiξ(t)µ(t) · ∂Xi∂q (ξ(t)) such that µ(1) = λ. Then

〈λ, Df(u)v〉 =
∫ 1

0 (
∑k

i=1 vi(t) 〈µλ, Xi(ξu(t))〉 dt for all v ∈ Y. So u is extremal iff there
exists an “extremal adjoint vector” (EAV) for u, i.e., a nontrivial solution µ of the
adjoint equation for which there is a real constant ν (the “abnormal multiplier” associated
to µ) such that 〈µ(t), Xi(ξu(t))〉 = νui(t) for i = 1, . . . , k for a.e. t. Furthermore, u is
normal (resp. abnormal) if µ can be chosen so that ν 6= 0 (resp. ν = 0).

Let hi : T ∗N 7→ R be the momentum functions of the vector fields Xi, given by
hi(q, p)def= 〈p, Xi(q)〉 for q ∈ N , p ∈ T ∗qN . Define h = 1

2

∑k
i=1 h2

i . If µ is an EAV for u, with
abnormal multiplier ν, then the derivative of h along the curve t 7→ Ξ(t) = (ξu(t), µ(t))
in T ∗N is the sum σ(t) =

∑k
i=1

∑k
j=1 hi(Ξ(t))uj(t)〈µ(t), [Xj , Xi](ξ(t))〉. But σ(t) ≡ 0,

because σ(t) = ν
∑k

i=1

∑k
j=1 ui(t)uj(t)〈µ(t), [Xj , Xi](ξ(t)). So h is constant along Ξ. If

ν 6= 0, then we can normalize µ so that ν = 1, and then the constant value ch,Ξ of h
along Ξ is just ‖u(t)‖. So ξu is PCAL, and it is easily verified that the curve Ξ is an
integral curve of the Hamilton vector field ~h arising from h. It follows that an admissible
curve [0, 1] 3 t 7→ ξ(t) ∈ N is a normal extremal iff it is the projection on N of a curve
[0, 1] 3 t 7→ Ξ(t) ∈ T ∗N in the cotangent bundle of N which is an integral curve of ~h
such that the constant value ch,Ξ of h along Ξ is nonzero, and in that case the control
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uξ = (u1
ξ , . . . , u

k
ξ ) is given by uiξ(t) = hi(Ξ(t)), so ‖u‖

L2 =
√

2ch,Ξ.
Now, if 0 < r < R we let C(r) = {p ∈ T ∗q0N :

∑k
i=1 hi(q0, p)2 = r2}. For each

p ∈ C(r) we let Γ̃p be the maximal integral curve of ~h such that Γp(0) = (q0, p).

Then the domain of Γ̃p contains the interval
[
0, Rr

]
. Let Γp be the restriction of Γ̃p

to [0, 1]. Write Γ̃p = (γ̃p, µ̃p), Γp = (γp, µp), so γp is a normal extremal for to a control
vp, and µp is a field of covectors along γp. Let ϕr be the map C(r) 3 p 7→ f(vp).
Let Cmin(r) = {p ∈ C(r) : ρ(γp(1)) = r}. Then SMr = ϕr(Cmin(r)). If it was true that
(I) every energy-minimizer is a normal extremal, and (II) if 0 < r < R, then Cmin(r)
contains a bounded subset Cb(r) such that SMr = ϕr(Cb(r)), then the subanalyticity of
SMr would follow. (Indeed, fix δ such that δ > 0 and B

def={q : ‖q − q0‖ ≤ δ} ⊆ BMr
2

. Let r′

be such that 0 < r′ < r and BMr′ ⊆ B. Pick compact subanalytic subsets K, K ′ of C(r),
C(r′), respectively, such that Cb(r) ⊆ K and Cb(r′) ⊆ K ′. Let J1 = {p ∈ K : γp(1) ∈ B},
J2 = {p ∈ K : (∃p′)(∃t)(p′ ∈ K ′ ∧ 0 < t < r

r′ ∧ γp(1) = γ̃p′(t))}. Then K\(J1 ∪ J2) is a
subanalytic subset of K, so ϕr(K\(J1 ∪J2)) is subanalytic, and ϕr(K\(J1 ∪ J2)) = SMr ,
so SMr is subanalytic as well.)

Conditions (I) and (II) are obviously true if k = n, i.e., in the Riemannian case, but
they are false in general. Furthermore, to prove subanalyticity of small subriemannian
spheres it suffices to prove (I) and (II). The way Agrachev and Gauthier do it is a
remarkable technical achievement, which elegantly brings combines a variety of methods
from optimal control theory that had been developed for totally different purposes.

To begin with, one needs some results about the second variation of an extremal
control, especially the theory of the “index.” If F is a map of class C2 from a Banach
manifold U to a finite-dimensional manifold M , and ū is a critical point of F , then F
has a well defined Hessian (or “intrinsic second derivative”) HesūF at ū. By definition,
HesūF is a quadratic map from kerDF (ū) to coker DF (ū), given by

HesūF (v) = 2 lim
t↓0

t−1Θ
(
F (γ(

√
t))− F (ū)

)
for v ∈ kerDF (ū) ,

if Θ : TF (ū)M 7→ coker DF (ū) is the canonical projection, and γ : [−ε, ε] 7→ U is any
C2 curve such that γ(0) = ū and γ̇(0) = v. If λ : TF (ū)M 7→ R is a nontrivial linear
functional that annihilates imDF (ū), then we can define the index indF (ū, λ) to be the
supremum of the numbers dimV − dim cokerDF (ū), taken over all linear subspaces V
of ker DF (ū) such that the quadratic form λ · HesūF is positive definite on V . Then
−dimM ≤ indF (ū, λ) ≤ +∞. (If ξ is a PCAL extremal of length r, and λ, ν are a
covector in T ∗ξ(1)M\{0} and a real number such that 〈λ, Dfr(uξ)v〉 = ν〈uξ, v〉 for all
v ∈ Y, then (λ ·Hesuξfr)(v) = 〈λ, D2f(uξ)(v)〉 − ν‖v‖2 for all v ∈ Y.)

The index ind(ξ, λ, ν)def=indfr(uξ, λ) of the extremal ξ, relative to the multipliers
λ, ν, is then well defined. The key facts about the index are then (F1) the function
(u, λ, ν) 7→ ind(ξu, λ, ν) is lower semicontinuous, and (F2) if u is a minimizer then
ind(ξu, λ, ν) < 0 for some (λ, ν). Furthermore, there is a class of abnormal extremals,
called “Goh extremals,” with important special properties. Precisely, a Goh multiplier
for an extremal ξ is a multiplier (λ, 0) such that the adjoint vector µλ(t) annihilates the
vectors [Xi, Xj ](ξ(t)) for all i, j, t. It can then be proved that (F3) if ind(ξu, λ, 0) < 0
then (λ, 0) is a Goh multiplier for ξ. A Goh extremal is an extremal that admits a Goh
multiplier. Then if there do not exist Goh extremals it follows that the spheres SMr are
subanalytic for small r. (The argument is as follows. First, every minimizer must be a
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normal extremal, because if a minimizer ξ was strictly abnormal then (F2) tells us that
ξ admits a multiplier (λ, ν) such that ind(ξ, λ, ν) < 0, and then the strict abnormality
of ξ implies that ν = 0, so (λ, 0) must be a Goh multiplier for ξ, and we have reached
a contradiction. Therefore (I) holds. To prove (II), we define Cb(r) to be the set of
all p ∈ Cmin(r) such that ind(γp, µp(1), ν) < 0 for some ν. Then ϕr(Cb(r)) = SMr
thanks to (F2). Let us prove that Cb(r) is compact. Pick a sequence {pj}∞j=1 in Cb(r).
Then the controls vpj belong to Ωmin

r , which is compact. Therefore, by passing to
a subsequence, we may assume that vpj converge to a limit v, which gives rise to a
minimizing trajectory ξ. If the sequence {pj}∞j=1 is unbounded, then we may assume,
after passing to a subsequence, that ‖pj‖ → ∞. If we let p̃j = pj

‖pj‖ , then we may
assume, after passing to a subsequence, that the p̃j converge to a limit p̃. Since each µp̃j
is an adjoint vector for ξj with multiplier 1

‖pj‖ , the function µp̃ is an adjoint vector for
ξ with multiplier 0, i.e., an abnormal multiplier. The lower semicontinuity of the index
implies that ind(ξ, µp(1), 0) < 0. But then ξ is a Goh extremal, and we have reached a
contradiction. So {pj}∞j=1 is bounded, and then it has a subsequence that converges to a
p ∈ C(r). The corresponding control vp is then v, which is a minimizer, so p ∈ Cmin(r).
Finally, the lower semicontinuity of the index implies that p ∈ Cb(r).)

To conclude the proof of (T2), I shall now sketch the beautiful argument used by
Agrachev and Gauthier to show that for k ≥ 3, generically, there are no Goh extremals.
Suppose ξ is a Goh extremal, so that there exists an adjoint vector t 7→ µ(t) satisfying
the conditions 〈µ(t), Xi(ξ(t))〉 = 0 and 〈µ(t), [Xi, Xj ](ξ(t))〉 = 0 for all t, i, j. Assume, in
addition, that uξ ∈ C∞. Differentiation of the k(k−1)

2 identities 〈µ(t), [Xi, Xj ](ξ(t))〉 = 0,
for i < j, yields

∑k
`=1 u`(t)〈µ(t), [X`, [Xi, Xj ]](ξ(t))〉 = 0. This is a system of k(k−1)

2

equations in the k unknowns u1(t), . . . , uk(t). If k ≥ 3 then k(k−1)
2 ≥ k, so the system

contains at least k equations, and then the existence of a nontrivial solution requires
at least one condition involving the coefficients. Successive differentiations yield more
conditions involving Lie brackets of higher and higher orders. The final result, after one
carefully keeps track of all these identitites (as the authors do in the paper), is that if
k ≥ 3 then the conditions for existence of smooth Goh extremals are only satisfied on a
set of infinite codimension. So, generically, no smooth Goh extremals can exist if k ≥ 3.

Finally, one has to infer the nonexistence of Goh extremals from the nonexistence
of smooth Goh extremals. At this point, the following remarkable result from control
theory comes to the rescue: for a control system q̇ = f(q, u), u ∈ U , with U compact
subanalytic and f real analytic in q and u, if two points q̄, q̂ are such that there exists
a trajectory [a, b] 3 t 7→ q(t) for a measurable control [a, b] 3 t 7→ u(t) ∈ U such that
q(a) = q̄ and q(b) = q̂, then there exists a trajectory [a, b] 3 t 7→ q̃(t) such that q̃(ã) = q̄
and q̃(b̃) = q̂, for a control [ã, b̃] 3 t 7→ ũ(t) ∈ U which is analytic on an open dense
subset of [ã, b̃]. This rather surprising fact was proved in 1986 in Sussmann [8] (cf.
also [9] for a more detailed proof) as part of a study of regularity properties of optimal
controls, and also by Gauthier and Kupka in 1996 in [2] for different reasons, arising
from their work on observability. In our situation, it is used to prove that if there
exist no smooth nontrivial Goh controls then there exist no nontrivial Goh controls.
This is done by considering the system consisting of the equations q̇ =

∑k
i=1 uiXi(q),

µ̇ = −
∑k

i=1 uiµ · ∂Xi∂q (q), ż =
∑k

i=1〈µ, Xi(q)〉2 +
∑k

i=1

∑k
j=1〈µ, [Xi, Xj ](q)〉2, for q, µ,

and a new scalar variable z. If ξ : [a, b] 7→ N is a Goh extremal, then ξ gives rise, in an
obvious way, to a solution Ξ of the new system, going from a point (ξ(a), µ̄, 0) to a point
(ξ(b), µ̂, 0). It follows that there is a trajectory Ξ̃ going from (ξ(a), µ̄, 0) to (ξ(b), µ̂, 0),
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for a control ũ which is analytic on an open dense subset of its domain. Clearly, z ≡ 0
along Ξ̃. If I is a nontrivial interval on which ũ is analytic, then the restriction of Ξ̃ to
I is a nontrivial smooth Goh extremal, and the proof is complete.

This concludes the outline of the proof of (T2). The proofs of the other two main
results require other ideas, in particular a careful analysis of nilpotent approximations
of subriemannian structures. Lack of space prevents me from going into the details
and doing full justice to the technical virtuosity of the authors, but the proof that has
just been sketched for (T2) should suffice to establish that this is a major, impressive,
masterly piece of work, which represents a significant step forward in our understanding
of subriemannian metrics, and constitutes a magnificent success story for the field of
differential-geometric control theory.

Reviewed by H. J. Sussmann1
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