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CONSENSUS OF MULTIAGENT SYSTEMS UNDER
COMMUNICATION FAILURE*

MOHAMED BENTAIBI , LAURA CARAVENNAT, JEAN-PAUL A. GAUTHIER}, AND
FRANCESCO ROSSI®

Abstract. We consider multi-agent systems with cooperative interactions and study the conver-
gence to consensus in the case of time-dependent connections, with possible communication failure.

We prove a new condition ensuring consensus: we define a graph in which directed arrows cor-
respond to connection functions that converge (in the weak sense) to some function with a positive
integral on all intervals of the form [¢, +o00). If the graph has a node reachable from all other indices,
i.e. “globally reachable”, then the system converges to consensus. We show that this requirement
generalizes some known sufficient conditions for convergence, such as Moreau’s or the Persistent Exci-
tation one. We also give a second new condition, transversal to the known ones: total connectedness
of the undirected graph formed by the non-vanishing of limiting functions.
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1. Introduction. The study of multi-agent interacting systems is crucial in con-
trol theory, both for intrinsic theoretical interests and for the numerous applications,
see e.g. [1,4-6,12,15, 24,26, 33,34, 37,41]. One of the main issues is the problem
of consensus, i.e. of verifying or ensuring that all agents reach a common value, see
e.g. [3,9,10,16,19,20,27,31,35,36,38,39,44]. This is the problem that we address in
this article.

One of the open problems for multi-agent systems is to understand their be-
haviour under communication failure. It has been studied in many contributions, see
e.g. [9,19,20,28,43]. Among them, an interesting line of contributions focuses on suffi-
cient conditions that ensure consensus. A typical example is the condition introduced
by Moreau in [31], which is a generalization of the so-called persistent excitation, see
e.g. [2,11,13,14,18,40,43]: if connections between agents are activated for a sufficient
amount of time and on a network with a suitable structure, then consensus occurs. We
discuss it in detail in § 4.2. Another very relevant condition, introduced by Hendrickx
and Tsitsiklis, is called the cut-balance assumption, see [25,29]. We will discuss it in
detail in § 4.3. The main result of our article is to provide two new conditions ensuring
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convergence of multi-agent systems. We show through examples that such conditions
generalize the Moreau condition, and that our analysis and results are transversal to
the cut-balance assumption: there are situations where our conditions ensure consen-
sus convergence while the cut-balance assumption does not hold, but also opposite
cases where our result cannot be applied while the cut-balance assumption works.

More in detail, we consider the system, for j =1,..., N,
N
(1.1) T = Zujk(t) (xg —x5) , where u;,(t) > 0 for a.e. t > 0.
k=1

It is a linear system of N agents in R?, indexed by j, that interact with a cooperative
rule. The influence of agent k on agent j is given by the function wj : [0, +00) — R
that we assume to be integrable on compact intervals. We highlight that interactions
are time-dependent functions that do not depend on the state. By the cooperative
rule, see [42], we mean that all components of the Jacobian Ok, are nonnegative for
k # 7, thus uj; > 0 in case of (1.1).

In this model, when 0 < u;,(t) < 1, the idea is that the full connection is given
by uj; = 1, while lower values model communication failure. For full connection,
it is easy to prove that, for any initial configuration of x;, the system converges to
consensus: there exists a common value z* such that lim; ;. z;(t) = «* for all j.
The main question of this article is the following;:

Question: Which “minimal” properties on the u;i guarantee that the system con-
verges to consensus for any initial condition?

This question can be seen as a request of minimal level of service to ensure con-
sensus. It has been extensively studied in the community. The contributions that are
closer to our approach are the following:

e Moreau condition: In [31], Moreau introduces a condition for linear sys-
tems ensuring convergence, based on defining a graph: for some fixed p, an
arrow from agent j to agent k is built if the connection function satisfies

t+T
/ ujp(s)ds > >0
t

forallt > 0 and some T' > 0. If u;; are bounded and the resulting graph has a
node that can be reached from all other nodes, i.e. “globally reachable”, then
the system exponentially converges to consensus. Associated estimations of
the rate of convergence can be found in [18]. In [17], the case of second-order
systems is tackled. More restrictive conditions, known as Persistent Excita-
tion or Integral Scrambling Coefficients, are also introduced and discussed
in [2,11,13,14].

e Cut-balance: In [25], the cut-balance condition assumes that jOT ug;(t) <
+o0o for all T > 0 and that there exist a constant K > 0 such that for all
subsets of agents S C {1,..., N} and for all ¢ > 0 it holds

S ) <K Y wg(h).
JESkES jES,k¢S

In [40], a generalization, known as the arc-balance condition, is introduced.
In [30], the result is extended to allow for non-instantaneous reciprocity. This
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CONSENSUS OF MULTIAGENT SYSTEMS UNDER COMMUNICATION FAILURE 3

is one of the best available results in the literature, to our knowlarrow: we
compare it to our contributions in § 4.3. We also recall that in [29,30] the
Persistent Excitation condition and the cut-balance condition are combined.
Our main theorems provide two conditions that are new with respect to the ones
described above, and have weaker hypotheses with respect to many of them. Moreover,
we will show that these requirements are somehow sharp, in the sense that outside
the hypotheses of the theorems it is easy to find examples for which consensus is not
achieved. To describe our result, we first need the following easy definition.

DEFINITION 1.1 (Globally reachable node). A node €* of a graph G is “globally
reachable” if for all nodes i, there exists a path of arrows i — j1 — ... — £*.

This concept was already stated in [31] as a key property of graphs ensuring consensus,
and it ensures that the directed graph contains a directed spanning tree.
We now define the topology for the connection functions, that we explain in § 2.3.

DEFINITION 1.2. Let fy, f : [0,400) — [0,4+00) be Lebesgue integrable in compact
intervals, for n € N. We say that f, — f if

b b
lim fo= / f for all bounded intervals [a,b] C [0, +00).

n—oo

Remark 1.3. In the most common case, with bounded connection functions, the
topology above reduces to the weak*-topology of L* as the dual of L!, see Lemma 2.7.

Our first main result for the article is the following.

THEOREM 1.4. Let ujp, uj [0,400) — [0,+00) be Lebesgue integrable in com-
pact intervals for 5,k = 1,...,N. Let t, — +00 be a sequence such that, for each
Jk=1,...,N, the function f,(t) := ujx(t, +1t) converges as in Definition 1.2 to the
limit function w}y. Define the directed graph G = G({tn},{u;;}) = G({u}.}) where:

e nodes are identified with {1,... , N};
e we draw an arrow from node j to node k if the following holds:

400
(1.2) / wp>0 V>0
t

Assume that the directed graph G = G({tn},{u;.}) has a globally reachable node.
Then, for all initial configurations, the solutions of (1.1) converge to consensus.

We discuss and prove this first result in § 3 and § 4.1 contains many examples.
Via the following, simpler but more restrictive, corollary, we already show that the
condition in Theorem 1.4 is much weaker than the Morcau condition [31]. See a more
detailed comparison in § 4.2.

COROLLARY 1.5. Let ujy, : [0,400) — [0,400) be Lebesgue measurable and boun-
ded, for j,k =1,...,N. Define the directed graph G = G({u;r}) where:
e nodes are identified with {1,...,N};
e we draw an arrow from node j to node k if one of the following (equivalent)
properties hold:
t+T
(A) limsup liminf/ uji > 0.
t

T—+occ t—+o0

t+T
(B) There exist T, > 0 such that for all t > 0 it holds / Ujp > f.
Ji
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(C) There exist T,y > 0 and a sequence t, — 400 with {tnt+1 — tn}tnen
tnt+T

bounded such that / wip > p foralln € Nand all j,k=1,...,N.
tn
Assume that the directed graph G = G({u;}) has a globally reachable node. Then,

for all initial configurations, solutions of (1.1) converge to consensus.

The equivalence of properties (A)-(B)-(C) is proved in Lemma 3.3 below. We observe
the following interesting phenomenon, which is one of the key sharpness results of our
article: Example 1 below shows a case in which ¢, 1 —t, slowly grows like log(n) and
consensus is not achieved.

Remark 1.6 (Sufficient number of connections). Suppose that the connection
functions uj, are all bounded. Suppose, for a suitable sequence t,,, one draws enough
arrow with property (1.2) only to establish that a node in the directed graph G is
globally reachable. Then, nothing more has to be done to apply Theorem 1.4: for a
suitable subsequence t,,,;, due to Remark 1.3 and by the Banach-Alaoglu theorem, also
the remaining coefficients uj;, automatically converge to some limit functions u?, (due
to boundedness). Whether these remaining limit functions u7, satisfy (1.2) or not will
play no role, since the existence of a globally reachable node is already established,
see Remark 4.1 below.

The second main result of this article is stated similarly to Theorem 1.4, but the
request on the graph G is different. It is as follows:

THEOREM 1.7. Let ujj,uj; 1 [0,+00) — [0,+00) be Lebesgue integrable in com-
pact intervals, for j,k =1,...,N. Lett, — +o0o be such that, for j,k =1,..., N, the
sequence of functions fn(t) = w;i(t, +t) converges as in Definition 1.2 to the limit
function w3, Construct the directed graph G = G({t,,},{u;,}) = G({uj,}) where:

e nodes are identified with {1,...,N};
e we draw an arrow from node j to node k if the following holds:

+oo
(1.3) / Wi > 0.
0

Assume that for each pair j,k there exists at least one arrow from node j to node
k or from k to j. Then, for all initial configurations, solutions of (1.1) converge to
CONSENSUS.

Observe that, in this case, the direction of arrows plays no role. On the opposite,
a very large number of connections is required; nevertheless, connections are easier to
establish, since we just require that the limiting function is non-vanishing.

Remark 1.8. Even though the dynamics in (1.1) is chosen to be linear in the state
variables, all our results can be restated for nonlinear systems of the form

N
(1.4) B =Y w(t,z)(zk — 7)) j=1,...,N,
k=1

where u;;, are bounded and u,;(¢,x) > u;k(t), for functions u; that satisfy the hy-
potheses of our theorems. We provide details in Propositions 2.1- 2.2 below.
The structure of the article is as follows:
§ 2: We state general results about systems of the form (1.1).
§ 3: We prove Theorem 1.4, Corollary 1.5 and Theorem 1.7.
§ 4: We compare our results with the literature. Several examples show that our
conditions are new and either more general or transversal to the known ones.
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2. Cooperative multi-agent systems. In this section, we describe some gen-
eral propertics of cooperative multi-agent systems. In this article, we only deal with
one-to-one interactions, but we consider possible communication failure in the follow-
ing sense: we provide conditions ensuring convergence even when many agents can
stop communicating for large intervals of time. In wide generality, we study systems
of the following form:

N
(2.1) B =Y wr(t)p (k- ;) (zk — ), ji=1...,N,
k=1

where u;; € L (RT;[0,+00)) and ¢ is nonnegative, bounded and Lipschitz continu-

ous. We denoted by L (RT;[0,+00)) the functional space

loc
T

(2.2) {f :RT — [0, +00) Lebesgue measurable with / f < 400 when T > O} .
0

This ensures existence, globally in time, and uniqueness for the solution to the asso-
ciated Cauchy problem, i.e. when an initial condition (z1(0),...,2zx(0)) is fixed, see
g. [22]. Solutions are considered in the Carathéodory sense for the rest of the article:
trajectories are absolutely continuous functions and (2.1) holds at almost every time.
General results on cooperative systems can also be found in [42]. Now:
§ 2.1: We reduce to the case of 1-dimensional, linear systems.
§ 2.2: We remind that the convex hull of positions is weakly contractive in time,
and we discuss monotonicity of the set of agents attaining extremal values.
§ 2.3: We better explain the topology involved in our sufficient conditions.

2.1. Reduction to 1-dimensional linear systems. In our article, we study
convergence to consensus for (2.1) by considering all possible connection functions
u,i(t), under the assumption that they are integrable on compact intervals and non-
negative. As a consequence, it is not restrictive to assume that the dynamics is linear,
as we stated in (1.1) in the introduction. In fact, we have the following simple results.

PROPOSITION 2.1. Consider a function ¢, bounded on compact intervals, and con-
nections w;, € L (RT;[0,400)) as in (2.2), for j,k=1,....,N. Consider any given

loc

solution z(t) to (2.1) starting from a fized initial condition (z1(0),...,2n(0)). Then

there exist functions uj, € L (RT;[0,4+00)) such that x(t) solves the linear system

N
(2.3) g; = wn(t) (zx — 75), j=1,...,N.
k=1

If wji. are bounded on compact intervals and M := maxo ) ||z(t)||, it holds

Hﬁj\/’@HLw[o,T] < Nwjrell poego .y~ 191 Lo o, -

Proof. Consider any given trajectory x(t) of (2.1) and assume that ¢ is a time for
which x is differentiable. Then it clearly holds

N N
b= wi(t)d (wr — x;) (wr — 2;) = > wi(t) (we — ;) ,

by choosing
ujk(t) o= w(t)¢ (z1(t) — 25(t)) .
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Such coefficients 1, are integrable on compact intervals: in any interval [0, 7] indeed

ujk(t) < Cu(t), C:= ||¢||L<>c[0,M] , M= ||x||L°°[O,T]' O

PROPOSITION 2.2. Let M > 0. Consider functions u;, : RY x RN — [0, M], for
g,k = 1,...,N, that are measurable for all continuous Borel probability measures,
i.e. “universally measurable”.} Consider any given solution T : RT — RN to (1.4)

starting from a fized initial condition Ty = (T1(0),...,Zn(0)). Suppose connections
w5 (1) = inf {wn(t,2) + o —Tol| < MVN -1}

satisfy assumptions of Theorems 1.4, or Corollary 1.5, or Theorem 1.7. Then the
trajectory T(t) reaches consensus: T(t) — (T*,...,T") as t = +oo, for some T € R.

Proof. Define ujx(t) := u;,(¢,Z(t)). At any time ¢ when T is differentiable, then
T; = Yny wk(t) (@, — T;). Notice that |uj,| < M and uj, > wy. If uyy satisfies
the hypothesis of Corollary 1.5, then trivially the same holds for uj; and we get
the thesis. Let now t; — 400 be a sequence of times when the connections t
uj_k,(tk + t) converge weakly* to limit functions uj_,:: consider the graph G~ defined
by condition (1.2) relative to u;,~*. By Banach-Alaoglu theorem, up to extracting a
subsequence, t + w1, (tx + 1) converge weakly* to limit functions uj;,"; in particular,
since necessarily ujy > u]-_k* by properties of weak convergence, the graph G defined
by condition (1.2) relative to ﬁﬁ* has all the arrows present in G~. By Lemma 2.7,
we conclude that, if the coefficients u;;,~ satisfy the assumptions of Theorem 1.4, then
also the ujx do, reaching the thesis. With Theorem 1.7 the argument is similar. 0O

Thanks to these simple results, from now on we will only consider the linear
dynamics given in (1.1). We also aim to restrict ourselves to study 1-dimensional
systems. This is the meaning of the following result.

PROPOSITION 2.3. Let d € N and v € R?. Consider a trajectory

z(t) = (x1(t),...,zn(2))

to (1.1) with z;(t) € R starting from a fized initial condition (x1(0),...,zn(0)) and
with connection functions w;i(t). Then, the projected trajectory

y(t;v) = (Y1 (t), .- yn(t))

with y;(t) € R defined by y;(t) :== x;(t) - v is the unique solution to (1.1) defined in R
with projected initial data y;(0) := x;(0) - v and the same connection functions w;j,.

In particular, the trajectory x(t) converges to consensus if and only if, for all
vectors v € Rd, the projected trajectory y(t;v) converges to consensus.

Remark 2.4. One can recover 2 from d projections, writing x(t) = Z;lzl y(t,e5)e,
provided that €; - €, = djk, 4,k = 1,...,d: when {€1,...,€4} is an orthonormal basis.

1Since universally measurable functions are closed under composition [7, Proposition 7.44], the
measurability of (¢, ) — u;,(t,x) is a standard condition to ensure that ¢ — w; (¢, 2(t)) is Lebesgue
measurable. We recall that the o-algebra U of universally measurable sets is defined as the intersec-
tion, over all Borel probability measure p on R™, of the o-agebra of p-measurable sets and we recall
that a function f : R™ — R is universally measures if f~1(I) € U for all intervals I C R.

This manuscript is for review purposes only.
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Proof. We prove the first statement. Let x(¢) be a trajectory. At times ¢ for
which z is differentiable, by differentiating the identity y;(¢) = x;(t) - v, we have

N N
(2.4) i =Y wir(zk(t) v — () v) =Y wily(t) —y;(1)).
k=1 k=1

We now prove the second statement. We first prove the first implication. Let z(t)
converge to a consensus, i.c. limy oo #;(t) = 2* for all j = {1,...,N}. Let v € R%
By continuity of the scalar product, it holds lim; 400 ¥ (t) = limy— o0 7 (t)-v = z*-v
for all j = {1,..., N}, thus y({;v) converges to consensus.

We now prove the reverse implication. Choose the standard basis €1,...,¢€, of
unitary vectors of R%, i.e. 8 = (0,...,0,1,0,...) with 1 in position £. For each ¢ =
1,...,d the variables y; (t) = x,(t)-€; converge to consensus, i.e. the {~th component of
x;(t) converges to some (z°)*. Since this holds for all components, all z;(t) converge
to the common vector ((z')*,..., (z%)*), i.e. to consensus. O

2.2. General properties of cooperative systems. We now collect general
properties of (1.1). Being cooperative, in the time-independent case it is well known
that its support is (weakly) contractive, see e.g. [8]. We prove it for completeness in
the time-dependent case, that is very similar:

PROPOSITION 2.5. Let z(t) be a solution of (1.1). Define the support of the so-
lution at time t as the (closed) convex hull of the set of x; at time t: precisely

(2.5) supp(z(t)) := conv({z;(t)}),

Then, for 0 <t < s it holds supp(z(t)) 2 supp(z(s)).
In dimension d = 1, this implies that the mazimum function x4 (t) := max;{z;(t)}
is non-increasing and the minimum function x_(t) := min;{z;(t)} is non-decreasing.

Proof. First observe that supp(z(t)) is the convex hull of a finite number of points,
hence it is a closed polygon.

Let t be a time in which x(t) is differentiable. If x;(t) belongs to the interior
of supp(z(t)), by continuity it belongs to the interior of supp(z(t + h)) for h > 0
sufficiently small. Assume then that x;(t) belongs to the boundary of supp(z(t)):
each term u;x(t) (rx — ;) points inwards in the polygon, due to the fact that xy
belongs to the polygon and u;x(t) is positive. Then, the sum of all terms, that is &;,
points inwards. Thus, one has x;(t + h) € supp(z(t)) for h > 0 sufficiently small. By
merging the two cases, one has z;(t + h) € supp(x(t)) for all j =1,..., N, hence by
convexity supp(z(t + h)) C supp(z(t)). This proves the first result.

The results in dimension d = 1 directly follow, since supp(x(t)) is an interval. O

The last statement in dimension d = 1 is very strong. We even strengthen it, as
follows, when extremal values are constant.

LEMMA 2.6. Consider a trajectory x(t) of (1.1) in R such that x* = max{w;(t) :

i=1,...,N} is constant. Then the set IT(t) of indices i that realize this mazimum
is non-increasing in time: if i ¢ I7(t) then i & It (t + h) for all h > 0.
Similarly, assume that x* = min{x;(t) : i =1,...,N} is constant. Then the set

I~ (t) of indices i that realize this minimum is non-increasing in time.

Proof. Consider an index j ¢ IT(T) for some 7" > 0, which means x;(T) < 27
Define f(t) := 2% — x;(t), that satisfies f(T) > 0. Let ¢ be a point in which z(t) is
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differentiable. By the dynamic (1.1) it holds

N N N
FO) = 0= wnt) (mr — 25(8) = =D wilt) (27 — 2;(1)) = = > _ () £(1).
k=1 k=1 k=1
In the first inequality we used that z;, < 27, for all K = 1,... | N, by the definition

of 2% as a maximum. Gronwall lemma now ensures

t N
f@) > f(T) - exp <—/ Zujk(s) ds) > 0.
T k=1

By continuity, the estimate holds for all ¢ > T, ensuring that j ¢ I (¢) for all ¢t > T
The statement on the minimum can be proved analogously. a0

We will use this simple result in Lemma 3.1 below, as well as in the proofs of
Theorems 1.4 and 1.7. We will indeed prove all the main statements in dimension 1,
then by Proposition 2.3 they hold in any dimension.

2.3. The weak* topologies. In this section we prove a technical lemma to
better understand the topology in Definition 1.2. We embed nonnegative functions,
integrable on compact intervals, into the space of Radon measures, with the inherited
weak*-topology. When further restricting to nonnegative bounded functions, we get
the weak*-topology of L as the dual of L.

LEMMA 2.7. Forn €N, let f,, f € LL _(R";[0,400)), defined in (2.2). Then the

loc
convergence f, = f specified in Definition 1.2 is equivalent to
o f, converges to f if for all ¢ : RT — R continuous with compact support

“+oc —+o0
(2.6) L) Pfn = /0 of .
If fn, [ are nonnegative and bounded on compact intervals, it is equivalent to
require (2.6) for all ¢ : RT — R having compact support and with f(:roo lo| finite.
If, moreover, f, f:RY — [0, M] for some M > 0, for all n € N, requiring (2.6)
forallp : RT — R continuous with compact support is equivalent to requiring (2.6) for
all o : RT — R with J;LOO || finite: on L™, the convergence — is the weak* -topology.

Proof. The equivalence among Definition 1.2 and the one in (2.6) follows from [21,
Theorem 1.40], by regularity of Radon measures.

Suppose now additionally that f,, < M(C) and f < M(C) in [0,C], for all n € N.

If (2.6) holds for all ¢ : RT™ — R having compact support and with f0+°° || finite,
then it trivially holds also for any ¢ : RT — R continuous with compact support.

If (2.6) holds for any ¢ : RT™ — R continuous with compact support, consider any
¥ : RT — R having compact support and with f0+°° |¢| finite, and extend it to be 0
on R™. Let 1. be a smooth approximation in LI(R) of 1, having compact support in
some [0, C], for example by convolution, see [21, § 4.2.1]. Then take the limsup first
as n — +oo then, as € — 0, in the triangular inequality

/ T / U e

to conclude that (2.6) holds also for 1.

= +M(C) Y = Pellpr ()
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Suppose now additionally that f, and f are uniformly bounded by M. If C' > 0
and ¢ : RT — R has f0+°c || finite, then o = @l ] has compact support: thus,
by the previous step, (2.6) holds for ¥¢. To conclude that (2.6) holds also for ¢, take
the limsup, first as n — +o00, then as C' — +00, in the inequality

‘/Oﬂo(fn = e /O+oo(f” ~ e

3. Proof of main results. In this section, we focus on establishing the new
sufficient conditions for consensus in (1.1), which constitute the main results of this
paper: we prove Theorem 1.4 in § 3.1, Corollary 1.5 in § 3.2, Theorem 1.7 in § 3.3.

< + M@l L0400y - a

3.1. Proof of Theorem 1.4. In this section, we prove Theorem 1.4. We first
prove an auxiliary lemma for the dynamics on the real line, extending Lemma 2.6.

LEMMA 3.1. Let x(t) be a trajectory of (1.1) in R with given connection functions
ujr € Li (RT;[0,4+00)) as in (2.2), j,k=1,...,N. Assume that both

loc
f =max{z;(t) : i=1,...,N} and 7 =min{z;(t) : i=1,...,N}

are constant. Consider the graph G = G({u;}) constructed as follows:
e nodes are identified with {1,..., N} and
e we draw an arrow from node j to node k when

+oo
(3.1) / >0 V>0,
t

Assume that the directed graph has a globally reachable node. Then it holds x* = x% .

Proof. Consider the set I, (t) of indices 4 satisfying x;(t) = =% . By Lemma 2.6,
if h > 0 then I (t + h) C I;(¢): as time increases, the set I (¢) can only get smaller
or remain equal. Since it is discrete and never empty, there is some index j; with
xj, (t) = 27 for all t > 0. We denote by I} the set of indices that meet this condition.

By hypothesis, G has a globally reachable node ¢* and a path j; — jo — ... —
Jn = £*. We now prove that x,-(t) = 27 for all t > 0, i.e. £* € I1. By contradiction,
assume that £* € I7. Since j; € I}, in the path j; — jo — ... — j, = {*, there exist
two consecutive elements j._; — j, such that j._y € I and j, & I7. To simplify the
notation, relabel indices and assume from now on 1 € I}, 2 ¢ I} and 1 — 2.

Since 2 ¢ I, there exists T > 0 such that z,(t) < 273 for all ¢ > T, due to
Lemma 2.6. Moreover, the existence of the arrow 1 — 2 given by property (3.1)
ensures that it holds f;f °° U35 > 0, which in turn ensures that there exists S > 0 such

that fi? g2 > 0. By continuity of xa(t), set & = maxzo([T,5]), so that za(t) < &
on [T, S]. We now evaluate the dynamics of z; on the time interval [T, S]. Recalling
that z1(¢) = 2% for all ¢ € [0,400), by (1.1) it holds

N S N S
O:xl(S)—:cl(T):Z/ ulk(t)(xk(t)—xl(t))dt:Z/ wyy (8) (zx(t) — o) dt
k=1"T k=17T
S
gzo+/ ulz(t)(zg(t)—zﬁr)dtg/ up(t)dt - (& — %) < 0.

S
o T T

This is a contradiction. Then, it holds x4« (t) = % for allt > 0. By the same reasoning
with the minimum value 2* , we see that the same index x4+ satisfies z¢« () = z* for
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all ¢ > 0. This implies 2% = 2*, which ensures x;(t) = z% = z* for all indices
j={1,...,N} and times t > 0. O

Remark 3.2. The graph G built in Lemma 3.1 has more connections than the one
built in Theorem 1.4, since property (3.1) is weaker than (1.2). Then, requiring con-
nectedness of GG is weaker than requiring connectedness of the graph in Theorem 1.4.
This weaker requirement is complemented by requiring that minimum and maximum
values are constant in time.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4: We first observe that Proposition 2.3 allows us to study con-
sensus for the case d = 1 only: we thus prove the theorem with z;(¢) € R from now
on. The structure of the proof is as follows: we first build a limit trajectory (Step 1),
then prove that such a trajectory is at consensus (Step 2). We finally prove that the
original dynamics converges to consensus (Step 3).

Step 1: Construction of a limit trajectory. Let ¢, — +0o be a sequence
satisfying the hypothesis of the theorem: there is a node £* in the graph G({t,.}, {u;;.})
such that for all j € {1,..., N} the graph G includes a directed path from j to £*.
We assume that for each pair j, k € {1,..., N} the function ¢ — u;(¢, +t) converges
to the limit function uj, as in Definition 1.2. We remark that in the hypothesis we
require convergence for all pairs j, k to some uj; . eventually not satisfying (1.2), not
only for the pairs with an arrow in the graph: when u;; is bounded, such limits are
granted by Remark 1.3 and Banach-Alaoglu theorem, up to subsequence.

If property (1.2) is satisfied for a pair (j, k) with the original control u,j, then
the new control {u;k} satisfies property (3.1) given in Lemma 3.1. This implies that
for each arrow j — k in the graph G = G({t»}, {u;;}) constructed in Theorem 1.4,
the same arrow j — k exists in the graph G* = G*({u}, }) defined in Lemma 3.1 with
controls {ujk} As a consequence, a globally reachable node of the directed graph G
is a globally reachable node of G*.

Recall now that the support of solutions is compact, due to Proposition 2.5. By
passing to a subsequence in t¢,, which we do not relabel, we assume that for each
index j € {1,..., N} the sequence z;(t,) admits a limit Z;. We consider these limits
as the initial condition for the limit trajectory.

The limit system is then defined as follows: the dynamics is (1.1), its initial
condition is #; for j € {1,...,N} and controls are u¥, for j,k € {1,...,N}. We
denote with z*(¢) the corresponding limit trajectory for the Cauchy problem of the
limit system.

Step 2: The limit trajectory is at consensus. We now prove that the limit
trajectory built in the previous step is at consensus. First fix any 7" > 0 and consider
the exponential map ® on the time interval [0, T]: it associates initial conditions and
controls to the trajectory of (1.1) as follows

. {RN x L' ([0,7],[0, +00)¥") = C°([0, T|; R)
@), {t = wp @)} jrmrn) = a(?).

Observe that the dynamics is affine in the connection functions uj,. We thus en-
dow the space of Lebesgue integrable functions L*([0, 77, [0, +o00)V 2) with the weak*-
topology inherited by its identification as a subspace of finite nonnegative Borel mea-
sures, by testing with continuous functions ¢ : [0,7] — R. Since, by absolute conti-
nuity of the corresponding measures, the measure of intervals converge, this topology
also provides the convergence considered in Definition 1.2: see Lemma 2.7. Recall
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that the map ® is continuous, see e.g. [23, Theorem 3.1]; observe that linearity in the
control plays a crucial role here. Then, consider the sequence 2™ ([0, T]) of trajectories
of the original system z(t) starting at time ¢,, with initial data z(t,) and with controls
u;i([tn, tn + T]). By construction, both the initial data and the controls converge,
hence the sequence z"([0,77]) = ®(x(tn), wjk([tn, tn + 1)) converges by continuity of
®. The uniqueness of the limit in C°([0,7]; RY) implies that the limit is in fact the
limit trajectory z* defined above, restricted to the time interval [0, T7.

We now recall that the function 24 (t) := max; ;(t) is non-increasing, due to
Proposition 2.5, thus it admits a limit as ¢t — +o0o. By construction of Step 1, for the
original trajectory lim,_, o 24 (t,) = max; Z;, thus by monotonicity this value is the
limit of the whole trajectory x4 (¢). By continuity of the map ® and of the maximum
function, the maximum function for the limit trajectory z7 (f) := max; x7(#) in the
time interval [0, 7] is the uniform limit of the maximum function x4 (¢) on the time
intervals [t,,t, + T]. As a consequence, it holds z% (0) = 2% (T') = max; ;.

Observe that the identity above holds for all 7' > 0. This implies that the function
x% (t) is a constant, that we denote with 2**. The same statement can be proved
for the minimum function z* (¢). Then, the limit trajectory x*(t) satisfies all the
hypotheses of Lemma 3.1, so that it holds % (0) = z* (0) = 2**. As a consequence,
it holds z%(0) = 2** for all j = {1,...,N}.

Step 3: The original trajectory converges to consensus. We now prove
that the original trajectory x(¢) converges to consensus. Recall that by construction
in Step 1 it holds limy_, 1 z;(ts) = ac;f(O)7 thus by Step 2 limy_, oo ;(tn) = ™
independent on j. This implies that for all € > 0 there exists n* € N such that
|z;(tn+) — 2**| < eforall j € {1,..., N}. By recalling that the support is contractive,
due to Proposition 2.5, it also holds |z, () — z**| < eforallj € {1,...,N}and ¢ > t,-.
This coincides with lim;_, 4o x;(t) = z** for all j € {1,...,N}. ]

3.2. Proof of Corollary 1.5. In this section, we prove Corollary 1.5. The proof
is based on proving some useful equivalent formulations connected to the hypotheses
of Theorem 1.4. This also allows to better appreciate the connections with existing
conditions, including persistent excitation and integral scrumbling coefficients condi-
tions, and the novelty of our result, see § 4 for comparisons.

LEMMA 3.3. Let a : RT — [0,+00) be Lebesque measurable. The following prop-
erties are equivalent:

t+T
A) limsu liminf/ a> 0.
( ) T—>+0£) t—=+oo Jyu

(B) There exist T, > 0 such that for all t > 0 it holds

t+T
(3.2) / a> .
t

(C) There exist T, > 0 and a sequence t, — +00 with {t,+1 — t, fnen bounded
such that

to+T
(3.3) / a>p Vn € N.
¢

n

If a: R — [0,+00)? is bounded and all components a; satisfy one of the properties
above, then the following weaker property holds:
(D) There is a sequence t, — +0o for which the function t — a(t, +t) converges
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as in Definition 1.2 to a* with
+oco
(3.4) / ai >0 Vi=1,...,d Vt>0.
Jt

Proof. We first prove that Item (A) implies Item (B).
Set £ = limsupy_,, . liminf; f:JrT a, which by assumption is strictly positive.
By definition of £ as a limsup, there exists T} > 0 with liminf;_, 4 ftHTl a > 4/2.
By definition of liminf then there exists 75 > 0 such that for all ¢ > T, we have (3.2)
with 4 = 3¢ and T = Ty. Choose now 73 = max{7},75} and observe that (3.2) is
satisfied for all t > T3 with p = if and T = T;. Choose now T = 2T3 and observe
that Item (B) is satisfied for all ¢ > 0 with the same p.

It is easy to prove Item (B) implies Item (C), e.g. by choosing ¢, = n, n € N.

We now prove that Item (C) implies Item (A). With no loss of generality, even-
tually passing to a subsequence, we assume that t, is increasing. Set Ty} = t1 +
2sup,cn{tn+1 —tn}, that is finite by hypothesis. Notice that for any T' > T} and any
t > 0 each interval [t,t + T contains some interval [t,/(s), tinr41)5)] With n' € N, by
construction: thus, for all 7' > T it also holds

T UOERIO)
lim inf/ a > lim inf/ a > liminf u > p,
t—+oco [y t—+o0 tor o) t—+oo

by monotonicity of the integral of the positive function a. By passing to the lim sup
in T, we have Item (A).

We now prove that any of the properties above implies Item (D). We first discuss
the one-dimensional case d = 1. We prove that Item (B) implies Item (D) when a is
bounded. Consider an increasing sequence t,, — +00 and the corresponding sequence
of translated functions a,, := {t — a(t, +t)}. It is clear that the sequence is compact
in L* with the weak™ topology, due to the Banach-Alaoglu theorem. By a diagonal
argument we can then extract a subsequence {t — a(t, + t) }nen that converges to a
function a* weakly* in L>°([0,T]), as the dual of L([0,T7), for all T, see Lemma 2.7
for the equivalence with Definition 1.2. Choose the test function ¢(s) = T ¢47(s).
For any choice of ¢t > 0, we obtain Item (D): by the weak*-convergence tested with ¢
and changing variable in the integral

t+T t+T ta T (3.2)
/a*(s) ds = lim /a(tn +s)ds= lim a(s)ds > pu>0.
¢ t

n—+4o0o n—-+4oo b4t
We now prove Item (D) for a general dimension d > 1. First apply the proof to the
first component a1, finding a corresponding sequence {t!},cn. Then apply the same
argument to ay, extracting a subsequence {t2 },,en of {t! },en. Repeat the procedure

for each component, finding a final subsequence {t¢ }, e for which Item (D) holds for
all components. O

Remark 3.4. Tt is easy to prove that Item (D) in Lemma 3.3 above is a weaker
property than Ttems (A)-(C). Consider the sequence t,, := n? and the L function

a(t) = Z ]l[n2,n2+n] (t) fort >0,
neN

where 1,5 is the indicator function of the interval. It is clear that ¢ — a(ty, +t)
weakly* converges to a*(t) = L 4)(t), since each interval [n? n* +n] = [t,.t, + 7]
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in the definition of a has length n — +00. Nevertheless, observe that

tn+2n tn+2n
/ a(t)dt:/ 0dt =0,
tntn tn+n

by observing that n? +n < n? +2n < n? +2n+ 1 = (n + 1)2. This implies that
lim infy 4 & f:+Ta =0 for all T > 0, hence Item (A) in Lemma 3.3 does not hold.

We are now ready to prove Corollary 1.5.

Proof of Corollary 1.5: The proof consists in showing that Theorem 1.4 applies with
{u;} as in the statement of Corollary 1.5 and {u}, }, t, — +oc given by Lemma 3.3.
Consider indeed the following directed graphs, using that {1} are bounded:

o G({u;r}), built with one of the (equivalent) rules (A)-(B)-(C) of Corollary 1.5.
o H({t,},{u;r}), built as in Theorem 1.4, with {¢,,} given by (D) of Lemma 3.3.

We now prove that H has a globally reachable node: thus, hypotheses of Theo-
rem 1.4 are satisfied and all solutions to (1.1) converge to consensus..

We proved in Lemma 3.3 that properties (A)-(B)-(C) of Corollary 1.5 are equiv-
alent and stronger than property (D) of Lemma 3.3, which coincides with condi-
tion (1.2) of Theorem 1.4: thus graph H contains all arrows of graph G (and even-
tually some additional one). Since we are assuming that the directed graph G has a
globally reachable node, then the directed graph H has a globally reachable node. B

3.3. Proof of Theorem 1.7. In this section, we prove Theorem 1.7. The proof
is similar to the one for Theorem 1.4, but replacing Lemma 3.1 with the following
result. This new lemma requires that all nodes are identified with connected in at
least one direction, but connections are weaker compared to Lemma 3.1

LEMMA 3.5. Let z(t) be a trajectory of (1.1) in R with connection functions ujy,
in Li _(R";[0,+00)) as in (2.2). Assume that both

loc

*

of =max{z;(t) : i=1,...,N} and 27 =min{z;(t) : i=1,...,N}

are constant. The equality x* = a7, is guaranteed if the following property holds:
+oco “+o0
(3.5) / ujk+/ ug; >0 Vi ke{l,... ,N.}
0 0

Proof. Consider the set I (t) of indices i realizing z% . By Lemma 2.6 the set is
non-increasing in time. Since it is discrete and never empty, there is some index, that
we relabel as 1, such that z;(¢) = % for all ¢ > 0. Similarly, there is some index,

that we relabel as 2, such that xg(t) =z* for all ¢t > 0.
Since 1 (t) = x% > x; > x* = xa(t) for all t € [0,4+00) and j € {1,..., N}, then

0:/+' / uy;(t) (z(t) —21(t)) dt < (/+o:12(t)dt) ~(22(t) — 21(2)) <0,

+oo
o_/ Z/ oy () (0 (1) — (t)) dt > (/0 ugl(t)dt) (a1 (t) — 72(1)) > 0,

where we used z; — 21 < 0 and x; — x2 > 0 to neglect terms with the suitable sign.
Both inequalities now read as

+oo +0oo
</Ou12(t)dt> (2t —at) = (/Oum(t)dt) (2 —2t) =0.
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Thus, (3.5) with (j,k) = (1,2) ensures what wanted: z5(t) — x1(t) = 2* —2% =0.0

We are now ready to prove Theorem 1.7.
Proof of Theorem 1.7. We follow the proof of Theorem 1.4, except for a small change
in Step 2. First, Proposition 2.3 allows us to prove the theorem in dimension d = 1
only. Given a trajectory z(t) and the sequence t,, — +00, we build the limit trajectory
x*(t) as in Step 1 of the proof of Theorem 1.4. We then prove that the maximal a7 (t)
and minimal values x* (¢) of the limit trajectory are constant with respect to time,
as in Step 2 of the proof of Theorem 1.4. We now use Lemma 3.5 to prove that such
constant values are identical x% (t) = * (t) = #**. This in turn implies that the limit
trajectory is already at consensus: z7 (t) = x**. We finally prove that the original
trajectory converges to consensus, as in Step 3 of the proof of Theorem 1.4. ]

4. Examples and comparison with the literature. In this section, we de-
scribe some relevant examples of (1.1), with a double aim. First,
§ 4.1: we show that removing one hypothesis of Theorem 1.4, Corollary 1.5 or The-
orem 1.7 easily allows us to build counterexamples.
Second, we explain the novelty of our result comparing it with the literature, namely
§ 4.2: we extend Moreau, persistent excitation and integral scrambling conditions,
§ 4.3: our sufficient conditions are transversal to the cut-balance condition.

4.1. Sharpness of hypotheses. In this section, we show that the hypotheses
of both Theorem 1.4 and Corollary 1.5 cannot be dropped, via a key counterexample.

Ezample 1. We build the example as follows: we first define a “building block” on
a time interval [0, ©,], we then iterate to concatenate controls on the whole [0, +00).

Building block. We consider a system of 4 particles (1, %2, x3,x4) with initial
condition (—m, —m,m,m) for a given m > 0. Fix a parameter € (0,1). In [0, 0,],
with ©,, := log (ﬁ» define all controls u;, = 0, except in the following cases:

a) for 7 € [0,log V2] : u12(7), u21(7), ug4 (1), ma3(7) = 1,
b) for 7 € [log2,log V2] : ug3(7), uz2(7) =1,
c) for 7 € [10g2,10g%] : Uy (7),uz4a(7) =1,
d) for T € [%, CHE u14(7), un (1) = 1.

It is easy to observe the following property of the building block: given n € (0,1),
the time interval has length ©,), that is positive and satisfies lim,,_,o+ ©, = +o00. The
trajectory of the building block satisfies the following;:

e Up to 7 = log /2 the activated controls play no role on the dynamics, since
1 =29 = —m and x3 = x4 = M.

e At 7 = log?2 being & = &4 = 0 in [logv/2,log?2] it holds z;(7) = —m and
x24(T) = m. Since on the second time interval it holds &2 + #3 = 0 and

&y — i3 = —2(22 — x3), an casy computation shows xo(7) = =%, x3(7) = &
e At 7 = log(2/n) it still holds z1(7) = —m and z4(7) = m. Again, an easy
computation, based on the fact that & —21 = —(x2 —x1), shows that zo(7) =

— (1 - 121) m. By a symmetry argument, we also have z3(7) = (1 - 121) m.
e At 7 = ©,,, with computations similar to those in the second time interval,
we now have 25(7) = 21(7) = — (1 — 3) m and 23(7) = 24(7) = (1 — Z) m.
In summary, in time ©,,, for fixed m > 0 and 7 € (0, 1), the dynamics of the building
blocks steers the configuration (—m, —m,m,m) to the configuration

(-(-2)m- =P (- (- Y )
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See a graphical description in Figure 1.

Time interval : a : b : c : d

Active o Wz, U21, : :
connections :  U34,U43 I Uz, U3zp 1 Uy, Uzg o Uig, Ugg
Fic. 1. Ezample 1, building block.
Complete dynamics. Fix mg = 1, i.e. start with the initial configuration

(=1,—1,1,1). Apply the building block dynamics by choosing the sequence 7, :=
2(1 —exp(—1/(n+1)?)) starting at n = 1. The total length time of the time intervals
up to the n-th buiding block is ©7, := >, @, . Observe that the system satisfies

I(@/n) = (_mn7 My My mn) )

524 with mp = mell}_; (1 — %L) =1-17_, exp(—1/32), where TI denotes the product of
525 the sequence. We now prove that the system does not converge to consensus. Indeed,
526 first observe that the concatenation of building blocks defines a trajectory on [0, 400),
527 since limy— 400 ©), > limp 400 ©,, = 400, due to the fact that lim,_ 4. nn = 0.
52

528 Second, observe that it holds

n —+o0
529 log(m,) = — Zl/j2 > — Z 1/5% = —=n?/6.
j=2 j=1

530 This implies 1 (0!,) = 22(0!)) < —exp(—72/6) and z3(0’,) = 14(0’,) > exp(—72/6).
531  Thus, the system does not converge to consensus.

Fic. 2. Exzample 1, complete dynamics.

We now discuss why Theorem 1.4 and Corollary 1.5 do not apply in this example.
With this goal, we build three graphs, according to different rules:

e The “unbounded interaction graph”: add i — j if f0+°o a;; = +oo. This
graph has been discussed e.g. in [31,32]. In this case, the graph has arrows
{12,21,23,32,34,43}. The directed graph then has a globally reachable node
0*, equal to 1 or 4. Yet, it is well-known that (several different concepts of)
connectivity of such graph do not ensure convergence. It is remarkable to
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539 observe that, in case of symmetric controls (i.e. ug;(7) = u;x(7) for all j, k
540 and 7), the connectivity of this graph is indeed a necessary and sufficient
541 condition to ensure convergence for all initial conditions, see [25, Thm 1-(c)].
542 e The graph built according to Theorem 1.4, choosing ¢, = ©/. We then
543 have that the sequences u;y(t,, +7) weakly converge to u7, (1) constructed as
544 follows:

545 - qu = UZ3 = ]]‘[0,10g \/5]’

546 - u;.‘i = u§2 = ]]'[log V2,log 2];

ot
3

— Uy =uyy = 1[0,10g V2] + 1[10&? 2,400)>

548 all other u7, are zero. The graph has nodes {21,34} only: it is not connected.
549 e The graph built according to Corollary 1.5. By taking the same sequence
550 t, = O/, of the previous case, we have that controls satisfy property (C) with
551 T =2 and p = log V2. Indeed, we have the following:

552 — on the time interval [t,,, t,, + 1], for n large it holds u14(7) = ug1(7) = 0;

— on the time interval [t,,t, + log \/5] = [tn, tn + p] it holds

tntp tntp tn+p tntp
/ Uy (7)dr = / (1) dr = / uys(7)dr = / uge (1) dr =
t t ¢ ¢

'n 20 ln In

— on the time interval [t,, + log V2, t,, + log 2] it holds
rtn+log 2 rtn+log 2
/ ug3(7) dr = / Uz (7) dr = log V2 = i3
tn+log V2 tn+log V2

— by observing that lim,_,o+ —log(n) = 400, on the time interval [t, +
log 2, ¢, + 1+ log 2] it holds

tn+1+log2 tn+1+log?2
/ ugy (1) dr = / uga(7)dr =12 p.
tn+log2 Jtn,+log2

553 Then, the graph G' = G({u;x}) built according to Corollary 1.5, if ;41 — ¢,
554 was bounded, has arrows {21, 12, 23,32, 34,43}: the directed graph has a the
555 arrow £* equal to 1 or 4. It is strongly connected, and even symmetric. Yet,
556 hypotheses of the corollary are not satisfied and the system does not converge
557 to consensus, since the sequence t,11 — t,, is unbounded. Indeed, it holds

2 exp (1/(n + 1)2)
558 b1 = bn = O,y — O], =60y, =log (1 —exp(—1/(n+1)2) )
559 log (2(n + 1) 4+ 0(n?)) = 2log (n) + o(log (n)).
560 This shows that that the sequence t,4+1 — t, is unbounded, but its growth
561 rate is of order 2log(n), that is, very slow.
562 We now show that Theorem 1.4 is not applicable to subsets of agents.
563 Ezxample 2. We consider a system x of 6 particles with initial condition
564 z(0) = (=3,-2,-2,2,2,3).

565  Similarly to Example 1, define all controls u;;, = 0, except in the following cases:

566 for 7 € [n,n + log \/5] : uga(7) =ugs(r) =1, n € NU {0},
567 for 7 € [n +log vV2,n + log 2] : uzy(7) = uge(r) =1.
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Similarly to Example 1, we compute
T (n + log \/5) =(-3,-2,-1,1,2,3) and = (n +log2) = (-3,—-2,—2,2,2,3).

The graph G = G({n},{u;;}) of Theorem 1.4 then has nodes {34,43,31,46}
only. It is interesting to observe that the subgraph of G with indices {3,4} and
arrows {34, 43} is complete, thus strongly connected, hence G satisfies the hypotheses
of Theorem 1.4. Yet the corresponding subset of agents {3,4} does not converge to
consensus. In other terms, Theorem 1.4 cannot be applied to subsets of agents.

We now provide an example where Theorem 1.7 applies, while other conditions
discussed here (Theorem 1.4, Moreau, cut-balance) do not.

Ezample 3. We consider a system of 3 particles with initial condition (—1,0,1).
Consider for n € N a sequence ¢, T 4+oo with t,41 — ¢, > 6, for example ¢, =
exp(exp(n)) or ¢, = 6n. Similarly to Example 1, define all controls u;j, arbitrarily,
but nonnegative and bounded, except the following cases that we prescribe:

up(r7) =1 for 7 € [tn, tn + 1],
(4.1) uiz(t) =1 for 7 € [t, +2,¢, + 3],
ugz(t)=1 for 7 € [t, +4, ¢, + 5]

Limit connections satisfy ui, > 1jg 1), ujs > Lj2,3), u33 > Lis 5. The graph G({ujk}) of
Theorem 1.7 then has at least nodes {12, 13,23}, thus Theorem 1.7 yields consensus.

Remark 4.1. The key observation here is that Theorem 1.7 ensures convergence,
even though we have no know about many of the controls u;y, i.e those not defined
n (4.1). If ¢, 41 —t,, is bounded, also Theorem 1.4 applies, whatever the non-specified,
bounded, connections are. If ¢,,11 —t, — 400 and if coefficients not specified by (4.1)
vanish, then G = G({t,}, {u;;,}) of Theorem 1.4 has no arrow and the Theorem 1.4
does not ensure consensus. If coefficients not specified by (4.1) vanish, with the choice
S = {1} the cut balance condition (4.4) fails, as the right hand side vanishes.

We finally provide an example with unbounded connections.

Ezample 4. We consider a system x of 3 particles with initial condition (—1,0,1).
Consider for n € N a sequence ¢, T +oco with t,41 — ¢, > 6, for example ¢, =
exp(exp(n)) or t, = 6n. Similarly to Example 1, define all controls u;j arbitrarily,
but nonnegative and bounded, except the following cases that we prescribe:

up(r) = = -1 for 7 € [tn, tn + 1],
(4.2) u3(7) = for T € [t, + 2,t, + 3],

1
u23(7):m*1 for 7 € [tn+4,tn+5]

1)145- The graph G = G({t.}, {u;}) = G({uj;}) of Theorem 1.7 then has at least
nodes {12,13,23} so that Theorem 1.7 applies, granting convergence to consensus. If
tn+1 —tn = +00 and if coefficients not specified by (4.2) vanish, then G({t,}, {u;,})
of Theorem 1.4 has no arrow because uj,(t) = (\/Lz = Dljo,1), uiz = Lo g, usz(t) =
(\3/% — 1)14,5). If coefficients not specified by (4.2) vanish, with the choice S = {1}

Limit connections satisfy uj,(t) > (\/i; — D)1y, ujz > Nz 3, uss(t) > (\%;Tt -

the cut balance condition (4.4) fails, as the right hand side vanishes.
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4.2. Comparison with Moreau, Persistent Excitation, Integral Scram-
bling Coefficient conditions. In this section, we compare our results with the
Moreau condition, which ensures convergence of all solutions of (1.1). We also com-
pare it with some stronger conditions that are discussed in the literature, namely the
Persistent Excitation (PE) and the Integral Scrambling Coefficient (ISC).

We first recall the precise definition of the conditions we study. For (1.1), they
can be interpreted in a unified way, based on graph properties. These statements,
equivalent to those in the literature but written in a different language, also highlight
the chain of logical dependencies: the Moreau condition is weaker than PE. One can
also prove that the Moreau condition is weaker than ISC (see [2]), but we will prove
convergence to consensus with a different approach.

First fix T, u > 0 and consider a time ¢ > 0. Define a graph G(t) as follows: nodes
are identified with {1,..., N} and an arrow from node j to node k is drawn if for all
t > 0 it holds

T
(4.3) / Wi (7)dr > p.
t

We can now state the three conditions, that also require that {ujk}%ﬁ:l are bounded:

e Moreau condition: There exist T, > 0 such that the graph G(t) given
above is constant with respect to ¢ and has a globally reachable node.

e ISC: there exist T, > 0 such that for all ¢,5 € {1,...,N} with ¢ # j
and t > 0 there exists an index k;;(¢) such that both arrows ¢ — k;;(¢) and
J = ki;(t) exist in G(1).

e PE: there exist T, > 0 such that for all j,k € {1,..., N} with j # k the
arrow j — k exists in G(t) (thus also k — j and G(t) must be constant).

Remark 4.2. While Moreau and PE condition require a graph that is constant
with respect to time, ISC does not require it. In the case of a finite number of agents,
one can anyway adapt the Moreau condition to a time-dependent graph and prove
that it is weaker than ISC, but changing the values of parameters p,T. See [2].

We now prove that the Moreau condition is equivalent to property (B) of Corollary 1.5,
while ISC condition is a particular case of property (1.2) in Theorem 1.4; thus, our
results generalize the convergence of systems under Moreau, ISC, and PE conditions
proved in [9,10,31]. Dropping the assumption that connections are bounded, such
conditions are known to be not sufficient, see [31, Page 4002].

LEMMA 4.3. Consider bounded signals uji,, which satisfy Moreau condition, or
ISC, or PE. Then, all trajectories of (1.1) converge to consensus.

Proof. Observe that the graph G built with the Moreau condition (4.3) and the
graph H built with Corollary 1.5 coincide, because (4.3) is condition (B) in Corol-
lary 1.5. Since both Moreau sufficient condition and Corollary 1.5 require a globally
reachable node for such graph G = H, they are identical sufficient conditions.

We now observe that the PE condition corresponds to the fact that the graph
built with the Moreau condition is complete. Thus, it has a globally reachable node,
hence consensus occurs.

We now prove that, under the ISC condition, hypotheses of Theorem 1.4 are
satisfied. For each ¢ € [0,+400), denote with G(¢) the graph with nodes {1,...,N}
and arrows given by i — k;;, j — k;;, where k;; is given by the ISC condition.

We first prove that, when G(t) is constant, ISC implies Moreau condition:

Claim: Fach graph G(t) has a globally reachable node.
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Proof. Consider the operator I' defined as follows: given a (finite) set A of n

distinct indexes, fix any order A = {iy,...,i,}, and define
r(4) = {Kivios Kigiys -+ Kin_1in} . for n even,
{kivins Kigiss -+ Kip _nin_ 1100} for n odd,

where k;; is the index given by the ISC condition. Since I'(A4) is a set, any multiple
occurrences of the same element are reduced to one. As a result, the set I'(A) has
n

(g] elements at most, where [x] is the smallest integer larger than or equal to x.

Consider now the set Ay := {1,..., N} of agents in (1.1), seen as the nodes of
the graph G(t). Recursively define A,,11 := I'(4,,), until A4, is reduced to a single
element, which we denote with . The fact that the process ends is a consequence of
the fact that I'(A,,) has fewer elements than A, as soon as A,, is not reduced to a
single element. By the definition of I', the sets A,, satisfy the following property: for
each i, € A,, there exists 4,41 € A,,4+1 such that an arrow i,, — i,,41 is in G(¢). By
construction, each index iy € Ag has an index i; € Ay, then an index iy € A, and so
on; this implies that the graph includes the directed path ig — i1 — i0 — ... — £*.
Since this property holds for any iy € Ay, i.e. for any node in the graph, the graph
G(t) has a globally reachable node. a

After proving the claim, we have the following key observation: each G(t) is an
element of the set of simple directed graphs with N nodes (i.e. graphs in which for
each ordered pair of indexes 4, j there exists either zero or one arrow, and no arrows
from ¢ to 4, for 4,5 € {1,...,N}). It is valued in a finite set, since it is contained in
the set of simple directed graphs, that has 2V(V=1 clements.

Enumerate the image graphs G(R™) = {G1,...,Gx}: they have a globally reach-
able node by the Claim. By the Banach-Alaoglu theorem, and by Lemma 2.7, there
exists a subsequence t,, of nT, n € N, for which all the functions fy(t) := u (¢, + 1)
converge, as in Definition 1.2, to functions u7,. Being valued in a finite set, up to
subsequence, that we do not relabel, we can think that G(t,) is constantly G,,,. Set
S0 := t1. Extract now a subsequence, that we do not relabel, so that G(t, + T) is
counstantly G,,, and set s1 := ta. At the ¢-th step, ¢ € N, extract a subsequence, that
we do not relabel, so that also G(¢,, + ¢1") is constantly G,,, and set s; 1= tsy1.

Denote by G*(¢) the graph associated to connections u}, with condition (4.3). By
construction, G*(¢T) contains all the arrows in G,,, for £ € N, drawn with condi-
tion (4.3) on connections uj; . If the sequence m, contains the index m* for infinitely
many £,., 7 € N, then, whenever j — k is an arrow of G,,«, for every ¢ > 0 it holds

+oo
/ Wi(s)ds > #{0, : T >t} p = +oo,
t

where #A denotes the number of elements of the set A. Thus, the arrow j — k
belongs to the graph G = G({s,},{u;;}) constructed as in Theorem 1.4 relative to
the sequence s,. We proved that G contains all arrows of G,,+, hence it admits a
globally reachable node too. Then, hypotheses of Theorem 1.4 are satisfied, and the
system converges to consensus for any initial condition. a

4.3. Comparison with cut-balance conditions. In this section, we compare
our results with the so-called cut-balance condition, introduced in [25,30] either in
instantaneous or non-instantaneous setting. We recall here the most general formu-
lation, presented in [30, Assumptions 1-2], that is as follows:
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e Cut-balance condition: There exists a sequence of times 7, — +o00 and
uniform bounds K, M > 0 such that for all subsets S of indices, the following
non-instantaneous property holds:

Tn4+1
(4.4) Z/ wn(s)ds < K Z/ ug;(s)ds < M.

JES,kgS " Tn jESkES " 'n

As described by the authors, this is a reciprocity condition: the outward connections
from S are proportional to the inward ones, over subsequent time intervals. The
property is not instantaneous since connections are measured as time integrals.

We now highlight the main difference between the hypotheses of our result and the
cut-balance conditions, that is the already highlighted reciprocity condition. In our
reasoning, there is no comparison between inward and outward connections. Rather
on the opposite, the main connectivity hypothesis is a tree-like property. We will
show this aspect with the following example.

Ezample 5. Take a system of four agents (z1, 22,23, 24) that interact as follows:
1. ugo =uop = Uzg = Uy3 = Uz = 1;
2. use bounded and nonnegative, to be chosen later;
3. all other u;;, are zero.
It is clear that the cut-balance condition (4.4) is satisfied for some choices of ugs only.
Indeed, by choosing S = {1,2} one has that the condition reads as

Tn+1 Tn+1
/ UQg(t) dt = Tn4+1 — Tn < K/ u32(t) dt.

n

This is not satisfied e.g. for any function that satisfies limy_, oo U32(t) = 0.

In contrast, we see that for any choice of sequence ¢, — 400, all interaction
functions converge to their natural limit (with constant value 1 or 0), except for ugs.
Here, the key observation is that, due to the Banach-Alaoglu theorem, there exists
a subsequence, that we do not relabel, ¢,, — +o00 such that usy (¢, + ) converges to
some limit u3,(¢). The fact that this limit satisfies (1.2) or not plays no role in the
hypotheses of Theorem 1.4: in fact, the graph G = G({tn }, {u;;,}) = G({u}, }) already
contains arrows {12,21,23, 34,43} and admits a globally reachable node £* equal to
3 or 4. Thus, the system converges to consensus for any choice of the initial data and
any choice of the interaction function uss(t).

The example above shows that, in some cases, our theorems provide convergence
in cases in which the cut-balance condition is not satisfied. More interestingly, it shows
that our theorems can be applied by studying a subset of pairs of indices only, in the
spirit of Remark 1.6: indeed, assume that, if for a choice t,, — 400, one can prove
convergence of u;(t +¢,) to some 7, (¢) satisfying (1.2) just for some pairs i — j
and the corresponding directed graph G({t,}, {u,;.}) admits a globally reachable node
£*. In this case, the convergence of the w;(t + t,) to some u}; (¢) for the remaining
pairs of indices is ensured, by passing to a subsequence. The actual value of such
remaining u}; () plays no role, since it amounts to add connections to G ({t»}, {1 }),
that already has a globally reachable node for sure.

There is one more difference between the hypotheses of our result and the cut-
balance conditions: this is about the time intervals in which hypotheses need to be
proven. In our Corollary 1.5, property (C) needs to be verified on time intervals of
the form [t,,t, + T for a given sequence t,, — +00. In the cut-balance hypothesis,
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one instead needs to split the whole time interval [0, 400) into intervals of the form
[Tn, Tnt+1] and verify the condition for all times.

We finally observe that our results are somehow transversal with respect to the
cut-balance condition. Indeed, there are cases in which our results do not apply,
while the cut-balance condition is satisfied and it ensures convergence. We show here
a simple example.

Ezample 6. Consider a system of three agents (z1, o, x3) with these connections:
(] u12(t) = u21(t) =1 [ ] UQg(t) = 1132(t) = (t + 1)_1 L] ulg(t) = ugl(t) =0.

It is clear that the controls converge to uj, = u3; =1 and uj; = u3j, = uj; = u3; =0,
thus for any choice of ¢, — +o00 the graph G({#,,}, {u;,}) constructed in Theorem 1.4
contains arrows {12,21} only. Thus, our result does not ensure convergence.

Instead, one can prove that the system satisfies the cut-balance property (5) with
K =1, since it is symmetric. Then, the system converges to consensus.

Remark 4.4. The example above raises an open question: by a time rescaling,
one can easily transform controls usg, us2(t) to constant positive functions, that in
turn have a natural limit satisfying property (1.2). This comes with the price of
letting controls 112, us1 explode, then bringing the system outside the hypotheses of
Theorem 1.4. Yet, one may read the example above as a double time-scale dynamics:
while agents 1,2 have a fast interaction, agents 2,3 have a slow one. Virtually, one
may say that agents 1-2 first reach consensus, then the double agent 1-2 and the single
agent 3 reach consensus. We aim to address this question in a future research.

The example above also highlights that results about consensus can be achieved
by a time rescaling. Our statements can then be slightly generalized as follows.

COROLLARY 4.5. For j,k =1,...,N, let u;; be that are measurable for all con-
tinuous probability measures, i.e. “universally measurable”. Let p : Rt — Rt be
increasing, absolutely continuous, and diverging at +oo. If ||ujx(p(t), z)p(t)| ., is fi-
nite and if Theorem 1.4, or Theorem 1.7, holds for the connection functions u;k(t) =
inf, w;i(p(t), z)p(t), then any global trajectory of (1.4) converges to consensus.

Our results raise new questions about their integration with other available crite-
ria (e.g. cut-balance) and their extension to dynamics with different time-scales (e.g.
fast and slow variables).
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