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LUENBERGER OBSERVERS FOR INFINITE-DIMENSIONAL
SYSTEMS, BACK AND FORTH NUDGING AND APPLICATION TO
A CRYSTALLIZATION PROCESS*

LUCAS BRIVADISt, VINCENT ANDRIEUT, ULYSSE SERRES', AND JEAN-PAUL
GAUTHIER#

Abstract. This paper deals with the observer design problem for time-varying linear infinite-
dimensional systems. We address both the problem of online estimation of the state of the system
from the output via an asymptotic observer, and the problem of offline estimation of the initial
state via a Back and Forth Nudging (BFN) algorithm. In both contexts, we show under a weak
detectability assumption that a Luenberger-like observer may reconstruct the so-called observable
subspace of the system. However, since no exact observability hypothesis is required, only a weak
convergence of the observer holds in general. Additional conditions on the system are required to
show the strong convergence. We provide an application of our results to a batch crystallization
process modeled by a one-dimensional transport equation with periodic boundary conditions, in
which we try to estimate the Crystal Size Distribution from the Chord Length Distribution.
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1. Introduction. To analyze, monitor or control physical or biological phenom-
ena, the first step is to provide a mathematical modeling in the form of mathematical
equations that describe the evolution of the system variables. Some of these vari-
ables are accessible through measurement and others are not. One of the problems in
control engineering is that of designing algorithms to provide real time estimates of
the unmeasured data from the others. These estimation algorithms are called state
observers and can be found in many devices. The implementation of such observers
for infinite-dimensional systems is a topic of great interest from both the practical
and theoretical points of view that has been extensively studied in the past decades
(see, e.g., [9,16,23,24,25 28]).

More recently, these results have been employed in data assimilation problems,
leading to the so-called Back and Forth Nudging (BFN) algorithms (see, e.g., [2,11,
14,21]). In this context, observers are used iteratively forward and backward in time
to solve the offline estimation problem of reconstructing the initial state of the system.
Such problems occur for example in meteorology or oceanography [1,3].

Mainly two types of results are known about the convergence of Luenberger-like
observers for linear systems, depending on the observability hypotheses made. Un-
der an exact observability hypothesis that links the L?-norm of the measured output
on some time interval to the norm of the initial state, a Luenberger-like asymptotic
observer that converges erponentially to the actual state of the system may be de-
signed [16,23,25]. Under this hypothesis, it is proved in [14,21] that the BEN algorithm
estimates exponentially the initial state of the system.
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Otherwise, if the system is only approximately observable, that is, any two tra-
jectories of the system may be distinguished by looking at the output on some time
interval, then, if the system is dissipative, one can prove that the same asymptotic
observer converges only weakly to the state [9,24,28]. For the BFN algorithm, G.
Haine proved in [11] for autonomous systems generated by skew-adjoint generators
that the initial state estimation still converges strongly (but no more exponentially)
to the actual initial state.

The time-varying context has been investigated for control systems in [9, 28], in
which some persistency assumptions are required, and a weak convergence is guaran-
teed. When no observability assumptions are made, then one may expect the observer
to converge to the so-called observable subspace of the system, which is clearly defined
only for autonomous systems.

In this paper, we consider infinite-dimensional time-varying linear systems. We
investigate both the usual asymptotic observer design problem, and the backward and
forward observers design problem for the BFN algorithm. We relax the dissipativity
hypothesis, and replace it by a weak detectability hypothesis, which states that the
distance between any two trajectories of the system that share the same output is a
non-increasing function of time. When no observability hypothesis holds, we show that
the observer estimates in the weak topology the observable part of the state, which
is equal to the whole state when the system is approximately observable. Under
additional assumptions on the system, we also show the strong convergence of the
observer. We compare our results with the existing literature mentioned above.

As an application of our results, we consider a batch crystallization process mod-
eled by a one-dimensional time-varying transport equation with periodic boundary
conditions. This process aims to produce solid crystals meeting some physical and
chemical specifications. One of the most important physical property to monitor is the
Crystal Size Distribution (CSD). Information available online are the Chord Length
Distribution (CLD) obtained from the FBRM® technology and the solute concentra-
tion. However, as shown in the following, the considered model describing this system
is time-varying and not exactly observable, which is a motivation for these theoretical
developments.

The paper is organized as follows. In Section 2, we describe the systems under
consideration, and make the required assumptions to ensure the well-posedness of the
usual asymptotic observer and the backward and forward observers of the BFN. Our
main results are stated in Section 3, discussed in Section 4, and proved in Section 5.
In Section 6, we discuss about their implications for the one-dimensional transport
equation with periodic boundary conditions and to a batch crystallization process,
in which we aim to estimate the Crystal Size Distribution from the Chord Length
Distribution.

Notations. Denote by R (resp. Ry ) the set of real (resp. non-negative) numbers
and by N (resp. N*) the set of non-negative (resp. positive) integers. For all Hilbert
space X, denote by (-,-) y the inner product over X and |-|| y the induced norm. For
all k € NU{oco} and all interval U C R, the set C*(U; X) is the set of k-continuously
differentiable functions from U to X.

We recall the characterization of the strong and weak topologies on X. A sequence
(Zn)n>0 € XV is said to be strongly convergent to some z* € X if ||z, — 2*[|x — 0 as
n — 400, and we shall write x,, — 2* as n — +o0. It is said to be weakly convergent
to «* if (z, —a*,9)y — 0 as n — +oo for all 9 € X, and we shall write z,, 2
as n — +o00. The strong topology on X is finer than the weak topology (see, e.g., [6]
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INFINITE-DIMENSIONAL OBSERVERS, BFN AND CRYSTALLIZATION 3

for more properties on these usual topologies).

If Y is also a Hilbert space, then Z(X,Y) denotes the space of bounded linear
maps from X to Y and [ - || #(x,y) the operator norm. Set £ (X) = £ (X, X). For
all L € Z(X,Y), denote by ran L its range and ker L its kernel. We identify the
Hilbert spaces with their dual spaces via the canonical isometry, so that the adjoint
of L, denoted by L*, lies in .£(Y, X). If L*L = LL*, then L is said to be normal. If
there exists a positive constant « such that ||Lz| > o ||z| y for all x € X, then L is
said to be bounded from below.

For any set £ C X, the closure of F in the strong topology of X is denoted by
E. If E is a linear subspace of X, then E denotes its orthogonal complement in
X. Moreover, if E is closed, set I € Z(X) the orthogonal projection such that
ranllg = F.

2. Problem statement. Let X and Y be two Hilbert spaces with real' inner
products. Let D be a dense subset of X. For all ¢ > 0, let A(t) : D — X be the
generator of a strongly continuous semigroup on X and C € £Z(X,Y). Let zp € X.
Consider the non-autonomous linear abstract Cauchy problem with measured output

Z2=A(t)z _cs
(2.1) {Z(O) —w y=Cxz.

In this paper, we are concerned with the problem of designing an observer of the
state z based on the measurement y. We adopt the context of hyperbolic systems. Let
T € Ry U{+o0}, and adopt the convention that [0, 7] = Ry if T = +o00. Assume that
the family (A(t))icpo,r] is a stable (see [20, Chapter 5, Section 5.2] for a definition)
family of generators of strongly continuous semigroups that share the same domain D.
Assume also that for all x € D, the function ¢ — A(t)z is continuously differentiable
on X. These hypotheses hold for the rest of the paper. Then [20, Chapter 5, Theorem
4.8] ensures that the family (A(t)).c[o,7) is the generator of a unique evolution system
on X denoted by (T(¢,s))ogs<t<r- Moreover, there exist two constants M, w > 0
such that

(2.2) IT(t, )| 2x) < Me*™9 VO<s<t<T.

For all zyp € X, (2.1) admits a unique solution z € C°([0,T]; X) given by 2(t) =
T(t,0)2o for all ¢ € [0,T]. Moreover, if 29 € D, then z € C°([0,T]; D) N C1([0,T]; X).
The reader may refer to [20, Chapter 5] or [13] for more details on the evolution
equations theory.

DEFINITION 2.1 (Autonomous context). We shall say that (2.1) is autonomous
if there exists an operator A : D — X such that A(t) = A for allt € Ry.

Remark 2.2. In the autonomous context, T’ = o0 and the evolution system T is
such that T(¢,s) = T(t — s,0) for all ¢ > s > 0. By abuse of notation, the strongly
continuous semigroup generated by A is also denoted by T, so that T(¢) = T(¢,0) for
all t € Ry. The same shortened notations hold for any other autonomous system.

Our goal is to build an observer system 2 fed by the output y of (2.1), such
that Z estimates the actual state z. We raise two different observer issues: the usual
asymptotic observer problem, and the inverse problem of reconstructing the initial
state.

1Even if we could consider complex inner product, we prefer to restrict ourselves to real inner
products to simplify the presentation.
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2.1. Asymptotic observer. In order to find an asymptotic observer, we natu-
rally assume that T' = +o0o. The goal is to find a new dynamical system fed by the
output of (2.1) which asymptotically learns the state from the dynamic of the output.
This issue was raised by D. Luenberger in his seminal paper [17] in the context of
finite-dimensional autonomous linear systems. In [23,24], J. Slemrod investigates the
dual problem of stabilization in infinite-dimensional Hilbert spaces. In this paper, we
follow this path and introduce the usual infinite-dimensional version of the Luenberger
observer.

Let » > 0 and 2y € X. Consider the following Luenberger-like observer

(2.3)

Set e = 2—z and g9 = %9 — z9. From now on, Z represents the state estimation made
by the observer system and e the error between this estimation and the actual state
of the system. Then 2 satisfies (2.3) if and only if € satisfies
e=(A—-rC*C)e
(2.4) ( )
e(0) =¢g

Since C' € Z(X,Y), [20, Chapter 5, Theorem 2.3] claims that (A(t) — rC*C);»0 is
also a stable family of generators of strongly continuous semigroups, and generates
an evolution system on X denoted by (S(¢,s))ocs<t- Then, systems (2.3) and (2.4)
have respectively a unique solution 2 and e in C°([0,4+00); X). Moreover, 2(t) =
(T + S)(t,0)2p and &(t) = S(t,0)eq for all t € [0,+00). If (39,e0) € D?, then 2,
e € CY[0,+00); D) N C([0, +00); X).

We are interested in the convergence properties of the state estimation Z to the
actual state z, i.e., of the estimation error € to 0.

DEFINITION 2.3 (Asymptotic observer). For any closed linear subspace O of X,
(2.3) is said to be a strong (resp. weak) asymptotic O-observer of (2.1) if and only if
MoS(t,0)e0 — 0 (resp. MeS(t,0)eg = 0) as t — +oo for all eg € X. An X -observer
is shortly called an observer.

2.2. Back and forth nudging. Now consider a problem which is slightly dif-
ferent from the former one. Assume that 7" < 400, and address the problem of offline
state estimation. The goal is to use the knowledge of the output and its dynamic on
the finite time interval [0, 7] to estimate the initial state of the system. To achieve
this, the idea is to use iteratively forward and backward observers. This methodology
is called the back and forth nudging in [2,3,4], or the time reversal based algorithm
in [14].

In order to build this observer, we need to assume that the family (A(t)).co, 1) is
the generator of a bi-directional evolution system on X denoted by (T(¢, s))ogs,t<T-
We make this assumption each time backward and forward observers are considered.
Let 29 € X. For every n € N, we consider the following dynamical systems defined
on [0,7T] as in [21] by

2n — A(1)5n — rCH(C5 — )

(2.5) 20 (0) — 22n=10) ifn>1
N 20 otherwise.
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INFINITE-DIMENSIONAL OBSERVERS, BFN AND CRYSTALLIZATION 5

22n+1 A(t) 22n+1 Jrrc*(CAZnJrl y)
(2:6) s2n41 (7 _ 52n

2 (T) = 2*™(T).
For all n € N, let €” = 2" — z and g9 = 39 — 20. Then 22" and 22"t! satisfy
respectively (2.5) and (2.6) if and only if €2 and 27T satisfy

e = (A(t) — rC*C)e®
(2.7) cn(g) {52"—1(0) ifn>1
€0 otherwise.

g2ntl (A(t) 4 TC*C)&QHJFI
(2.8) { 2n4+1 () _ ~2n
€ (T) =e*™(T).

Since C € Z(X,Y), [20, Chapter 5, Theorem 2.3] claims that both (A(t) —
rC*C)iepo,r) and (A(t) + rC*C)icpo,r) are stable families of generators of strongly
continuous semigroups that generate bi-directional evolution systems on X denoted
respectively by (St(t,s))oxs, < and (S—(t,s))ogs,t<r- Then, for all n € N, (2.5),
(2.6), (2.7) and (2.8) have respectively a unique solution 2", 2 snt1 , €2" and €27t in
Co([0,T); X).

Moreover, 22"(t) = (T + S;)(¢,0)2%"(0), 22" 1() = (T + S_)(¢,T)2* Y1),
e2n(t) = S+(t70) n(0) and e2"*Y(t) = S_(¢,T)e* (T for all t € [0,T]. In particu-
lar, note that

(2.9) e?"(0) = (S-(0,T)S+(T,0))" o

If (20,20) € D?, then 2", e™ € C°([0,T); D) N C*([0,T]; X) for all n € N.

We are interested in the convergence properties of the initial state estimation
227(0) to the actual state 2(0), i.e., of the estimation error £2"(0) to 0, as n goes to
infinity.

DEFINITION 2.4 (Back and forth observer). For any closed linear subspace O of
X, (2.5-2.8) is said to be a strong (resp. weak) back and forth O-observer of (2.1)
if and only if pe®™(0) — 0 (resp. Hpe?™(0) = 0) as n — +o0o for all g € X. An
X -observer is shortly called an observer.

3. Main results. In this section, we state our main results about the asymptotic
observer and the back and forth observer. Then, we discuss our hypotheses and
compare our results with the existing literature.

A crucial operator to consider in order to investigate the convergence properties
of a Luenberger-like observer is the so-called observability Gramian.

DEFINITION 3.1 (Observability Gramian). For all ty € [0,T] and all 7 € [0,T —
to], let us define

Wi(tg,7): X — X
to+T1
20 /> (t to) oM CT(t to)Zodt

to
the observability Gramian of the pair (T,C).

The operator W(tp,7) is a bounded self-adjoint endomorphism of X, that character-
izes the observability properties of (2.1). Moreover, W is continuous in .Z(X) with

respect to (to,t), and we have [|[W (to, 7)|| 2 (x) < (Me‘”HCHg(X y))

This manuscript is for review purposes only.
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Remark 3.2. In the autonomous context, W (tg,7) = W(0,7) for all tg,7 € R.
Then, by abuse of notation, we denote W (1) = W (0, 7).

DEFINITION 3.3 (Observable subspace). For all 7 € [0,T], let
(3.1) O, = (ker W(0,7))".
be the observable subspace at time 7 of the pair (T,C). If T = 400, let

(3.2) o=Jo:.

>0
be the observable subspace of the pair (T, C).

The sequence (O, )0 is a non-decreasing sequence of closed linear subspaces. Hence,
O =lim,;, ;1 O;, and it may be seen as the observable subspace in infinite time of
the pair (T, C).
Our results rely on a weak detectability hypothesis defined as follows.
DEFINITION 3.4. The pair ((A(t))icjo,r), C) is said to be p-weakly detectable for
some pu > 0 if for all t € [0,T],

(3.3) (A(t)z,7)x <p|Caly,  VzeD.

We now state our main results about the convergence of the asymptotic observer
and the back and forth observer. In general, the convergence holds only in the weak
topology.

3.1. Weak asymptotic observer.

THEOREM 3.5. Assume that T = +o0o and ((A(t))i>0,C) is p-weakly detectable
and r > p. Assume that there exist an increasing positive sequence (tn)n>0 — +o0
and an evolution system (T (t, $))ogs<t on X such that for all T > 0,

(3.4) IT(tn +t,tn) — Too(t,0)[l 2(x) — 0 as n — +o0 uniformly in t € [0,7],
Let O be the observable subspace of the pair (Tso,C). Then for all g € X,
(35) HOS(tn, 0)50 nT—‘,—oo 0.

Moreover, if (tn41 — tn)n>o s bounded and O = X, then (2.3) is a weak asymptotic
observer of (2.1).

The proof of Theorem 3.5 is given in Section 5.1. In the autonomous context, every
increasing positive sequence (t,)n>0 — 400 is such that T(¢, +¢,t,) = T(¢) for all
t > 0. Hence (3.5) holds for all such sequence (t,)n>0 and with O the observable
subspace of (T, ). This leads to the following corollary.

COROLLARY 3.6. Suppose that (2.1) is autonomous, (A, C) is p-weakly detectable
and r > p. Let O be the observable subspace of (T,C). Then, (2.3) is a weak asymp-
totic O-observer of (2.1).

3.2. Weak back and forth observer.

THEOREM 3.7. Assume that T < +o0 and (T (¢, s))ogs,t<T 1S @ bi-directional evo-
lution system. Suppose that both ((A(t)):epo,r7, C) and ((—A(t))iejo,r), C) are p-weakly
detectable and r > p. Let Or be the observable subspace at time T of the pair (T, C).
Then, (2.5-2.8) is a weak back and forth Op-observer of (2.1).

The proof of Theorem 3.7 is given in Section 5.2. Under additional assumptions on
the system, the strong convergence of the observers holds.

This manuscript is for review purposes only.
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3.3. Strong asymptotic observer.

THEOREM 3.8. Assume that T = +o0o. Suppose that there exists T > 0 such that
t — A(t) is T-periodic. Let O, ) be the observable subspace at time T of the pair (T, C).
(1) Suppose that ((A(t))i0,C) is p-weakly detectable and r > p. Assume that
S(7,0) is normal and bounded from below. If O, = X, then (2.3) is a strong
asymptotic observer of (2.1).
(i) If A(t) is skew-adjoint for allt € Ry, then (2.3) is a strong asymptotic O-
observer of (2.1) for all r > 0.

The proof of Theorem 3.8 is given in Section 5.3.

3.4. Strong back and forth observer.

THEOREM 3.9. Assume that T < +oo and (T (¢, s))ogs,t<T S a bi-directional evo-
lution system. Let Op be the observable subspace at time T of the pair (T, C).
(i) Suppose that both ((A(t))icjo,r), C) and ((—A(t))icjo,1), C) are p-weakly de-
tectable and r > p. Assume that S_(0,T) = S (T,0)* and is normal. If
Or = X, then (2.5-2.8) is a strong back and forth observer of (2.1).
(i) [11, Theorem 1.1.2] In the autonomous context, if A is skew-adjoint, then
(2.3) is a strong back and forth Op-observer of (2.1) for all v > 0.

The proof of Theorem 3.9 is given in Section 5.4.
4. Discussion on the results.

4.1. About observability. For infinite-dimensional systems, there are several
observability concepts that are not equivalent (see, e.g., [25, Chapter 6] in the au-
tonomous context), contrary to the case of finite-dimensional systems. In particular,
one can distinguish the two following main concepts.

DEFINITION 4.1 (Exact observability). The pair ((A(t))iejo,r),C) is said to be
exactly observable on (to,to + 7) C [0,T] if there exists § > 0 such that

(4.1) (W (to, )20, 20) x =0 |20l % s V20 € X.

DEFINITION 4.2 (Approximate observability). The pair ((A(t))icjo, 1), C) is said
to be approzimately observable on (to,to 4+ 7) C [0,T] if W (to,T) is injective.

Clearly, the exact observability of a pair on some time interval implies its ap-
proximate observability, and the concepts are equivalent in finite-dimension. The
approximate observability in time 7 is equivalent to the fact that O,, the observable
subspace in time 7 of (T, C), is equal to the whole state space X. Our results focus on
approximate observability-like assumptions, since the exact observability has already
been deeply investigated for both the asymptotic observer and the BFN algorithm (see
e.g., [14,21]). When the observable subspace is not the full state space, the observers
reconstruct only the observable part of the state.

4.2. About weak detectability.

Remark 4.3. A pair ((A(t))i>0,C) is said to be detectable if for all pairs of tra-
jectories (z1,22) of (2.1), if Cz1(t) = Cza(t) for all ¢ > 0, then (z1(t) — 22(t)) — 0
as t — +o0o. This definition is equivalent to the usual definition of detectability in
finite-dimension. However, several definitions may be chosen in infinite-dimension,
that are all equivalent in finite-dimension. In this remark, we show how (3.3) may be
seen as a weak detectability hypothesis. Let ((A(t))¢cjo,7], C) be u-weakly detectable
for some g > 0. Then Lemma 5.3, that is proved in Section 5.1, states that S is a

This manuscript is for review purposes only.
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contraction evolution system,i.e., [S(t,s)||¢x) < 1 for 0 < s <t < T. Consider
(21, z2) two trajectories of (2.1) such that Cz(t) = Czy(t) for all ¢t € [0, T]. Then z
and zo are also trajectories of (2.3), and z1 — 23 is a trajectory of (2.4). Therefore,
foral 0 <s <t < T,

121(8) — z2()| x = [IS(#, 5)(21(s) — z2(s)) [ x < llza(s) — 22(s)| x -

Hence, [0,T] 3 t — ||z1(t) — 22(t)|| x is non-increasing. This property is indeed weaker
than the usual detectability hypothesis, which would state that |21 (t) — 22(¢)|| x tends
to 0 as t goes to infinity.

Remark 4.4. When stating that a pair ((A(t))c[o,7], C) is p-weakly detectable,
we actually state that the pair is uniformly weakly detectable, in the sense that
the detectability constant p is independent of the time ¢ € [0,7]. Therefore, this
assumption is stronger than the weak detectability of each pair (A(t),C) for t € [0, T].
However, if T' < 400 or t — A(t) is periodic, then the two statements are equivalent,
due to the continuity of [0,7] > t — A(t)z for all z € D.

Remark 4.5. If A(t) is a dissipative operator for all ¢ € [0, T, that is,
(4.2) (A(t)z,z) <0, vt € [0, T,

then the pair ((A(t)):eo,17, C) is 0-weakly detectable for any output operator C' &
Z(X,Y). This assumption is the one usually made in the literature to prove the
weak convergence of a Luenberger-like observer in infinite-dimension (see, e.g., [9,24,
28]). Therefore, the weak detectability hypothesis may be seen as a weakening of the
dissipativity hypothesis, relying on the output operator.

Remark 4.6. If there exist a bounded self-adjoint operator P € £ (X), a > 0 and
1 = 0 such that

then the pair ((A(t))¢ejo,77, C) is p-weakly detectable provided one endows the Hilbert
space X with the inner product (P-,-)y. Note that in this case the operator C* is
the adjoint of C' € Z(X,Y’) with respect to this new inner product, i.e., (C-,-)y =
(P-,C*:) x. Actually, if X is finite-dimensional, the existence of P (which is then a
positive-definite matrix) such that (4.3) holds is a necessary condition for the existence
of an asymptotic observer.

Remark 4.7. In the context of BFN, we require that both ((A(t)):ep,r), C) and
((=A(t))tef0,1), C) are p-weakly detectable. This is equivalent to state that

(4.4) (A@)z,2) x| <p|Caly,  VoeD.

Note that the considered inner product on X is the same for both the forward and the
backward observer. If one must change the inner product with a self-adjoint operator
P as in Remark 4.6, then this change must be done for both observers. In [12], the
authors proved in the autonomous finite-dimensional context the existence of such a
common operator P for both A and —A, but the question remains open in infinite-
dimension.

Remark 4.8. The parameter r > 0 is the observer gain. If A(¢) is a dissipative
operator for all ¢ € [0,7], then the convergence results hold for all gain r > 0.
Otherwise, the gain must be chosen high enough in order to make up the lack of
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dissipativity, which is replaced by weak detectability. Obviously, if a pair is py-weakly
detectable for some p > 0, then it is also A\-weakly detectable for all A > p. This class
of observer is what is called observers with infinite gain margin since r can be taken
as large as requested.

4.3. About the results.

Remark 4.9. Our results are linked with the existing literature in the following
way. If A(t) = A+ >" | u;(t)B; where A, By, ..., B, are skew-adjoint generators of
unitary groups on X and wuy,...,u, are bounded, then Theorem 3.5 is an extension
of [9, Theorem 7] to the case where the system is not approximately observable in
some finite time. The proofs of Theorems 3.5 and 3.7 follow the path of this seminal
paper. In the autonomous context, we recover the usual weak asymptotic observer in
Corollary 3.6. Theorem 3.7 states that only weak convergence of the BFN algorithm
holds in general. Following the way paved by G. Haine in [11], we prove in Theorem 3.9
that the convergence is actually strong under some additional assumptions. We recall
and extend [11, Theorem 1.1.2] in Theorem 3.9. In particular, we consider non-
autonomous systems and do not necessarily assume that A(t) is skew-adjoint for all
t € [0,7]. Moreover, we adapt this technique to the usual asymptotic observer to
prove the strong convergence in the case of periodic systems in Theorem 3.8. We do
not investigate any exact observability-like assumptions, since [16,23,27] and [14,21]
solved the question, at least in the autonomous case, in the asymptotic context and
back and forth context respectively.

Remark 4.10. In Theorem 3.5, one of the hypotheses is the existence of an increas-
ing positive sequence (t,)n>0 — +00 and an evolution system (Too (%, $))ogs<t on X
such that || T(¢, +t,t,) —Too(t,0)|| #(x) — 0 as n — oo uniformly in ¢ € [0, 7] for all
7 2 0. Checking this hypothesis may be a difficult task in general. However, [13, The-
orem 10.2] states sufficient conditions on the family of generators (A(t));>o for the
existence of such a sequence. In Section 6.1, we show how to check this property on a
time-varying one-dimensional transport equation with periodic boundary conditions.

Remark 4.11. One of the steps of the proof of Theorem 3.5 (see Section 5.1) is to
show that for all eq € D, ¢ : t — S(¢t,0)eq satisfies

to+T7
4. H)2 dt >0.
(45) | e, s 0. w0

This does not yields a priori that Ce(t) — 0 as t goes to infinity. However, if there
exists a positive constant o > 0 such that for all ¢ > 0,

(4.6) IC*CABzx < ellelx,

then Ce(t) Ny 0. Indeed, (5.4) will yield

+oo
(4.7) / |Ce(t)|]3 dt < +oc.
0

Moreover, for all t > 0,

1d

ST |Ce(t)||3 = (Ce(t), CE(t))y

= (C=(t), CA=(1))y — 1 (Ce(t), CCCe(t))y

This manuscript is for review purposes only.
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= (e(t), C*CAe(t)) x — 1| C*Ce(t)] %

since S(t, 0) is proved to be a contraction in Lemma 5.3. Thus, ||C’5||§, is an integrable
positive function, with bounded derivated. Hence, according to Barbalat’s lemma,
||C’5(t)|\§, — 0ast— 4oo.

A similar result (with a similar proof) hold for the BFN algorithm. Assume that
all the hypotheses of Theorem 3.7 hold. If C*CA is bounded as an operator from
(D, |l x) to (X, ||| ), then Ce**(0) — 0 as n — +oo0.

5. Proofs of the results. This section is devoted to the proofs of the results
stated in Section 3. The following remark allows us to reformulate the weak conver-
gence results.

Remark 5.1. For any closed linear subspace O of X and any sequence (z,)n>0 in
X, recall that Ilpx,, — 0 as n — oo if and only if, for all ¢ € X, (Ilox,, ¥) y — 0.
As an orthogonal projection, Iy is a self-adjoint operator, i.e., IIp = IIf,, and
ranllp = O. Hence, Ilpz, = 0 as n — +oo if and only if, for all ¥ € O,
<H(g$m 1/}>X — 0.

All the weak convergence results are proved in the following in accordance with this
remark. For example, to prove that (2.3) is a weak asymptotic O-observer, we prove
that (IIoS(t,0)e0, %)y — 0 as t — +oo for all &g € X and all ¢ € O. We proceed
similarly in the back and forth context.

LEMMA 5.2. For all n € N, let L, € £(X) be a linear contraction, that is,
|Lnllex)y < 1. Let U,V C X.

(i) If
Lp,eg — 0, Veg € U
n—-+oo
then
Lpeg — 0, Veo el.
n—-+4oo
(ii) If
(Lngo, V) x .0 Veo €U, Yoy ev,
then

(Lngo, )y — 0, Ve €U, VyeV.

n—-+oo

Proof of (i). Let &g € U and n > 0. Then there exists & € U such that
lleo — €0l x < m. Moreover, there exists N € N such that for all n > N, || L&y < 7.
Then, for alln > N,

[ Lngollx < [ Lnollx +[1€0 — €ollx <27

since L,, is a contraction. Hence L,e9 — 0 as n — +o0. O

This manuscript is for review purposes only.
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Proof of (ii). Let eg € U, € V. and 1 > 0. Then there exist & € U and veV
such that |leg — &lly < nand ||¢ — 1/)HX < 1. Moreover, there exists NV € N such

that for all n > N, |<Ln§0, 1/;>X| <. Then, for alln > N,

[(Lngo, ) x| < [(Enfo, §) | + (n(z0 — &), 9) |
(Lo, ¥ = D) | + [(Lnleo — €0), % = §) |
< (L+ 19y + 2ol +m) -
Hence (L,e0,%) y — 0 as n — +o0. 0

5.1. Proof of Theorem 3.5. The proof relies on the two following lemmas.
The first one shows how the weak detectability is used in the proof, while the second
one states a continuity property of the observability Gramian. We adapt the steps of
the proof of [9, Theorem 7]. In this section, assume that T = +oo.

LEMMA 5.3. If ((A(t))i>0,C) is pu-weakly detectable and r > p, then S is a con-
traction evolution system, that is,

(5.1) ISt 8)l2x) <1,  VE=s>0.
Proof. Since D is dense in X, it is sufficient to show that
(5-2) 1St t0)eollx < lleollx

foralleg € Dand all t >ty > 0. Let tg > 0, g9 € D and set (t) = S(¢t,tg)eo for all
t > to. Then e € C1([0,+00), X) and for all ¢ > to,

5= I = (0, 0 «
= (e(t), A(D)e(t)) x —r{e(t), C*Ce(t)) x
(5.3) < —(r—p) HC’E(t)H?, (since ((A(%))e0,C) is p-weakly detectable)
<0

since r > p. Hence [tg, +00) 3¢ +— ||5(t)\|§( is non increasing, which yields (5.2) since
e(to) = eo. 0

LEMMA 5.4. If there exist an increasing positive sequence (ty)n>0 — +00 and an
evolution system (Too(t,5))ocs<t on X such that ||T(t, +t,t,) — Too(t,0)|| 2 (x) — 0
as n — +oo for allt >0, then [|[W(t,, 7) = Weo(0,7)|| #(x) — 0 as n — +o0.

Proof. For all zg € X,
[(W(tn, 7) = Woee(0,7)) 20| x

< / 1C12 e [T + £ ) — Too (60) o) 20
0

< TICIHx vy 20l x Sup [ T(tn +,80) = Too 0)lI%(x)-

0,7]

Hence, [W(tn,T) = Woo(0,7)|l 2(x) — 0 as n — +o0. |

Proof of Theorem 3.5. According to Lemma 5.3, S is a contraction evolution sys-
tem. Hence, applying Lemma 5.2 (ii) with L,, = S(¢,,0) for n € N, it is sufficient

This manuscript is for review purposes only.
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156 to show (3.5) for all ¢ € U,>q(ker W (0, 7)) and all g9 € D since D is dense is X.
457 Let eg € D and set e(t) = S(¢,0)e for all ¢ > 0. Since S is a contraction, ||e||y is
458 non-increasing and whence converges to a finite limit. Equation (5.3) yields for all
459 to, 7 =20,

to+T
0 (5.4) /+ IC=0I dt < s (lltto)l = letto + 7)1 )
461  Hence,
5 (5.5) / TlcsmEat —s o
to Y g foo

463 According to Duhamel’s formula, for all ¢ >ty > 0,

t
w1 (5.6) e(t) = T(t, to)e(ty) — / T(t, 5)C*Ce(s)ds.
165 o
466 Then
to+71
467 W to, / t to C*CT(t to) (to)dt
t0+T
468 :/ T(t,to)*C*Ce(t)dt
to
to+7 t
469 +r/ T(t, to)*C*C | T(t,s)C*Ce(s)dsdt.
470 to to

471 By (2.2) and because C' is bounded, we have

to+71
472 [W (o, T)e(to)llx < M€WT||C||3(X,Y)/ 1Ce(t)]ly dt

to

to+71

- T [ / IC=(8)]]y dt.
A74 to
475 Hence
76 . > 0.
476 (5 7) W(tQ,T)E(t()) t0—>—+>o<> 0, Vr >0
477 Now, let (tn)n>0 and (Too(t, $))ogs<t be as in the hypotheses of Theorem 3.5.

178 Let €2 the set of limit points of (£(¢,))n>0 for the weak topology of X, that is, the set
479 of points £ € X such that there exists a subsequence (ny)g>o such that e(¢,,) A
180 as k — 4oo. Since ¢ is bounded in X (because S is a contraction), by Kakutani’s
481  theorem (see, e.g., [6, Theorem 3.17]), the set {e(t,),n € N} is relatively weakly
482 compact in X. Hence € is not empty. Let £ € Q and (e(¢,,))k>0 be a subsequence
483 converging weakly to . Then, according to (5.7) and Lemma 5.4,

484 [Weo (0, T)e(tn) |l x < NIW (Enys T)E(En) |l x

185 F[Weo (0,7) = Wtn,, 7)ll2(x) lleoll x
486 — 0.

487 k— o0

This manuscript is for review purposes only.
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Hence € € ker W, (0, 7). Thus  C ker W (0, 7). Let » € X. By definition of €2, and
since € is bounded, for all > 0, there exists N € N such that for all n > N, there
exists &, € Q such that

[{e(tn) = &n, V) x | < -
Then, if ¥ € (ker W4 (0,7))*, (
[(e(tn), V) x| < [{e(tn) = &n ) x| + [{n, V) x| < -

Since this result holds for all 7 > 0,

(e(tn) )y —=0, Ve | (kerWo(0,7))"

n—-+o0o
720

n, V) x = 0 which yields

This conclude the proof of the first part of Theorem 3.5.

Now, assume moreover that ((t,41 — tn))n>0 is bounded and O = X. It is
sufficient to prove that for all increasing positive sequence (73, )k>0 — 400, £(71,) — 0
as k — +oo. For all k € N, let n; € N be such that ¢, < 7% < t,,4+1. Then
Sp = Tr — tp, is a non-negative bounded sequence. Hence, up to an extraction of
(tn)n>0, it is now sufficient to prove that (t, + s,) = 0 as n — +oo for all non-
negative bounded sequence (S, )n>0. Set § = sup,,cy sp. For all ¥ € X,

[(e(tn + sn), V) x| < (Toc(sn, 0)e(tn), 1) x|
F(T(tn + 85 tn) = Too(sn, 0))ll2x) lleollx 191 x
+ |le(tn + sn) — T(t, + Snvtn)s(tn)”_x Hd’“x .
By (3.4), and because (s,)n>0 is bounded, it follows that

(T (tn + $nstn) = Too (80, )2y 572, O

Using (2.2), (5.6) and the Cauchy-Schwarz inequality

_ tn+s
le(tn +5n) = T(tn + snstn)e(tn)] x < TMe*?||Cll2x.y) / ICe@)ly dt

n

— 0.
n—-4o0o
Hence, it remains to prove that Te(sp,0)e(t,) — 0 as n — +oo. For all t > 0, (2.2)
and (3.4) yield || Too(t,0)||2(x) < Me**, and thus for ¢ € X,

[{Too (80, 0)e(tn), ) x| < Me™* [leollx [¥]l -

Let ¢ € R and (ng)r>o a subsequence such that |(Too(8n,,0)e(tn, ), ¥) x| — £ as
k — 4o00. We now show that ¢ = 0 to end the proof. Since (s,)n>0 is bounded
and s — Te(s,0)*1 is continuous in the strong topology of X, (Teo(Sn,,0)*¥)k>0
converges strongly up to a new extraction of (sy, x>0 to some & € X. Then, for all
ke N,

| <Tc>o (Snk ) 0)5(tnk )a ¢>X |

(e(tni)s Too(Snys 0)*¢>X|

}
[(e(tni)s €) x| + I Too (54, 0)*% — €l x lleollx
_>—+> 0.

<

x>

Thus ¢ = 0. O
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5.2. Proof of Theorem 3.7. Assume that T < +oco and (T(t,s))ogs,t<T 1S
a bi-directional evolution system. We adapt the proof of Theorem 3.5 to the BFN
algorithm (see Section 5.1). The lemmas involved and steps of the proof are very
similar.

LEMMA 5.5. If both ((A(t))tejo,r),C) and ((—A(t))iepo, 1), C) are p-weakly de-
tectable and r > p, then Sy (resp. S_) is a forward (resp. backward) contraction
bi-directional evolution system, that is,

(58  ISit9)llz <1 and [S_(s.8)|zx) <1 VE2s20.
Proof. Since D is dense in X, it is sufficient to show that
(5.9) 1S+t to)eollx < lleollx  and  [IS—(t,20)e0llx = lleollx

foralleg e Dand all t > ¢y > 0. Let tg > 0, eg € D and set £ (t) = S;(¢,tg)eo and
e_(t) = S_(t,tp)eo for all t > ty. Then &' € C([0,+00), X) for i € {0,1} and for all
t 2 th

1d

>dQ le+ (B)II% = (e+(8), €4(1) x
= (e4+(1); A(t)e+ (1)) x — 7 (4 (1), C"Cer (1)) x

(5.10) < —(r—p) |\C€+(t)||§, (since ((A(t))i>0,C) is p-weakly detectable)
<0

and

S lle (0l = -0,y

= (- (), A(t)e- (1)) x +7(e-(1),C"Ce (1)) x

(5.11) >(r—p) ||C<€_(t)||§/ (since ((A(t))i>0,C) is p-weakly detectable)
=0

since r > p. Hence [tg,+00) 5t — ||€+(t)||§( is non-increasing and [tg,+00) D t —
||E,(t)||§( is non-decreasing, which yields (5.2) since e (tg) = e_(tp) = €o. O

Proof of Theorem 3.7. According to Lemma 5.5, Sy (resp. S_) is a forward (resp.
backward) contraction bi-directional evolution system. Let L = S_(0,7)S(T,0) €
Z(X). Then L™ is a contraction for all n € N. Hence, applying Lemma 5.2 (ii), it is
sufficient to show that (L"eg, 1)y — 0 as n — +oo for all ¢ € U,>q(ker W(0,7))*
and all g € D since D is dense is X. Let g9 € D and set £2"(t) = S, (¢,0)L"eq for all
t > 0 and all n € N. Since L is a contraction, 62"(0)H + Is non-increasing and thus
has a finite limit as n goes to infinity. Moreover,

|e2(T)]| x = IS+(T,0) L ol x = ||S—(T,0)L" eq]|
- [s-moervol, >0
[s-@ o) > |
Then (5.10) yields for all n € N

[ ool a< oot (ol - @)
: TR x x

This manuscript is for review purposes only.



INFINITE-DIMENSIONAL OBSERVERS, BFN AND CRYSTALLIZATION 15

1 2 2
< 2n _ H 2(n+1) H .
s (IO - [0
Hence,
T
(5.12) / leer @2 dt —s o.
0 Y n—-4o0o
According to Duhamel’s formula, for all n € N,
t
(5.13) e2(t) = T(t,0)e*"(0) — r / T(t, s)C*Ce?"(s)ds.
0

Then

W(0,T)e*(0) = [ T(t,0)*C*CT(t,0)*(0)dt

T(t,0)*C*Ce*™(t)dt
T t

+r / T(¢,0)*C*C / T(t, s)C*Ce*"(s)dsdt.
0 0

According to (2.2) and because C' is bounded, [T(,s)|| ¢ (x) < Me#(t=5) for 0 < s <
t< T,

T
W0, T)20)|] < z\4ewT||C\|$(X,Y>/0 o2 ()|, dt
T
M2 Tl / lo=2n ()], dt.
0
Hence W (0,7)2"(0) — 0 as n — +o0.

Now, let © the set of limit points of (£2(0)),,>0 for the weak topology of X, that
is, the set of points £ € X such that there exists a subsequence (ny)r>o such that
£2™(0) X ¢ as k — +oo. Since (£27(0)),0 is bounded in X (because L is a contrac-
tion), by Kakutani’s theorem (see, e.g., [6, Theorem 3.17]), the set {£?"(0),n € N} is
relatively weakly compact in X. Hence Q is not empty. Let £ € Q and (£2"*(0))x>0 be
a subsequence converging weakly to £. Then W (0,T)¢ = 0 by uniqueness of the weak
limit. Thus Q C ker W(0,7). Let ¢ € X. By definition of Q, and since (£2*(0)),,>¢ is
bounded, for all > 0, there exists IV € N such that for all n > N, there exits &, € Q2
such that

Then, if ¢ € (ker W(0,7))%, (£,,¢) y = 0 which yields
[(e27(0),9) | < [(€®"(0) = &n, ) | + [{&ns ) x| <,
i.e.

(£2M0),0) —= 0, Ve (ke W(0,T))". 0

n—-4oo
720

This ends the proof of Theorem 3.7.
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5.3. Proof of Theorem 3.8. First, consider the following invariance lemma in
the case where A(t) is skew-adjoint for all t € R.

LEMMA 5.6. Assume that T = 400 and A(t) is skew-adjoint for all t € Ry. Let
7 > 0 such that t — A(t) is T-periodic. Let O, be the observable subspace at time T
of the pair (T,C). Let L = S(1,0)*S(7,0). Then LO, C O, and LO+ C O+.

Remark 5.7. This lemma is an interesting result in itself. It implies that the
dynamics of the error system (2.7-2.8) may be decomposed on the two subspaces O,
and OF. Therefore, the initial estimation of the unobservable part of the system
.1 2o does not affect the reconstruction of the observable part Ilp, z(t) at all.

Proof of Lemma 5.6. Set A(—t) = A(¢) for all t € Ry. According to [10, Chapter
3, Lemma 1.1], since A(t) is skew-adjoint for all ¢ € R, it is the generator of a unitary
bi-directional evolution system, still denoted by T. In particular, forallt > s > tg € R,
T(t,s)*T(t, tg) = T(s,to).

Let eg € DN O,. For all ¢ € OF = ker W(0,7), the Duhamel’s formula (5.6)
yields

<L€0,¢>X = <S(T7 0)5078(7—7 0)’(/)>X
— (e0, T(7, 0)"S(r, 0))) 5 — 1 /0 (CS(s, 0)z0, CT(r, )" T(, 0)4)  ds.

Since ¢ € ker W(0,7), CT(s,0)y and S(s,0)y = T(s,0)y = 0 for all s € [0,7]. Thus,
(Leo, ) x =0, i.e., Leg € O, for all g € O,. Now, let gy € C’)TL and ¥ € O,. Since
L is self-adjoint, (Leg, 1) y = (€0, L)y = 0 from above. Hence, Leg € OF. O

Proof of Theorem 3.8. Let 7 > 0 be as in the assumptions of the theorem, and set
L =S(1,0)*S(7,0). Assume that A(t) is skew-adjoint for all ¢ € R;. Then, according
to Remark 4.5, ((A(%))t>0,C) is O-weakly dissipative. Moreover, reasoning as in the
proof of Lemma 5.6, S is actually a bi-directional evolution system. Hence S(r,0) is
bounded from below. Moreover, Lemma 5.6 claims that LO, C O, and LO+ C O+.
Obviously, it is also the case if O, = X.

Now, assume that ((A(t))t>0,C) is p-weakly dissipative and = > p. It remains
to prove that (2.3) is a strong asymptotic O,-observer of (2.1) if S(7,0) is normal
and bounded from below and the invariance property LO, C O, and LO+ C OF is
satisfied.

For all g € X,

(L"e0,0) 5 = |IS(7,0)"0]%  (since S(7,0) is normal)
= ||S(n7,0)e0l5  (since ¢ = A(t) is T-periodic).

Hence, according to Lemma 5.3, L is a contraction and if (L™eg,&0)y — 0 as n —
~+o00, then S(¢,0)eg — 0 as t — +oo. According to the invariance property of O,
IIo_ L = LIlp,. Thus, applying Lemma 5.2 (i), it is sufficient to prove that for all
eo EDNO,, L"ey —0 as n — 400 since D is dense in X and L" is a contraction for
allm € N.

The proof is an adaptation of the strategy developed in [11, Theorem 1.1.2]. First,
we investigate the properties of L. It is self-adjoint positive definite since S(7,0) is
bounded from below. Let g € DN O,. The hypotheses of Lemma 5.3 hold. Hence,
S is a contraction evolution system, and (5.3) yields

(5.14) (Leo, 2o} x = IIS(7, 0)eollk < lleolly —2(r — u)/o ICS(t, 0)eolly dt.
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Hence
||L60||§< = (LS(7,0)e0,S(7,0)e0) x  (since S(r,0) is normal)

< I8(r.0)eally =20~ 1) [ 1CS(.0)8(r. 00l e
0

< leollx — 2(r — p) / ' (les(t,0)8(r,0)z0 13 + ICS (2, 0)eoll3. ) at
< lleoll% — 2(r — 1) (W(0,7)e0, €0) x -
Hence, || Leo|| x < |l€ol| x if €0 # 0. Moreover, (5.3) yields for all g € X and alln € N
(L™ eq,20) x — (L"€0,20) x = [S((n+1)7,0)e0]% — IS(n7, 0)20 1%
<200 =) [ 1CS,08(m0)e0l} de
<0. ’

Then (L™),>0 is a non-increasing sequence of bounded self-adjoint definite-positive
operators on the vector space O, (by the invariance property). Hence, according
to [25, Lemma 12.3.2], there exists a bounded self-adjoint definite-positive operator
Lo € Z(0;) such that Lo, < L™ for all n € Nand L"eg — Loogo as n — +oo for all
€o € O,. It remains to prove that L., = 0.

For all z1,29 € O, and all n € N,

(Loo1, Loo2) y = (Loo1, (Lo — L™)2) y + ((Loc — L™)x1, L x2)
—+ <Ln$1, Ln$2>X .

Since L is self-adjoint,

(L"x1,L"x9) y = <L2”x1,CL’2>X njoo (Loo1,22) y -

Hence L% = Lo,. Moreover, for all eg € O, \ {0},
IZocgolly = (L3e0,€0) y = (Lootos€0) x < (Le0,20) y = [ Lol < lleol -

Hence ||L0050||§( = HLgosoHi < ||Lw50||§(. if Loogg # 0. Thus L.ep = 0 for all
€o € O, which ends the proof. 0

5.4. Proof of Theorem 3.9. Statement (ii) is a recall of the previous work
of [11]. We adapt the method to prove Statement (i).

Proof of Theorem 5.9 (7). Assume that T < +oco and (T(t,s))ogs,<7 is a bi-
directional evolution system. Suppose that both ((A(t)):eo, 17, C) and ((—A(t)):eo, 17, C)R
are p-weakly detectable and r > p. Assume also that Op = X and S_(0,T) =
S+ (T,0)*. We follow the same strategy as in the proof of Theorem 3.8 (see Sec-
tion 5.3).

Let L = S_(0,T7)S4(T,0) = S4(T,0)*S4+(T,0) (as in the proof of Theorem 3.7,
Section 5.2). Then, it is sufficient to prove that for all g € O, L"eq —0 as n — +oc0.
The operator L is self-adjoint positive definite since S(7,0) is bounded from below

This manuscript is for review purposes only.
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(since S is bi-directional). Let €9 € X. The hypotheses of Lemma 5.5 hold. Hence, L
is a contraction and (5.10) yields

(515 (Lev.o)x = [8+(T.0)c0lx < leolly =20 =) [ 1C8. (0ol a0

From there, the proof is identical to the proof of Theorem 3.8, from equation
(5.14) to the end, by replacing 7 by T', S by S; and O, by X. Hence, L"¢y — 0 as
n — 0o, which ends the proof of Theorem 3.9.

6. Examples and applications. We provide two examples of applications of
the main results of Section 3. First, we consider the theoretical example of the
one-dimensional time-varying transport equation with periodic boundary conditions.
Then, we apply the obtained results to a model of a batch crystallization process
in order to reconstruct the Crystal Size Distribution (CSD) from the Chord Length
Distribution (CLD).

6.1. One-dimensional time-varying transport equation with periodic
boundary conditions. As an example of the theory exposed in the former two
sections we consider a one-dimensional time-varying transport equation with periodic
boundary conditions. More precisely, let #1 > o > 0 and X = L?((xo,z1);R) the
set of real-valued square-integrable functions over (zg,x1), endowed with the inner
product (f,g)y = fzol fgforall fge X. Let D={f e X | f(zo) = f(z1), [ € X}
and G € C'([0,7],R) For all t > 0, let

At): D — X
df

fr— —=G(t) Qo

Then A(t) is a skew-adjoint operator for all ¢ > 0. Hence (A(f))i>0 is a stable
family of generators of strongly continuous groups that share the same domain D.
Moreover t — A(t)f is continuously differentiable for all f € D since G is of class
C'. Then [20, Chapter 5, Theorem 4.8] ensures that (A(t))iepo,7] is the generator
of a unique bi-directional unitary (i.e., forward and backward contraction) evolution
system on X denoted by (T(,s))ogs<t- Moreover, T(¢,s) is defined for all ¢ > s > 0
and all zp € X by

(6.1) (T(t, 5)20)(x) = 20(v(x, 1, ),

where

(6.2) w(@,t, ) = w0 + <<x - /: G(T)dT) mod (21 — m)

for almost all z € (xg,z1).

Hence, for all real Hilbert space Y and all output operator C' € Z(X,Y’), the pair
((A(t))tcio,1, C) is 0-weakly detectable, as well as the pair ((—A(t))ejo,7), C). Conse-
quently, the transport equation with periodic boundary conditions is a good candidate
to apply the observer methodology previously developed, in both the asymptotic or
back and forth context. Moreover, in the asymptotic context, we have the following
proposition, which is useful to apply Theorem 3.5.
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PROPOSITION 6.1. Assume that T = 400 and G and its derivative G' are both
bounded. If there exist Goo € CT(Ry,R) and an increasing positive sequence (t,)n>0 —J
+oo such that G(tn, +t) = Gso(t) as n — +oo for allt > 0, then ||T(t, + ¢, tn) —
Too(t,0)||2(x) = 0 as n — 400 uniformly in t € [0,7] for all T > 0, where To is the

evolution system generated by (—Gm(t)%)po.

In particular, note that if G is periodic, then G and G’ are bounded and there ex-
its a bounded sequence (t,),>0 and a constant Go, > 0 such that ||T(¢, +¢,t,) —
Too(t)||.2(x) — 0 as n — +oo uniformly in ¢ € [0,7] for all 7 > 0, where Ty, is the
strongly continuous semigroup generated by fGoo% :D — X.

Proof of Proposition 6.1. Tt is a direct application of [13, Theorem 10.2.b]. The
consistency condition (C) of [13] is satisfied since for all zy € D,
dZO

(6.3) Altn + )20 = ~Glta + )22 —> ~Guult

dz
dz
Moreover, (||A(ts +t)20llx)n>0 is bounded by supg, |G| H%Hx for all t > 0 and all
zo € D. Forall z1,2z0 € D,alln € Nand all t,7 > 0, we have the following inequalities:
|<A(tn +14+ T)Zl — A(tn + t)ZQ, zZ1 — 22>X|
<[((Altn +t+7) = At +1))21, 21 — 22) x|
+ [(A(tn + 1) (21 — 22), 21 — 22) x|

le

<Gt +t+7) = Glta+ ] | T NIz — 2l
X

<sup |G| T
Ry

21
dr . 21 — 22l x -
Hence, the condition (E2u) of [13] is also satisfied. Therefore, all the hypotheses
of [13, Theorem 10.2.b] are met, which ends the proof. d

In the following sections, the form of the output operator is investigated. The two
considered forms will be of use in the application of the results to a crystallization
process.

6.1.1. Geometric conditions on the output operator. If the kernel of the
output operator C' € £ (X,Y) satisfies some geometric conditions, then the kernel of
the observability Gramian of the system may be linked to the kernel of C. Indeed,
assume that there exists a set U C [xg, z1] such that

(6.4) ker O ={f e X | flv =0},

where f|y denotes the restriction of f to U. Then zy € ker W (tg, 7) for some g, 7 >
if and only if (T(s,tg)20) |y = 0 for almost all s € (tg,t0 + 7), i-e., zo(v(x, s,t0)) =
for almost all s € (tg,tp + 7) and almost all z € U. Hence

0
0

(6.5) ker W(to, 7) = {f € X | flv,mae = 0}
where Upax = {v(z, s,t0), 2 € U, s € [to, to + 7]}. Moreover, note that
(6.6) ker W (to, 7)™ = {f € X | fliwos1)\Umax = 0} -

This leads to the following result. Roughly speaking, it states that if the observation
time 7 is sufficiently large for all the data to pass through the observation window
[©min, Tmax), then the observable part of the state is actually the full state.

This manuscript is for review purposes only.



-

784
785
786

787

’f.( E‘j
790
791
792
793
794
795
796
797

798

799

802

803
804

e

20 L. BRIVADIS, V. ANDRIEU, U. SERRES, AND J.-P. GAUTHIER

PROPOSITION 6.2. Let [Zmin, Tmax] C [0, 21]. Assume thatker C C {f € X | flizmim cmas]
If
to+T1
(67) / G(t)dt’ 2 (xl - :L'O) - (:Emax - xmin)7
to

for some to, 7 = 0, then ker W (to,7) = {0}.

Proof. According to the previous remarks, it is sufficient to prove that Up.x =
[0, 21] when U = [Zmin, Zmax|.- Clearly, U C Upax. Now, let 2 € Upax \ U. Then
there exists s € [to,to + 7] such that @ = v(Xmin, s,to) (if ft°+T G(t)dt > 0) or

to
T = V(Tmax, 5, to) (f [i"77 G(t)dt <0). 0
6.1.2. Integral output operator with bounded kernel. Assume that the
output operator C' € Z(X,Y) is an integral output operator with bounded kernel,

that is, there exists k € L>((wo,21);Y) (d.e., with ess sup,e (4, ,4,) [|K(2)[ly < +00)
such that

z1
(6.8) cf :/ k(x)f(z)dz

xo
for all f € X. Then, there is no time interval (tg,to + 7) C Ry such that the pair

((A(t))e=0, C) is exactly observable on (tg,to + 7).

PROPOSITION 6.3. If C' € Z(X,Y) satisfies (6.8) for some k € L*((xg,x1);Y),
then for all to,7 > 0 and all § > 0, there exists zg € X such that

(6.9) (W (to, 7)20, 20) x < 6 |20 -

Hence, for such output operators, the convergence of an observer must rely on weaker
observability assumptions, such as the approximate observability. In the application
of the results to a crystallization process (see Section 6.2), the reader will find that
C is precisely an integral output operator with bounded kernel. This justifies the
whole approach of the paper, since our results are based on such weaker observability
hypotheses (namely approximate observability and not exact observability).

Proof of Proposition 6.3. Let to,7 = 0, z0 € X and z(¢t) = T(to + ¢,10)z0 for all
t > to. Since (zg, 1) is bounded, any f € L?((zg,z1);R) is also integrable. Set
||f||L1((mo,r1);1R) = fq;ol |f(x)| dx. Then

to+T1
<Wmnmmu=/ =) dt
to

to+7 X1 2
=/ (/ |k‘(x)z(t,a:)||ydx) dt

to xo

to+T z1 2
<[] @l ateayac) at

to To

9 to+T7 x1 2
<||k‘|Lw<<mo,x1>;Y>/t </ IZ(t,w)Idw> dt
0 xo

< TIRIE s ((o,0)7) el 12 @NE s (o0

Moreover, by the usual transport properties of v, we get for all ¢ € [to, g + 7] that

||Z(t)||2Ll((xo,m1);R) = [[20(v(t, to, '))H%l((xo,zl);R) = ||Zo\|%1((x0,xl);m)~

This manuscript is for review purposes only.
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Hence

(W(to,7)z0, 20) x < TIIEll oo ((2o.e0)x) 12011 (2o 00 )im) -

The result follows from the fact that the norms || - || 11 ((zg,2,)®) a0d || - [ 22((w0,21)5R)
are not equivalent.

Remark 6.4. According to Remark 4.11, the boundedness of the operator C*C A
from (D, ||-|| x) to (X, ||| x) is an interesting property for the convergence to 0 of the
correction term Ce of the observers. If we ask more regularity to the solutions of
the transport equation, then the integral output operators in the form of (6.8) satisfy
this assumption. Indeed, assume (in this remark only) that X = {f € L?(xo,z1;R) |
[’ € L*(z¢,21;R)} endowed with the inner product (f,g)y = f;ol(fg + f'g") and

Duew = {f € X | f(x1) = f(z1), f'(21) = f'(z1), f" € L*(z0,21;R)}. Then, for all

Zp € Dncwa
) 1
ezl < ([
zo

1 dZQ 2
||k||L°° ((xo,z1),Y) d7( z)| dx
To
)

< Bl Lo (o007 (1 — @0) |20

H) S0 )

by the Cauchy-Schwarz inequality. Thus, C*CA € Z((DPnew, |||l x): (X, -]l x)) since
C' is bounded.

6.2. Estimation of the CSD from the CLD in a batch crystallization
process.

6.2.1. Modeling the batch crystallization process. In the chemical and
pharmaceutical industries, the crystallization process is one of the simplest and cheap-
est way to produce some pure solid. In order to control the physical and chemical
properties of the product, the control of the CSD is of major importance. Since there
is no effective measurement method able to determine the CSD online during the
process, the estimation of the CSD based on other measurements is a crucial issue.
We consider the context of a batch crystallization process. One of the simplest model
of the process can be written as follow :

on on
at( x)+ G(t )ax (t,z) =0, V(t,z)€[0,T] X [Zmin, Tmax]
(6.10) n(0,-) = ng

TL(', xmin) =u,

with the following notations:
e T is the experiment duration;
® [Zmin, Tmax| 18 the crystal size range. All crystals are assumed to be spherical
with radius & € [Zmin, Tmax] Where Tmax > Zmin > 0.
e n(t) is the CSD at time ¢;
e G is the growth kinetic, assumed size independent (McCabe hypothesis);
e u represents the nucleation. All new crystals have size Tpiy.
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845 Here G is supposed to be known, contrary to v and n. In practice, G can be estimated
846 via a simple model based on the solute concentration and the solubility thanks to
847 solute concentration and temperature sensors (see, e.g., [8,26], or [18,19] for more
848 detailed models). We reformulate (6.10) in order to match our theoretical results.
849 The size of the crystals is supposed to be increasing, i.e., G(t) > 0 for all ¢ € [0, 7.
850  Assume that the maximal crystal size zp.x i never reached by any crystals in time
851 T, d.e., n(t,Tmax) = 0 for all ¢t € [0, 7.

852 Let £o = Zmin — fOT G(s)ds and 1 = Zmax. We introduce the initial state variable
853 2, given for all x € [zg, z1] by

u (T(znnl’)) if zo < < Tmin,

51 (6.11) 20(z) = [ Gs)ds
no(x) otherwise.
855 Let X = L?(Zmin, Tmax)- According to Section 6.1, there exists a unique z € C°([0, T]; X)ii
856 satisfying the abstract Cauchy problem
(t.2) = ~G() 2 (k) V(t.2) € [0.7] x [z, ]
]57 (612) 2\, x) = O y L y L ) L0, L1,

z(0) = 2o
Moreover, (6.1) and (6.2) combined with (6.11) yield
Z(t, xmin) = ZO(xmin) = U(t)

858 for all ¢ € [0,T]. Hence, z(t,x) = n(t,x) for all t € [0, T] and all © € [Xmin, Tmax]-

859 We are now in the context developed in the previous section of the one-dimensional
860 transport equation with periodic boundary conditions (since the right boundary term
861 does not influence z(t, xmin) on the time interval [0,7]). Our goal is to reconstruct
862 offline the initial CSD ng = ZO‘[mmsn, thanks to the BFN algorithm. We now
863 introduce an output operator C.

864 6.2.2. Modeling the FBRMZ® echnology. The focused beam reflectance mea-
865 surement (FBRM®) technology is an in situ sensor that measures data online during
866 a crystallization process. The probe is equipped with a laser beam in rotation that
867 scans across the particles. While the beam hit a particle, light is backscattered to the
868 probe. The sensor counts the number of distinct light pulses and their duration. For
869 each pulse, a length on a particle (i.e., a chord length) can be determined, since the
870 rotation speed of the beam is known and the speed of the particle is supposed to be
871 insignificant. Hence, one can deduce the CLD of the particles. The reader may refer
872 to [5,15,22] for more details about this technology, and how it is linked to the CLD.
873 At a fixed time ¢t € [0,T], for a given CSD n(t,-) of spherical particles, the
874 corresponding cumulative CLD ¢(t, -) supposed to be measured by the FBRM® probe
875 can be written as

ZTmax]

6 (6.13) ot 0) = / " k(@ Ont 2)de, V€ [0, 22ma,
877 T

min

878 where /¢ represents the length of a chord and k, defined in [7,15], satisfies

7\ 2
879 (6.14)  k(x,0) =1 — Xjo,22[(O)4 /1 — <2x> , V() €[0,22max] X [Tmin, Tmax)s
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880
881 where X[g 2, is the characteristic function of [0,2x). Set Y = L?((Umins bmax ); R) with
882 Lmin = 0 and Loy = 2Tmax. Let C € Z(X,Y) be defined by

C: X —Y

883

884 f — L <k(7£)7f
885 forall (z,£) € [Zmin, Tmax] X[0, 2Zmax], 0 < k(z, £) < 1. Hence k € L°((Zmin, Tmax); Y) i
886 Thus, C' is a well-defined integral operator with kernel k and, according to Sec-
887 tion 6.1.2, there is no time interval (to,to + 7) C [0, 7] on which the system is exactly
888 observable. It remains to analyse ker C.

[Zmin ,Tmax] >L2 ((min,Tmax );R)

889 PROPOSITION 6.5. The kernel of the integral operator C is given by
800 (6.15) ker C = {f € X | flizmmwmax] =07 -
891 Therefore, one can apply the results of Section 6.1.1, and in particular Proposi-

892 tion 6.2, to the pair ((A(t))tec[o,r],C). According to the definition of z¢ and z,

893 fOT G(t)dt = (21 — 29) — (Tmin — Tmax)- Hence, W(0,T) is injective. Thus, according
894 to Theorem 3.7, (2.5-2.8) is a weak back and forth observer of (2.1). Moreover, since
895 A(t) is skew-adjoint for all ¢ € [0, 7], Theorem 3.9 (i) also applies. Hence, the BEN
896 algorithm reconstructs the CSD from the CLD in the strong topology.

897 Proof of Proposition 6.5. Clearly, kerC D {f € X | Flimimszma] = 0} Let f €
898 ker C. We want to show that f[f, . . 1 =0. For almost all £ € (0,27yi,) we have

899 0 :/ o k(l, ) f(x)dx

min

Tmax Tmax 2
900 (6.16) :/ f(a:)dat—/ flx)y/1— (263) dz.

min min

902 In order to apply the Leibniz integral rule on (0, 22y, ), we check that

903 e for all £ € (0,2zmin), z— f(z)y/1— (%)2 is integrable on (Zmin, Tmax),

904 o for all z € (Tmin, Tmax), £+ f(x)y/1— (%)2 is C* on (0, 2Zmin)-
905 Hence, C'f is C*° on (0,2zmin). Since C'f = 0 almost everywhere on (0, 2zmin), we

906  get that
905 (CH)™M(©O) =0,  VneN.
909 In the following, we determine an expression of (C'f)(™(0). Fix = € (Zmin, Tmax). Set

u: (0,2Tmin) — R

910 2

¢
912 We show by induction that for all n > 1, there exists a family (af'; )i jen € (R )N
913 such that:

914 e the set {(i,7) € N* | aj; # 0} is finite,
915 ® aj, 1 #0,
916 e Vj € N\{n—1}, a5, =0,

uP () = 3 aﬁjﬁ(llxz - 62)*%2+1 for all £ € (0,22min)-
i,7EN

917
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918 Base case. For all £ € (0, 22min),
919 U/(E) —_ 6(45132 762)7%7
o2 u? () = (4a? = )7F + P(a? - )R,

922 Then, it is sufficient to set, for all (i,5) € (N*)2,

' :{1 if (i,5) € {(0,1), (2,2)}

923 a; ;
924 0 elbe
925 Inductive step. Let n > 1. Assume there exists such a family (a} )Z jen. We need

926 to compute u2(*+t1). For all £ € (0, 22 min),
027 uP(0) = aguor(d2® — )T 4 ST ap e — )

928 121,720

(by hypothesis).

929 Computing the next two derivatives of u(*™), we get

930 u D (0) = (2(n — 1) + Dagn_10(4a2 — £2)~ 2
931 + Z (2] + 1)a2j£1+1(41, _62)72(j+21)+1
121,520
932 +) at(4a® — )~ 4 > a0 (4a® — &)
933 320 i22,j20
934 and
935 w2 () = (2(n — 1) + Dag 1 (422 — )72
936 +) (25 = Dap;_ (4a® — £7)” =
j=1
937 + 30 QU 1)+ 12 - B)al o ol (42 — )T
123,522
938 + 3T ()2 - Dal,  Li(da? - )
121,521
939 +(2(n —1) +1)(2n + Vag n_10*(42* — 82)_2("?}+1
940 + Y 1)+ 2)al, b (4 - 2
120,720
, . ; n g2 _ p2)\— 2t
941 + Z (25 — V)iaj; £ (4x" — £7)" 2
942 i>2,7>1
943 For all (i,5) € N2, set
944 a”jl (2n — 1)ao,n—1x{(0,n)} (i J)
945 (2Tl — 1)(271 + 1)a0 n—1X{1}x]1, +<>O)(Z ])
946 +(27 = 1)(25 = 3)ai 2 j_oX[3,+00) x[2,400) (15 ])
947 + (14 1)(25 = 1)ai’ 1 X1 400) x[1.,400) (05 )
948 + (2(Tl — 1) + 1)(2n + 1)a0,n—1X{(2,n+1)}(iaj)
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+ (2.7 - l)iaZj—IX[27+oo)><[1,+oo) (Z,j)
+ (i + 1)+ 2)aiy, ;-
Then, to conclude the induction, one can check that ,

e for all {(i,j) € N? a?jl > 0 since (af;); jen € (Ry)®),

o {(i,j) e N?| a?jl # 0} is finite since {(,j) € N* | af; # 0} is finite,
o agy' > (2n—1)ag, 4 >0,

o Vj e N\{n—1}, agjl =0,

_zi41

o uHD)(0) = 3 al TN (42% — %)~ "2 for all £ € (0,22 min).
i,jEN
Thus, since (C'f)2™(0) = 0 for all n € N*,

Tmax n f(:L.)
(617) 0 = /I a0$n71Wd$

min

for some ag,,_; > 0. Let n € N*. Then,

0= /Imax f(l‘) dz

) x2n71
““”1“' 1 1
:/ - f() Ptz (3= -).
1 X x

Set f: [ L]1> &+ f(%). Then,

Tmax ’ Tmin

(6.18) = 5/ = f(Vz)zhdz (T = 32).
1
Set f: [ ,=2—] 2 @+ f(v/Z)z. Then we have
1
=
(6.19) 0:/ min f(r)z" 1 da.
1

Since the family (z — 2"),>0 is a total family in L? ((mzl ,%) ;R) from the

max = Tmin

Weierstrass approximation theorem, f = 0. Hence f|, .. »...) = 0, which concludes
the proof. ]
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