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Abstract. This paper deals with the observer design problem for time-varying linear infinite-6
dimensional systems. We address both the problem of online estimation of the state of the system7
from the output via an asymptotic observer, and the problem of offline estimation of the initial8
state via a Back and Forth Nudging (BFN) algorithm. In both contexts, we show under a weak9
detectability assumption that a Luenberger-like observer may reconstruct the so-called observable10
subspace of the system. However, since no exact observability hypothesis is required, only a weak11
convergence of the observer holds in general. Additional conditions on the system are required to12
show the strong convergence. We provide an application of our results to a batch crystallization13
process modeled by a one-dimensional transport equation with periodic boundary conditions, in14
which we try to estimate the Crystal Size Distribution from the Chord Length Distribution.15
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1. Introduction. To analyze, monitor or control physical or biological phenom-19
ena, the first step is to provide a mathematical modeling in the form of mathematical20
equations that describe the evolution of the system variables. Some of these vari-21
ables are accessible through measurement and others are not. One of the problems in22
control engineering is that of designing algorithms to provide real time estimates of23
the unmeasured data from the others. These estimation algorithms are called state24
observers and can be found in many devices. The implementation of such observers25
for infinite-dimensional systems is a topic of great interest from both the practical26
and theoretical points of view that has been extensively studied in the past decades27
(see, e.g., [9, 16,23,24,25,28]).28

More recently, these results have been employed in data assimilation problems,29
leading to the so-called Back and Forth Nudging (BFN) algorithms (see, e.g., [2, 11,30
14,21]). In this context, observers are used iteratively forward and backward in time31
to solve the offline estimation problem of reconstructing the initial state of the system.32
Such problems occur for example in meteorology or oceanography [1, 3].33

Mainly two types of results are known about the convergence of Luenberger-like34
observers for linear systems, depending on the observability hypotheses made. Un-35
der an exact observability hypothesis that links the L2-norm of the measured output36
on some time interval to the norm of the initial state, a Luenberger-like asymptotic37
observer that converges exponentially to the actual state of the system may be de-38
signed [16,23,25]. Under this hypothesis, it is proved in [14,21] that the BFN algorithm39
estimates exponentially the initial state of the system.40
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Otherwise, if the system is only approximately observable, that is, any two tra-41
jectories of the system may be distinguished by looking at the output on some time42
interval, then, if the system is dissipative, one can prove that the same asymptotic43
observer converges only weakly to the state [9, 24, 28]. For the BFN algorithm, G.44
Haine proved in [11] for autonomous systems generated by skew-adjoint generators45
that the initial state estimation still converges strongly (but no more exponentially)46
to the actual initial state.47

The time-varying context has been investigated for control systems in [9, 28], in48
which some persistency assumptions are required, and a weak convergence is guaran-49
teed. When no observability assumptions are made, then one may expect the observer50
to converge to the so-called observable subspace of the system, which is clearly defined51
only for autonomous systems.52

In this paper, we consider infinite-dimensional time-varying linear systems. We53
investigate both the usual asymptotic observer design problem, and the backward and54
forward observers design problem for the BFN algorithm. We relax the dissipativity55
hypothesis, and replace it by a weak detectability hypothesis, which states that the56
distance between any two trajectories of the system that share the same output is a57
non-increasing function of time. When no observability hypothesis holds, we show that58
the observer estimates in the weak topology the observable part of the state, which59
is equal to the whole state when the system is approximately observable. Under60
additional assumptions on the system, we also show the strong convergence of the61
observer. We compare our results with the existing literature mentioned above.62

As an application of our results, we consider a batch crystallization process mod-63
eled by a one-dimensional time-varying transport equation with periodic boundary64
conditions. This process aims to produce solid crystals meeting some physical and65
chemical specifications. One of the most important physical property to monitor is the66
Crystal Size Distribution (CSD). Information available online are the Chord Length67
Distribution (CLD) obtained from the FBRM® technology and the solute concentra-68
tion. However, as shown in the following, the considered model describing this system69
is time-varying and not exactly observable, which is a motivation for these theoretical70
developments.71

The paper is organized as follows. In Section 2, we describe the systems under72
consideration, and make the required assumptions to ensure the well-posedness of the73
usual asymptotic observer and the backward and forward observers of the BFN. Our74
main results are stated in Section 3, discussed in Section 4, and proved in Section 5.75
In Section 6, we discuss about their implications for the one-dimensional transport76
equation with periodic boundary conditions and to a batch crystallization process,77
in which we aim to estimate the Crystal Size Distribution from the Chord Length78
Distribution.79

Notations. Denote by R (resp. R+) the set of real (resp. non-negative) numbers80
and by N (resp. N∗) the set of non-negative (resp. positive) integers. For all Hilbert81
space X, denote by 〈·, ·〉X the inner product over X and ‖·‖X the induced norm. For82
all k ∈ N∪ {∞} and all interval U ⊂ R, the set Ck(U ;X) is the set of k-continuously83
differentiable functions from U to X.84

We recall the characterization of the strong and weak topologies onX. A sequence85
(xn)n>0 ∈ XN is said to be strongly convergent to some x? ∈ X if ‖xn − x?‖X → 0 as86
n→ +∞, and we shall write xn → x? as n→ +∞. It is said to be weakly convergent87
to x? if 〈xn − x?, ψ〉X → 0 as n → +∞ for all ψ ∈ X, and we shall write xn

w
⇀ x?88

as n→ +∞. The strong topology on X is finer than the weak topology (see, e.g., [6]89
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for more properties on these usual topologies).90
If Y is also a Hilbert space, then L (X,Y ) denotes the space of bounded linear91

maps from X to Y and ‖ · ‖L (X,Y ) the operator norm. Set L (X) = L (X,X). For92
all L ∈ L (X,Y ), denote by ranL its range and kerL its kernel. We identify the93
Hilbert spaces with their dual spaces via the canonical isometry, so that the adjoint94
of L, denoted by L∗, lies in L (Y,X). If L∗L = LL∗, then L is said to be normal. If95
there exists a positive constant α such that ‖Lx‖X > α ‖x‖X for all x ∈ X, then L is96
said to be bounded from below.97

For any set E ⊂ X, the closure of E in the strong topology of X is denoted by98
E. If E is a linear subspace of X, then E⊥ denotes its orthogonal complement in99
X. Moreover, if E is closed, set ΠE ∈ L (X) the orthogonal projection such that100
ran ΠE = E.101

2. Problem statement. Let X and Y be two Hilbert spaces with real1 inner102
products. Let D be a dense subset of X. For all t > 0, let A(t) : D → X be the103
generator of a strongly continuous semigroup on X and C ∈ L (X,Y ). Let z0 ∈ X.104
Consider the non-autonomous linear abstract Cauchy problem with measured output105

(2.1)
{
ż = A(t)z
z(0) = z0

, y = Cz.106

In this paper, we are concerned with the problem of designing an observer of the107
state z based on the measurement y. We adopt the context of hyperbolic systems. Let108
T ∈ R+∪{+∞}, and adopt the convention that [0, T ] = R+ if T = +∞. Assume that109
the family (A(t))t∈[0,T ] is a stable (see [20, Chapter 5, Section 5.2] for a definition)110
family of generators of strongly continuous semigroups that share the same domain D.111
Assume also that for all x ∈ D, the function t 7→ A(t)x is continuously differentiable112
on X. These hypotheses hold for the rest of the paper. Then [20, Chapter 5, Theorem113
4.8] ensures that the family (A(t))t∈[0,T ] is the generator of a unique evolution system114
on X denoted by (T(t, s))06s6t6T . Moreover, there exist two constants M, ω > 0115
such that116

(2.2) ‖T(t, s)‖L (X) 6Meω(t−s), ∀ 0 6 s 6 t 6 T.117

For all z0 ∈ X, (2.1) admits a unique solution z ∈ C0([0, T ];X) given by z(t) =118
T(t, 0)z0 for all t ∈ [0, T ]. Moreover, if z0 ∈ D, then z ∈ C0([0, T ];D) ∩ C1([0, T ];X).119
The reader may refer to [20, Chapter 5] or [13] for more details on the evolution120
equations theory.121

Definition 2.1 (Autonomous context). We shall say that (2.1) is autonomous122
if there exists an operator A : D → X such that A(t) = A for all t ∈ R+.123

Remark 2.2. In the autonomous context, T = +∞ and the evolution system T is124
such that T(t, s) = T(t − s, 0) for all t > s > 0. By abuse of notation, the strongly125
continuous semigroup generated by A is also denoted by T, so that T(t) = T(t, 0) for126
all t ∈ R+. The same shortened notations hold for any other autonomous system.127

Our goal is to build an observer system ẑ fed by the output y of (2.1), such128
that ẑ estimates the actual state z. We raise two different observer issues: the usual129
asymptotic observer problem, and the inverse problem of reconstructing the initial130
state.131

1Even if we could consider complex inner product, we prefer to restrict ourselves to real inner
products to simplify the presentation.
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2.1. Asymptotic observer. In order to find an asymptotic observer, we natu-132
rally assume that T = +∞. The goal is to find a new dynamical system fed by the133
output of (2.1) which asymptotically learns the state from the dynamic of the output.134
This issue was raised by D. Luenberger in his seminal paper [17] in the context of135
finite-dimensional autonomous linear systems. In [23,24], J. Slemrod investigates the136
dual problem of stabilization in infinite-dimensional Hilbert spaces. In this paper, we137
follow this path and introduce the usual infinite-dimensional version of the Luenberger138
observer.139

Let r > 0 and ẑ0 ∈ X. Consider the following Luenberger-like observer140

(2.3)
{

˙̂z = A(t)ẑ − rC∗(Cẑ − y)
ẑ(0) = ẑ0

141

Set ε = ẑ− z and ε0 = ẑ0 − z0. From now on, ẑ represents the state estimation made142
by the observer system and ε the error between this estimation and the actual state143
of the system. Then ẑ satisfies (2.3) if and only if ε satisfies144

(2.4)
{
ε̇ = (A− rC∗C)ε
ε(0) = ε0

145

Since C ∈ L (X,Y ), [20, Chapter 5, Theorem 2.3] claims that (A(t) − rC∗C)t>0 is146
also a stable family of generators of strongly continuous semigroups, and generates147
an evolution system on X denoted by (S(t, s))06s6t. Then, systems (2.3) and (2.4)148
have respectively a unique solution ẑ and ε in C0([0,+∞);X). Moreover, ẑ(t) =149
(T + S)(t, 0)ẑ0 and ε(t) = S(t, 0)ε0 for all t ∈ [0,+∞). If (ẑ0, ε0) ∈ D2, then ẑ,150
ε ∈ C0([0,+∞);D) ∩ C1([0,+∞);X).151

We are interested in the convergence properties of the state estimation ẑ to the152
actual state z, i.e., of the estimation error ε to 0.153

Definition 2.3 (Asymptotic observer). For any closed linear subspace O of X,154
(2.3) is said to be a strong (resp. weak) asymptotic O-observer of (2.1) if and only if155
ΠOS(t, 0)ε0 → 0 (resp. ΠOS(t, 0)ε0

w
⇀ 0) as t→ +∞ for all ε0 ∈ X. An X-observer156

is shortly called an observer.157

2.2. Back and forth nudging. Now consider a problem which is slightly dif-158
ferent from the former one. Assume that T < +∞, and address the problem of offline159
state estimation. The goal is to use the knowledge of the output and its dynamic on160
the finite time interval [0, T ] to estimate the initial state of the system. To achieve161
this, the idea is to use iteratively forward and backward observers. This methodology162
is called the back and forth nudging in [2, 3, 4], or the time reversal based algorithm163
in [14].164

In order to build this observer, we need to assume that the family (A(t))t∈[0,T ] is165
the generator of a bi-directional evolution system on X denoted by (T(t, s))06s,t6T .166
We make this assumption each time backward and forward observers are considered.167
Let ẑ0 ∈ X. For every n ∈ N, we consider the following dynamical systems defined168
on [0, T ] as in [21] by169 

˙̂z2n = A(t)ẑ2n − rC∗(Cẑ2n − y)

ẑ2n(0) =
{
ẑ2n−1(0) if n > 1
ẑ0 otherwise.

(2.5)170
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INFINITE-DIMENSIONAL OBSERVERS, BFN AND CRYSTALLIZATION 5{
˙̂z2n+1 = A(t)ẑ2n+1 + rC∗(Cẑ2n+1 − y)
ẑ2n+1(T ) = ẑ2n(T ).

(2.6)171
172

For all n ∈ N, let εn = ẑn − z and ε0 = ẑ0 − z0. Then ẑ2n and ẑ2n+1 satisfy173
respectively (2.5) and (2.6) if and only if ε2n and ε2n+1 satisfy174 

ε̇2n = (A(t)− rC∗C)ε2n

ε2n(0) =
{
ε2n−1(0) if n > 1
ε0 otherwise.

(2.7)175

{
ε̇2n+1 = (A(t) + rC∗C)ε2n+1

ε2n+1(T ) = ε2n(T ).
(2.8)176

177

Since C ∈ L (X,Y ), [20, Chapter 5, Theorem 2.3] claims that both (A(t) −178
rC∗C)t∈[0,T ] and (A(t) + rC∗C)t∈[0,T ] are stable families of generators of strongly179
continuous semigroups that generate bi-directional evolution systems on X denoted180
respectively by (S+(t, s))06s,t6T and (S−(t, s))06s,t6T . Then, for all n ∈ N, (2.5),181
(2.6), (2.7) and (2.8) have respectively a unique solution ẑ2n, ẑ2n+1, ε2n and ε2n+1 in182
C0([0, T ];X).183

Moreover, ẑ2n(t) = (T + S+)(t, 0)ẑ2n(0), ẑ2n+1(t) = (T + S−)(t, T )ẑ2n+1(T ),184
ε2n(t) = S+(t, 0)ε2n(0) and ε2n+1(t) = S−(t, T )ε2n+1(T ) for all t ∈ [0, T ]. In particu-185
lar, note that186

(2.9) ε2n(0) = (S−(0, T )S+(T, 0))n ε0.187

If (ẑ0, ε0) ∈ D2, then ẑn, εn ∈ C0([0, T ];D) ∩ C1([0, T ];X) for all n ∈ N.188
We are interested in the convergence properties of the initial state estimation189

ẑ2n(0) to the actual state z(0), i.e., of the estimation error ε2n(0) to 0, as n goes to190
infinity.191

Definition 2.4 (Back and forth observer). For any closed linear subspace O of192
X, (2.5-2.8) is said to be a strong (resp. weak) back and forth O-observer of (2.1)193
if and only if ΠOε2n(0) → 0 (resp. ΠOε2n(0) w

⇀ 0) as n → +∞ for all ε0 ∈ X. An194
X-observer is shortly called an observer.195

3. Main results. In this section, we state our main results about the asymptotic196
observer and the back and forth observer. Then, we discuss our hypotheses and197
compare our results with the existing literature.198

A crucial operator to consider in order to investigate the convergence properties199
of a Luenberger-like observer is the so-called observability Gramian.200

Definition 3.1 (Observability Gramian). For all t0 ∈ [0, T ] and all τ ∈ [0, T −201
t0], let us define202

W (t0, τ) : X −→ X

z0 7−→
∫ t0+τ

t0

T(t, t0)∗C∗CT(t, t0)z0dt203

204

the observability Gramian of the pair (T, C).205

The operator W (t0, τ) is a bounded self-adjoint endomorphism of X, that character-206
izes the observability properties of (2.1). Moreover, W is continuous in L (X) with207

respect to (t0, t), and we have ‖W (t0, τ)‖L (X) 6
(
Meωτ‖C‖L (X,Y )

)2.208
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6 L. BRIVADIS, V. ANDRIEU, U. SERRES, AND J.-P. GAUTHIER

Remark 3.2. In the autonomous context, W (t0, τ) = W (0, τ) for all t0, τ ∈ R+.209
Then, by abuse of notation, we denote W (τ) = W (0, τ).210

Definition 3.3 (Observable subspace). For all τ ∈ [0, T ], let211

(3.1) Oτ = (kerW (0, τ))⊥ .212

be the observable subspace at time τ of the pair (T, C). If T = +∞, let213

(3.2) O =
⋃
τ>0
Oτ .214

be the observable subspace of the pair (T, C).215

The sequence (Oτ )τ>0 is a non-decreasing sequence of closed linear subspaces. Hence,216
O = limτ→+∞Oτ , and it may be seen as the observable subspace in infinite time of217
the pair (T, C).218

Our results rely on a weak detectability hypothesis defined as follows.219

Definition 3.4. The pair ((A(t))t∈[0,T ], C) is said to be µ-weakly detectable for220
some µ > 0 if for all t ∈ [0, T ],221

(3.3) 〈A(t)x, x〉X 6 µ ‖Cx‖2Y , ∀x ∈ D.222

We now state our main results about the convergence of the asymptotic observer223
and the back and forth observer. In general, the convergence holds only in the weak224
topology.225

3.1. Weak asymptotic observer.226

Theorem 3.5. Assume that T = +∞ and ((A(t))t>0, C) is µ-weakly detectable227
and r > µ. Assume that there exist an increasing positive sequence (tn)n>0 → +∞228
and an evolution system (T∞(t, s))06s6t on X such that for all τ > 0,229

(3.4) ‖T(tn + t, tn)− T∞(t, 0)‖L (X) → 0 as n→ +∞ uniformly in t ∈ [0, τ ],230

Let O be the observable subspace of the pair (T∞, C). Then for all ε0 ∈ X,231

(3.5) ΠOS(tn, 0)ε0
w−−⇀

n→+∞
0.232

Moreover, if (tn+1 − tn)n>0 is bounded and O = X, then (2.3) is a weak asymptotic233
observer of (2.1).234

The proof of Theorem 3.5 is given in Section 5.1. In the autonomous context, every235
increasing positive sequence (tn)n>0 → +∞ is such that T(tn + t, tn) = T(t) for all236
t > 0. Hence (3.5) holds for all such sequence (tn)n>0 and with O the observable237
subspace of (T, C). This leads to the following corollary.238

Corollary 3.6. Suppose that (2.1) is autonomous, (A,C) is µ-weakly detectable239
and r > µ. Let O be the observable subspace of (T, C). Then, (2.3) is a weak asymp-240
totic O-observer of (2.1).241

3.2. Weak back and forth observer.242

Theorem 3.7. Assume that T < +∞ and (T(t, s))06s,t6T is a bi-directional evo-243
lution system. Suppose that both ((A(t))t∈[0,T ], C) and ((−A(t))t∈[0,T ], C) are µ-weakly244
detectable and r > µ. Let OT be the observable subspace at time T of the pair (T, C).245
Then, (2.5-2.8) is a weak back and forth OT -observer of (2.1).246

The proof of Theorem 3.7 is given in Section 5.2. Under additional assumptions on247
the system, the strong convergence of the observers holds.248
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3.3. Strong asymptotic observer.249

Theorem 3.8. Assume that T = +∞. Suppose that there exists τ > 0 such that250
t 7→ A(t) is τ -periodic. Let Oτ ) be the observable subspace at time τ of the pair (T, C).251

(i) Suppose that ((A(t))t>0, C) is µ-weakly detectable and r > µ. Assume that252
S(τ, 0) is normal and bounded from below. If Oτ = X, then (2.3) is a strong253
asymptotic observer of (2.1).254

(ii) If A(t) is skew-adjoint for all t ∈ R+, then (2.3) is a strong asymptotic Oτ -255
observer of (2.1) for all r > 0.256

The proof of Theorem 3.8 is given in Section 5.3.257

3.4. Strong back and forth observer.258

Theorem 3.9. Assume that T < +∞ and (T(t, s))06s,t6T is a bi-directional evo-259
lution system. Let OT be the observable subspace at time T of the pair (T, C).260

(i) Suppose that both ((A(t))t∈[0,T ], C) and ((−A(t))t∈[0,T ], C) are µ-weakly de-261
tectable and r > µ. Assume that S−(0, T ) = S+(T, 0)∗ and is normal. If262
OT = X, then (2.5-2.8) is a strong back and forth observer of (2.1).263

(ii) [11, Theorem 1.1.2] In the autonomous context, if A is skew-adjoint, then264
(2.3) is a strong back and forth OT -observer of (2.1) for all r > 0.265

The proof of Theorem 3.9 is given in Section 5.4.266

4. Discussion on the results.267

4.1. About observability. For infinite-dimensional systems, there are several268
observability concepts that are not equivalent (see, e.g., [25, Chapter 6] in the au-269
tonomous context), contrary to the case of finite-dimensional systems. In particular,270
one can distinguish the two following main concepts.271

Definition 4.1 (Exact observability). The pair ((A(t))t∈[0,T ], C) is said to be272
exactly observable on (t0, t0 + τ) ⊂ [0, T ] if there exists δ > 0 such that273

(4.1) 〈W (t0, τ)z0, z0〉X > δ ‖z0‖2X , ∀z0 ∈ X.274

Definition 4.2 (Approximate observability). The pair ((A(t))t∈[0,T ], C) is said275
to be approximately observable on (t0, t0 + τ) ⊂ [0, T ] if W (t0, τ) is injective.276

Clearly, the exact observability of a pair on some time interval implies its ap-277
proximate observability, and the concepts are equivalent in finite-dimension. The278
approximate observability in time τ is equivalent to the fact that Oτ , the observable279
subspace in time τ of (T, C), is equal to the whole state space X. Our results focus on280
approximate observability-like assumptions, since the exact observability has already281
been deeply investigated for both the asymptotic observer and the BFN algorithm (see282
e.g., [14,21]). When the observable subspace is not the full state space, the observers283
reconstruct only the observable part of the state.284

4.2. About weak detectability.285

Remark 4.3. A pair ((A(t))t>0, C) is said to be detectable if for all pairs of tra-286
jectories (z1, z2) of (2.1), if Cz1(t) = Cz2(t) for all t > 0, then (z1(t) − z2(t)) → 0287
as t → +∞. This definition is equivalent to the usual definition of detectability in288
finite-dimension. However, several definitions may be chosen in infinite-dimension,289
that are all equivalent in finite-dimension. In this remark, we show how (3.3) may be290
seen as a weak detectability hypothesis. Let ((A(t))t∈[0,T ], C) be µ-weakly detectable291
for some µ > 0. Then Lemma 5.3, that is proved in Section 5.1, states that S is a292
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contraction evolution system,i.e., ‖S(t, s)‖L (X) 6 1 for 0 6 s 6 t 6 T . Consider293
(z1, z2) two trajectories of (2.1) such that Cz1(t) = Cz2(t) for all t ∈ [0, T ]. Then z1294
and z2 are also trajectories of (2.3), and z1 − z2 is a trajectory of (2.4). Therefore,295
for all 0 6 s 6 t 6 T ,296

‖z1(t)− z2(t)‖X = ‖S(t, s)(z1(s)− z2(s))‖X 6 ‖z1(s)− z2(s)‖X .297298

Hence, [0, T ] 3 t 7→ ‖z1(t)− z2(t)‖X is non-increasing. This property is indeed weaker299
than the usual detectability hypothesis, which would state that ‖z1(t)− z2(t)‖X tends300
to 0 as t goes to infinity.301

Remark 4.4. When stating that a pair ((A(t))t∈[0,T ], C) is µ-weakly detectable,302
we actually state that the pair is uniformly weakly detectable, in the sense that303
the detectability constant µ is independent of the time t ∈ [0, T ]. Therefore, this304
assumption is stronger than the weak detectability of each pair (A(t), C) for t ∈ [0, T ].305
However, if T < +∞ or t 7→ A(t) is periodic, then the two statements are equivalent,306
due to the continuity of [0, T ] 3 t 7→ A(t)x for all x ∈ D.307

Remark 4.5. If A(t) is a dissipative operator for all t ∈ [0, T ], that is,308

(4.2) 〈A(t)x, x〉X 6 0, ∀t ∈ [0, T ],309

then the pair ((A(t))t∈[0,T ], C) is 0-weakly detectable for any output operator C ∈310
L (X,Y ). This assumption is the one usually made in the literature to prove the311
weak convergence of a Luenberger-like observer in infinite-dimension (see, e.g., [9,24,312
28]). Therefore, the weak detectability hypothesis may be seen as a weakening of the313
dissipativity hypothesis, relying on the output operator.314

Remark 4.6. If there exist a bounded self-adjoint operator P ∈ L (X), α > 0 and315
µ > 0 such that316

(4.3) 〈x, Px〉X > p ‖x‖2X , 〈Px,A(t)x〉X 6 µ ‖Cx‖2Y , ∀x ∈ D, ∀t ∈ [0, T ],317

then the pair ((A(t))t∈[0,T ], C) is µ-weakly detectable provided one endows the Hilbert318
space X with the inner product 〈P ·, ·〉X . Note that in this case the operator C∗ is319
the adjoint of C ∈ L (X,Y ) with respect to this new inner product, i.e., 〈C·, ·〉Y =320
〈P ·, C∗·〉X . Actually, if X is finite-dimensional, the existence of P (which is then a321
positive-definite matrix) such that (4.3) holds is a necessary condition for the existence322
of an asymptotic observer.323

Remark 4.7. In the context of BFN, we require that both ((A(t))t∈[0,T ], C) and324
((−A(t))t∈[0,T ], C) are µ-weakly detectable. This is equivalent to state that325

(4.4) |〈A(t)x, x〉X | 6 µ ‖Cx‖2Y , ∀x ∈ D.326

Note that the considered inner product on X is the same for both the forward and the327
backward observer. If one must change the inner product with a self-adjoint operator328
P as in Remark 4.6, then this change must be done for both observers. In [12], the329
authors proved in the autonomous finite-dimensional context the existence of such a330
common operator P for both A and −A, but the question remains open in infinite-331
dimension.332

Remark 4.8. The parameter r > 0 is the observer gain. If A(t) is a dissipative333
operator for all t ∈ [0, T ], then the convergence results hold for all gain r > 0.334
Otherwise, the gain must be chosen high enough in order to make up the lack of335
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dissipativity, which is replaced by weak detectability. Obviously, if a pair is µ-weakly336
detectable for some µ > 0, then it is also λ-weakly detectable for all λ > µ. This class337
of observer is what is called observers with infinite gain margin since r can be taken338
as large as requested.339

4.3. About the results.340

Remark 4.9. Our results are linked with the existing literature in the following341
way. If A(t) = A +

∑p
i=1 ui(t)Bi where A,B0, . . . , Bp are skew-adjoint generators of342

unitary groups on X and u1, . . . , up are bounded, then Theorem 3.5 is an extension343
of [9, Theorem 7] to the case where the system is not approximately observable in344
some finite time. The proofs of Theorems 3.5 and 3.7 follow the path of this seminal345
paper. In the autonomous context, we recover the usual weak asymptotic observer in346
Corollary 3.6. Theorem 3.7 states that only weak convergence of the BFN algorithm347
holds in general. Following the way paved by G. Haine in [11], we prove in Theorem 3.9348
that the convergence is actually strong under some additional assumptions. We recall349
and extend [11, Theorem 1.1.2] in Theorem 3.9. In particular, we consider non-350
autonomous systems and do not necessarily assume that A(t) is skew-adjoint for all351
t ∈ [0, T ]. Moreover, we adapt this technique to the usual asymptotic observer to352
prove the strong convergence in the case of periodic systems in Theorem 3.8. We do353
not investigate any exact observability-like assumptions, since [16, 23, 27] and [14, 21]354
solved the question, at least in the autonomous case, in the asymptotic context and355
back and forth context respectively.356

Remark 4.10. In Theorem 3.5, one of the hypotheses is the existence of an increas-357
ing positive sequence (tn)n>0 → +∞ and an evolution system (T∞(t, s))06s6t on X358
such that ‖T(tn+ t, tn)−T∞(t, 0)‖L (X) → 0 as n→ +∞ uniformly in t ∈ [0, τ ] for all359
τ > 0. Checking this hypothesis may be a difficult task in general. However, [13, The-360
orem 10.2] states sufficient conditions on the family of generators (A(t))t>0 for the361
existence of such a sequence. In Section 6.1, we show how to check this property on a362
time-varying one-dimensional transport equation with periodic boundary conditions.363

Remark 4.11. One of the steps of the proof of Theorem 3.5 (see Section 5.1) is to364
show that for all ε0 ∈ D, ε : t 7→ S(t, 0)ε0 satisfies365

(4.5)
∫ t0+τ

t0

‖Cε(t)‖2Y dt −→
t0→+∞

0, ∀τ > 0.366

This does not yields a priori that Cε(t) → 0 as t goes to infinity. However, if there367
exists a positive constant α > 0 such that for all t > 0,368

(4.6) ‖C∗CA(t)x‖X 6 α ‖x‖X ,369

then Cε(t) −→
t→+∞

0. Indeed, (5.4) will yield370

∫ +∞

0
‖Cε(t)‖2Y dt < +∞.(4.7)371

372

Moreover, for all t > 0,373

1
2

d
dt ‖Cε(t)‖

2
Y = 〈Cε(t), Cε̇(t)〉Y374

= 〈Cε(t), CAε(t)〉Y − r 〈Cε(t), CC
∗Cε(t)〉Y375
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= 〈ε(t), C∗CAε(t)〉X − r ‖C
∗Cε(t)‖2X376

6 α ‖ε0‖2X377378

since S(t, 0) is proved to be a contraction in Lemma 5.3. Thus, ‖Cε‖2Y is an integrable379
positive function, with bounded derivated. Hence, according to Barbalat’s lemma,380
‖Cε(t)‖2Y → 0 as t→ +∞.381

A similar result (with a similar proof) hold for the BFN algorithm. Assume that382
all the hypotheses of Theorem 3.7 hold. If C∗CA is bounded as an operator from383
(D, ‖·‖X) to (X, ‖·‖X), then Cε2n(0)→ 0 as n→ +∞.384

5. Proofs of the results. This section is devoted to the proofs of the results385
stated in Section 3. The following remark allows us to reformulate the weak conver-386
gence results.387

Remark 5.1. For any closed linear subspace O of X and any sequence (xn)n>0 in388
X, recall that ΠOxn

w
⇀ 0 as n→ +∞ if and only if, for all ψ ∈ X, 〈ΠOxn, ψ〉X → 0.389

As an orthogonal projection, ΠO is a self-adjoint operator, i.e., ΠO = Π∗O, and390
ran ΠO = O. Hence, ΠOxn

w
⇀ 0 as n → +∞ if and only if, for all ψ ∈ O,391

〈ΠOxn, ψ〉X → 0.392

All the weak convergence results are proved in the following in accordance with this393
remark. For example, to prove that (2.3) is a weak asymptotic O-observer, we prove394
that 〈ΠOS(t, 0)ε0, ψ〉X → 0 as t → +∞ for all ε0 ∈ X and all ψ ∈ O. We proceed395
similarly in the back and forth context.396

Lemma 5.2. For all n ∈ N, let Ln ∈ L (X) be a linear contraction, that is,397
‖Ln‖L (X) 6 1. Let U, V ⊂ X.398

(i) If399

Lnε0 −→
n→+∞

0, ∀ε0 ∈ U400
401

then402

Lnε0 −→
n→+∞

0, ∀ε0 ∈ U.403
404

405
(ii) If406

〈Lnε0, ψ〉X −→
n→+∞

0, ∀ε0 ∈ U, ∀ψ ∈ V,407
408

then409

〈Lnε0, ψ〉X −→
n→+∞

0, ∀ε0 ∈ U, ∀ψ ∈ V .410
411

412

Proof of (i). Let ε0 ∈ U and η > 0. Then there exists ε̃0 ∈ U such that413
‖ε0 − ε̃0‖X 6 η. Moreover, there exists N ∈ N such that for all n > N , ‖Lnε̃0‖X 6 η.414
Then, for all n > N ,415

‖Lnε0‖X 6 ‖Lnε̃0‖X + ‖ε̃0 − ε0‖X 6 2η416417

since Ln is a contraction. Hence Lnε0 → 0 as n→ +∞.418
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Proof of (ii). Let ε0 ∈ U , ψ ∈ V and η > 0. Then there exist ε̃0 ∈ U and ψ̃ ∈ V419
such that ‖ε0 − ε̃0‖X 6 η and

∥∥ψ − ψ̃∥∥
X

6 η. Moreover, there exists N ∈ N such420

that for all n > N ,
∣∣〈Lnε̃0, ψ̃

〉
X

∣∣ 6 η. Then, for all n > N ,421

|〈Lnε0, ψ〉X | 6
∣∣〈Lnε̃0, ψ̃

〉
X

∣∣+
∣∣〈Ln(ε0 − ε̃0), ψ̃

〉
X

∣∣422

+
∣∣〈Lnε̃0, ψ − ψ̃

〉
X

∣∣+
∣∣〈Ln(ε0 − ε̃0), ψ − ψ̃

〉
X

∣∣423

6
(
1 +

∥∥ψ̃∥∥
X

+ ‖ε̃0‖X + η
)
η.424425

Hence 〈Lnε0, ψ〉X → 0 as n→ +∞.426

5.1. Proof of Theorem 3.5. The proof relies on the two following lemmas.427
The first one shows how the weak detectability is used in the proof, while the second428
one states a continuity property of the observability Gramian. We adapt the steps of429
the proof of [9, Theorem 7]. In this section, assume that T = +∞.430

Lemma 5.3. If ((A(t))t>0, C) is µ-weakly detectable and r > µ, then S is a con-431
traction evolution system, that is,432

(5.1) ‖S(t, s)‖L (X) 6 1, ∀t > s > 0.433

Proof. Since D is dense in X, it is sufficient to show that434

(5.2) ‖S(t, t0)ε0‖X 6 ‖ε0‖X435

for all ε0 ∈ D and all t > t0 > 0. Let t0 > 0, ε0 ∈ D and set ε(t) = S(t, t0)ε0 for all436
t > t0. Then ε ∈ C1([0,+∞), X) and for all t > t0,437

1
2

d
dt ‖ε(t)‖

2
X = 〈ε(t), ε̇(t)〉X438

= 〈ε(t), A(t)ε(t)〉X − r 〈ε(t), C
∗Cε(t)〉X439

6 −(r − µ) ‖Cε(t)‖2Y (since ((A(t))t>0, C) is µ-weakly detectable)(5.3)440

6 0441442

since r > µ. Hence [t0,+∞) 3 t 7→ ‖ε(t)‖2X is non increasing, which yields (5.2) since443
ε(t0) = ε0.444

Lemma 5.4. If there exist an increasing positive sequence (tn)n>0 → +∞ and an445
evolution system (T∞(t, s))06s6t on X such that ‖T(tn + t, tn)− T∞(t, 0)‖L (X) → 0446
as n→ +∞ for all t > 0, then ‖W (tn, τ)−W∞(0, τ)‖L (X) → 0 as n→ +∞.447

Proof. For all z0 ∈ X,448
449

‖(W (tn, τ)−W∞(0, τ))z0‖X450

6
∫ τ

0
‖C‖2L (X,Y )‖T(tn + t, tn)− T∞(t, 0)‖2L (X) ‖z0‖X

6 τ‖C‖2L (X,Y ) ‖z0‖X sup
t∈[0,τ ]

‖T(tn + t, tn)− T∞(t, 0)‖2L (X).
451

452

Hence, ‖W (tn, τ)−W∞(0, τ)‖L (X) → 0 as n→ +∞.453

Proof of Theorem 3.5. According to Lemma 5.3, S is a contraction evolution sys-454
tem. Hence, applying Lemma 5.2 (ii) with Ln = S(tn, 0) for n ∈ N, it is sufficient455
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to show (3.5) for all ψ ∈ ∪τ>0(kerW∞(0, τ))⊥ and all ε0 ∈ D since D is dense is X.456
Let ε0 ∈ D and set ε(t) = S(t, 0)ε0 for all t > 0. Since S is a contraction, ‖ε‖X is457
non-increasing and whence converges to a finite limit. Equation (5.3) yields for all458
t0, τ > 0,459

(5.4)
∫ t0+τ

t0

‖Cε(t)‖2Y dt 6 1
2(r − µ)

(
‖ε(t0)‖2X − ‖ε(t0 + τ)‖2X

)
.460

Hence,461

(5.5)
∫ t0+τ

t0

‖Cε(t)‖2Y dt −→
t0→+∞

0.462

According to Duhamel’s formula, for all t > t0 > 0,463

ε(t) = T(t, t0)ε(t0)− r
∫ t

t0

T(t, s)C∗Cε(s)ds.(5.6)464
465

Then466

W (t0, τ)ε(t0) =
∫ t0+τ

t0

T(t, t0)∗C∗CT(t, t0)ε(t0)dt467

=
∫ t0+τ

t0

T(t, t0)∗C∗Cε(t)dt468

+ r

∫ t0+τ

t0

T(t, t0)∗C∗C
∫ t

t0

T(t, s)C∗Cε(s)dsdt.469
470

By (2.2) and because C is bounded, we have471

‖W (t0, τ)ε(t0)‖X 6Meωτ‖C‖L (X,Y )

∫ t0+τ

t0

‖Cε(t)‖Y dt472

+ rτM2e2ωτ‖C‖3L (X,Y )

∫ t0+τ

t0

‖Cε(t)‖Y dt.473
474

Hence475

(5.7) W (t0, τ)ε(t0) −→
t0→+∞

0, ∀τ > 0.476

Now, let (tn)n>0 and (T∞(t, s))06s6t be as in the hypotheses of Theorem 3.5.477
Let Ω the set of limit points of (ε(tn))n>0 for the weak topology of X, that is, the set478
of points ξ ∈ X such that there exists a subsequence (nk)k>0 such that ε(tnk) w

⇀ ξ479
as k → +∞. Since ε is bounded in X (because S is a contraction), by Kakutani’s480
theorem (see, e.g., [6, Theorem 3.17]), the set {ε(tn), n ∈ N} is relatively weakly481
compact in X. Hence Ω is not empty. Let ξ ∈ Ω and (ε(tnk))k>0 be a subsequence482
converging weakly to ξ. Then, according to (5.7) and Lemma 5.4,483

‖W∞(0, τ)ε(tnk)‖X 6 ‖W (tnk , τ)ε(tnk)‖X484

+ ‖W∞(0, τ)−W (tnk , τ)‖L (X) ‖ε0‖X485

−→
k→+∞

0.486
487
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Hence ξ ∈ kerW∞(0, τ). Thus Ω ⊂ kerW∞(0, τ). Let ψ ∈ X. By definition of Ω, and488
since ε is bounded, for all η > 0, there exists N ∈ N such that for all n > N , there489
exists ξn ∈ Ω such that490

| 〈ε(tn)− ξn, ψ〉X | 6 η.491492

Then, if ψ ∈ (kerW∞(0, τ))⊥, 〈ξn, ψ〉X = 0 which yields493

|〈ε(tn), ψ〉X | 6 |〈ε(tn)− ξn, ψ〉X |+ |〈ξn, ψ〉X | 6 η.494495

Since this result holds for all τ > 0,496

〈ε(tn), ψ〉X
w−−⇀

n→+∞
0, ∀ψ ∈

⋃
τ>0

(kerW∞(0, τ))⊥.497

498

This conclude the proof of the first part of Theorem 3.5.499
500

Now, assume moreover that ((tn+1 − tn))n>0 is bounded and O = X. It is501
sufficient to prove that for all increasing positive sequence (τk)k>0 → +∞, ε(τk) w

⇀ 0502
as k → +∞. For all k ∈ N, let nk ∈ N be such that tnk 6 τk < tnk+1. Then503
sk = τk − tnk is a non-negative bounded sequence. Hence, up to an extraction of504
(tn)n>0, it is now sufficient to prove that ε(tn + sn) w

⇀ 0 as n → +∞ for all non-505
negative bounded sequence (sn)n>0. Set s̄ = supn∈N sn. For all ψ ∈ X,506

|〈ε(tn + sn), ψ〉X | 6 |〈T∞(sn, 0)ε(tn), ψ〉X |507

+ ‖(T(tn + sn, tn)− T∞(sn, 0))‖L (X) ‖ε0‖X ‖ψ‖X508

+ ‖ε(tn + sn)− T(tn + sn, tn)ε(tn)‖X ‖ψ‖X .509510

By (3.4), and because (sn)n>0 is bounded, it follows that511

‖(T(tn + sn, tn)− T∞(sn, 0))‖L (X) −→
n→+∞

0.512
513

Using (2.2), (5.6) and the Cauchy-Schwarz inequality514

‖ε(tn + sn)− T(tn + sn, tn)ε(tn)‖X 6 rMeωs̄‖C‖L (X,Y )

∫ tn+s̄

tn

‖Cε(t)‖Y dt515

−→
n→+∞

0.516
517

Hence, it remains to prove that T∞(sn, 0)ε(tn) w
⇀ 0 as n→ +∞. For all t > 0, (2.2)518

and (3.4) yield ‖T∞(t, 0)‖L (X) 6Meωt, and thus for ψ ∈ X,519

|〈T∞(sn, 0)ε(tn), ψ〉X | 6Meωs̄ ‖ε0‖X ‖ψ‖X .520521

Let ` ∈ R and (nk)k>0 a subsequence such that
∣∣〈T∞(snk , 0)ε(tnk), ψ〉X

∣∣ → ` as522
k → +∞. We now show that ` = 0 to end the proof. Since (sn)n>0 is bounded523
and s 7→ T∞(s, 0)∗ψ is continuous in the strong topology of X, (T∞(snk , 0)∗ψ)k>0524
converges strongly up to a new extraction of (snk)k>0 to some ξ ∈ X. Then, for all525
k ∈ N,526 ∣∣〈T∞(snk , 0)ε(tnk), ψ〉X

∣∣ =
∣∣〈ε(tnk),T∞(snk , 0)∗ψ〉X

∣∣527

6
∣∣〈ε(tnk), ξ〉X

∣∣+ ‖T∞(snk , 0)∗ψ − ξ‖X ‖ε0‖X528

−→
k→+∞

0.529
530

Thus ` = 0.531
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5.2. Proof of Theorem 3.7. Assume that T < +∞ and (T(t, s))06s,t6T is532
a bi-directional evolution system. We adapt the proof of Theorem 3.5 to the BFN533
algorithm (see Section 5.1). The lemmas involved and steps of the proof are very534
similar.535

Lemma 5.5. If both ((A(t))t∈[0,T ], C) and ((−A(t))t∈[0,T ], C) are µ-weakly de-536
tectable and r > µ, then S+ (resp. S−) is a forward (resp. backward) contraction537
bi-directional evolution system, that is,538

(5.8) ‖S+(t, s)‖L (X) 6 1 and ‖S−(s, t)‖L (X) 6 1, ∀t > s > 0.539

Proof. Since D is dense in X, it is sufficient to show that540

(5.9) ‖S+(t, t0)ε0‖X 6 ‖ε0‖X and ‖S−(t, t0)ε0‖X > ‖ε0‖X541

for all ε0 ∈ D and all t > t0 > 0. Let t0 > 0, ε0 ∈ D and set ε+(t) = S+(t, t0)ε0 and542
ε−(t) = S−(t, t0)ε0 for all t > t0. Then εi ∈ C1([0,+∞), X) for i ∈ {0, 1} and for all543
t > t0,544

1
2

d
dt ‖ε+(t)‖2X = 〈ε+(t), ε̇+(t)〉X545

= 〈ε+(t), A(t)ε+(t)〉X − r 〈ε+(t), C∗Cε+(t)〉X546

6 −(r − µ) ‖Cε+(t)‖2Y (since ((A(t))t>0, C) is µ-weakly detectable)(5.10)547

6 0548549

and550

1
2

d
dt ‖ε−(t)‖2X = 〈ε−(t), ε̇−(t)〉X551

= 〈ε−(t), A(t)ε−(t)〉X + r 〈ε−(t), C∗Cε−(t)〉X552

> (r − µ) ‖Cε−(t)‖2Y (since ((A(t))t>0, C) is µ-weakly detectable)(5.11)553

> 0554555

since r > µ. Hence [t0,+∞) 3 t 7→ ‖ε+(t)‖2X is non-increasing and [t0,+∞) 3 t 7→556
‖ε−(t)‖2X is non-decreasing, which yields (5.2) since ε+(t0) = ε−(t0) = ε0.557

Proof of Theorem 3.7. According to Lemma 5.5, S+ (resp. S−) is a forward (resp.558
backward) contraction bi-directional evolution system. Let L = S−(0, T )S+(T, 0) ∈559
L (X). Then Ln is a contraction for all n ∈ N. Hence, applying Lemma 5.2 (ii), it is560
sufficient to show that 〈Lnε0, ψ〉X → 0 as n → +∞ for all ψ ∈ ∪τ>0(kerW (0, T ))⊥561
and all ε0 ∈ D since D is dense is X. Let ε0 ∈ D and set ε2n(t) = S+(t, 0)Lnε0 for all562
t > 0 and all n ∈ N. Since L is a contraction,

∥∥ε2n(0)
∥∥
X

is non-increasing and thus563
has a finite limit as n goes to infinity. Moreover,564 ∥∥ε2n(T )

∥∥
X

= ‖S+(T, 0)Lnε0‖X =
∥∥S−(T, 0)Ln+1ε0

∥∥
X

565

=
∥∥∥S−(T, 0)ε2(n+1)(0)

∥∥∥
X

>
∥∥∥ε2(n+1)(0)

∥∥∥
X
.566

567

Then (5.10) yields for all n ∈ N568 ∫ T

0

∥∥Cε2n(t)
∥∥2
Y

dt 6 1
2(r − µ)

(∥∥ε2n(0)
∥∥2
X
−
∥∥ε2n(T )

∥∥2
X

)
569
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6
1

2(r − µ)

(∥∥ε2n(0)
∥∥2
X
−
∥∥∥ε2(n+1)(0)

∥∥∥2

X

)
.570

571

Hence,572

(5.12)
∫ T

0

∥∥Cε2n(t)
∥∥2
Y

dt −→
n→+∞

0.573

According to Duhamel’s formula, for all n ∈ N,574

ε2n(t) = T(t, 0)ε2n(0)− r
∫ t

0
T(t, s)C∗Cε2n(s)ds.(5.13)575

576

Then577

W (0, T )ε2n(0) =
∫ T

0
T(t, 0)∗C∗CT(t, 0)ε2n(0)dt578

=
∫ T

0
T(t, 0)∗C∗Cε2n(t)dt579

+ r

∫ T

0
T(t, 0)∗C∗C

∫ t

0
T(t, s)C∗Cε2n(s)dsdt.580

581

According to (2.2) and because C is bounded, ‖T(t, s)‖L (X) 6Meω(t−s) for 0 6 s 6582
t 6 T ,583 ∥∥W (0, T )ε2n(0)

∥∥
X

6MeωT ‖C‖L (X,Y )

∫ T

0

∥∥Cε2n(t)
∥∥
Y

dt584

+ rTM2e2ωT ‖C‖3L (X,Y )

∫ T

0

∥∥Cε2n(t)
∥∥
Y

dt.585
586

Hence W (0, T )ε2n(0)→ 0 as n→ +∞.587
588

Now, let Ω the set of limit points of (ε2n(0))n>0 for the weak topology of X, that589
is, the set of points ξ ∈ X such that there exists a subsequence (nk)k>0 such that590
ε2nk(0) w

⇀ ξ as k → +∞. Since (ε2n(0))n>0 is bounded in X (because L is a contrac-591
tion), by Kakutani’s theorem (see, e.g., [6, Theorem 3.17]), the set {ε2n(0), n ∈ N} is592
relatively weakly compact in X. Hence Ω is not empty. Let ξ ∈ Ω and (ε2nk(0))k>0 be593
a subsequence converging weakly to ξ. Then W (0, T )ξ = 0 by uniqueness of the weak594
limit. Thus Ω ⊂ kerW (0, T ). Let ψ ∈ X. By definition of Ω, and since (ε2n(0))n>0 is595
bounded, for all η > 0, there exists N ∈ N such that for all n > N , there exits ξn ∈ Ω596
such that597

|
〈
ε2n(0)− ξn, ψ

〉
X
| 6 η.598599

Then, if ψ ∈ (kerW (0, T ))⊥, 〈ξn, ψ〉X = 0 which yields600 ∣∣〈ε2n(0), ψ
〉
X

∣∣ 6 ∣∣〈ε2n(0)− ξn, ψ
〉
X

∣∣+ |〈ξn, ψ〉X | 6 η,601602

i.e.,603 〈
ε2n(0), ψ

〉
X

w−−⇀
n→+∞

0, ∀ψ ∈
⋃
τ>0

(kerW (0, T ))⊥.604

605

This ends the proof of Theorem 3.7.606
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5.3. Proof of Theorem 3.8. First, consider the following invariance lemma in607
the case where A(t) is skew-adjoint for all t ∈ R+.608

Lemma 5.6. Assume that T = +∞ and A(t) is skew-adjoint for all t ∈ R+. Let609
τ > 0 such that t 7→ A(t) is τ -periodic. Let Oτ be the observable subspace at time τ610
of the pair (T, C). Let L = S(τ, 0)∗S(τ, 0). Then LOτ ⊂ Oτ and LO⊥τ ⊂ O⊥τ .611

Remark 5.7. This lemma is an interesting result in itself. It implies that the612
dynamics of the error system (2.7-2.8) may be decomposed on the two subspaces Oτ613
and O⊥τ . Therefore, the initial estimation of the unobservable part of the system614
ΠO⊥τ ẑ0 does not affect the reconstruction of the observable part ΠOτ z(t) at all.615

Proof of Lemma 5.6. Set A(−t) = A(t) for all t ∈ R+. According to [10, Chapter616
3, Lemma 1.1], since A(t) is skew-adjoint for all t ∈ R, it is the generator of a unitary617
bi-directional evolution system, still denoted by T. In particular, for all t > s > t0 ∈ R,618
T(t, s)∗T(t, t0) = T(s, t0).619

Let ε0 ∈ D ∩ Oτ . For all ψ ∈ O⊥τ = kerW (0, τ), the Duhamel’s formula (5.6)620
yields621

〈Lε0, ψ〉X = 〈S(τ, 0)ε0,S(τ, 0)ψ〉X622

= 〈ε0,T(τ, 0)∗S(τ, 0)ψ〉X − r
∫ τ

0
〈CS(s, 0)ε0, CT(τ, s)∗T(τ, 0)ψ〉X ds.623

624

Since ψ ∈ kerW (0, τ), CT(s, 0)ψ and S(s, 0)ψ = T(s, 0)ψ = 0 for all s ∈ [0, τ ]. Thus,625
〈Lε0, ψ〉X = 0, i.e., Lε0 ∈ Oτ for all ε0 ∈ Oτ . Now, let ε0 ∈ O⊥τ and ψ ∈ Oτ . Since626
L is self-adjoint, 〈Lε0, ψ〉X = 〈ε0, Lψ〉X = 0 from above. Hence, Lε0 ∈ O⊥τ .627

Proof of Theorem 3.8. Let τ > 0 be as in the assumptions of the theorem, and set628
L = S(τ, 0)∗S(τ, 0). Assume that A(t) is skew-adjoint for all t ∈ R+. Then, according629
to Remark 4.5, ((A(t))t>0, C) is 0-weakly dissipative. Moreover, reasoning as in the630
proof of Lemma 5.6, S is actually a bi-directional evolution system. Hence S(τ, 0) is631
bounded from below. Moreover, Lemma 5.6 claims that LOτ ⊂ Oτ and LO⊥τ ⊂ O⊥τ .632
Obviously, it is also the case if Oτ = X.633

Now, assume that ((A(t))t>0, C) is µ-weakly dissipative and r > µ. It remains634
to prove that (2.3) is a strong asymptotic Oτ -observer of (2.1) if S(τ, 0) is normal635
and bounded from below and the invariance property LOτ ⊂ Oτ and LO⊥τ ⊂ O⊥τ is636
satisfied.637

For all ε0 ∈ X,638

〈Lnε0, ε0〉X = ‖S(τ, 0)nε0‖2X (since S(τ, 0) is normal)639

= ‖S(nτ, 0)ε0‖2X (since t 7→ A(t) is τ -periodic).640641

Hence, according to Lemma 5.3, L is a contraction and if 〈Lnε0, ε0〉X → 0 as n →642
+∞, then S(t, 0)ε0 → 0 as t → +∞. According to the invariance property of Oτ ,643
ΠOτL = LΠOτ . Thus, applying Lemma 5.2 (i), it is sufficient to prove that for all644
ε0 ∈ D ∩Oτ , Lnε0 →0 as n→ +∞ since D is dense in X and Ln is a contraction for645
all n ∈ N.646

The proof is an adaptation of the strategy developed in [11, Theorem 1.1.2]. First,647
we investigate the properties of L. It is self-adjoint positive definite since S(τ, 0) is648
bounded from below. Let ε0 ∈ D ∩ Oτ . The hypotheses of Lemma 5.3 hold. Hence,649
S is a contraction evolution system, and (5.3) yields650

〈Lε0, ε0〉X = ‖S(τ, 0)ε0‖2X 6 ‖ε0‖2X − 2(r − µ)
∫ τ

0
‖CS(t, 0)ε0‖2Y dt.(5.14)651
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652

Hence653

‖Lε0‖2X = 〈LS(τ, 0)ε0,S(τ, 0)ε0〉X (since S(τ, 0) is normal)654

6 ‖S(τ, 0)ε0‖2X − 2(r − µ)
∫ τ

0
‖CS(t, 0)S(τ, 0)ε0‖2Y dt655

6 ‖ε0‖2X − 2(r − µ)
∫ τ

0

(
‖CS(t, 0)S(τ, 0)ε0‖2Y + ‖CS(t, 0)ε0‖2Y

)
dt656

6 ‖ε0‖2X − 2(r − µ) 〈W (0, τ)ε0, ε0〉X .657658

Hence, ‖Lε0‖X < ‖ε0‖X if ε0 6= 0. Moreover, (5.3) yields for all ε0 ∈ X and all n ∈ N659 〈
Ln+1ε0, ε0

〉
X
− 〈Lnε0, ε0〉X = ‖S((n+ 1)τ, 0)ε0‖2X − ‖S(nτ, 0)ε0‖2X660

6 −2(r − µ)
∫ τ

0
‖CS(t, 0)S(nτ, 0)ε0‖2Y dt661

6 0.662663

Then (Ln)n>0 is a non-increasing sequence of bounded self-adjoint definite-positive664
operators on the vector space Oτ (by the invariance property). Hence, according665
to [25, Lemma 12.3.2], there exists a bounded self-adjoint definite-positive operator666
L∞ ∈ L (Oτ ) such that L∞ 6 Ln for all n ∈ N and Lnε0 → L∞ε0 as n→ +∞ for all667
ε0 ∈ Oτ . It remains to prove that L∞ = 0.668

For all x1, x2 ∈ Oτ and all n ∈ N,669

〈L∞x1, L∞x2〉X = 〈L∞x1, (L∞ − Ln)x2〉X + 〈(L∞ − Ln)x1, L
nx2〉X670

+ 〈Lnx1, L
nx2〉X .671672

Since L is self-adjoint,673

〈Lnx1, L
nx2〉X =

〈
L2nx1, x2

〉
X
−→

n→+∞
〈L∞x1, x2〉X .674

675

Hence L2
∞ = L∞. Moreover, for all ε0 ∈ Oτ \ {0},676

‖L∞ε0‖2X =
〈
L2
∞ε0, ε0

〉
X

= 〈L∞ε0, ε0〉X 6
〈
L2ε0, ε0

〉
X

= ‖Lε0‖2X < ‖ε0‖2X .677678

Hence ‖L∞ε0‖2X =
∥∥L2
∞ε0

∥∥2
X
< ‖L∞ε0‖2X . if L∞ε0 6= 0. Thus L∞ε0 = 0 for all679

ε0 ∈ Oτ , which ends the proof.680

5.4. Proof of Theorem 3.9. Statement (ii) is a recall of the previous work681
of [11]. We adapt the method to prove Statement (i).682

Proof of Theorem 3.9 (i). Assume that T < +∞ and (T(t, s))06s,t6T is a bi-683
directional evolution system. Suppose that both ((A(t))t∈[0,T ], C) and ((−A(t))t∈[0,T ], C)684
are µ-weakly detectable and r > µ. Assume also that OT = X and S−(0, T ) =685
S+(T, 0)∗. We follow the same strategy as in the proof of Theorem 3.8 (see Sec-686
tion 5.3).687

Let L = S−(0, T )S+(T, 0) = S+(T, 0)∗S+(T, 0) (as in the proof of Theorem 3.7,688
Section 5.2). Then, it is sufficient to prove that for all ε0 ∈ Oτ , Lnε0 →0 as n→ +∞.689
The operator L is self-adjoint positive definite since S(τ, 0) is bounded from below690
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(since S is bi-directional). Let ε0 ∈ X. The hypotheses of Lemma 5.5 hold. Hence, L691
is a contraction and (5.10) yields692

〈Lε0, ε0〉X = ‖S+(T, 0)ε0‖2X 6 ‖ε0‖2X − 2(r − µ)
∫ τ

0
‖CS+(t, 0)ε0‖2Y dt.(5.15)693

694

From there, the proof is identical to the proof of Theorem 3.8, from equation695
(5.14) to the end, by replacing τ by T , S by S+ and Oτ by X. Hence, Lnε0 → 0 as696
n→∞, which ends the proof of Theorem 3.9.697

6. Examples and applications. We provide two examples of applications of698
the main results of Section 3. First, we consider the theoretical example of the699
one-dimensional time-varying transport equation with periodic boundary conditions.700
Then, we apply the obtained results to a model of a batch crystallization process701
in order to reconstruct the Crystal Size Distribution (CSD) from the Chord Length702
Distribution (CLD).703

6.1. One-dimensional time-varying transport equation with periodic704
boundary conditions. As an example of the theory exposed in the former two705
sections we consider a one-dimensional time-varying transport equation with periodic706
boundary conditions. More precisely, let x1 > x0 > 0 and X = L2((x0, x1);R) the707
set of real-valued square-integrable functions over (x0, x1), endowed with the inner708
product 〈f, g〉X =

∫ x1
x0
fg for all f, g ∈ X. Let D = {f ∈ X | f(x0) = f(x1), f ′ ∈ X}709

and G ∈ C1([0, T ],R) For all t > 0, let710

A(t) : D −→ X

f 7−→ −G(t)df
dx .

711

712

Then A(t) is a skew-adjoint operator for all t > 0. Hence (A(t))t>0 is a stable713
family of generators of strongly continuous groups that share the same domain D.714
Moreover t 7→ A(t)f is continuously differentiable for all f ∈ D since G is of class715
C1. Then [20, Chapter 5, Theorem 4.8] ensures that (A(t))t∈[0,T ] is the generator716
of a unique bi-directional unitary (i.e., forward and backward contraction) evolution717
system on X denoted by (T(t, s))06s6t. Moreover, T(t, s) is defined for all t > s > 0718
and all z0 ∈ X by719

(T(t, s)z0)(x) = z0(v(x, t, s)),(6.1)720721

where722

(6.2) v(x, t, s) = x0 +
((

x− x0 −
∫ t

s

G(τ)dτ
)

mod (x1 − x0)
)

723

for almost all x ∈ (x0, x1).724
Hence, for all real Hilbert space Y and all output operator C ∈ L (X,Y ), the pair725

((A(t))t∈[0,T ], C) is 0-weakly detectable, as well as the pair ((−A(t))t∈[0,T ], C). Conse-726
quently, the transport equation with periodic boundary conditions is a good candidate727
to apply the observer methodology previously developed, in both the asymptotic or728
back and forth context. Moreover, in the asymptotic context, we have the following729
proposition, which is useful to apply Theorem 3.5.730
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Proposition 6.1. Assume that T = +∞ and G and its derivative G′ are both731
bounded. If there exist G∞ ∈ C1(R+,R) and an increasing positive sequence (tn)n>0 →732
+∞ such that G(tn + t) → G∞(t) as n → +∞ for all t > 0, then ‖T(tn + t, tn) −733
T∞(t, 0)‖L (X) → 0 as n→ +∞ uniformly in t ∈ [0, τ ] for all τ > 0, where T∞ is the734
evolution system generated by

(
−G∞(t) d

dx
)
t>0.735

In particular, note that if G is periodic, then G and G′ are bounded and there ex-736
its a bounded sequence (tn)n>0 and a constant G∞ > 0 such that ‖T(tn + t, tn) −737
T∞(t)‖L (X) → 0 as n → +∞ uniformly in t ∈ [0, τ ] for all τ > 0, where T∞ is the738
strongly continuous semigroup generated by −G∞ d

dx : D → X.739

Proof of Proposition 6.1. It is a direct application of [13, Theorem 10.2.b]. The740
consistency condition (C) of [13] is satisfied since for all z0 ∈ D,741

A(tn + t)z0 = −G(tn + t)dz0
dx −→

n→+∞
−G∞(t)dz0

dx(6.3)742
743

Moreover, (‖A(tn + t)z0‖X)n>0 is bounded by supR+ |G|
∥∥ dz

dx
∥∥
X

for all t > 0 and all744
z0 ∈ D. For all z1, z2 ∈ D, all n ∈ N and all t, τ > 0, we have the following inequalities:745

|〈A(tn + t+ τ)z1 −A(tn + t)z2, z1 − z2〉X |746

6 |〈(A(tn + t+ τ)−A(tn + t))z1, z1 − z2〉X |747

+ |〈A(tn + t)(z1 − z2), z1 − z2〉X |748

6 |G(tn + t+ τ)−G(tn + t)|
∥∥∥∥dz1

dx

∥∥∥∥
X

‖z1 − z2‖X749

6 sup
R+

|G′| τ
∥∥∥∥dz1

dx

∥∥∥∥
X

‖z1 − z2‖X .750
751

Hence, the condition (E2u) of [13] is also satisfied. Therefore, all the hypotheses752
of [13, Theorem 10.2.b] are met, which ends the proof.753

In the following sections, the form of the output operator is investigated. The two754
considered forms will be of use in the application of the results to a crystallization755
process.756

6.1.1. Geometric conditions on the output operator. If the kernel of the757
output operator C ∈ L (X,Y ) satisfies some geometric conditions, then the kernel of758
the observability Gramian of the system may be linked to the kernel of C. Indeed,759
assume that there exists a set U ⊂ [x0, x1] such that760

(6.4) kerC = {f ∈ X | f |U = 0} ,761

where f |U denotes the restriction of f to U . Then z0 ∈ kerW (t0, τ) for some t0, τ > 0762
if and only if (T(s, t0)z0) |U = 0 for almost all s ∈ (t0, t0 + τ), i.e., z0(v(x, s, t0)) = 0763
for almost all s ∈ (t0, t0 + τ) and almost all x ∈ U . Hence764

(6.5) kerW (t0, τ) = {f ∈ X | f |Umax = 0}765

where Umax = {v(x, s, t0), x ∈ U, s ∈ [t0, t0 + τ ]}. Moreover, note that766

(6.6) kerW (t0, τ)⊥ =
{
f ∈ X

∣∣ f |[x0,x1]\Umax = 0
}
.767

This leads to the following result. Roughly speaking, it states that if the observation768
time τ is sufficiently large for all the data to pass through the observation window769
[xmin, xmax], then the observable part of the state is actually the full state.770
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Proposition 6.2. Let [xmin, xmax] ⊂ [x0, x1]. Assume that kerC ⊂
{
f ∈ X

∣∣ f |[xmin,xmax] = 0
}
.771

If772

(6.7)
∣∣∣∣∫ t0+τ

t0

G(t)dt
∣∣∣∣ > (x1 − x0)− (xmax − xmin),773

for some t0, τ > 0, then kerW (t0, τ) = {0}.774

Proof. According to the previous remarks, it is sufficient to prove that Umax =775
[x0, x1] when U = [xmin, xmax]. Clearly, U ⊂ Umax. Now, let x ∈ Umax \ U . Then776
there exists s ∈ [t0, t0 + τ ] such that x = v(xmin, s, t0) (if

∫ t0+τ
t0

G(t)dt > 0) or777

x = v(xmax, s, t0) (if
∫ t0+τ
t0

G(t)dt 6 0).778

6.1.2. Integral output operator with bounded kernel. Assume that the779
output operator C ∈ L (X,Y ) is an integral output operator with bounded kernel,780
that is, there exists k ∈ L∞((x0, x1);Y ) (i.e., with ess supx∈(x0,x1) ‖k(x)‖Y < +∞)781
such that782

(6.8) Cf =
∫ x1

x0

k(x)f(x)dx783

for all f ∈ X. Then, there is no time interval (t0, t0 + τ) ⊂ R+ such that the pair784
((A(t))t>0, C) is exactly observable on (t0, t0 + τ).785

Proposition 6.3. If C ∈ L (X,Y ) satisfies (6.8) for some k ∈ L∞((x0, x1);Y ),786
then for all t0, τ > 0 and all δ > 0, there exists z0 ∈ X such that787

〈W (t0, τ)z0, z0〉X 6 δ ‖z0‖2X .(6.9)788789

Hence, for such output operators, the convergence of an observer must rely on weaker790
observability assumptions, such as the approximate observability. In the application791
of the results to a crystallization process (see Section 6.2), the reader will find that792
C is precisely an integral output operator with bounded kernel. This justifies the793
whole approach of the paper, since our results are based on such weaker observability794
hypotheses (namely approximate observability and not exact observability).795

Proof of Proposition 6.3. Let t0, τ > 0, z0 ∈ X and z(t) = T(t0 + t, t0)z0 for all796
t > t0. Since (x0, x1) is bounded, any f ∈ L2((x0, x1);R) is also integrable. Set797
‖f‖L1((x0,x1);R) =

∫ x1
x0
|f(x)| dx. Then798

〈W (t0, τ)z0, z0〉X =
∫ t0+τ

t0

‖Cz(t)‖2Y dt799

=
∫ t0+τ

t0

(∫ x1

x0

‖k(x)z(t, x)‖Y dx
)2

dt800

6
∫ t0+τ

t0

(∫ x1

x0

‖k(x)‖Y |z(t, x)|dx
)2

dt801

6 ‖k‖2L∞((x0,x1);Y )

∫ t0+τ

t0

(∫ x1

x0

|z(t, x)| dx
)2

dt802

6 τ‖k‖2L∞((x0,x1);Y ) sup
t∈[t0,t0+τ ]

‖z(t)‖2L1((x0,x1);R).803
804

Moreover, by the usual transport properties of v, we get for all t ∈ [t0, t0 + τ ] that805

‖z(t)‖2L1((x0,x1);R) = ‖z0(v(t, t0, ·))‖2L1((x0,x1);R) = ‖z0‖2L1((x0,x1);R).806
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807

Hence808

〈W (t0, τ)z0, z0〉X 6 τ‖k‖L∞((x0,x1);Y )‖z0‖2L1((x0,x1);R).809810

The result follows from the fact that the norms ‖ · ‖L1((x0,x1);R) and ‖ · ‖L2((x0,x1);R)811
are not equivalent.812

Remark 6.4. According to Remark 4.11, the boundedness of the operator C∗CA813
from (D, ‖·‖X) to (X, ‖·‖X) is an interesting property for the convergence to 0 of the814
correction term Cε of the observers. If we ask more regularity to the solutions of815
the transport equation, then the integral output operators in the form of (6.8) satisfy816
this assumption. Indeed, assume (in this remark only) that X = {f ∈ L2(x0, x1;R) |817
f ′ ∈ L2(x0, x1;R)} endowed with the inner product 〈f, g〉X =

∫ x1
x0

(fg + f ′g′) and818
Dnew = {f ∈ X | f(x1) = f(x1), f ′(x1) = f ′(x1), f ′′ ∈ L2(x0, x1;R)}. Then, for all819
z0 ∈ Dnew,820

‖CAz0‖2Y 6

(∫ x1

x0

∥∥∥∥k(x)dz0
dx (x)

∥∥∥∥
Y

dx

)2
821

6 ‖k‖L∞((x0,x1),Y )

(∫ x1

x0

∣∣∣∣dz0
dx (x)

∣∣∣∣ dx)2
822

6 ‖k‖L∞((x0,x1),Y )(x1 − x0) ‖z0‖2X823824

by the Cauchy-Schwarz inequality. Thus, C∗CA ∈ L ((Dnew, ‖·‖X), (X, ‖·‖X)) since825
C is bounded.826

6.2. Estimation of the CSD from the CLD in a batch crystallization827
process.828

6.2.1. Modeling the batch crystallization process. In the chemical and829
pharmaceutical industries, the crystallization process is one of the simplest and cheap-830
est way to produce some pure solid. In order to control the physical and chemical831
properties of the product, the control of the CSD is of major importance. Since there832
is no effective measurement method able to determine the CSD online during the833
process, the estimation of the CSD based on other measurements is a crucial issue.834
We consider the context of a batch crystallization process. One of the simplest model835
of the process can be written as follow :836

(6.10)


∂n

∂t
(t, x) +G(t)∂n

∂x
(t, x) = 0, ∀(t, x) ∈ [0, T ]× [xmin, xmax]

n(0, ·) = n0

n(·, xmin) = u,

837

with the following notations:838
• T is the experiment duration;839
• [xmin, xmax] is the crystal size range. All crystals are assumed to be spherical840
with radius x ∈ [xmin, xmax] where xmax > xmin > 0.841

• n(t) is the CSD at time t;842
• G is the growth kinetic, assumed size independent (McCabe hypothesis);843
• u represents the nucleation. All new crystals have size xmin.844
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Here G is supposed to be known, contrary to u and n. In practice, G can be estimated845
via a simple model based on the solute concentration and the solubility thanks to846
solute concentration and temperature sensors (see, e.g., [8, 26], or [18, 19] for more847
detailed models). We reformulate (6.10) in order to match our theoretical results.848
The size of the crystals is supposed to be increasing, i.e., G(t) > 0 for all t ∈ [0, T ].849
Assume that the maximal crystal size xmax is never reached by any crystals in time850
T , i.e., n(t, xmax) = 0 for all t ∈ [0, T ].851

Let x0 = xmin−
∫ T

0 G(s)ds and x1 = xmax. We introduce the initial state variable852
z0, given for all x ∈ [x0, x1] by853

(6.11) z0(x) =

u
(
T (xmin−x)∫ T

0
G(s)ds

)
if x0 6 x 6 xmin,

n0(x) otherwise.
854

LetX = L2(xmin, xmax). According to Section 6.1, there exists a unique z ∈ C0([0, T ];X)855
satisfying the abstract Cauchy problem856

(6.12)

ż(t, x) = −G(t)∂z
∂x

(t, x) ∀(t, x) ∈ [0, T ]× [x0, x1],
z(0) = z0

857

Moreover, (6.1) and (6.2) combined with (6.11) yield

z(t, xmin) = z0(xmin) = u(t)

for all t ∈ [0, T ]. Hence, z(t, x) = n(t, x) for all t ∈ [0, T ] and all x ∈ [xmin, xmax].858
We are now in the context developed in the previous section of the one-dimensional859

transport equation with periodic boundary conditions (since the right boundary term860
does not influence z(t, xmin) on the time interval [0, T ]). Our goal is to reconstruct861
offline the initial CSD n0 = z0|[xmin,xmax] thanks to the BFN algorithm. We now862
introduce an output operator C.863

6.2.2. Modeling the FBRM® echnology. The focused beam reflectance mea-864
surement (FBRM®) technology is an in situ sensor that measures data online during865
a crystallization process. The probe is equipped with a laser beam in rotation that866
scans across the particles. While the beam hit a particle, light is backscattered to the867
probe. The sensor counts the number of distinct light pulses and their duration. For868
each pulse, a length on a particle (i.e., a chord length) can be determined, since the869
rotation speed of the beam is known and the speed of the particle is supposed to be870
insignificant. Hence, one can deduce the CLD of the particles. The reader may refer871
to [5, 15,22] for more details about this technology, and how it is linked to the CLD.872

At a fixed time t ∈ [0, T ], for a given CSD n(t, ·) of spherical particles, the873
corresponding cumulative CLD q(t, ·) supposed to be measured by the FBRM® probe874
can be written as875

q(t, `) =
∫ xmax

xmin

k(x, `)n(t, x)dx, ∀` ∈ [0, 2xmax],(6.13)876
877

where ` represents the length of a chord and k, defined in [7, 15], satisfies878

k(x, `) = 1− χ[0,2x[(`)

√
1−

(
`

2x

)2
, ∀(`, x) ∈ [0, 2xmax]× [xmin, xmax],(6.14)879
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880

where χ[0,2x[ is the characteristic function of [0, 2x). Set Y = L2((`min, `max);R) with881
`min = 0 and `max = 2xmax. Let C ∈ L (X,Y ) be defined by882

C : X −→ Y
f 7−→ ` 7→

〈
k(·, `), f |[xmin,xmax]

〉
L2((xmin,xmax);R)

883
884

for all (x, `) ∈ [xmin, xmax]×[0, 2xmax], 0 6 k(x, `) 6 1. Hence k ∈ L∞((xmin, xmax);Y ).885
Thus, C is a well-defined integral operator with kernel k and, according to Sec-886
tion 6.1.2, there is no time interval (t0, t0 + τ) ⊂ [0, T ] on which the system is exactly887
observable. It remains to analyse kerC.888

Proposition 6.5. The kernel of the integral operator C is given by889

(6.15) kerC =
{
f ∈ X

∣∣ f |[xmin,xmax] = 0
}
.890

Therefore, one can apply the results of Section 6.1.1, and in particular Proposi-891
tion 6.2, to the pair ((A(t))t∈[0,T ], C). According to the definition of x0 and x1,892 ∫ T

0 G(t)dt = (x1 − x0)− (xmin − xmax). Hence, W (0, T ) is injective. Thus, according893
to Theorem 3.7, (2.5-2.8) is a weak back and forth observer of (2.1). Moreover, since894
A(t) is skew-adjoint for all t ∈ [0, T ], Theorem 3.9 (i) also applies. Hence, the BFN895
algorithm reconstructs the CSD from the CLD in the strong topology.896

Proof of Proposition 6.5. Clearly, kerC ⊃
{
f ∈ X

∣∣ f |[xmin,xmax] = 0
}
. Let f ∈897

kerC. We want to show that f |[xmin,xmax] = 0. For almost all ` ∈ (0, 2xmin) we have898

0 =
∫ xmax

xmin

k(`, x)f(x)dx899

=
∫ xmax

xmin

f(x)dx−
∫ xmax

xmin

f(x)

√
1−

(
`

2x

)2
dx.(6.16)900

901

In order to apply the Leibniz integral rule on (0, 2xmin), we check that902

• for all ` ∈ (0, 2xmin), x 7→ f(x)
√

1−
(
`

2x
)2 is integrable on (xmin, xmax),903

• for all x ∈ (xmin, xmax), ` 7→ f(x)
√

1−
(
`

2x
)2 is C∞ on (0, 2xmin).904

Hence, Cf is C∞ on (0, 2xmin). Since Cf = 0 almost everywhere on (0, 2xmin), we905
get that906

(Cf)(n)(0) = 0, ∀n ∈ N.907908

In the following, we determine an expression of (Cf)(n)(0). Fix x ∈ (xmin, xmax). Set909

u : (0, 2xmin) −→ R

` 7−→ −
√

1−
(
`

2x
)2
.

910
911

We show by induction that for all n > 1, there exists a family (ani,j)i,j∈N ∈ (R+)(N2)912
such that:913

• the set {(i, j) ∈ N2 | ani,j 6= 0} is finite,914
• an0,n−1 6= 0,915
• ∀j ∈ N\{n− 1}, an0,j = 0,916

• u(2n)(`) =
∑
i,j∈N

ani,j`
i(4x2 − `2)−

2j+1
2 for all ` ∈ (0, 2xmin).917
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Base case. For all ` ∈ (0, 2xmin),918

u′(`) = `(4x2 − `2)− 1
2 ,919

u(2)(`) = (4x2 − `2)− 1
2 + `2(4x2 − `2)− 3

2 .920921

Then, it is sufficient to set, for all (i, j) ∈ (N∗)2,922

a1
i,j =

{
1 if (i, j) ∈ {(0, 1), (2, 2)}
0 else

923
924

Inductive step. Let n > 1. Assume there exists such a family (ani,j)i,j∈N. We need925

to compute u(2(n+1)). For all ` ∈ (0, 2xmin),926

u(2n)(`) = a0,n−1(4x2 − `2)−
2(n−1)+1

2 +
∑

i>1,j>0
ani,j`

i(4x2 − `2)−
2j+1

2 (by hypothesis).927

928

Computing the next two derivatives of u(2n), we get929

u(2n+1)(`) = (2(n− 1) + 1)a0,n−1`(4x2 − `2)−
2n+1

2930

+
∑

i>1,j>0
(2j + 1)ani,j`i+1(4x2 − `2)−

2(j+1)+1
2931

+
∑
j>0

an1,j(4x2 − `2)−
2j+1

2 +
∑

i>2,j>0
iani,j`

i−1(4x2 − `2)−
2j+1

2932

933

and934

u(2n+2)(`) = (2(n− 1) + 1)a0,n−1(4x2 − `2)−
2n+1

2935

+
∑
j>1

(2j − 1)an1,j−1`(4x2 − `2)−
2j+1

2936

+
∑

i>3,j>2
(2(j − 1) + 1)(2j − 3)ani−2,j−2`

i(4x2 − `2)−
2j+1

2937

+
∑

i>1,j>1
(i+ 1)(2j − 1)ani,j−1`

i(4x2 − `2)−
2j+1

2938

+ (2(n− 1) + 1)(2n+ 1)a0,n−1`
2(4x2 − `2)−

2(n+1)+1
2939

+
∑

i>0,j>0
(i+ 1)(i+ 2)ani+2,j`

i(4x2 − `2)−
2j+1

2940

+
∑

i>2,j>1
(2j − 1)iani,j−1`

i(4x2 − `2)−
2j+1

2 .941

942

For all (i, j) ∈ N2, set943

an+1
i,j = (2n− 1)a0,n−1χ{(0,n)}(i, j)944

+ (2n− 1)(2n+ 1)a0,n−1χ{1}×[1,+∞)(i, j)945

+ (2j − 1)(2j − 3)ani−2,j−2χ[3,+∞)×[2,+∞)(i, j)946

+ (i+ 1)(2j − 1)ani,j−1χ[1,+∞)×[1,+∞)(i, j)947

+ (2(n− 1) + 1)(2n+ 1)a0,n−1χ{(2,n+1)}(i, j)948
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+ (2j − 1)iani,j−1χ[2,+∞)×[1,+∞)(i, j)949

+ (i+ 1)(i+ 2)ani+2,j .950951

Then, to conclude the induction, one can check that952
• for all {(i, j) ∈ N2 an+1

i,j > 0 since (ani,j)i,j∈N ∈ (R+)(N2),953

• {(i, j) ∈ N2 | an+1
i,j 6= 0} is finite since {(i, j) ∈ N2 | ani,j 6= 0} is finite,954

• an+1
0,n > (2n− 1)an0,n−1 > 0,955

• ∀j ∈ N\{n− 1}, an+1
0,j = 0,956

• u(2(n+1))(`) =
∑
i,j∈N

an+1
i,j `i(4x2 − `2)−

2j+1
2 for all ` ∈ (0, 2xmin).957

Thus, since (Cf)(2n)(0) = 0 for all n ∈ N∗,958

0 =
∫ xmax

xmin

an0,n−1
f(x)

(2x)2n−1 dx(6.17)959
960

for some an0,n−1 > 0. Let n ∈ N∗. Then,961

0 =
∫ xmax

xmin

f(x)
x2n−1 dx962

=
∫ 1

xmin

1
xmax

f

(
1
x̃

)
x̃2n+1dx̃ (x̃ = 1

x
).963

964

Set f̃ : [ 1
xmax

, 1
xmin

] 3 x̃ 7−→ f( 1
x̃ ). Then,965

0 =
∫ 1

xmin

1
xmax

f̃(x̃)x̃2n+1dx̃966

= 1
2

∫ 1
x2

min

1
x2

max

f̃(
√
x̄)x̄ndx̄ (x̄ = x̃2).(6.18)967

968

Set f̄ : [ 1
x2

max
, 1
x2

min
] 3 x̄ 7−→ f(

√
x̄)x̄. Then we have969

0 =
∫ 1

x2
min

1
x2

max

f̄(x)x̄n−1dx̄.(6.19)970

971

Since the family (x 7→ xn)n>0 is a total family in L2
((

1
x2

max
, 1
x2

min

)
;R
)

from the972

Weierstrass approximation theorem, f̄ = 0. Hence f |(xmin,xmax) = 0, which concludes973
the proof.974
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