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Abstract

We study the controllability of a closed control-affine quantum system driven
by two or more external fields. We provide a sufficient condition for controlla-
bility in terms of existence of conical intersections between eigenvalues of the
Hamiltonian in dependence of the controls seen as parameters. Such spectral
condition is structurally stable in the case of three controls or in the case of
two controls when the Hamiltonian is real. The spectral condition appears
naturally in the adiabatic control framework and yields approximate controlla-
bility in the infinite-dimensional case. In the finite-dimensional case it implies
that the system is Lie-bracket generating when lifted to the group of unitary
transformations, and in particular that it is exactly controllable. Hence, Lie
algebraic conditions are deduced from purely spectral properties. We conclude
the article by proving that approximate and exact controllability are equivalent
properties for general finite-dimensional quantum systems.

1 Introduction

In this paper we consider a closed quantum system of the form

iψ̇(t) = H(u(t))ψ(t) = (H0 + u1(t)H1 + · · ·+ um(t)Hm)ψ(t), (1)

where ψ(·) describes the state of the system evolving in the unit sphere S of a finite- or
infinite-dimensional complex Hilbert space H. The control u(·) = (u1(·), . . . , um(·))
takes values in a subset U of Rm and represents external fields. The Hamiltonian
H(u) is a self-adjoint operator on H for every u ∈ U .
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System (1) is exactly (respectively, approximately) controllable if every point of
S can be steered to (respectively, steered arbitrarily close to) any other point of S,
by an admissible trajectory of (1).

When the dimension of H is finite, the exact controllability of (1) has been char-
acterized in [2] in terms of the Lie algebra generated by {H(u) | u ∈ U}. In the
infinite-dimensional case, if the controlled Hamiltonians H1, . . . , Hm are bounded,
exact controllability can be ruled out by functional analysis arguments ([3, 30]). Suf-
ficient conditions for approximate controllability have been obtained by proving exact
controllability of restrictions of (1) to spaces where the controlled Hamiltonians are
unbounded ([5, 6, 7]). Other sufficient conditions for approximate controllability have
been obtained by control-Lyapunov arguments ([8, 23, 24, 25]) and Lie–Galerkin tech-
niques ([10, 11, 13, 14, 15]).

Both in the finite- and the infinite-dimensional case, checking the above-mentioned
controllability criteria is not an easy task. Typical conditions require that the eigen-
values of H0 are non-resonant (e.g., all gaps are different or rationally independent)
and that the controlled Hamiltonians “sufficiently couple” the eigenstates of H0.
Hence many efforts were made to find easily checkable sufficient conditions for con-
trollability of (1).

It should be mentioned that most of the conditions mentioned above are obtained
for single-input systems (m = 1). An alternative technique fully exploiting the multi-
input framework uses adiabatic theory to obtain approximate descriptions of the
evolution of (1) for slowly varying control functions u(·) [1, 12, 20]. Adiabatic methods
work when the spectrum exhibits eigenvalue intersections. In [12], in the case m = 2,
it is shown how to exploit the existence of conical intersections (see Figure 1 and
Definition 5) between every pair of subsequent eigenvalues to induce an approximate
population transfer from any eigenstate to any other eigenstate or any nontrivial
superposition of eigenstates (without controlling the relative phases). This kind of
partial controllability is named spread controllability in [12].

In this paper we study the whole controllability implications of the conditions
ensuring spread controllability, namely the existence of conical intersections between
every pair of subsequent eigenvalues. A relevant advantage of these conditions is that
they consist in qualitative structural properties of the spectrum of H(u) as a function
of u ∈ U . This might be useful when the explicit expression of the Hamiltonian
is not known, but one has information about its spectrum (as it happens in many
experimental situations).

In the following we say that the spectrum of H(·) is conically connected if all
eigenvalue intersections are conical, each pair of subsequent eigenvalues is connected
by a conical intersections such that all other eigenvalues are simple (see Figure 2). A
notable property of conical connectedness is that it is a structurally stable property
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Figure 1: A conical intersection when m = 2: the surfaces represent two eigenvalues
of H(u1, u2) as functions of u1 and u2.

form = 3 or form = 2, when restricted to real Hamiltonians. This structural stability
dates back to the 1920s ([9, 31]) and is discussed in more details in Section 2.1 (see
Remark 6).

The main results of the paper about the relations between conically connected
spectra and controllability are the following:

• if H is finite-dimensional and the spectrum of H(·) is conically connected then
Lie{H(u) | u ∈ U} is equal to u(n) or su(n). In particular (1) is exactly
controllable and the same is true for its lift in U(n) or SU(n);

• if H is infinite-dimensional and the spectrum of H(·) is conically connected then
(1) is approximately controllable. (For a counterpart of the finite-dimensional
lifted-system controllability, see Remark 16.)

Motivated by the exact/approximate dichotomy in the controllability of finite-
/infinite-dimensional systems, we investigate in the last part of the paper the equiv-
alence between exact and approximate controllability. We have already seen that
exact controllability cannot hold when dim(H) = ∞, since we assume H1 and H2 to
be bounded. When dim(H) <∞ we prove that exact and approximate controllability
are indeed equivalent, both for (1) and its lift on U(n). This last result holds in the
more general setting where H(u) depends on u in a possibly nonlinear way.
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The structure of the paper is the following. In Section 2 we introduce the ba-
sic definitions related to controllability and conical intersections and we prove the
finite-dimensional exact controllability of a system exhibiting a conically connected
spectrum and of its lift in U(n) or SU(n) (Theorem 8). In Section 3 we prove that an
infinite-dimensional system having a conically connected spectrum is approximately
controllable (Theorem 13). Finally, in Section 4 we prove the equivalence between ap-
proximate and exact controllability for finite-dimensional closed quantum mechanical
systems.

2 Conical intersections and exact controllability in

finite dimension

2.1 Basic definitions and facts

In this section we introduce some definitions and recall some basic facts about control
systems evolving on finite-dimensional manifolds.

We first define approximate and exact controllability for a smooth control system

q̇(t) = f(q(t), u(t)) (Σ)

defined on a connected manifold M with controls u(·) taking values in U ⊂ Rm.

Definition 1

• The reachable set Aq0 from a point q0 ∈ M for (Σ) is the set of points q1 ∈ M
such that there exist a time T ≥ 0 and a L∞ control u : [0, T ] → U for which
the solution of the Cauchy problem q̇(t) = f(q(t), u(t)) starting from q(0) = q0
is well defined on [0, T ] and satisfies q(T ) = q1.

• The system (Σ) is said to be exactly controllable if for every q0 ∈ M we have
Aq0 =M .

• The system (Σ) is said to be approximately controllable if for every q0 ∈ M we
have that Aq0 is dense in M .

A relevant class of control systems for our discussion is given by right-invariant
control systems on Lie groups, namely, systems for which M is a connected Lie group
and each vector field f(·, u), u ∈ U , is right-invariant.

Lemma 3 below is a classical result concerning right-invariant control systems on
compact Lie groups (see, e.g., [19] and [22, p. 155]).
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Definition 2 Let (Σ) be a right-invariant control system and denote by e the identity
of the group M . Let Lie{f(e, u) | u ∈ U} be the Lie algebra generated by {f(e, u) |
u ∈ U}, i.e., the smallest subalgebra of the Lie algebra of M containing {f(e, u) |
u ∈ U}. The orbit G of (Σ) is the connected subgroup of M whose Lie algebra is
Lie{f(e, u) | u ∈ U}.

Lemma 3 Let M be a connected compact Lie group and consider a right-invariant
control system (Σ) on M . The following conditions are equivalent:

• (Σ) is exactly controllable;

• the orbit G of (Σ) is equal to M ;

• Lie{f(e, u) | u ∈ U} is the Lie algebra of M .

The last condition is usually referred to as the Lie-bracket generating condition.
A general controlled closed quantum system evolving in a finite-dimensional Hilbert

space can be written as

iψ̇(t) = H(u(t))ψ(t), (2)

where ψ : [0, T ] → S2n−1 ⊂ Cn denotes the state of the system and H(u) is a
Hermitian matrix smoothly depending on u ∈ U ⊂ Rm. From now on let us take
n ≥ 2, otherwise the controllability problem is trivial.

Naturally associated with (2) is its lift on the unitary group U(n),

iġ(t) = H(u(t))g(t), (3)

which is right-invariant and permits to write the solution ψ(·) of (2) starting from ψ0

as ψ(t) = g(t)ψ0 where g(·) is the solution of (3) starting from the identity.
Lemma 3 implies that (3) is controllable in U(n) if and only if the Lie algebra

generated by {iH(u) | u ∈ U} is equal to u(n). If the trace of each matrix H(u),
u ∈ U , is zero, then (3) is well posed in SU(n) and its exact controllability in SU(n)
is equivalent to the condition Lie{iH(u) | u ∈ U} = su(n).

In order to deduce the controllability properties of (2) from those of (3) one has
to turn towards the classification of transitive actions of subgroups of U(n) onto
S2n−1 ⊂ Cn. As a consequence, system (2) is exactly controllable if and only if

Lie{iH(u) | u ∈ U} ⊇

{

su(n) if n is odd
an algebra conjugate to sp(n/2) if n is even.

(4)

(See [17].)
Of special interests for this paper are closed control-affine quantum system driven

by m external fields, satisfying the following assumption:
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(A) Let m ≥ 2 and U be an open and connected subset of Rm. We assume that
H(·) is control-affine, i.e., it has the form

H(u) = H0 + u1H1 + · · ·+ umHm.

In the following, under assumption (A), we focus on the controllability of the
system

iψ̇(t) = (H0 + u1(t)H1 + · · ·+ um(t)Hm)ψ(t), ψ(t) ∈ S2n−1, (5)

and its lift

iġ(t) = (H0 + u1(t)H1 + · · ·+ um(t)Hm)g(t), g(t) ∈ U(n). (6)

Remark 4 Let us briefly discuss the role of the assumptions listed in hypotheses (A).
The affine structure of H with respect to the control is natural in quantum control
([17]) and allows the application of the controllability criteria we are using in the
following (see Proposition 11). Moreover, the connectedness of U is required in order
to apply adiabatic techniques in the whole set of control parameters.

A crucial hypothesis that we shall use to prove exact controllability of (6) (and
hence, in particular, of (5)) is the existence of conical intersections (in the space of
controls) between consecutive energy levels, and the fact that these conical intersec-
tions occur at distinct points in the space of controls. More precisely:

Definition 5 Let (A) be satisfied. Let Σ(u) = {λ1(u), . . . , λn(u)} be the spectrum
of H(u), where the eigenvalues λ1(u) ≤ · · · ≤ λn(u) are counted according to their
multiplicities. We say that ū ∈ U is a conical intersection between the eigenvalues
λj and λj+1 if λj(ū) = λj+1(ū) has multiplicity two and there exists a constant c > 0
such that for any unit vector v ∈ Rm and t > 0 small enough we have

λj+1(ū+ tv)− λj(ū+ tv) > ct . (7)

See Figure 1 for the picture of a conical intersection. Notice that the hypothesis
m ≥ 2 guarantees that conical intersections do not disconnect U . This is crucial in
the arguments below (see, in particular, Lemma 9.)

Remark 6 Conical intersections are not pathological phenomena. On the contrary,
they happen to be generic for m = 3 or for m = 2, when restricted to real Hamiltoni-
ans, in the following sense.

Let us first consider the case m = 2. Let sym(n) be the set of all n×n symmetric
real matrices. Then, generically with respect to the pair (H1, H2) in sym(n)× sym(n)
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(i.e., for all (H1, H2) in an open and dense subset of sym(n) × sym(n)), for each
u = (u1, u2) ∈ R2 and λ ∈ R such that λ is a multiple eigenvalue of H0+u1H1+u2H2,
the eigenvalue intersection u is conical. Moreover, each conical intersection u is
structurally stable, in the sense that small perturbations of H0, H1 and H2 give rise,
in a neighborhood of u, to conical intersections for the perturbed H. See Section 3 for
a version of this result in infinite dimension and [12] for more details.

In the case m = 3, let Herm(n) be the space of n × n Hermitian matrices.
Then, generically with respect to the triple (H1, H2, H3) in Herm(n)3, for each u =
(u1, u2, u3) ∈ R3 and λ ∈ R such that λ is a multiple eigenvalue of H0 + u1H1 +
u2H2 + u3H3, the eigenvalue intersection u is conical. Structural stability also holds,
in the same sense as above. See [16] for more details and a discussion on the infinite-
dimensional counterpart of these properties.

The following definition identifies the Hamiltonians for which we can guarantee
exact controllability from qualitative properties of their spectra. Roughly speaking we
require all their eigenvalues to be connected by conical intersections and the conical
intersections to occur at different points in the space of controls.

Definition 7 Let (A) be satisfied. We say that the spectrum Σ(·) of H(·) is conically
connected if all eigenvalue intersections are conical and for every j = 1, . . . , n − 1,
there exists a conical intersection ūj ∈ U between the eigenvalues λj , λj+1, with λl(ūj)
simple if l 6= j, j + 1.

See Figure 2 for a conically connected spectrum.

2.2 Conical connectedness implies exact controllability

The main result of Section 2 is the following theorem.

Theorem 8 Let (A) be satisfied and assume that the spectrum Σ(·) of H(·) is coni-
cally connected. Then the Lie algebra generated by {iH(u) | u ∈ U} is either u(n) or
su(n) (in the case H0, . . . , Hm ∈ su(n)). Hence, system (6) is either exactly control-
lable in U(n) or well-posed and exactly controllable in SU(n).

The proof of the theorem is based on the following lemma.

Lemma 9 Let (A) be satisfied and assume that the spectrum Σ(·) of H(·) is conically
connected. Then there exists Ū ⊂ U which is dense and with zero-measure complement
in U such that if

∑n

j=1
αjλj(ū) = 0 with (α1, . . . , αn) ∈ Qn and ū ∈ Ū then α1 =

α2 = · · · = αn.
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Figure 2: A conically connected spectrum in the case m = 2.

Proof. For every α = (α1, . . . , αn) ∈ Qn define

Uα = {u ∈ U |
n

∑

j=1

αjλj(u) = 0}.

Notice that, by definition of conical intersection and sincem ≥ 2, {u ∈ U | Σ(u) is simple}
is connected. Thanks to the analyticity of the spectrum in {u ∈ U | Σ(u) is simple},
either Uα = U or Uα has empty interior. The proof is completed by showing that if
Uα = U then α1 = · · · = αn.

Assume that Uα = U . Consider j ∈ {1, . . . , n−1} and an analytic path γ : R → U
such that γ(0) = ūj, γ̇(0) 6= 0, where ūj ∈ U is a conical intersection between the
eigenvalues λj, and λj+1, with λl(ūj) simple if l 6= j, j + 1.

Since Uα = U , we have for every t ∈ R,

n
∑

l=1

αlλl(γ(t)) = 0.

By analytic dependence of the spectrum along γ in a neighbourhood of γ(0) [27], the
functions

t 7→

{

λj(γ(t)) if t < 0
λj+1(γ(t)) if t ≥ 0,

t 7→

{

λj+1(γ(t)) if t < 0
λj(γ(t)) if t ≥ 0,
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and t 7→ λl(γ(t)), l 6= j, j + 1, are analytic in a neighborhood of 0. Hence,

αj+1λj(γ(t)) + αjλj+1(γ(t)) +
∑

l 6=j,j+1

αlλl(γ(t)) = 0

for t in a neighborhood of 0. Then

(αj − αj+1)(λj(γ(t))− λj+1(γ(t))) = 0

for t in a neighborhood of 0. By definition of conical intersection it must be αj = αj+1.
Since j is arbitrary, we deduce that α1 = · · · = αn concluding the proof. �

Remark 10 The lemma fails to hold if m = 1. Consider for instance n = 3, H0 =
diag(0, 1, 2) and H1 = diag(1, 1, 0). Then the eigenvalues of H(u) are u, u+ 1 and 2.
The spectrum is conically connected, but clearly Ū = ∅.

Notice that Lie(iH0, iH1) is made only by diagonal matrices and therefore {iH0, iH1}
does not generate u(n). Hence, this example also shows that Theorem 8 does not hold
if we remove the hypothesis m ≥ 2.

The proof of Theorem 8 is based on the following adaptation of a controllability
criteria for single-input quantum control systems appeared in [10, Proposition 3.1].
The proof can be obtained following exactly the same arguments as in [10].

Proposition 11 Let A0, A1, . . . , Am be skew-Hermitian n × n matrices. Denote by
λ1, . . . , λn the eigenvalues of A0, repeated according to their multiplicities and let
φ1, . . . , φn be an orthonormal basis of associated eigenvectors. Let

S0 = {(j, k) ∈ {1, . . . , n}2 | ∃ l ∈ {1, . . . , m} such that 〈φj, Alφk〉 6= 0}.

Assume that there exists S ⊆ S0 such that the graph having 1, . . . , n as nodes
and S as set of edges is connected. Assume, moreover, that for every (j, k) ∈ S and
(r, s) ∈ S0 \ {(j, k)} we have λj − λk 6= λr − λs. Then Lie(A0, . . . , Am) = su(n) if
A0, . . . , Am ∈ su(n) and Lie(A0, . . . , Am) = u(n) otherwise.

Proof of Theorem 8. Applying Lemma 9 we deduce the existence of u0 ∈ U such that
if
∑n

j=1
αjλj(u0) = 0 with (α1, . . . , αn) ∈ Qn then α1 = · · · = αn. In particular, the

spectrum of H(u0) is simple and two spectral gaps λj(u0)−λk(u0) and λr(u0)−λs(u0)
are different if (j, k) 6= (r, s) and j 6= k, r 6= s. Let φ1, . . . , φn be an orthonormal basis
of eigenvectors of H(u0).

Let us conclude the proof by applying Proposition 11 to A0 = iH(u0), Aj = iHj

for j = 1, . . . , m: to this purpose, we are left to prove that the graph having 1, . . . , n
as nodes and

S0 = {(j, k) ∈ {1, . . . , n}2 | 〈φj, Hlφk〉 6= 0 for some l = 1, . . . , m}
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as set of edges is connected.
Assume by contradiction that such graph is not connected. Then there exists a

proper subspace V of Cn generated by eigenvectors of H(u0) which is invariant for
the evolution of (5). Without loss of generality V = span{φ1, . . . , φr} with r < n.

Since the spectrum is conically connected, we can apply [29, Corollary 2.5] and de-
duce that there exists an admissible trajectory of (5) steering φ1 to an arbitrary small
neighbourhood of {eiθφn | θ ∈ R}. (See also [12, Proposition 3.4] for a rephrasing
in control terms of [29, Corollary 2.5], which deals with general adiabatic evolutions
through conical intersections. The result is stated in [12] in the case m = 2 for
symmetric Hamiltonians but actualy holds in the general case.) The contradiction is
reached, since V ∩ {eiθφn | θ ∈ R} = ∅. �

3 Conical intersections and approximate control-

lability in infinite dimension

In this section we extend the controllability analysis of the previous section to systems
of the form (5) evolving in infinite-dimensional spaces.

Consider a separable infinite-dimensional complex Hilbert space H. In this section
we make the following assumption:

(A∞) Let m ≥ 2 and U be an open and connected subset of Rm. Assume that the
Hamiltonian H(·) has the form

H(u) = H0 + u1H1 + · · ·+ umHm, u = (u1, . . . , um) ∈ U,

where H0, . . . , Hm are self-adjoint operators on H, with H0 bounded from below
and H1, . . . , Hm bounded.

With a Hamiltonian H(·) as in assumption (A∞) we can associated the control
system

iψ̇(t) = (H0 + u1(t)H1 + · · ·+ um(t)Hm)ψ(t), ψ(t) ∈ S, (8)

where S is the unit sphere of H.
Existence of solutions of (8) for u of class L∞ and H1, . . . , Hm bounded is classical

(see [26]).
A typical case for which (A∞) is satisfied is when H0 = −∆ + V , where ∆ is

the Laplacian on a domain Ω ⊂ Rd (with suitable boundary conditions if Ω 6= Rd),
V is a regular enough real-valued potential bounded from below, H = L2(Ω,C), and
H1, . . . , Hm are multiplication operators by L∞ real-valued functions.
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3.1 Conical connectedness implies approximate controllabil-
ity in infinite dimension

The main technical assumption of this section is the following.

(B) The spectrum ofH0 is discrete without accumulation points and each eigenvalue
has finite multiplicity.

Under assumptions (A∞) and (B) the spectrum of H(u), u ∈ U , with eigenvalues
repeated according to their multiplicities, can be described by Σ∞(u) = {λj(u)}j∈N
with λj(u) ≤ λj+1(u) for every j ∈ N and each λj(·) continuos on U . In analogy with
Definition 7, we say that Σ(·) is conically connected if all eigenvalue intersections
λj = λj+1, j ∈ N, are conical (the definition of conical intersection extends trivially
to this case) and for every j ∈ N there exists a conical intersection ūj ∈ U between
the eigenvalues λj, λj+1, with λl(ūj) simple if l 6= j, j + 1.

Remark 12 Recall from [12] that conical intersections are generic in the case m = 2
in the reference case where H = L2(Ω,C), H0 = −∆ + V0 : D(H0) = H2(Ω,C) ∩
H1

0 (Ω,C) → L2(Ω,C), H1 = V1, H2 = V2, with Ω a bounded domain of Rd and
Vj ∈ C0(Ω,R) for j = 0, 1, 2. Indeed, generically with respect to the pair (V1, V2) in
C0(Ω,R)×C0(Ω,R) (i.e., for all (V1, V2) in a countable intersection of open and dense
subsets of C0(Ω,R)× C0(Ω,R)), for each u ∈ R2 and λ ∈ R such that λ is a multiple
eigenvalue of H0 + u1H1 + u2H2, the eigenvalue intersection u is conical. Moreover,
each conical intersection u is structurally stable, in the sense that small perturbations
of V0, V1 and V2 give rise, in a neighbourhood of u, to conical intersections for the
perturbed H.

The main purpose of this section is to extend Theorem 8 to the infinite-dimensional
case, as follows.

Theorem 13 Let hypotheses (A∞) and (B) be satisfied. If the spectrum Σ(·) is
conically connected then (8) is approximately controllable.

The proof of Theorem 13 follows the same pattern as the one of Theorem 8. The
first step is the following straightforward generalisation of Lemma 9.

Lemma 14 Let hypotheses (A∞) and (B) be satisfied and assume that the spec-
trum Σ(·) is conically connected. Then there exists Ū ⊂ U which is dense and with
zero-measure complement in U such that for each N ∈ N,

∑N

j=1
αjλj(ū) = 0 with

(α1, . . . , αN) ∈ QN and ū ∈ Ū implies α1 = α2 = · · · = αN = 0.
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In particular the spectrum of H(ū) for ū ∈ Ū as in Lemma 14 is such that two
spectral gaps λk(ū)−λj(ū) and λr(ū)−λs(ū) are different if (k, j) 6= (r, s) and k 6= j,
r 6= s.

In the infinite-dimensional case, the role of Proposition 11 is played by the follow-
ing corollary of [10, Theorem 2.6].

Proposition 15 Let hypotheses (A∞) and (B) be satisfied. Assume that there exists
ū ∈ U such that λk(ū) − λj(ū) 6= λr(ū) − λs(ū) if (k, j) 6= (r, s), (k, j), (r, s) ∈
N2 \ {(l, l) | l ∈ N}. Denote by (φj(ū))j∈N a Hilbert basis of eigenvectors of H(ū) and
let

S = {(j, k) ∈ N2 | 〈φj(ū), Hlφk(ū)〉 6= 0 for some l = 1, . . . , m}.

If the graph having N as set of nodes and S as set of edges is connected then (8)
is approximately controllable in S.

The proof of Theorem 13 is then concluded as follows: Lemma 14 guarantees the
existence of ū such that the spectral gaps of Σ(ū) are all different; this allows to
deduce the conclusion from Proposition 15 provided that no proper linear subspace
of H spanned by eigenvectors of H(ū) is invariant for (8). As in the finite-dimensional
case, this can be be proved by adiabatic methods, deducing from [29, Corollary 2.5]
(or [12, Proposition 3.4]) that for every pair of eigenvectors of H(ū) there exists and
admissible trajectory of (8) connecting them with arbitrary precision.

Remark 16 Following [11] a stronger version of Proposition 15, and hence of The-
orem 13, could be stated, namely: under the same hypotheses, for every l ∈ N,
ψ1, . . . , ψl ∈ S, ε > 0, and every unitary transformation Υ of H, there exists a
control function u : [0, T ] → U such that, for every j = 1, . . . , l the solution of (8)
having ψj as initial conditions arrives in a ε-neighborhood of Υ(ψj) at time T . Notice
that this is the natural counterpart of controllability of the lift of (5) in the group of
unitary transformations proved in Section 2.

4 Equivalence between exact and approximate con-

trollability for finite-dimensional systems

In the previous sections we have seen several sufficient conditions for controllabil-
ity, which is exact in the finite-dimensional case and approximate in the infinite-
dimensional one.

In this section we discuss the relation between approximate and exact control-
lability. It is well known that exact controllability of a control-affine system in an
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infinite-dimensional Hilbert space cannot be expected if the control operators are
bounded (see [3, 21, 30]).

Our aim is to show that in the finite-dimensional case approximate controllability
always yields exact controllability for systems of the type

iψ̇(t) = H(u(t))ψ(t), ψ(t) ∈ S2n−1, u(t) ∈ U ⊂ Rm, (9)

or

iġ(t) = H(u(t))g(t), g(t) ∈ G , u(t) ∈ U ⊂ Rm, (10)

where G denotes the group SU(n) if the trace of H(u) is zero for every u ∈ U and
U(n) otherwise.

More precisely, we have the following.

Theorem 17 System (9) is approximately controllable if and only it is exactly con-
trollable. The same holds for system (10).

For the control problem on S2n−1 the proof is based on some results in represen-
tation theory, recalled in the following section. For the lifted problem in U(n) (or
SU(n)) the proof directly follows from results from a 1942 result by Smith [28], as
detailed in Section 4.3.

4.1 Some facts from group-representation theory

In this section, we recall the two basic main facts from representation theory that are
needed in order to prove Theorem 17. We consider a finite-dimensional representation
of a Lie group G, X : G → L(h), where h is a finite dimensional complex Hilbert
space and L(h) denotes the space of endomorphisms of h.

Theorem 18 below is stated by Dixmier in [18]. We need it for Lie groups, although
it holds more generally for locally compact topological groups.

We recall that the intersection of the kernels of all unitary irreducible finite-
dimensional representations of a group G is a subgroup of G. Then, G is said to
be injectable in a compact group1 if this subgroup is reduced to the identity of G.

Theorem 18 ([18] 16.4.8) Let G be a connected, locally compact group. Then G is
injectable in a compact group if and only if G = Rp ×K with K a compact group.

1The definition given here is not the most natural, since injectability in a compact group is related
to the notion of compact group associated with a topological group that is defined via an universal
property: For each topological group G there exists a compact group Σ and a continuous morphism
α : G → Σ such that for any compact group Σ′ and continuous morphism α′ : G → Σ′ it exists a
continuous morphism β : Σ → Σ′ such that α′ = β ◦ α. We give here only the definition that fits
better with our purposes. For such beautiful theory, see [18, 16.4].
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The second key fact that we need is due to Weil (see [32, p. 66]).

Proposition 19 ([18] 13.1.8) Let G = G1 × G2 be the Cartesian product of two
locally compact topological groups, and let X be an irreducible representation of G.
Define the representation X

′
1 of G1 as X

′
1(g1) := X(g1, e) and the representation X

′
2

of G2 as X
′
2(g2) := X(e, g2). If X

′
1 and X

′
2 lie in a semisimple class of represen-

tations, then X is equivalent to the tensor product X1 ⊗ X2 with X1,X2 irreducible
representations of G1, G2, respectively.

We would need to specify what a semisimple class of representations is, see [32, p.
65]. For our purpose, however, it is enough to recall that any class of bounded
representation is semisimple (see, e.g., [32, p. 70]).

We finally recall some elementary properties for unitary representations of Rp.
First recall that each irreducible unitary representation is equivalent to a representa-
tion of the type χξ(x) := eiξ·x for some ξ ∈ Rp, called character (see, e.g., [4, 6.1]).
As a consequence we have:

Lemma 20 If Rp admits an irreducible unitary faithful representation, then p = 0.

4.2 Proof of the first part of Theorem 17

In this section we prove the part of Theorem 17 dealing with system (9). It is clear
that its exact controllability implies approximate controllability. We now prove that
approximate controllability implies exact controllability for systems of type (9).

Assume that system (9) is approximately controllable. Let G be the orbit of (10),
i.e., the subgroup of G whose Lie algebra is generated by {iH(u) | u ∈ U} (see
Definition 2).

We now prove that G is compact, in four steps.

1. Observe that the inclusion  : G →֒ G is a faithful (by definition) representation
of G over Cn, since G ⊂ L(Cn) = gl(n,C). Then, the kernel of  is reduced to
{e}, and thus G is injectable in a compact group.

Applying Theorem 18, we have that G = Rp ×K.

2. We claim that  is an irreducible representation of G. We prove it by contradic-
tion. Assume that the inclusion is not irreducible so that there exists a proper
subspace H1 of C

n which is invariant with respect to the action of G. Now take
z0 ∈ H1 ∩ S

2n−1 and observe that Gz0 ⊂ H1 ∩ S
2n−1. Clearly the reachable set

A(z0) is contained in Gz0. Thus A(z0) is not dense. Hence the system is not
approximately controllable. Contradiction.
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3. We have that G = Rp ×K and  is an irreducible representation. Remark that
 is also unitary, hence bounded. As already recalled, the class of bounded
representations of G is semisimple. Then we can apply Proposition 19, that
gives us two irreducible bounded representations X1 : Rp → L(Cm1) and X2 :
K → L(Cm2) such that  is equivalent to X1 ⊗ X2.

4. We now prove that X1,X2 can be assumed to be unitary. Denote by eK the
identity of K and observe that, for every g1 in Rp, one has that (g1, eK) is
unitary and equivalent to X1(g1) ⊗ X2(eK) = X1(g1) ⊗ 1Cm2 . Hence, X1 is
equivalent to a unitary representation. A similar argument works for X2.

5. Since  is faithful, then X1 and X2 are faithful too. In conclusion, X1 is equivalent
to a faithful irreducible unitary representation of Rp. Then, thanks to Lemma
20, we have that p = 0. Then G = K is compact.

Consider now system (10) restricted to G. By construction, the system satisfies
the two last equivalent conditions of Lemma 3. Then the system is exactly controllable
over G and the reachable set from the identity is G itself.

The reachable set from a point ψ0 for (9) is thus the product G ·ψ0, which is closed
since G is compact. On the other hand, since (9) is approximately controllable, then
G · ψ0 is dense in S2n−1. Henceforth, G · ψ0 coincides with S2n−1 itself, i.e., system
(9) is exactly controllable. �

4.3 Proof of the second part of Theorem 17 and connections
with controllability on the sphere

We first prove the second part of Theorem 17, namely, that approximate and exact
controllability on the group G are equivalent. This is a direct consequence of the
following result, proved in [28, note on p. 312].

Theorem 21 If a dense subgroup Ĝ of a simple Lie group G of dimension larger
than 1 contains an analytic arc, then Ĝ = G.

Let us apply this theorem to system (10). Let (10) be approximately controllable.

Then, the orbit from the identity is a dense subgroup Ĝ of G . Any trajectory of (10)

with constant u is an analytic arc, contained in Ĝ . Then Ĝ = G , i.e., the orbit is the
whole group. Again by Lemma 3, we have that the accessible set coincides with G ,
i.e., that system (10) is exactly controllable. This concludes the proof of Theorem 17.

Let us now discuss the connection between the approximate/exact controllability
on the sphere S2n−1 (i.e., system (9)) and the approximate/exact controllability on
the group G . Notice that Theorem 17 is not a simple corollary of Theorem 21 and that
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approximate/exact controllability on the group and on the sphere are not equivalent.
Actually we have proven that approximate controllability on S2n−1 is equivalent to
exact controllability, and this condition is equivalent to transitivity of G on S2n−1 as
a homogeneous space. In [17], subgroups of U(n) with this property are completely
described (see also (4)): up to conjugacy, they are just U(n) itself, SU(n), and, for
n > 2 even, the symplectic group Sp(n/2) and U(1) × Sp(n/2). In particular, for n
even, it is possible to have approximate/exact controllability of (9) without having
approximate/exact controllability of (10).
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