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Abstract. This paper is devoted to present an algorithm implementing the
theory of neurogeometry of vision, described by Jean Petitot in his book. We

propose a new ingredient, namely working on the group of translations and

discrete rotations SE(2, N). We focus on the theoretical and numerical aspects
of integration of an hypoelliptic diffusion equation on this group. Our main

tool is the generalized Fourier transform. We provide a complete numerical

algorithm, fully parallellizable. The main objective is the validation of the
neurobiological model.

Keywords: neurogeometry, hypoelliptic diffusion, sub-Riemannian geometry,
generalized Fourier transform

1. Introduction

In his beautiful book [36], Jean Petitot describes a sub-Riemannian model of the
Visual cortex V1.

The main idea goes back to the paper by Hübel an Wiesel in 1959 (Nobel prize
in 1981) [27] who showed that in the visual cortex V1, there are groups of neurons
that are sensitive to position and directions1 with connections between them that
are activated by the image. The key fact is that the system of connections between
neurons, which is called the functional architecture of V1, preferentially connects
neurons detecting alignements. This is the so-called pinwheels structure of V1.

Therefore it is likely that V1 lifts the images f(x, y) (i.e., functions of two position
variables x, y in the plane R2 of the image) to functions over the projective tangent
bundle PTR2. This bundle has as base R2 and as fiber over the point (x, y) the set
of directions of straight lines lying on the plane and passing through (x, y).

Consider for instance the simplest case in which the image is a smooth curve
R 3 t→ (x(t), y(t)) ∈ R2. Lifting this curve to PTR2 means to add a new variable
θ(t) that is the angle of the vector (ẋ(t), ẏ(t)).

Since we are obliged at some point to go to certain stochastic considerations,
it is convenient to write this lift in the following “control form”. We say that
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1 Geometers call “directions” (angles modulo π) what neurophysiologists call “orientations”.
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(x(·), y(·), θ(·)) is the lift of the curve (x(·), y(·)) if there exist two functions u(·)
and v(·) (called controls) such that2

(1.1)

( ẋ(t)
ẏ(t)

θ̇(t)

)
= u(t)

(
cos(θ(t))
sin(θ(t))

0

)
+ v(t)

(
0
0
1

)
.

Here the control u(t) plays the role of the modulus of the planar vector (ẋ(t), ẏ(t)),
but can take positive and negative values since the angle θ(t) is defined modulo π.
The control v(t) is just the derivative of θ(t).

Remark 1. The vector distribution N(x, y, θ) := span {F (x, y, θ), G(x, y, θ)}, where3

F (x, y, θ) =

( cos(θ)
sin(θ)

0

)
, G(x, y, θ) =

( 0
0
1

)
,

endows PTR2 with the structure of a contact manifold. Indeed N is completely non-
integrable (in the Frobenius sense) since F and G satisfy the Hörmander condition:
span {F,G, [F,G]} = TqPTR2 for each q ∈ PTR2.

In the model described by Petitot, when a curve is partially interrupted, it is
reconstructed by minimizing the energy necessary to activate the regions of the
visual cortex that are not excited by the image. Roughly speaking, neurons of V1
are grouped into orientation columns, each of them being sensitive to visual stimuli
at a given point of the retina and for a given direction on it. Orientation columns
are themselves grouped into hypercolumns, each of them being sensitive to stimuli
at a given point with any direction (see Figure 1).

In the visual cortex there are two types of connections: the vertical connections
among orientation columns in the same hypercolumn, and the horizontal connec-
tions among orientation columns belonging to different hypercolumns and sensitive
to the same orientation. For an orientation column it is easy to activate another
orientation column which is a “first neighbor” either by horizontal or by vertical
connections.

In the model described by Petitot the energy necessary to activate a path [0, T ] 3
t 7→ (x(t), y(t), θ(t)) is given by∫ T

0

(
ẋ(t)2 + ẏ(t)2 +

1

α
θ̇(t)2

)
dt =

∫ T

0

(
u(t)2 +

1

α
v(t)2

)
dt.

The term ẋ(t)2 + ẏ(t)2 is proportional to the energy necessary to activate horizontal

connections, while the term θ̇(t)2 is proportional to the energy necessary to activate
vertical connections. The parameter α > 0 is a relative weight.

2 Which curves can be lifted with this procedure is an interesting question (see for instance

[9]). In this paper we are not focused on this problem. Let us just observe that a planar curve
having a cusp (as for instance [−1, 1] 3 t 7→ (t3, t2)) has a smooth lift.

3Notice that the definition of vector field F is not global over PTR2 since it is not continuous
at θ = π ∼ 0: the distribution N is not trivializable and a correct definition of it would require
two charts. However, for sake of simplicity, we proceed with a single chart with some abuse of

notation. Notice, however, that if we lift the problem to the group SE(2), which is a double
covering of PTR2, the structure becomes trivializable and the definition of F becomes global. We
do this often along the paper.
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Figure 1. The structure of V1

To conclude, in V1, the problem of reconstructing a curve interrupted between
the boundary conditions (x0, y0, θ0) and (x1, y1, θ1) becomes the optimal control
problem4 ( ẋ(t)

ẏ(t)

θ̇(t)

)
= uF (x, y, θ) + vG(x, y, θ),

∫ T

0

(
u(t)2 +

1

α
v(t)2

)
dt→ min,

(x(0), y(0), θ(0)) = (x0, y0, θ0), (x(T ), y(T ), θ(T )) = (x1, y1, θ1).(1.2)

Finding the solution to this optimal control problem can be seen as the problem
of finding the minimizing geodesic for the sub-Riemannian structure over PTR2

defined as follows: The distribution is N and the metric gα over N is the one
obtained by claiming that the vector fields F and

√
αG form an orthonormal frame.

By construction, this sub-Riemannian manifold is invariant under the action of the
group of rototranslations of the plane SE(2). Indeed, {N, gα}α∈]0,∞[ are all the sub-

Riemannian structures over PTR2 which are invariant under the action of SE(2).
See for instance [2].

Remark 2. From the theoretical point of view, the weight parameter α is irrelevant:
for any α > 0 there exists a homothety of the (x, y)-plane that maps geodesics of
the metric with the weight parameter α to those of the metric with α = 1. For
this reason, in all theoretical considerations we fix α = 1. However its role will be
important in our inpaiting algorithms (see Section 2.3).

4 Here the time T should be fixed, but changing T changes only the parameterization of the
solutions. For the same reasons as in Riemannian geometry, minimizer of the sub-Riemannian en-

ergy
∫ T
0

(
u(t)2 + 1

α
v(t)2

)
dt are minimizers of the sub-Riemannian length

∫ T
0

√
u(t)2 + 1

α
v(t)2 dt.
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The history of this model goes back to the paper by Hoffman [25] in 1989, who
first proposed to regard the visual cortex as a manifold with a contact structure. In
1998, Petitot [34, 35] wrote the first version of the sub-Riemannian problem on the
Heisenberg group and gave an enormous impulse to the research on the subject. In
2006, Citti and Sarti [13] required the invariance under rototranslations and wrote
the model on SE(2). In [8], it was proposed to write the problems on PTR2 to
avoid some topological problems and to be more consistent with the fact that the
visual cortex V1 is sensitive only to directions (i.e., angles modulo π) and not to
directions with orientations (i.e., angles modulo 2π). The theory was wonderfully
completed in Petitot’s book [36]. It should be also mentioned that many crucial
suggestions were made by A. Agrachev.

The detailed study of geodesics was performed by Yuri Sachkov in a series of
papers [37, 38]. For modifications of the model aimed to avoid the presence of
geodesics whose projection on the plane has cusps, see [13, 39, 7, 9]. This model was
also deeply studied by Duits et al. in [16, 17, 18] with medical imaging applications
in mind, and by Hladky and Pauls [24]. Of course this model has some close
relations with the celebrated model by Mumford [32].

The model described by Petitot was used to reconstruct smooth images by Ar-
dentov, Mashtakov and Sachkov [6]. The technique developed by them consists
of reconstructing as minimizing geodesics the level sets of the image where they
are interrupted. Obviously, when applying this method to reconstruct images with
large corrupted parts, one is faced to the problem that it is not clear how to put in
correspondence the non-corrupted parts of the same level set.

For that reason, to reconstruct a corrupted image (the V1 inpainting problem),
it is natural to proceed as follows: in system (1.1), excite all possible admissible
paths in a stochastic way. One gets a stochastic differential equation

(1.3)

( dxt
dyt
dθt

)
=

( cos(θt)
sin(θt)

0

)
dut +

( 0
0
1

)
dvt,

where ut, vt are two independent Wiener processes.
Consider the associated diffusion process (here we have fixed α = 1):

(1.4)
∂ψ

∂t
=

1

2
∆ψ, ∆ = F 2 +G2 =

(
cos(θ)

∂

∂x
+ sin(θ)

∂

∂y

)2

+
∂2

∂θ2
.

The operator ∆ is not elliptic, but it is hypoelliptic (satisfies Hörmander condition).
By the Feynman–Kac formula, integrating Equation (1.4) with the corrupted im-
age as the initial condition, one expects to reconstruct the most probable
missing level curves (among admissible).

To summarize, in this model, the process of reconstruction by V1 of corrupted
images is the following

• The plane image f(x, y) is lifted to a certain “function” f(x, y, θ) on the
bundle PTR2.
• The diffusion process (1.4) with the initial condition ψ

∣∣
t=0

= f is integrated

on the interval t ∈ [0, T ] for some T > 0.
• The resulting function fT = ψ

∣∣
t=T

on the bundle PTR2 is projected down

to a function fT (x, y), which represents the reconstructed image.
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The lifting procedure should be as follows: the image is assumed to be a smooth5

function f(x, y). Then, it can be naturally lifted to a surface S in PTR2 by lifting
its level curves. At a point (x, y, θ) we would like to set f(x, y, θ) = f(x, y) if
(x, y, θ) ∈ S and f(x, y, θ) = 0 elsewhere. But this would be nonsense since S has
zero measure in PTR2. Hence, f(x, y) is lifted to a distribution f(x, y, θ), supported
in S, and weighted by f(x, y). We refer to [8] for details.

The idea of modeling the process of reconstruction of images in V1 as an hy-
poelliptic diffusion was presented first in [13] and was implemented in details with
some slight modifications and different purposes in [39, 8, 17, 18]. A clever variant
to the lifting process was proposed in [17, 18].

It turns out that although looking rather simple, Equation (1.4) is not that easy
to integrate numerically. In particular, the multiscale sub-Riemannian effects are
hidden inside. (The numerical literature for PDEs in sub-Riemannian geometry
appears to be very scarce.)

For the equation (1.4) it is possible to compute the associated heat kernel, see
[3] and [16, 17]; however, the direct use of the kernel quickly appears to be not very
tractable. Moreover, the numerical integration starts to be a rather large problem,
due to the number of points/angles in a reasonable image. To get an idea of the
size of the full space-discretization of the problem, see Remark 5 below.

For these reasons, only very recently, some promising results about inpainting
using hypoelliptic diffusion were obtained in [8]. In that paper a sophisticated
algorithm based upon the generalized Fourier transform on the group SE(2) was
used.

In this paper, we introduce a new ingredient, namely we conjecture the following:

• the visual cortex can detect a finite (small) number of directions only.

This conjecture is based on the observation of the organization of the visual
cortex in pinwheels. The planar and the angular degrees of freedom cannot be
treated in the same way. We conjecture that there are topological constraints that
prevent the possibility of detecting a continuum of directions even when sending
the distance between pinwheels to zero.

In this paper we are not going to justify this conjecture. Rather, we concentrate
on the effect of this conjecture on the mathematical model and on our ability to
integrate the hypoelliptic diffusion equation.

The main purpose of this paper is to write an inpainting algorithm which makes
use of the group of continuous translations and discrete rotation SE(2, N). This
group has very special features: it is maximally almost periodic, and all its unitary
irreducible representations are finite dimensional. Moreover, for this group the heat
kernel can be written in a very simple form (see Sections 2.2.2 and 2.2.3).

In the following, when using the group SE(2, N) instead than SE(2) for inpait-
ing, we speak of the “semi-discrete variant” to the Petitot theory.

It turns out that we were led to rather abstract considerations, to get at the end
a quite simple algorithm, massively parallelizable. This aspect of parallelizability
seems to fit with the structure of the visual cortex V1, which is thought to make a
lot of parallel computations.

5In fact, it is known by biologists that a certain smoothing procedure is already applied at the
level of the retina [15, 30, 33].
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The paper is organized as follows: in the next section 2, we discuss some prop-
erties of the group SE(2) and its discrete avatars, together with a discrete version
of the hypoelliptic diffusion (1.4).

Section 3 presents our main ideas and shows a first algorithm, which is not
suitable in our case, mostly for two reasons:

• The “distributional” nature of lifted images (initial conditions).
• Compared to our final algorithm, it does not present the same capability

to treat in a different way the corrupted and non-corrupted parts of the
image (see Section 5).

However, this approach could certainly be interesting for more smooth initial con-
ditions.

Section 4 presents our final algorithm that, due to the abstract structure of
the groups under consideration, is massively parallel: It reduces the problem to a
number of problems of integration of linear differential equations in low dimension,
completely decoupled.

Section 5 presents some heuristic improvements of the algorithm in the case
where we can distinguish between the corrupted and non-corrupted parts of the
image.

In Appendix A, we present a series of results of reconstruction with high corrup-
tion rates and the table of all parameters used for the reconstruction procedures.
These parameters include: the time of diffusion, the weight α, and other parame-
ters that are used to “tune” the action of the diffusion on the corrupted and non
corrupted points.

Finally, Appendix B is devoted to basic theoretical concepts and to certain tech-
nical computations.

We do not pretend that our results are better than the inpainting algorithms
existing today. We just claim that they really seem to validate the theory described
by Jean Petitot and our semi-discrete variant. Moreover we emphasize the global
character of the basic algorithm.

We do not discuss the final step of the algorithm (projection) here. There are
at least two obvious possibilities: projecting by taking either the maximum, or the
average, over angles. Numerous experiments show that the projection made by the
maximum provides better results.

2. The Operators and the groups under consideration

2.1. Groups. We advise the uninitiated reader to start with our paper [3] and to
have a look to Appendix B at the end of this paper.

2.1.1. The group of Motions SE(2). The group law over the Lie group SE(2) has
multiplication law (X2, θ2) · (X1, θ1) = (X2 +Rθ2X1, θ1 + θ2), where

X =

(
x
y

)
, Rθ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
,

Rθ is the rotation of angle θ in the X-plane.
The (strongly continuous) unitary irreducible representations of SE(2) are well

known. However for analogy with the next section, we need to recall basic facts.
For a survey, see [40, 41].
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As representations of a semi-direct product, they can be obtained by using
Mackey’s imprimitivity theorem, and therefore, they are parametrized by the orbits
of the (contragredient) action of rotations on theX-plane, i.e., they are parametrized
by the half lines passing through the origin. Additionally, corresponding to the ori-
gin, there are the characters of the rotation group S1 that do not count in the
support of the Plancherel’s measure. Finally, the representation χλ corresponding
to the circle of radius λ acts over L2(S1), and is given by

[χλ(X, θ) · ϕ](u) = ei〈vλ,RuX〉ϕ(u+ θ),

where vλ is a vector of length λ in R2 and 〈·, ·〉 denotes the standard Euclidean
scalar product over R2.

Note that SE(2) is far from being maximally almost periodic, since all its finite
dimensional unitary irreducible representations are given by the characters of S1

only.
Let us also recall [3, 8, 16, 17] that the sub-Riemannian heat kernel on SE(2),

corresponding to the hypoelliptic Laplacian 1
2∆ defined in (1.4) is given by6

(2.1) Pt(X, θ) =
1

2

+∞∫
0

(+∞∑
n=0

ea
λ
nt

〈
cen

(
θ,
λ2

4

)
, χλ(X, θ) cen

(
θ,
λ2

4

)〉
+

+∞∑
n=0

eb
λ
nt

〈
sen

(
θ,
λ2

4

)
, χλ(X, θ) sen

(
θ,
λ2

4

)〉
λdλ,

where the functions sen and cen are the 2π-periodic Mathieu sines and cosines, and

aλn = −λ
2

4 − an
(
λ2

4

)
, bλn = −λ

2

4 − bn
(
λ2

4

)
, with an, bn, the characteristic values for

the Mathieu equation.
Then the solution of the diffusion equation (1.4) with the initial condition ψ

∣∣
t=0

=
ψ0 is given by the right-convolution formula:
(2.2)

ψ(t,X, θ) = et∆ψ0(X, θ) = ψ0(X, θ) ∗ Pt(X, θ)=

∫
SE(2)

ψ0(g)Pt
(
g−1 · (X, θ)

)
dg,

where g ∈ SE(2) and dg is the Haar measure: dg = dxdydθ. Unfortunately, in
practice formula (2.2) is not very tractable, for several reasons (in particular, due
to the slow convergence and the difficulty to find good computer implementations
of Mathieu functions).

2.1.2. The group of discrete motions SE(2, N). In the next section, a discrete-angle
version of the above diffusion equation will appear naturally. It corresponds to the
group of motions SE(2) restricted to rotations with angles 2kπ

N . This group is
denoted by SE(2, N). It has very special features: it is maximally almost periodic,
and all its unitary irreducible representations are finite dimensional (it is a Moore
group, see [23] for details), although it is not compact. This follows in particular
from [19, 16.5.3, page 304]: it is the semi-direct product of a compact subgroup K =
Z/NZ, and a normal subgroup V isomorphic to R2, each element of V commuting
with the connected component of the identity (which in this case is V itself). To
simplify, we set Rk = R 2kπ

N
.

6in this formula α = 1
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Besides the characters of K, the representations coming in the support of the

Plancherel measure are parametrized by (λ, ν) ∈ R+
∗ ×[0, 2π

N [ = ̂SE(2, N), the dual7

of SE(2, N). They act on CN and are given by

(2.3) χλ,ν(X, r) = diagk
(
ei〈Vλ,ν ,RkX〉

)
Sr,

where diagk
(
ei〈Vλ,ν ,RkX〉

)
is the diagonal matrix with diagonal elements ei〈Vλ,ν ,RkX〉,

Vλ,ν = (λ cos(ν), λ sin(ν)), k = 1, . . . , N , and S is the shift matrix over CN (i.e.,
Sek = ek+1 for k = 1, . . . , N − 1, and SeN = e1).

2.2. The semi-discrete diffusion operator.

2.2.1. Semi-discrete versus continuous. Firstly, we show that a certain semi-discrete
(discretization with respect to the angle) model of the diffusion is compatible with
the limit continuous model. For the considerations in this section, one may refer to
the paper [5].

The diffusion equation (1.4) comes from the stochastic differential equation (1.3),
where ut, vt are two independent standard Wiener processes. It is the associated
Fokker-Planck (or Kolmogorov forward) equation to (1.3).

From the image processing point of view, integrating the diffusion is equivalent
to excite all possible admissible paths, in a stochastic way.

In fact, in the real structure of the V1 cortex, a finite (small) number of
angles only is taken into account. Here this number is denoted by N .

Therefore, it is natural to consider the following stochastic process with jumps
evidently connected with the stochastic equation (1.3):

(2.4) dzt =

(
dxt
dyt

)
=

(
cos(θt)
sin(θt)

)
dvt,

in which θt is a jump process. Set ΛN = (λi,j), i, j = 0, . . . , N − 1, where

λi,j = lim
t→0

P [θt = ej |θ0 = ei]

t
for i 6= j, λj,j = −

∑
i6=j

λi,j .

The matrix ΛN is the infinitesimal generator of the jump process.
We assume Markov processes, where the law of the first jump time is exponential,

with parameter β > 0 (that will be specified later on). The jump has probability
1
2 on both sides. Then we get a Poisson process, and the probability of k jumps
between 0 and t is

P [k jumps] =
(βt)k

k!
e−βt.

So that:

P [θt = ei±1|θ0 = ei] =
1

2

(
βt+ kt2 + o(t2)

)
e−βt,

P [θt = ei±2|θ0 = ei] =
1

4

(
1

2
β2t2 + o(t2)

)
e−βt,

P [θt = ei±n|θ0 = ei] = O(tn)e−βt, n = 2, 3, . . . ,

with the convention that ei is modulo N .

7 The natural “dual topology” of ̂SE(2, N) is that of a cone, that consists of considering

R+
∗ × [0, 2π

N
] and identifying (λ, 0) with (λ, 2π

N
).
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Hence λi,i±1 = 1
2β and λi,i = −β. All other elements of the matrix ΛN are equal

to zero. Then, the infinitesimal generator of the semi-group associated with the
stochastic process (zt, θt) is of the form:

(2.5) LNΨ(z, ei) = (AΨ)i(z) + (ΛNΨ(z, ei))i,

where Ψj(z) = Ψ(z, ej), z = (x, y), and

(2.6) (AΨ)i(z) = AΨ(z, ei) =
1

2

(
cos(ei)

∂

∂x
+ sin(ei)

∂

∂y

)2

Ψ(z, ei),

(2.7) (ΛNΨ(z, ei))i =

n−1∑
j=0

λi,jΨj(z) =
β

2

(
Ψi−1(z)− 2Ψi(z) + Ψi+1(z)

)
,

where the subscript i means the i-th coordinate of the vector.

Therefore, if we set β =
(
N
2π

)2
, we get

(ΛNΨ(z, ei))i =
1

2

Ψi−1(z)− 2Ψi(z) + Ψi+1(z)(
2π
N

)2 =
1

2

∂2

∂θ2
Ψ(z, ei) +O

( 1

N

)2

.

At the limit N →∞, from formulae (2.5) – (2.7) we get the second order differential
operator

LΨ(z, θ) =
1

2

((
cos(θ)

∂

∂x
+ sin(θ)

∂

∂y

)2

+
∂2

∂θ2

)
Ψ(z, θ) =

1

2
∆Ψ(z, θ),

that is, the operator of our diffusion process (1.4). However the exact Fokker-Planck
equation8 with number of angles N �∞ contains the parameter β:

(2.8)
dψr
dt

(t, z) =
1

2

(
cos(er)

∂

∂x
+ sin(er)

∂

∂y

)2

ψr(t, z)+

β

2

(
ψr−1(t, z)− 2ψr(t, z) + ψr+1(t, z)

)
, r = 0, . . . , N − 1.

2.2.2. The semi-discrete heat kernel via the GFT. The GFT (generalized non-
commutative Fourier transform, see [3] and Appendix B) transforms our hypoellip-
tic diffusion equation into a continuous sum of diffusions with elliptic right-hand

term, and the summation over ̂SE(2, N) is with respect to the Plancherel measure
λdλdν. We compute the semi-discrete heat kernel via the GFT, just as in [3], and
we get a similar but simpler formula than for the “continuous” heat kernel (2.1) in
the case of the group SE(2):

Formulae (B.1) and (B.2) for the direct and the inverse GFT show that, if we
set

(2.9) Ãλ,ν = ΛN − diagk
(
λ2 cos2(ek − ν)

)
,

we get the following expression for the “semi-discrete” (or “jump”) heat kernel:

(2.10) Dt(z, er) =

∫
̂SE(2,N)

trace
(
eÃλ,νt · diagk

(
ei〈Vλ,ν ,Rkz〉

)
Sr
)
λdλdν.

8Note that here, due to self adjointness, the Kolmogorov-backward equation is the same as the
Kolmogorov-forward one (Fokker-Planck).
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Note also that it is a closed formula similar to the one in the Heisenberg case
(explicit usual functions modulo a Fourier transform). These are the only cases we
know for noncompact groups, where the kernel is obtained with such an explicit
formula.

2.2.3. A direct way to compute the semi-discrete heat kernel. We start from our
semi-discrete heat equation (2.8). The heat kernel is the convolution kernel associ-
ated with Dt(z, er), the fundamental solution of Equation (2.8).

Applying the ordinary Fourier Transform with respect to the space variable z
to (2.8), we get the ordinary linear differential equation

(2.11)
d

dt
D̃t(z) = Ãλ,νD̃t(z),

where D̃t(z) =
(
Dt(z, e1), . . . , Dt(z, eN )

)
, with the initial condition obtained from

the Dirac delta function at the identity by the ordinary Fourier Transform:

D̃0(z) = δN = (0, . . . , 0, 1).

Then, taking the inverse ordinary Fourier Transform with respect to the space
variable, we get a second expression for the heat kernel:

(2.12) Dt(z, er) =

∫
R2

(
eÃλ,νtδN

)
r
ei〈Vλ,ν ,z〉λdλdν.

Remark 3. Looking at the formulae (2.10) and (2.12), it is not clear that these
expressions are identical. The proof of this fact is given in Appendix B.3. Although
less direct, we prefer formula (2.10), that reflects more the structure of SE(2, N).

2.3. The weighting of the metric. Consider the diffusion process

(2.13)
∂ψ

∂t
=

1

2
∆αψ, ∆α = F 2 + αG2 =

(
cos(θ)

∂

∂x
+ sin(θ)

∂

∂y

)2

+ α
∂2

∂θ2

with the weighting coefficient α > 0. The hypoelliptic operator ∆ defined in (1.4) is
the case α = 1. Although the coefficient α is theoretically irrelevant (see Remark 2),
it plays an essential role in practice.

On the same way, for the semi-discrete operator, we have

∆(N)ψi(t, z) =(
cos(ei)

∂

∂x
+ sin(ei)

∂

∂y

)2

ψi(t, z) + β
(
ψi−1(t, z)− 2ψi(t, z) + ψi+1(t, z)

)
=((

cos(ei)
∂

∂x
+ sin(ei)

∂

∂y

)2

+ β
(2π

N

)2 ∂2

∂θ2

)
ψi(t, z) +O

( 1

N

)2

as N →∞. Comparing the above formula with (2.8), we have the relation:

(2.14) α = β
(2π

N

)2

.

It appeared clearly in all our experiments that N = 30 is always enough (it brings
nothing visible in the experiments to take N > 30).

Both parameters N and β have a physiological meaning. Therefore,
the coefficient α of the limit behavior (N → ∞) can certainly be obtained from
physiological considerations.
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Figure 2. Two pinwheels with opposite chirality. Each color cor-
responds to the sensitivity to one direction.

2.4. The effect of the projectivisation on the kernel. The orientation maps
of the V1 cortex show “pinwheels”, that is, singularities where iso-direction lines of
any orientation θ converge. Pinwheels have “chirality”, that is, they rotate as 2θ
or −2θ along a small direct loop around them. This could be reflected in formula
(2.15) below. See Figure 2.

As we said, the neurons are not sensitive to the angles themselves, but to di-
rections only (i.e., the angles are modulo π and not 2π). It is the reason why we
work in the projectivisation PTR2 of the tangent bundle of R2, in place of SE(2)
itself. From the discrete point of view, it means that if N is the number of values
of directions (not angles), the angle-step is in fact π

N .

Also, as it was explained in [8], the sub-Riemannian structure over PTR2 itself
is not trivializable. This is not a problem for the operators ∆ and ∆(N), since the
functions cos(θ)2, sin(θ)2 and sin(2θ) are π-periodic. Hence, details relative to
this projectivisation are omitted in the following sections.

From the point of view of the heat kernels, in fact, if pt denotes the heat kernel
over PTR2 (which is not a group convolution kernel anymore, since PTR2 is not a
group), we have the formula

(2.15) pt((x, y, θ), (x̄, ȳ, θ̄)) = Pt((x̄, ȳ, θ̄)
−1 ·(x, y, θ))+Pt((x̄, ȳ, θ̄)

−1 ·(x, y, θ+π)),

where the inverses and products are intended in the group SE(2).
A similar formula holds for the semi-discrete kernels dt and Dt (from (2.10)) for

even N .

3. A pre-algorithm

As we said in section 2.1.2, the group SE(2, N) is maximally almost periodic.
It follows from the expression (2.3) of the unitary irreducible representations that
the Bohr-almost periodic functions f(x, y, r) are just those such that the functions
fr(x, y) = f(x, y, r), r = 1, . . . , N , are Bohr-almost periodic over R2 in the usual
sense. We call AP (N) the set of almost periodic functions on SE(2, N), and we
identify the elements of AP (N) to CN -valued functions whose components are
almost periodic over R2, i.e., functions that are uniform limits of trigonometric
polynomials in the two variables (x, y).
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These functions are dense among continuous functions over any compact subset
of SE(2, N), and AP (N) is a good candidate for the space of solutions of our heat
equation: exactly as for the usual heat equation (see [14, pp. 144–146] for instance),
the uniformly bounded solutions of our heat equation with initial conditions in
AP (N) remain almost periodic over SE(2, N) uniformly in time.

Functions coming from practical images have support in a bounded subset of
SE(2, N). They can be (after smoothing and lifting) approximated uniformly over
this bounded subset by trigonometric CN -valued polynomials Q(x, y) with compo-
nents Qr(x, y):

(3.1) Qr(x, y) =

k∑
i=0

ar,λi,µie
i(λix+µiy).

The vector space of such CN -valued polynomials, for a fixed finite number of distinct
values of λi, µi, i.e., ω = (λi, µi) ∈ K, a fixed finite subset of R2, is denoted by
SE(2, N,K).

A trivial computation shows that semi-discrete hypoelliptic equation (2.8) re-
stricts to SE(2, N,K). It becomes

(3.2)
dair
dt

= −1

2

(
λi cos(θr) + µi sin(θr)

)2

air +
β

2

(
air+1 − 2air + air−1

)
,

or, equivalently,

(3.3)
dAi

dt
= −1

2
diagk

(
λi cos(θk) + µi sin(θk)

)2
Ai + ΛNA

i,

where Ai is the vector (ai1, . . . , a
i
N ) and the matrix ΛN is the infinitesimal generator

of the jump process with parameter β. The system of differential equations (3.2) is
equipped with the initial condition air(0) = ar,λi,µi with ar,λi,µi from (3.1).

The following theorem holds.

Theorem 1. For any almost periodic polynomial initial condition in SE(2, N,K),
the integration of the diffusion equation reduces to solving a finite set of indepen-
dent linear ordinary differential equations of dimension N . Any continuous initial
condition over a compact subset of SE(2, N) can be uniformly approximated by such
a polynomial.

Differential equations (3.2) over CN are not hard to tract numerically. They
have an elliptic right hand term, and the Crank-Nicolson method (discussed in the
next section) is recommended.

In fact, SE(2, N,K) is the space of a unitary representation of SE(2, N) which
is not irreducible but splits into the direct sum of irreducible representations:

SE(2, N,K) =
⊕
ω∈K

SE(2, N, {ω}).

This fact suggests that we can use our knowledge of the dual ̂SE(2, N) to reduce the
computations. Actually, it is easy to check that for ω̃, ω ∈ K such that ω̃ = Rrω,

if we call Ã and A the corresponding solutions of Equation (3.3) in SE(2, N, {ω̃})
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and SE(2, N, {ω}), respectively, we get:

dA

dt
= −1

2
diagk

(
λi cos(θk) + µi sin(θk)

)2
A+ ΛNA,

dSrÃ

dt
= −1

2
diagk

(
λi cos(θk) + µi sin(θk)

)2
SrÃ+ ΛNS

rÃ.

So that it is not necessary to compute all the resolvents relative to each unitary
irreducible representation. It is enough to do it for those corresponding to ω ∈
̂SE(2, N) only.

Theorem 2. In theorem 1, if some points of K can be deduced one from the other by
elementary rotations Rr then it is enough to compute the resolvents corresponding
to a single among these points.

This method could be very efficient in a general setting. The last considerations
show that it is of numerical interest to put in K as much as possible points in the
same orbits under the elementary rotations.

In our vision problem, the initial conditions are certainly very far from being
almost periodic. Hence we preferred a more direct method, which is however closely
related with this one. This is explained in the next section.

4. Final algorithm

In fact, images being given under the guise of a square table of real values (the
grey levels), we have chosen to deal with periodic images over a basic rectangle,
and to discretize with respect to the naturally discrete (x, y) variables. We take a
mesh of Mx ×My points on the (x, y)-plane, and the number of angles is N .

Remark 4. In practice, in all the results we show, Mx = My = M = 256, and the
number of angles N ≈ 30. We don’t see any significant improvement for
larger N .

Therefore, a function ψ(x, y, θ) over SE(2, N) is approximated by a M2 × N
table (ψpk,l), p = 1, . . . , N , k, l = 1, . . . ,M . Hence, without loss of generality, we set

for the discretization steps ∆x = ∆y =
√
M and the mesh points are xk = k−1√

M
,

yl = l−1√
M

. In this section, due to the periodicity, the upper index takes natural

values modulo N and the lower indices take natural values modulo M .
Remind that the semi-discrete diffusion equation over SE(2, N) is (2.8). For

numerical solution of this equation we replace the differential operators ∂
∂x ,

∂
∂y by

the discrete operators Dx, Dy, which act on CM2

:

Dx(ψpk,l) =
ψpk+1,l − ψ

p
k−1,l

xk+1 − xk−1
=

√
M

2

(
ψpk+1,l − ψ

p
k−1,l

)
,

Dy(ψpk,l) =
ψpk,l+1 − ψ

p
k,l−1

yl+1 − yl−1
=

√
M

2

(
ψpk,l+1 − ψ

p
k,l−1

)
.
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Then we get the diffusion equation with totally discretized (i.e., with discretized

space and angle variables) operator D, which acts on CN ⊗ CM2 ' CN ·M2

:

(4.1)
dψpk,l
dt

=
1

2
D(ψpk,l), where

D(ψpk,l) =
(
cos(ep)Dx + sin(ep)Dy

)2
(ψpk,l) + β(ψp−1

k,l − 2ψpk,l + ψp+1
k,l ).

The initial condition for (4.1) is the discrete analog of the function f(x, y, θ) ob-
tained after the lift of the original image f(x, y).

Remark 5. For M = 256, N = 30 (4.1) is a fully coupled linear differential equa-
tion in RK , K = 1, 996, 080. Applying an implicit or semi-implicit finite difference
scheme, one need to solve a system of K2 ≈ 3.6× 1012 linear algebraic equations.

Figure 3. The initial corrupted images (left) and the images
reconstructed via the hypoelliptic diffusion (2.13) with α = 0.25
and time T = 0.15 (right, up), T = 0.45 (right, down).

As previously, it is natural to apply the Fourier transform over the abelian group
(Z/MZ)

2
, which can be computed exactly by the standard FFT (Fast Fourier
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Transform) algorithm. Let us denote by ψ̂ the Fourier transform of ψ:

ψ̂pk,l =
1

M

M∑
r,s=1

ψpr,s exp

(
−2πi

(
(k − 1)(r − 1)

M
+

(l − 1)(s− 1)

M

))
.

A straightforward computation shows that

̂Dx

(
ψpk,l

)
= i
√
M sin

(
2π
k − 1

M

)
ψ̂pk,l,

̂Dy

(
ψpk,l

)
= i
√
M sin

(
2π
l − 1

M

)
ψ̂pk,l,

and the Fourier transform maps the operator cos(ep)Dx + sin(ep)Dy to the multi-

plication operator ψ̂pk,l → i
√
M apk,lψ̂

p
k,l, where

apk,l = cos(ep) sin

(
2π
k − 1

M

)
+ sin(ep) sin

(
2π
l − 1

M

)
.

Hence, the diffusion equation (4.1) is mapped to the following completely decoupled
system of M2 linear differential equations over CN :

(4.2)
dψ̂k,l
dt

= Ak,l ψ̂k,l, ψ̂k,l = (ψ̂1
k,l, . . . , ψ̂

N
k,l),

where Ak,l = 1
2

(
ΛN − Mdiagp(a

p
k,l)

2
)
, and ΛN is an almost tridiagonal N × N

matrix: due to periodicity in p, ΛN contains two extra non-zero elements in the
right-up and left-low corners.

Therefore the solution of (4.2) is

(4.3) ψ̂k,l(t) = etAk,l ψ̂k,l(0),

where the initial function ψ̂k,l(0) is known. Finally, the solution of (4.1) is the

inverse Fourier transform over (Z/MZ)
2

of ψ̂pk,l(t), obtained using the inverse FFT.

Theorem 3. The solution of Equation (4.1) can be computed exactly by solving
in parallel M2 linear differential equations in dimension N .

For instance, for M = 256 and N = 30, this is solving 65536 linear differential
equations in dimension 30.

Remark 6. 1. The complexity of the FFT used twice in our algorithm (includ-
ing the inverse transform) is negligible in front of the complexity of the numerical
integration of the decoupled linear differential equations.

2. The discretized diffusion (4.1) can be numerically integrated with the semi-
explicit Crank-Nicolson scheme. The convergence of this scheme for the considered
class of equations and some estimations are well known; see e.g. [29, chapter 5].
Note that the matrices Ak,l are tridiagonal plus two terms in the right-up and left-
low corners (coming from ΛN due to periodicity). An effective algorithm for solving
such linear system is suggested in [1].

3. Formula (4.3) for solutions of the linear differential equations (4.2) has an
obvious advantage. Once M,N and α (or, equivalently, β) are fixed, the matrices
Ak,l are universal, and therefore their exponentials can be computed once for all.

Moreover, using a time step τ and the formula enτAk,l =
(
eτAk,l

)n
, it is enough to

compute only the exponential eτAk,l .
4. In fact, it is not necessary to compute M2 exponentials of matrices: it is

enough to compute them at the points k, l that fall in the dual space ̂SE(2, N).
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This is much less. For large N, is number is of order M in place of M2. Here, the
structure of SE(2, N) is crucial, and specially formula (2.10).

5. Heuristic complements

It has to be noticed that:

• The treatment of images up to now is essentially global.
• It is not necessary to know where the image is corrupted.

Presumably, the visual cortex V1 is also able in some cases to detect that the image
is corrupted at some place, and to take this a-priori knowledge into account.

We tried to investigate methods that would improve on our algorithm in this
direction. These methods are based upon the general idea of distinguishing between
“good” and “bad” points (pixels) of the image under reconstruction. We would like
to preserve good points from the diffusion or at least to weaken the effect of the
the diffusion at these points, while on the set of bad points the diffusion should
proceed normally. In this section, we present two heuristic methods:

• Static restoration method, where the sets of good and bad points do not
change along the treatment.
• Dynamic restoration method, where some bad points may become good,

and then the sets of good and bad points change along the treatment.

5.1. Restoration: downstairs or upstairs? One natural idea would be to iter-
ate the following steps:

• Lift the plane image to PTR2.
• Integrate the diffusion equation for some fixed small τ .
• Project the solution down to the plane.
• Restore the non-corrupted part of the initial image.

In practice, this idea does not work at all. The main reason is that the diffusion
acts on both the corrupted and the non-corrupted parts, and there is not good
coincidence at the frontier after the restoration.

All variations of the previous idea, at the level of the plane image do not provide
acceptable results. From what we conclude that it is necessary to proceed the
restoration of the the non-corrupted part at the level of the lifted image, i.e., on
the bundle PTR2.

5.2. Static restoration (SR). Assume that points (x, y) of the image are sep-
arated into the set G of good (non-corrupted) and the set B of bad (corrupted)
points, f(x, y) = 0 for all (x, y) ∈ B and f(x, y) > 0 for all (x, y) ∈ G. The idea
of the restoration procedure is to “mix” the solution ψ(x, y, θ, t) of the diffusion
equation with the initial function ψ(x, y, θ, 0) = f(x, y, θ) at each point (x, y) ∈ G.

The “mixing” is fulfilled many times during the integration of our equation.
Namely, split the segment [0, T ] into n small intervals with the mesh points ti = iτ ,
τ = T/n, i = 0, 1, . . . , n, and proceed the integration of our equation on each
[ti, ti+1] with the initial condition

ψ
∣∣
t=ti

=

{
ψ(x, y, θ, ti), if (x, y) ∈ B,

σ(x, y, ti)ψ(x, y, θ, ti), if (x, y) ∈ G,



HYPOELLIPTIC DIFFUSION AND HUMAN VISION 17

Figure 4. The initial corrupted images (left) and the images re-
constructed via the hypoelliptic diffusion (2.13) and the SR proce-
dure with parameters from Table 1 (right).

where the function ψ(x, y, θ, ti) is computed after integration on the previous inter-
val, and the factor σ(x, y, ti) is defined by

σ(x, y, ti) =
εh(x, y, 0) + (1− ε)h(x, y, ti)

h(x, y, ti)
, h(x, y, t) = max

θ
ψ(x, y, θ, t),

0 ≤ ε ≤ 1. After that we obtain the function ψ(x, y, θ, ti+1) and repeat the proce-
dure on the next interval.

This procedure essentially depends on two parameters that can be chosen ex-
perimentally: the natural number n (number of treatments) and the coefficient ε,
which defines the strength of each treatment.

5.3. Dynamic restoration (DR). There is a defect in the procedure described
above: different corrupted parts of the image have different velocities of reconstruc-
tion. This effect can cause serious defects.

For instance, consider two different points (x′, y′) and (x′′, y′′) of the set B. Let
T ′ be the time of the diffusion required for (x′, y′) being reconstructed well, T ′′ be
the same for (x′′, y′′), and T ′ � T ′′. Applying the diffusion with T ≈ T ′, we get
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Figure 5. The initial corrupted images (left) and the images re-
constructed via the hypoelliptic diffusion (2.13) and the DR pro-
cedure with parameters from Table 1 (right).

the image not reconstructed enough at (x′′, y′′). On the other hand, in the case
T ≈ T ′′ the image is reconstructed well at (x′′, y′′), but a defect near the point
(x′, y′) can appear. This brings us to a natural idea: to use the diffusion with the
time T depending on a point (x, y). A simple way to realize it is to make the sets
of good and bad points changing in time so that a bad point at some moment may
become good, and the effect of the diffusion at this point is not essential anymore.

Define the initial set of good points G0 as before (the set of non-corrupted points
of the image) and define Gi, i = 1, . . . , n, as follows:

Denote by fi−1(x, y) the image at step i − 1. Then Gi contains Gi−1 and all
points (x, y) of the boundary ∂Bi−1 such that the value fi−1(x, y) is larger than
the average value of fi−1 over the points of Bi−1 in the 9-points neighborhood of
(x, y). The set Bi is defined as the complement of Gi.
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Appendix A. Results with high corruption rates

Here we present a series of results of reconstruction with high corruption rates
via the hypoelliptic diffusion (2.13) and the DR procedure with different parameters
found experimentally and listed in Table 1 below.

Figure 6.

Figure 7.
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Figure 8.

Figure 9.

Figure 10.
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Figure 11.

Figure 12.

Figure 13.
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Figure 14.

Table 1. Parameters of the reconstruction for Fig. 4 – 14. The
images have resolution 256× 256 (pixels) and the corrupted parts
consist of vertical and horizontal lines of width w:

Figure: Diffusion: Restoration: Corruption:

α T n ε w, pixels Total, %
4, up 2.0 0.8 200 0.5 3 37

4, down 3.0 0.2 200 0.5 3 37
5, up 4.0 0.2 200 0.5 3 37

5, down 0.30 4.0 160 0.5 3 37
6 0.30 4.0 160 0.5 3 67
7 0.30 4.0 160 0.5 4 58
8 0.30 4.0 160 0.5 5 65
9 0.40 4.0 120 0.5 5 69
10 0.35 5.0 160 0.5 6 67
11 0.33 6.0 180 0.5 7 68
12 0.33 6.0 250 0.5 8 43
13 0.33 6.0 250 0.5 8 53
14 0.33 6.0 250 0.5 10 41

Appendix B. Theoretical complements

In this appendix, we collect shortly a few results needed for the understanding
of the paper.

B.1. The Generalized Fourier Transform (GFT). Given a locally compact

unimodular topological group G of Type I9, the dual Ĝ is the set of (strongly)

continuous complex unitary irreducible representations (χĝ, Hĝ) of G. For ĝ ∈ Ĝ,
χĝ : G → U(Hĝ), the unitary group of the complex Hilbert space Hĝ. The space
of complex L2 functions over G with respect to the Haar measure is denoted by

9We do not say what type I means. We just need here to know that both SE(2) and SE(2, N)
are type I. For instance, any connected semi-simple or nilpotent group is type I.
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L2(g, dg). The generalized Fourier transform (GFT) of f ∈ L2(g, dg) is defined
by10:

(B.1) f̂(ĝ) =

∫
G

f(g)χĝ(g
−1) dg.

The operator f̂(ĝ) is Hilbert-Schmidt over Hĝ and there is a measure dĝ over

Ĝ, called the Plancherel measure, such that the GFT is an isometry to L2(ĝ, dĝ),
where the space L2(ĝ, dĝ) is the continuous Hilbert sum of the spaces of Hilbert-
Schmidt operators over the spaces Hĝ, with respect to Plancherel’s measure. As a
consequence, we have the inversion formula:

(B.2) f(g) =

∫
Ĝ

f̂(ĝ)χĝ(g) dĝ.

The GFT is a natural extension of the ordinary Fourier transform over abelian
groups and it has all the corresponding properties, such as: mapping convolution
to product, etc. (see [3]).

As in the case of the usual heat equation over Rn, we use it to solve our heat
equations over the groups SE(2) and SE(2, N).

B.2. Bohr Compactification and Almost Periodic Functions. The Bohr
compactification of a topological group G is the universal object (G[, σ̃) in the
category of diagrams:

σ : G→ H,

where σ is a continuous homomorphism from G to a compact group H. If the
mapping σ̃ : G→ G[ is injective, G is called maximally almost periodic (MAP).

The set AP (G) of almost periodic functions over G is the pull back by σ̃ of the
set of continuous functions over G[.

The group G is MAP iff the continuous unitary finite dimensional representations
of G separate the points. A connected locally compact group is MAP iff it is the
direct product of a compact group by Rn. The group SE(2, N) is MAP, while
SE(2) is not.

A continuous function f ∈ AP (G) iff its right (or left) translated form a relatively
compact subset of E(G), the set of bounded continuous functions over G, iff it is
a uniform limit of coefficients of unitary irreducible representations of G. If G is
MAP, AP (G) is dense in the space of continuous functions over G, in the topology
of uniform convergence over compact sets.

For duality over MAP groups, see [11] and the book [23]. For introduction to
almost periodic functions, see the original paper [42] and the nice exposition [19].

B.3. Proof that expressions (2.10) and (2.12) are identical. In this section,
all integer indices take values between 1 and N , and addition is always modulo N .

10As usual, the integral below is well defined for f ∈ L1(G, dg) only, but is extended by
continuity.
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Set Mλ,ν(t) = eÃλ,νt, where the matrix Ãλ,ν is defined in (2.9). Then we need
to establish the identity of the two expressions:

D1
t (z, er) =

∫
̂SE(2,N)

trace
(
Mλ,ν(t) · diagk

(
ei〈Vλ,ν ,Rkz〉

)
Sr
)
λdλdν,

D2
t (z, er) =

∫
R2

(
Mλ,ν(t)δN

)
r
ei〈Vλ,ν ,z〉λdλdν.

Set

Mr
λ,ν(t) = eÃ

r
λ,νt, Ãrλ,ν = ΛN − diagk

(
λ2 cos2(ek+r − ν)

)
.

The following fact is crucial:

(B.3) S−rMλ,ν(t)Sr = Mr
λ,ν(t),

where S is the shift matrix over CN (i.e., Sek = ek+1 for k = 1, . . . , N − 1, and

SeN = e1). The equality (B.3) follows from S−rÃrλ,νS
r = Ãλ,ν , a consequence of

S−rΛNS
r = ΛN and of the general relation

(B.4) (S−rBSr)n,m = Bn−r,m−r,

which holds true for any N ×N matrix B.
An immediate computation shows that

(B.5) D1
t (z, er) =

∫
̂SE(2,N)

∑
n

(
Mλ,ν(t) · diagk

(
ei〈Vλ,ν ,Rkz〉

))
n+r,n

λdλdν =

∫
̂SE(2,N)

∑
n

(
Mλ,ν(t)

)
n+r,n

ei〈Vλ,ν ,Rnz〉λdλdν.

On the other hand, using the relations (B.3) and (B.4), we have:

D2
t (z, er) =

∫
R2

(
Mλ,ν(t)δN

)
r
ei〈Vλ,ν ,z〉λdλdν =

∫
R2

(
Mλ,ν(t)

)
r,N

ei〈Vλ,ν ,z〉λdλdν =

∫
̂SE(2,N)

∑
n

(
Mn
λ,ν(t)

)
r,N

ei〈Vλ,ν−en ,z〉λdλdν =

∫
̂SE(2,N)

∑
n

(
S−nMλ,ν(t)Sn

)
r,N

ei〈Vλ,ν ,R−nz〉λdλdν =

∫
̂SE(2,N)

∑
n

(
Mλ,ν(t)

)
r−n,N−n e

i〈Vλ,ν ,R−nz〉λdλdν.

Finally, changing n for −n and observing that N + n = n, we get the following
expression:

D2
t (z, er) =

∫
̂SE(2,N)

∑
n

(
Mλ,ν(t)

)
n+r,n

ei〈Vλ,ν ,Rnz〉λdλdν,

which is exactly (B.5).
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et contours subjectifs modaux, Mathématiques, Informatique et Sciences Humaines, EHESS,

Paris, Vol. 145, pp. 5–101, 1998.
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