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Abstract. This paper is about motion planing for kinematic systems, and

more particularly ε-approximations of non-admissible trajectories by admissi-

ble ones. This is done in a certain optimal sense.
The resolution of this motion planing problem is showcased through the

thorough treatment of the ball with a trailer kinematic system, which is a

non-holonomic system with flag of type (2, 3, 5, 6).

1. Introduction. This article deals with motion planning for kinematic systems.
In particular, we are interested in the ball with a trailer, rolling on a plane, associ-
ated with the following problem. A non-admissible path is specified in the configu-
ration space, and we want the system to follow it as closely as possible. This is done
in a certain optimal sense, detailed later in the exposition. We follow the method-
ology developed in the series of articles [9, 10, 11, 12, 13, 14, 15]. The interested
reader is also invited to have a look at the seminal works [16, 17, 18, 19, 21, 24, 25].
In particular, in the present exposition the reader will find all the details and proofs
that were left out of our previous paper [5].

The ball with a trailer is a follow up to the ball-plate problem (see [4, 6, 20]),
and corresponds to the kinematic situation where a ball is rolling without slipping
on a plane while pulling a trailer. As shown in Figure 1, it is described by:

1. the (x, y) position of the contact point between the ball and the plane,
2. the orientation of a frame attached to the center of the ball, given under the

guise of a right orthonormal matrix R ∈ SO(3,R),
3. the angle θ which provides the position of the trailer with respect to the ball

(the length of the line used to tow the trailer is denoted by L).
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The corresponding kinematic equations are specified by means of a control system,
linear in the controls:

ẋ = u1,

ẏ = u2,

Ṙ =




0 0 u1

0 0 u2

−u1 −u2 0


R,

θ̇ = − 1

L
(cos(θ)u1 + sin(θ)u2).

(1)

y

R

x

x

y

θ

Figure 1. The ball with a trailer, rolling on a plane

This control system also writes Ẋ = F1(X)u1 + F2(X)u2, where

• X belongs to the 6-dimensional manifold M = R2 × SO(3,R)× S1,
• F1 = ∂

∂x +A1− 1
L cos(θ) ∂∂θ , and F2 = ∂

∂y +A2− 1
L sin(θ) ∂∂θ are smooth (C∞)

vector fields over M .

Therefore, F1 and F2 span a rank 2 distribution ∆ over M. Henceforth, we denote
∆1 = ∆, ∆2 = [∆,∆], etc. The computation rules of the right invariant vector fields
A1, A2 over SO(3,R) are: [A1, A2] = A3, [A1, A3] = −A2, and [A2, A3] = A1. Note
that our convention for Lie bracket computations is: [F1, F2] = ∂F1

∂X F2 − ∂F2

∂X F1.
Let us now compute the Lie algebra generated by F1 and F2:

• H = [F1, F2] = A3 − 1
L2

∂
∂θ , and dim

(
∆2
)

= 3,

• I = [F1, H] = −A2 − 1
L3 sin(θ) ∂∂θ , J = [F2, H] = A1 + 1

L3 cos(θ) ∂∂θ , and

dim
(
∆3
)

= 5,

• [F1, I] = [F2, J ] = −A3 − 1
L4

∂
∂θ , [F1, J ] = [F2, I] = 0, and dim

(
∆4
)

= 6.

Hence, the flag of distributions of System (1) is of type (2, 3, 5, 6), ∆ is completely
non-integrable, and any smooth finite path Γ : [0, T ] → M can be approximated
by an admissible path γ : [0, τ ] → M . Since we are dealing with a local problem
in a neighborhood of Γ, M is identified with R6. Also, along the paper, we are
interested in generic problems only, see [5] for details. In particular, it means that
the curve Γ is always transversal to ∆.
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In order to perform this approximation, it is natural to try to minimize a cost
of the form:

J(u) =

τ∫

0

√
u2

1 + u2
2 dt.

This choice is motivated by several reasons:

1. the optimal curves do not depend on their parametrization,
2. the minimization of such a cost produces a metric space (the associated dis-

tance is called the subriemannian distance, or the Carnot-Caratheodory dis-
tance),

3. minimizing such a cost is equivalent to minimize the following quadratic cost,
denoted JE(u) and called the energy of the path, in fixed time θ:

JE(u) =

τ∫

0

(
u2

1 + u2
2

)
dt.

Another way to interpret this problem is to consider the dynamics as being
specified by the rank 2 distribution ∆ (i.e. not by the vector fields Fi, but their
span only). The cost is then determined by an Euclidean metric g over ∆, specified
here by the fact that F1 and F2 form an orthonormal frame field for the metric.

The distance between two points, which is denoted by d, is defined as the min-
imum length of admissible curves connecting these two points. The length of the
admissible curve corresponding to the control u : [0, θ]→M is simply J(u).

For a small parameter ε > 0, we are searching for approximating trajectories
that lie ε-close to Γ. As such, we need the following notions.

Definition 1.1. 1. We say that two quantities f(ε) and g(ε) are equivalent (f '
g) if limε→0

f(ε)
g(ε) = 1. The quantities MC(ε) and E(ε) below tend to +∞ when

ε→ 0. As such they are considered up to equivalence.
2. Tε = {x ∈M | d(x,Γ) ≤ ε} is the subriemannian tube around Γ.
3. Cε = {x ∈M | d(x,Γ) = ε} is the subriemannian cylinder around Γ.
4. The Metric ComplexityMC(ε) is 1

ε times the minimum length of an admissible
curve γε connecting the endpoints Γ(0), and Γ(T ) of Γ, and remaining in Tε.

5. The Interpolation Entropy E(ε) is 1
ε time the minimum length of an admissible

curve γε connecting Γ(0), and Γ(T ) such that in any segment of γε of length
larger than ε, there is a point of Γ (i.e. Γ is ε-interpolated).

6. An Asymptotic Optimal Synthesis is a one-parameter family γε of admissible
curves, that realizes the metric complexity or the entropy.

In the remainder of this article, we develop an asymptotic optimal synthesis for
the ball with a trailer. In Section 2 we derive the normal form for a kinematic
system with a flag of distribution of the type (2, 3, 5, 6). We also present the form
that is specific to the ball with a trailer system, and finally we define and display
the corresponding nilpotent approximation. In Section 3, the invariants of the
problems are discussed. Finally, in Section 4, the asymptotic optimal synthesis
is developed. In the concluding Section 5, we use our optimal synthesis to solve
the parking problem for the ball with a trailer. Finally, an appendix section that
contains technical results removed from the body of text for clarity reasons, closes
the paper.
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2. Normal Form. Let us first consider a 4-dimensional parametrized surface S,
transversal to ∆:

S = {q(s1, s2, s3, t) ∈ R6}, with q(0, 0, 0, t) = Γ(t). (2)

Remind that Γ denotes a non-admissible curve non-tangent to ∆, thus, it is always
possible to find such a surface S. Actually, since we want to remain ε-close to Γ, S
may be a germ only defined in a neighborhood of Γ.

Second, we pick a “normal coordinate” system ξ = (x, y, w) as it is done in the
lemma below1 (see e.g. [1, 2, 13, 14]):

Lemma 2.1. (Normal coordinates with respect to S).
There are mappings x : R6 → R2, y : R6 → R3, w : R6 → R, such that

ξ = (x, y, w) is a coordinate system on some neighborhood of S in R6, such that:

1. q(y, w) = (0, y, w), Γ = {(0, 0, w)},
2. the restriction ∆|S = ker dw∩i=1,..,3 ker dyi, the metric g|S = (dx1)2 + (dx2)2,

3. CSε = {ξ|x2
1 + x2

2 = ε2}, where CSε is the ε-cylinder around S,
4. the geodesics of the Pontryagin’s maximum principle [22] meeting the transver-

sality conditions w.r.t. S are the straight lines through S, contained in the
planes Py0,w0

= {ξ|(y, w) = (y0, w0)}. Hence, they are orthogonal to S.

These normal coordinates are unique up to changes of coordinates of the form

x̃ = T (y, w)x,
(ỹ, w̃) = (y, w),

(3)

where T (y, w) ∈ O(2), the orthogonal group over R2.

As a third step, in these normal coordinates and on the basis of the general
normal form for kinematic systems in the 2-control case (see the proof below), we
establish the normal form (4) of Theorem 2.2.

Theorem 2.2. (Normal Form in the Generic 6 − 2 case) There is a change of
coordinates such that a trajectory of System (1) satisfies the following system of
equations on the tube Tε:

ẋ1 = u1 +O(ε3), (4)

ẋ2 = u2 +O(ε3),

ẏ = (
x2

2
u1 −

x1

2
u2) +O(ε2),

ż1 = x2(
x2

2
u1 −

x1

2
u2) +O(ε3),

ż2 = x1(
x2

2
u1 −

x1

2
u2) +O(ε3),

ẇ = Qw(x1, x2)(
x2

2
u1 −

x1

2
u2) +O(ε4),

where Qw(x1, x2) is a quadratic form in x depending smoothly on w.

Proof. Consider normal coordinates with respect to any surface S, as in Lemma
2.1, and let the triple (y1, y2, y3) be denoted by ȳ. There are smooth functions,

1CSε denotes the cylinder {ξ; d(S, ξ) = ε}, and S(y, w) is a short notation for the surface (2).
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β(x, ȳ, w), γi(x, ȳ, w), δ(x, ȳ, w), such that, on a neighborhood of Γ, System (1) can
be written as:

ẋ1 =
(
1 + x2

2β(x, ȳ, w)
)
u1 − x1x2β(x, ȳ, w)u2, (5)

ẋ2 =
(
1 + x2

1β(x, ȳ, w)
)
u2 − x1x2β(x, ȳ, w)u1,

ẏi = γi(x, ȳ, w)
(x2

2
u1 −

x1

2
u2

)
,

ẇ = δ(x, ȳ, w)
(x2

2
u1 −

x1

2
u2

)
,

where, moreover, β(x, ȳ, w) vanishes on Γ. This result has been proven first in [1]
for the corank 1 case only. However, it still holds for any corank, see [2].

Let us now perform a series of changes of coordinates in S, on the tube Tε, such
that the fact that Γ(t) = (0, ..., 0, t) is always preserved.

Since x has order 1 (cf. Lemma 2.1), and β|Γ = 0, we have on Tε: ẋi = ui+O(ε3)
for i ∈ {1, 2}. One of the γi’s (say γ1) has to be nonzero for Γ not to be tangent to
∆2. Since γ1|Γ = γ1(0, 0, w) = γ1(w), then, ẏ1 writes (x2

2 u1 − x1

2 u2)γ1(w) + O(ε2)
on Tε, and y1 has order 2.

For i = 2, 3, we now set ỹi = yi − γi
γ1
y1. The differentiation gives dỹi

dt =(
x2

2 u1 − x1

2 u2

)
Li(w).x+O(ε3), where Li(w).x denotes a linear map w.r.t. x. The

ỹi’s have both order 3. We set y = y1, and z1 = ỹ2, z2 = ỹ3. We also set
w = w − δ

γ1
y1. Up to now, we achieved the form:

ẋ = u+O(ε3),

ẏ = (
x2

2
u1 −

x1

2
u2)γ1(w) +O(ε2),

żi = (
x2

2
u1 −

x1

2
u2)Li(w).x+O(ε3), i = 1, 2

ẇ = (
x2

2
u1 −

x1

2
u2)δ(w).x+O(ε3),

where Li(w).x, and δ(w).x are linear in x. The function γ1(w) can be put to 1 by
setting ỹ = y

γ1(w) .

Now let T (w) be an invertible 2×2 matrix, and set z̃ = T (w)z. It is easy to see
that we can choose T (w) such that:

ẋ = u+O(ε3),

˙̃y = (
x2

2
u1 −

x1

2
u2) +O(ε2),

˙̃zi = (
x2

2
u1 −

x1

2
u2)xi +O(ε3), i = 1, 2

ẇ = (
x2

2
u1 −

x1

2
u2)δ(w).x+O(ε3).

Next, we perform a change of the form w̃ = w+L(w).z̃, where L(w).z̃ is linear in

z̃, and chosen such as to kill δ(w). It yields ˙̃w = (x2

2 u1 − x1

2 u2)O(ε2). We simplify
the notations by replacing the symbols ỹ and z̃i by y and zi.

The O(ε2) that appears in the above equation of w̃, has to be of the form
Qw̃(x) + h(w̃)y + O(ε3), where Qw̃(x) is quadratic in x. If we kill h(w̃), we get
the expected result. This is done with a change of coordinates of the form: w =

w̃ + ϕ(w̃)y
2

2 .
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Remark 1. Note that all the changes of coordinates under consideration in the
previous proof preserve the fact that coordinates are “normal coordinates” w.r.t.
the original surface: mostly, these changes are changes of parametrization of the
surface S.

Definition 2.3. 1. According to Normal form (4), we say that x1 and x2 have
weight 1, y has weight 2, z1 and z2 have weight 3, and w has weight 4.
Therefore, the vector fields ∂

∂x1
and ∂

∂x2
have weight −1, ∂

∂y has weight −2,

and so on.
2. The nilpotent approximation of a kinematic system in the (generic) 6− 2 case

is obtained from System (4) by keeping all the terms of order −1 only:

ẋ1 = u1, (6)

ẋ2 = u2,

ẏ = (
x2

2
u1 −

x1

2
u2),

ż1 = x2(
x2

2
u1 −

x1

2
u2),

ż2 = x1(
x2

2
u1 −

x1

2
u2),

ẇ = Qw(x1, x2)(
x2

2
u1 −

x1

2
u2).

3. Given a one-parameter family of (absolutely continuous, arclength parametrized)
admissible curves γε : [0, Tγε ] → R6, an ε-modification of γε is another
one-parameter family of (absolutely continuous, arclength parametrized) ad-
missible curves γ̃ε : [0, Tγ̃ε ] → R6 such that for all ε and for some α > 0,
if [0, Tγε ] is split into subintervals of length ε ( i.e. [0, ε], [ε, 2ε], [2ε, 3ε], ...),
then:
(a) [0, Tγ̃ε ] is split into corresponding intervals, [0, ε1], [ε1, ε1 + ε2], [ε1 +

ε2, ε1 + ε2 + ε3], ... with ε ≤ εi < ε(1 + εα), i = 1, 2, ...,
(b) for each couple of an interval I1 = [ε̃i, ε̃i + ε], (with ε̃0 = 0, ε̃1 = ε1,

ε̃2 = ε1 + ε2, ...) and the respective interval I2 = [iε, (i+ 1)ε], d
dt (γ̃) and

d
dt (γ) coincide over I2, i.e.:

d

dt
(γ̃)(ε̃i + t) =

d

dt
(γ)(iε+ t), for almost all t ∈ [iε, (i+ 1)ε].

Theorem 2.4. Consider a kinematic system with a flag of the form (2, 3, 5, 6),
without singularities. An asymptotic optimal synthesis (relative to the entropy) for
System (4) is obtained as an ε-modification of an asymptotic optimal synthesis for
the Nilpotent Approximation (6). As a consequence the entropy E(ε) of System (4)

is equal to the entropy Ê(ε) of System (6).

The proof of this theorem can be found in [13].

3. Invariants. Let us consider a one-form ω that vanishes on ∆3, and set α =
dω|∆, the restriction of dω to ∆. As in Section 1, we denote H = [F1, F2], I =
[F1, H], J = [F2, H]. Let us now consider the following 2× 2 matrix:

A(ξ) =

(
dω(F1, I) dω(F2, I)
dω(F1, J) dω(F2, J)

)
,
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where ξ = (x, y, z, w). In restriction2 to ∆3, ω([X,Y ]) = dω(X,Y ), which yields:

A(ξ) =

(
ω([F1, I]) ω([F2, I])
ω([F1, J ]) ω([F2, J ])

)
.

Due to Jacobi Identity, A(ξ) is a symmetric matrix. Let us now consider a gauge
transformation, i.e. a feedback that preserves the metric, see e.g. [7], i.e. a change
of orthonormal frame (F1, F2) obtained by setting

F̃1 = cos(θ(ξ))F1 + sin(θ(ξ))F2 ,

F̃2 = − sin(θ(ξ))F1 + cos(θ(ξ))F2 .

It is just a matter of tedious computations to check that the matrix A(ξ) is

changed for Ã(ξ) = RθA(ξ)R−θ, where Rθ stands for the rotation of angle θ.
On the other hand, the one-form ω is defined modulo multiplication by a nonzero
function f(ξ), and the same holds for α, since d(fω) = fdω+df ∧ω, and ω vanishes
over ∆3. Therefore the following lemma holds true:

Lemma 3.1. The ratio r(ξ) of the (real) eigenvalues of A(ξ) is an invariant of the
structure.

Let us now consider the Normal form (4), and compute the form ω = ω1dx1 +
...+ ω6dw along Γ (that is, where x, y, z = 0). The computation of all the brackets
shows that ω1 = ω2 = ... = ω5 = 0. This also shows that in fact, along Γ, A(ξ) is
just the matrix of the quadratic form Qw.

Lemma 3.2. The invariant r(Γ(t)) of the problem that consists of System (1) and
the curve Γ, is the same as the invariant r̂(Γ(t)) of the Nilpotent Approximation
(6) along Γ.

Let us now compute the ratio r for the ball with a trailer. The computations of
Section 1 give:

F1 =
∂

∂x1
+A1 −

1

L
cos(θ)

∂

∂θ
, F2 =

∂

∂x2
+A2 −

1

L
sin(θ)

∂

∂θ
,

H = A3 −
1

L2

∂

∂θ
,

I = −A2 −
1

L3
sin(θ)

∂

∂θ
, J = A1 +

1

L3
cos(θ)

∂

∂θ
,

[F1, I] = [F2, J ] = −A3 −
1

L4

∂

∂θ
, [F1, J ] = [F2, I] = 0.

Lemma 3.3. For the ball with a trailer, the ratio r(ξ) = 1.

The lemmas obtained in the present section are a key point in the developments
of Section 4. In particular they imply, as we shall prove, that the system of geodesics
of the nilpotent approximation is integrable in Liouville sense.

4. Optimal synthesis. We start by using Theorem 2.4, to reduce to the nilpotent
approximation along Γ given in Equation (6). According to Lemma 3.3, we can
consider that

Qw(x1, x2) = δ(w)
(
(x1)2 + (x2)2

)
(7)

2We recall the classical relation dω(X,Y ) = ω ([X,Y ]) + LX(ω(Y ))− LY (ω(X)).
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where δ(w) is the main invariant. In fact, it is the only invariant for the nilpotent
approximation along Γ. Moreover, if we reparametrize Γ by setting dw = dw

4.δ(w) , we

can consider that δ(w) = 1/4. This new system, denoted by ξ̇ = Fu1 +Gu2, is:

ẋ1 = u1,

ẋ2 = u2,

ẏ = (
x2

2
u1 −

x1

2
u2), (8)

ż1 = x2(
x2

2
u1 −

x1

2
u2),

ż2 = x1(
x2

2
u1 −

x1

2
u2),

ẇ =
1

4

(
x2

1 + x2
2

)
(
x2

2
u1 −

x1

2
u2).

Next in order to compute the interpolation entropy, we need to maximize
∫
ẇdt

in fixed time ε, subject to the interpolation conditions: x(0) = 0, y(0) = 0, z(0) = 0,
w(0) = 0, x(ε) = 0, y(ε) = 0, z(ε) = 0.

The following lemma is crucial for our final result. The basic idea for the proof
has been given to us by Andrei Agrachev.

Lemma 4.1. Let us denote ξ = (x, y, z, w) = (ς, w). The trajectories of (8) that

maximize

∫
ẇdt in fixed time ε, with interpolating conditions ς(0) = ς(ε) = 0, have

a periodic projection over ς (i.e. ς(t) is smooth and periodic of period ε).

Proof. The proof uses the transversality conditions of the Pontryaguin maximum
principle in the case of mixed boundary conditions.

First, we need to work on the structure of System (8): it is a right invari-
ant system on R6 with coordinates ξ = (ς, w) = (x, y, z, w), for a certain nilpo-
tent Lie group structure over R6 (denoted by G). The group law is of the form
(ς2, w2)(ς1, w1) = (ς1 ∗ ς2, w1 + w2 + Φ(ς1, ς2)), for a certain function Φ and where
∗ is the multiplication of another Lie group structure over R5, with coordinates ς
(denoted by G0).

We propose a proof of this claim under the guise of Lemma 6.1 in the appendix:
the group laws in the (2, 3), (2, 3, 4), and (2, 3, 5) cases are already known, and
given in [8], but we could not find an explicit computation in the case (2, 3, 5, 6) in
the litterature.

As a second step, let (ς, w1), (ς, w2) be initial and terminal points of an optimal
solution of our problem with the relaxed boundary conditions ς(0) = ς(ε) only. A
right translation by (ς−1, 0), maps this trajectory into another trajectory of the
system, with initial and terminal points (0, w1 + Φ(ς, ς−1)) and (0, w2 + Φ(ς, ς−1)).

The cost

∫
ẇ(t)dt for this new trajectory has the same value. Actually, as one can

see, the optimal cost is independent of the ς-coordinate of the initial and terminal
conditions.

Therefore, our problem is the same as maximizing

∫
ẇ(t)dt with the (larger)

endpoint condition ς(0) = ς(ε) (free).
We can now apply the general transversality conditions of Theorem 12.15, page

188 of [3]. It tells us that the initial and terminal covectors (p1
ς , p

1
w) and (p2

ς , p
2
w)

are such that p1
ς = p2

ς . This is enough to show periodicity.
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Let us observe that the optimal trajectory must also be a length minimizer,
then we can consider the usual Hamiltonian for length. It is easy to see that the
abnormal extremals do not come into the picture, since they cannot be optimal
due to the additional interpolation conditions. This observation leaves us with the
normal case, where the Hamiltonian is H = 1

2 ((PF )2 + (PG)2), where

• P = (p1, ..., p6) is the adjoint vector,
• PF = u1, and PG = u2.

In fact, we will show that the Hamiltonian system corresponding to the
Hamiltonian H is integrable. Note that this fact holds for the ball with a
trailer only.

As usual, we work in Poincaré coordinates, i.e. we consider level 1
2 of the Hamil-

tonian H, and we set:

PF = sin(ϕ), PG = cos(ϕ).

Differentiating twice, we get

ϕ̇ = P [F,G], and ϕ̈ = −PFFG.PF − PGFG.PG,

where FFG = [F, [F,G]] and GFG = [G, [F,G]]. We set λ = −PFFG, µ =
−PGFG, and we get the equation:

ϕ̈ = λ sin(ϕ) + µ cos(ϕ). (9)

Now, we compute λ̇ and µ̇. We get, with similar notations as above for the brackets3:

λ̇ = PFFFG.PF + PGFFG.PG,

µ̇ = PFGFG.PF + PGGFG.PG,

and computing the brackets, we see that GFFG = FGFG = 0. Also, since the
Hamiltonian does not depend on y, z, w, we get that p3, p4, p5, and p6 are constants.
Computing the brackets FFG and GFG , we get that

λ =
3

2
p5 + p6x1, µ =

3

2
p4 + p6x2, (10)

and then, λ̇ = p6 sin(ϕ) and µ̇ = p6 cos(ϕ). Then, by (9), ϕ̈ = λλ̇
p6

+ µµ̇
p6
, and finally:

ẋ1 = sin(ϕ),

ẋ2 = cos(ϕ), (11)

ϕ̇ = K +
1

2p6
(λ2 + µ2),

λ̇ = p6 sin(ϕ),

µ̇ = p6 cos(ϕ).

We can normalize p6 to 1 by a change of coordinates and time reparametrization,
thus yielding:

3i.e. FFFG = [F, [F, [F,G]]]
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ẋ1 = sin(ϕ),

ẋ2 = cos(ϕ), (12)

ϕ̇ = K +
1

2
(λ2 + µ2),

λ̇ = sin(ϕ),

µ̇ = cos(ϕ).

It means that the curvature of the plane curve (λ(t), µ(t)) is a quadratic function
of the distance to the origin, while the optimal curve (x1(t), x2(t)) projected to the
horizontal plane of the normal coordinates has a curvature which is a quadratic
function of the distance to some point. A main fact is that this kind of system of
equations is in general integrable as is proven in the appendix, Lemma 6.2.

Summarizing all the results obtained so far, we get the following theorem.

Theorem 4.2. (asymptotic optimal synthesis for the ball with a trailer)
The asymptotic optimal synthesis is an ε-modification of the one of the nilpotent
approximation. The latter has the following properties in normal coordinates, in
projection to the horizontal plane (x1, x2):

1. it is a closed smooth periodic curve, whose curvature is a function of the
square distance to some point,

2. the area and the 2nd order moments
∫

Γ
x1(x2dx1−x1dx2) and

∫
Γ
x2(x2dx1−

x1dx2) are zero,
3. the entropy is given by the formula: E(ε) = σ

4ε4

∫
Γ

dw
δ(w) , where δ(w) is the

main invariant from (7), and σ is a universal constant.

Remark 2. Item 2 is given by the interpolation conditions, and the fact that the
integrands in the formulas of the second order moments are ż1 and ż2.

Item 3 comes from the fact that if δ(.) ≡ 1
4 , then the formula for entropy is

E(ε) = σ
ε4

∫
Γ
dw. If δ(.) 6≡ 1

4 , we go to δ(.) ≡ 1
4 by the change of variables dw̃ =

dw
4δ(w) (cf. the proof of Theorem 2.2), thus giving the result.

Let us now go a little bit further to integrate explicitly System (12). Consider
the reduced system

λ̇ = sin(ϕ)
µ̇ = cos(ϕ)

ϕ̇ = K + ρ2

2

(13)

where ρ2 = λ2 + µ2. From the Relations (10), we know that the curve Λ = (λ, µ)
is a translation of the curve X = (x1, x2), say for simplicity Λ = (x1 + a, x2 + b).

Lemma 4.3. The area and the two 2nd order moments of the curve Λ vanish.

Proof. The area swept by the curve Λ is
∫ [

µ̇λ− λ̇µ
]
dτ =

∫
[ẋ2x1 − ẋ1x2] dτ +

∫
[aẋ2 − bẋ1] dτ
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a b

Figure 2. Graph of h with K negative (a), and K positive (b).

It is zero since the area of X is zero, and x1 and x2 are periodic.

Let us now consider, moment

∫
µ
[
µ̇λ− λ̇µ

]
dτ (the same goes for the other one):

∫
µ
[
µ̇λ− λ̇µ

]
dτ =

∫
x2 [ẋ2x1 − ẋ1x2] dτ+a

∫
x2ẋ2dτ+b

∫
x2ẋ1dτ+b

∫ [
µ̇λ− λ̇µ

]
dτ

It is zero since,

1. the same moment, expressed in the X coordinates, is zero,
2. x2 is periodic,
3. integration by parts and periodicity of x1 and x2 gives

∫
[x1ẋ2 − x2ẋ1] dτ =

2
∫
x2ẋ1dτ , and

4. the area swept by the curve Λ is zero.

Next, the curve Λ is mapped onto a curve Λ̄ = (λ̄, µ̄) as follows:

λ̄(t) = cos(ϕ(t))λ(t)− sin(ϕ(t))µ(t), µ̄(t) = sin(ϕ(t))λ(t) + cos(ϕ(t))µ(t).

The equations for Λ̄ are:
˙̄λ = −µ̄ϕ̇,
˙̄µ = 1 + λ̄ϕ̇.

(14)

Set r2 = λ̄2 + µ̄2. Actually, Λ̄ is a trajectory of the following quartic Hamiltonian

H = λ̄+
1

2

(
λ̄2 + µ̄2

2
+K

)2

= λ̄+
1

2

(
r2

2
+K

)2

(15)

for a fixed parameter K, with dual variables (λ̄, µ̄). We have the following relations
for r and ρ:

r(t) = ρ(t), and
d

dt

(
1

2
ρ2(t)

)
= µ̄(t). (16)

The following property of the area S(t) swept by the curve Λ, between Λ(0) and
Λ(t) is important:

S(t) =

∫ t

0

[
µ̇λ− λ̇µ

]
dτ =

∫ t

0

[cos(ϕ)λ− sin(ϕ)µ] dτ =

∫ t

0

λ̄(τ)dτ. (17)

The integral curves of the Hamiltonian (15) are the intersection of the graph of

the quartic function h(λ̄, µ̄) = 1
2

(
r2

2 +K
)2

with a plane Pc =
{

(λ̄, µ̄, z)|c− λ̄ = z
}

for some fixed parameters c and K. This situation is represented in Figure 2.
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1.0

λ̄

µ̄

Figure 3. trajectory Λ̄ of type II.

Therefore, integral curves are either convex (such a curve is said being of type I),
or of the form shown in Figure 3 (i.e. of type II). In both cases, the curve Λ̄ is
symmetric with respect to the λ̄ axis. Indeed, the graph of h(λ̄, µ̄) has rotational
symmetry w.r.t. the origin, and the planes Pc are symmetric with respect to the
(λ̄, z) plane.

Let us remark that the solution curve Λ to System (13) can be considered as
symmetric w.r.t. the λ axis (i.e. a change of the form µ̃ = −µ, ϕ̃ = −ϕ, and t̃ = −t
gives the result), provided that ϕ0 = 0 and µ0 = 0 which can be assumed. Indeed,
it doesn’t change System (14), and for any ϕ0 6= 0, an appropriate rotation of Λ(t),
and translation of ϕ(t) shows that the solution trajectory of System (13) is just a
rotation of the one obtained for ϕ0 = 0.

Lemma 4.4. The period PΛ of Λ, is an integer multiple of the period PΛ̄ of Λ̄:
there is n ∈ N, such that PΛ = nPΛ̄.

Proof. Let us first observe that ρ2(t) is periodic, of minimal period exactly PΛ̄.
Indeed, from Equation (16), we know that ρ2(t) varies with µ̄, and

(
λ̄, µ̄

)
is periodic

and symmetric with respect with the λ̄ axis (see Figure 3). Up to a time shift, we can
assume that the starting point is of the form (−a, 0), a > 0. Since µ̄ is monotonic
on each half period PΛ̄/2, the period is minimal.

Now, since Λ(t) is periodic, and r(t) = ρ(t), it must have a multiple period of
PΛ̄.

Remark 3. It appears clearly, from Systems (11) and (12) that PX = PΛ where
PX denotes the period of X.

The next step is to work on the number of periods PΛ̄ needed to meet the
interpolation conditions.

Claim: n must be strictly more than 1.

Below we provide a quite heuristic proof of this claim. We find it
convincing and moreover we don’t have better. The reader is kindly
invited to inform us if able to get a precise proof.

Let us assume that n = 1, or in other words , PX = Pλ = Pλ̄. Because of the
symmetry and periodicity of both curves Λ and Λ̄, we shall study the problem on
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µ

λ
(λ(0), µ(0))

µ

λ
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λ
0(λ(0), µ(0))
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Figure 4. Form of the Λ trajectory for Λ̄ trajectory of type II.

half a period Pλ̄, starting from the point
(
λ̄, µ̄

)
= (−a, 0), a > 0. Let us remark

that the inflection points of Λ correspond to the “bumps” of Λ̄ (i.e. the dots on
Figure 3).

In the case of a Λ̄ curve of type I, the curve is convex, and there is no inflection
point on Λ. Moreover, ρ is monotonic on the half-periods on behalf of Equation
(16). Hence, the total area swept by λ cannot be zero, and such a curve is not
suitable. This situation is illustrated in Figure 4(a).

In the case of a Λ̄ curve of type II, there is only one inflection point on a half-
period, and ρ is monotonic. The picture is of the form shown in 4(b), and the full
curve Λ is a figure-eight.

It follows that the moment mλ =

∫

X

Ṡλdτ cannot be zero. As it is shown, in the

proof of Lemma 4.3, a translation of Λ preserves the fact the 2nd order moments
vanish. After a translation of the central point of the figure-eight to the origin as
in Figure 4(c), Ṡ < 0 when x < 0, and Ṡ > 0 when x > 0. Thus, the moment mλ

is non-vanishing, and such a curve is not suitable either.
Finally, n must be more than one.
It turns out that, for each n > 1, one can find a periodic curve with vanishing

moments. With the help of a numerical software, it is possible to find the shortest
one, shown on Figure 5 in the (x1, x2) coordinates. It corresponds to n = 2,
and it is unique.

We also display on Figure 6 a periodic trajectory corresponding to n = 5, with
vanishing area.
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Figure 5. Projection of the solution for n=2, in the X coordinates.
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Figure 6. Projection of the solution for n=5, in the X coordinates.

5. Conclusion.

1. As a first conclusion, let us consider for instance the parking problem for the
ball with a trailer. With the notations of System 1, it consists of approximat-
ing the non-admissible curve: (x(t) = t, y(t) = 0, R(t) = Id, θ(t) = 0). The ε-
approximation of the optimal synthesis of Figure 5 gives the trajectory shown
on Figure 7. The animated simulation is available on the website [26].

Note that if we choose θ(t) = −π/2, then Γ̇ ∈ ∆3, the problem is no more
generic, and the solution is the one of the (2, 3, 5) problem.

10

Fig. 6. The dance of minimum entropy for the ball with a trailer

3. The entropy is given by the formula: E(!) = !
"4

!
!

dw
#(w) ,

where "(w) is the main invariant from (20), and # is a
universal constant.
In fact we can go a little bit further to integrate explicitely

the system (22). Set $̄ = cos(%)$! sin(%)µ, µ̄ = sin(%)$+
cos(%)µ. we get:

d$̄

dt
= !µ̄(K +

1

2p6
($̄2 + µ̄2)),

dµ̄

dt
= p6 + $̄(K +

1

2p6
($̄2 + µ̄2)).

This is a 2 dimensional (integrable) hamiltonian system. The
hamiltonian is:

H1 = !p6$̄!
2p6
4
(K +

1

2p6
($̄2 + µ̄2))2.

This hamiltonian system is therefore integrable, and solutions
can be expressed in terms of hyperelliptic functions. A liitle
numerics now allows to show, on figure 6, the optimal x-
trajectory in the horizontal plane of the normal coordinates.
On the figure 7, we show the motion of the ball with a

trailer on the plane (motion of the contact point between the
ball and the plane).Here, the problem is to move along the x-
axis, keeping constant the frame attached to the ball and the
angle of the trailer.

V. EXPECTATIONS AND CONCLUSIONS

Some movies of minimum entropy for the ball rolling on
a plane and the ball with a trailer are visible on the website
***************************.

A. Universality of some pictures in normal coordinates

Our first conclusion is the following: there are certain
universal pictures for the motion planning problem, in corank
less or equal to 3, and in rank 2, with 4 brackets at most (could
be 5 brackets at a singularity, with the logarithmic lemma).

Fig. 7. Parking the ball with a trailer

Fig. 8. The universal movements in normal coordinates

These figures are, in the two-step bracket generating case:
a circle, for the third bracket, the periodic elastica, for the 4th
bracket, the plane curve of the figure 6.
They are periodic plane curves whose curvature is respec-

tively: a constant, a linear function of of the position, a
quadratic function of the position.

This is, as shown on Figure 8, the clear beginning of a
series.

B. Robustness
As one can see, in many cases (2 controls, or corank

k " 3), our strategy is extremely robust in the following sense:
the asymptotic optimal syntheses do not depend, from the
qualitative point of view, of the metric chosen. They depend
only on the number of brackets needed to generate the space.

C. The practical importance of normal coordinates
The main practical problem of implementation of our strat-

egy comes with the !-modifications. How to compute them,

Γ





x(s) = s
y(s) = 0
R(s) = Id
θ(s) = 0

Figure 7. Parking the ball with a trailer. See also the simulation
available on the website [26]
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2. Let us go back to the general motion planning problem for two controls.
Following the previous works [9, 10, 11, 12, 13], we know that in normal
coordinates and in projection to the (x1, x2) plane, the optimal curves are:
(a) in the two-step bracket generating case (the unicycle typically), periodic

curves of constant curvature, i.e. circles (
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numerics now allows to show, on figure 6, the optimal x-
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On the figure 7, we show the motion of the ball with a
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ball and the plane).Here, the problem is to move along the x-
axis, keeping constant the frame attached to the ball and the
angle of the trailer.

V. EXPECTATIONS AND CONCLUSIONS

Some movies of minimum entropy for the ball rolling on
a plane and the ball with a trailer are visible on the website
***************************.

A. Universality of some pictures in normal coordinates

Our first conclusion is the following: there are certain
universal pictures for the motion planning problem, in corank
less or equal to 3, and in rank 2, with 4 brackets at most (could
be 5 brackets at a singularity, with the logarithmic lemma).

Fig. 7. Parking the ball with a trailer

Fig. 8. The universal movements in normal coordinates

These figures are, in the two-step bracket generating case:
a circle, for the third bracket, the periodic elastica, for the 4th
bracket, the plane curve of the figure 6.
They are periodic plane curves whose curvature is respec-

tively: a constant, a linear function of of the position, a
quadratic function of the position.

This is, as shown on Figure 8, the clear beginning of a
series.

B. Robustness
As one can see, in many cases (2 controls, or corank

k " 3), our strategy is extremely robust in the following sense:
the asymptotic optimal syntheses do not depend, from the
qualitative point of view, of the metric chosen. They depend
only on the number of brackets needed to generate the space.

C. The practical importance of normal coordinates
The main practical problem of implementation of our strat-

egy comes with the !-modifications. How to compute them,

A. Two-step
 Generating

B. Three -step Generating 

C. Four-step
 Generating 

).
(b) in the three-step bracket generating case (typically, the car with a trailer

(2, 3, 4), or the ball rolling on a plane (2, 3, 5)), periodic curves whose cur-
vature is a linear function of the coordinates, the only periodic elasticae
(
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where "(w) is the main invariant from (20), and # is a
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In fact we can go a little bit further to integrate explicitely

the system (22). Set $̄ = cos(%)$! sin(%)µ, µ̄ = sin(%)$+
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This is a 2 dimensional (integrable) hamiltonian system. The
hamiltonian is:

H1 = !p6$̄!
2p6
4
(K +

1

2p6
($̄2 + µ̄2))2.

This hamiltonian system is therefore integrable, and solutions
can be expressed in terms of hyperelliptic functions. A liitle
numerics now allows to show, on figure 6, the optimal x-
trajectory in the horizontal plane of the normal coordinates.
On the figure 7, we show the motion of the ball with a

trailer on the plane (motion of the contact point between the
ball and the plane).Here, the problem is to move along the x-
axis, keeping constant the frame attached to the ball and the
angle of the trailer.

V. EXPECTATIONS AND CONCLUSIONS

Some movies of minimum entropy for the ball rolling on
a plane and the ball with a trailer are visible on the website
***************************.

A. Universality of some pictures in normal coordinates

Our first conclusion is the following: there are certain
universal pictures for the motion planning problem, in corank
less or equal to 3, and in rank 2, with 4 brackets at most (could
be 5 brackets at a singularity, with the logarithmic lemma).

Fig. 7. Parking the ball with a trailer

Fig. 8. The universal movements in normal coordinates

These figures are, in the two-step bracket generating case:
a circle, for the third bracket, the periodic elastica, for the 4th
bracket, the plane curve of the figure 6.
They are periodic plane curves whose curvature is respec-

tively: a constant, a linear function of of the position, a
quadratic function of the position.

This is, as shown on Figure 8, the clear beginning of a
series.

B. Robustness
As one can see, in many cases (2 controls, or corank

k " 3), our strategy is extremely robust in the following sense:
the asymptotic optimal syntheses do not depend, from the
qualitative point of view, of the metric chosen. They depend
only on the number of brackets needed to generate the space.

C. The practical importance of normal coordinates
The main practical problem of implementation of our strat-

egy comes with the !-modifications. How to compute them,

A. Two-step
 Generating

B. Three -step Generating 

C. Four-step
 Generating 

).
(c) in the four-step bracket generating case (typically our (2, 3, 5, 6) case, the

ball wit a trailer), periodic curves whose curvature is a quadratic function
of the position, our hyperelliptic curves ( �3 �2 �1 1 2 3

0.2
0.4
0.6
0.8
1.0
1.2

).
This is the clear beginning of a certain series, and we are convinced that a
strong purely topological fact holds when we want to realize (even approxi-
mately) successive brackets for a 2-control kinematic system.

6. Appendix.

6.1. Group Law.

Lemma 6.1. System (8) is a right invariant system on R6 with coordinates ξ =
(ς, w) = (x, y, z, w), for a certain nilpotent Lie group structure over R6 denoted by
G. There exist a function Φ, and a Lie group structure over R5, with coordinates
ς (denoted by G0) and multiplication law ∗ such that the group law of G is of the
form: (ς2, w2)(ς1, w1) = (ς1 ∗ ς2, w1 + w2 + Φ(ς1, ς2)).

Proof. Let G denote the Lie group R6, with the Lie group structure determined
by the fact that System (8) is right invariant. The elements of G are of the form
(x1, x2, y, z1, z2, w), and we want to find an expression for the group law of G.

The computation of the successive Lie brackets shows that ∂
∂w is right invariant,

and belongs to the Lie algebra of G. Moreover, ∂
∂w commutes with all elements in

this Lie algebra, hence R = {(e, w)} is in the center of G, with the elements of G
denoted by (ς, w).

The group G0 = G/R = {(ς, 0)} is a subgroup of G which multiplication law is
denoted by ∗. The group law of G is of the form

(ς, w)
(
ς
′
, w

′
)

=
(
ς ∗ ς

′
, ψ
(
ς, ς

′
, w, w

′
))

,

where ψ denotes an analytic function.
Let x = (ςx, wx) and a = (ςa, wa) denote two elements of G, Ra(.) the right

translation by element a, and X(.)w the last component of the vector field X(.) =
∂
∂w . The right invariance of ∂

∂w writes: d (Ra (x))X(x) = X(xa)w = 1, which gives:

∂ψ

∂ςx
(ςx, ςa, wx, wa) .0 +

∂ψ

∂wx
(ςx, ςa, wx, wa) .1 = 1, ⇒ ∂ψ

∂wx
(ςx, ςa, wx, wa) = 1,

⇒ ψ (ςx, ςa, wx, wa) = wx + Φ (ςx, ςa, wa) , (18)

where Φ denotes an analytic function.
This relation together with the fact that (e, wa) (ςx, wx) = (ςx, wx) (e, wa), ∀ (ςx, wx) ∈

G, and ∀wa ∈ R, gives:

wa + Φ (e, ςx, wx) = wx + Φ (ςx, e, wa) . (19)
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Let us now exploit the associativity of the law:

(ςx, wx) (ςa, wa) (ςb, wb) =

= (ςxςaςb, wx + Φ (ςx, ςa, wa) + Φ (ςxςa, ςb, wb))

= (ςxςaςb, wx + Φ (ςx, ςaςb, wa + Φ (ςa, ςb, wb))) ,

which results in

Φ (ςx, ςa, wa) + Φ (ςxςa, ςb, wb) = Φ (ςx, ςaςb, wa + Φ (ςa, ςb, wb)) . (20)

The partial derivative of Relation (20), first with respect to wa, and second with
respect to wb gives:

0 =
∂2Φ

∂w2
(ςx, ςaςb, wa + Φ (ςa, ςb, wb)) .

∂Φ

∂w
(ςa, ςb, wb) .

Since the product of these two analytic functions vanishes, one of the functions has
to be identically zero.

Let us suppose that ∂Φ
∂w ≡ 0, this means that Φ (ςa, ςb, wb) = Φ (ςa, ςb), and

ψ (ςa, ςb, wa, wb) = wa + Φ (ςa, ςb), for all a, b ∈ G. Relation (19) rewrites, for all
(e, wa), and (ςx, wx) ∈ G

wa + Φ (e, ςx) = wx + Φ (ςx, e) .

In particular, setting wa = wx gives Φ (e, ςx) = Φ (ςx, e) , for all ςx ∈ G0, and
consequently wa = wx for all wa, wx ∈ R. A contradiction.

Consequently ∂2Φ
∂w2 ≡ 0, which means that Φ is of the form:

Φ (ςx, ςa, w) = Φ1 (ςx, ςa)w + Φ2 (ςx, ςa) . (21)

Associativity (20) now writes, for all x, a, b ∈ G:

Φ1 (ςx, ςa)wa + Φ2 (ςx, ςa) + Φ1 (ςxςa, ςb)wb + Φ2 (ςxςa, ςb) =

Φ1 (ςx, ςaςb) [wa + Φ1 (ςa, ςb)wb + Φ2 (ςa, ςb)] + Φ2 (ςx, ςaςb) .

By setting first wa = wb = 0, then wb = 0, and finally wa = 0, we obtain:

Φ1(ςx, ςa) =Φ1(ςx, ςaςb) (22)

Φ1(ςxςa, ςb) =Φ1(ςx, ςaςb)Φ1(ςa, ςb) (23)

Φ2 (ςx, ςa) + Φ2 (ςxςa, ςb) =Φ1 (ςx, ςaςb) Φ2 (ςa, ςb) + Φ2 (ςx, ςaςb) . (24)

1. From (22), we deduce that Φ1(ςx, ςa) = Φ1(ςx), for all ςx ∈ G0.
2. From (23), and the above relation, we have Φ1(ςxςa) = Φ1(ςx)Φ1(ςa), for all
ςx, ςa ∈ G0.

3. From (24), with ςa = ςb = e, we have Φ2 (ςx, e) = Φ1 (ςx) Φ2 (e, e), which gives
Φ1 (e) = 1.

Relations (19) and (21), together with the above remarks yield wa + Φ2 (e, ςx) =
Φ1 (ςx)wa + Φ2 (ςx, e). By setting wa = 0, we obtain Φ2 (e, ςx) = Φ2 (ςx, e) for all
ςx ∈ G0. Consequently Φ1 (ςx) = 1, and we get the relation ψ (ςx, ςa, wx, wa) =
wx + wa + Φ2 (ςx, ςa), for all a = (ςa, wa), and x = (ςx, wx) in G.
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6.2. Plane Curves Whose Curvature is a Function of the Distance to the
Origin.

Lemma 6.2. Consider a plane curve (x(t), y(t)), whose curvature is a function of
the distance from the origin, that is:

ẋ = cos(ϕ), ẏ = sin(ϕ), ϕ̇ = k(x2 + y2), (25)

for a certain smooth function k(.). Then it is integrable.

Proof. Although this result is already known [23], the proof we provide here is very
simple.

We first set

x̄ = x cos(ϕ) + y sin(ϕ), and ȳ = −x sin(ϕ) + y cos(ϕ).

The derivatives are:

dx̄

dt
= 1 + ȳk(x̄2 + ȳ2),

dȳ

dt
= −x̄k(x̄2 + ȳ2), (26)

and k(x̄2 + ȳ2) = k(x2 + y2).
Then, we only need to show that (26) is a Hamiltonian system. Indeed, since it

is a two dimensional problem, it is always Liouville-integrable. Therefore, we are
looking for solutions of the system of PDE’s:

∂H

∂x̄
= 1 + ȳk(x̄2 + ȳ2),

∂H

∂ȳ
= −x̄k(x̄2 + ȳ2).

They always do exist since the Schwartz integrability conditions are satisfied: ∂2H
∂x̄∂ȳ =

∂2H
∂ȳ∂x̄ = 2x̄ȳk′.
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