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Motion Planning for Kinematic Systems
Nicolas Boizot and Jean-Paul Gauthier

Abstract—In this paper, we present a general theory of motion
planning for kinematic systems. In particular, the theory deals
with ε-approximations of non-admissible paths by admissible
ones in a certain optimal sense. The need for such an ap-
proximation arises for instance in the case of highly congested
configuration spaces.

This theory has been developed by one of the authors in
a previous series of papers. It is based upon concepts from
subriemannian geometry. Here, we summarize the results of the
theory, and we improve on, by developing in details an intricate
case: the ball with a trailer, which corresponds to a distribution
with flag of type 2, 3, 5, 6.

Index Terms—Optimal control, Subriemannian geometry,
Robotics, Motion planning

I. INTRODUCTION

WE PRESENT the main lines of a theory of motion
planning for kinematic systems. This theory has been

developed for several years in the papers [13], [14], [15],
[16], [17], [18], [19]. One of the purposes of this article is
to survey the whole theory disseminated in these papers. We
improve on the theory with the exposition of a new case
in which “the fourth order brackets are involved”. We also
improve on several previous results (periodicity of our optimal
trajectories for instance). Potential application of this theory
is motion planning for kinematic robots. In order to illustrate
the discussion, several academic examples are displayed. In
particular, we invite the interested reader to have a look at
our solution to the problem of approximating non-admissible
motions for “the ball on a plate” and “the ball with a trailer”
on the website [38].

Nonholonomic control problems have been studied from the
early XIXth century on. Typical issues range from the de-
termination of accessibility, to motion planning and feedback
stabilization, see [6], [7], [27] for detailed reviews and insights
into the field. The motion planning problem, which is the topic
under consideration here, can be addressed in several differ-
ent ways [30]: determination of simple trajectories, optimal
motion planning, obstacle avoidance, etc.

Practical situations occur for which a path in the configu-
ration space is precisely specified. It is the case for parking
problems [22], and (for security reasons) for motion of robots
around a shuttle in the spatial context, motion of certain
maintenance robots in the pool of a nuclear plant, etc.
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Besides these particular cases, a reasonable general strategy
to obtain an admissible path that avoids obstacles and complies
with constraints, is as suggested in e.g. [21], [28], [32], [37]:

1) not taking into account admissibility issues, elaborate a
path that copes with the configuration constraints,

2) use this first path as an Ariadne thread to compute an
approximating admissible path (see [27] page 27 and
references therein).

Actually, for highly congested configuration spaces, the
admissible path has to stay ε-close to the Ariadne thread.
Such a situation may arise either because of a high density of
obstacles in the physical space, or due to constraints imposed
on the robot by the task, or mission, to be achieved. Of
course, in our methodology where ε is theoretically required
to be small, in practice, ε can be taken large as long as the
performances remain acceptable.

The theory starts from the seminal work of F. Jean, in the
papers [22], [23], [24]. At the root of this point of view in
robotics, there are also more applied authors like J.P. Laumond
[28]. See also [37]. The mathematical framework of the theory
is subriemannian geometry. For a complete introduction, see
the reference work [33], and the not yet published book [1],
available online.

We consider kinematic systems that are given under the
guise of a vector-distribution ∆ over a n-dimensional manifold
M . The rank of the distribution is p, and the corank k =
n−p. Motion planning problems will always be local problems
in an open neighborhood of a given finite path Γ in M. Then,
we can always consider that M = Rn. From a control point of
view, a kinematic system can be specified by a control system,
linear in the controls, typically denoted by Σ:

(Σ) ẋ =

p∑

i=1

Fi(x)ui, (1)

where the Fi’s are smooth (C∞) vector fields that span the dis-
tribution ∆. The standard controllability assumption is always
assumed, i.e. the Lie algebra generated by the Fi’s is tran-
sitive1 on M. Consequently, the distribution ∆ is completely
nonintegrable, and any smooth path Γ : [0, T ] → M , can be
uniformly approximated by an admissible path γ : [0, θ]→M ,
i.e. a Lipschitz path, which is almost everywhere tangent to
∆, or in other words, a trajectory of (1).

This is precisely the abstract answer to the kinematic mo-
tion planning problem: it is possible to approximate uniformly
non-admissible paths by admissible ones. The purpose of this
paper is to present a general constructive theory that solves
this problem in a certain optimal way.

1A lie algebra of vector fields over a manifold M is said transitive if it
spans the whole tangent space at each point of M .
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More precisely, in this class of problems, it is natural to try
to minimize a cost of the following form:

J(u) =

θ∫

0

√√√√
p∑

i=1

(ui)2dt.

This choice is motivated by several reasons:
1) the optimal curves do not depend on their parametriza-

tion,
2) the minimization of such a cost produces a metric space

(the associated distance is called the subriemannian
distance, or the Carnot-Caratheodory distance),

3) minimizing such a cost is equivalent to minimize the
following quadratic cost, denoted JE(u) and called the
energy of the path, in fixed time θ:

JE(u) =

θ∫

0

p∑

i=1

(ui)
2dt.

The distance between two points is defined as the minimum
length of admissible curves connecting these two points. The
length of the admissible curve corresponding to the control
u : [0, θ]→M is simply J(u).

In this presentation, another way to interpret the problem
is as follows: the dynamics is specified by the distribution ∆
(i.e. not by the vector fields Fi, but their span only). The cost
is then determined by an Euclidean metric g over ∆, specified
here by the fact that the Fi’s form an orthonormal frame field
for the metric.

At this point we would like to make a philosophical
comment: there is, in the world of nonlinear control theory,
a permanent twofold criticism against the optimal control
approach:

1) the choice of the cost to be minimized is in general
rather arbitrary, and

2) optimal control solutions may not be robust.
Some remarkable conclusions of our theory show the

following: in reasonable dimensions and codimensions, the
optimal trajectories are extremely robust, and in particular, do
not depend at all (modulo certain natural transformations) on
the choice of the metric, but depend on the distribution ∆
only.

The following fact is even stronger: they depend only on
the nilpotent approximation along Γ (a concept that will be
defined later on, which is a good local approximation of the
problem). For a lot of low values of the rank p and corank
k, these nilpotent approximations are universal in a certain
sense: they depend only on certain integer numbers, namely
the dimensions of the successive bracket spaces generated by
∆, and no functional or real parameter appears in the problem
reduced to its nilpotent approximation. As a consequence, the
asymptotic optimal syntheses (i.e. the phase portraits of the
admissible trajectories that approximate up to a small ε) are
also universal.

Given a motion planning problem, specified by a (non-
admissible) curve Γ, and a subriemannian structure (1), we
will consider two distinct concepts, namely:
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Fig. 1. Examples of kinematic systems

1) the metric complexity MC(ε) that measures asymptoti-
cally the length of the best ε-approximating admissible
trajectories, and

2) the interpolation entropy E(ε), that measures the length
of the best admissible curves that interpolate Γ with
pieces of length ε.

The first concept was introduced by F. Jean in his basic
paper [22]. The second concept is closely related with the
entropy of F. Jean in [23], which is more or less the same
as the Kolmogorov’s entropy of the path Γ, for the metric
structure induced by the Carnot-Caratheodory metric of the
ambient space.

Along this paper, we deal with generic problems only
(generic has to be understood in a global sense, i.e. stable
singularities are considered). That is, the set of motion plan-
ning problems on Rn is the set of couples (Γ,Σ), embedded
with the C∞ topology of uniform convergence over compact
sets, and generic problems (or problems in general position)
form an open-dense set in this topology. For instance, it means
that the curve Γ is always transversal to ∆ (except maybe at
isolated points, in the case k = 1 only). Another example is the
case of a surface of degeneracy of the Lie bracket distribution
[∆,∆] in the case n = 3, k = 1. Generically, this surface (the
Martinet surface) is smooth, and Γ intersects it transversally
at a finite number of points only.

In this paper, as is of common usage, we say that a system
is “two-step bracket-generating” when dim ([∆,∆]) = n.

Also, along the paper, we illustrate our results with one
among the following well known academic examples:

Example 1: the unicycle, or two-driving wheel robot, [28],
[29], is described by the (x, y) position of the point at the
middle of the axis of the wheels, and the orientation θ of the
mobile, as shown on Fig. 1.A. The kinematic model is:

ẋ = cos(θ)u1, ẏ = sin(θ)u1, θ̇ = u2. (2)

Example 2: the car with a trailer, [28], [29], is a two-
driving wheel robot with a trailer hooked to the middle point
of the axis of the wheels. The distance between the robot and
the trailer is assumed equal to 1. The position of the trailer is
specified by the angle ϕ as in Fig. 1.B. The model is:

ẋ = cos(θ)u1, ẏ = sin(θ)u1, θ̇ = u2, ϕ̇ = u1 − sin(ϕ)u2.
(3)

Example 3: the ball rolling on a plane was also studied in
[6], [9], [25]. As shown in Fig. 1.C, it is described by the (x, y)
coordinates of the contact point between the ball and the plane,
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Fig. 2. Parking problem for the car with a trailer, c is a constant

and a right orthogonal matrix R ∈ SO(3,R) representing an
orthonormal frame attached to the ball. The kinematic model
is:

ẋ = u1, ẏ = u2, Ṙ =




0 0 u1

0 0 u2

−u1 −u2 0


R. (4)

Example 4: the ball with a trailer is as in example 3, where
the trailer’s position is known from the angle ϕ as described
in Fig. 1.D. The distance between the ball and its trailer is
denoted by L.

ẋ = u1, ẏ = u2, Ṙ =




0 0 u1

0 0 u2

−u1 −u2 0


R, (5)

θ̇ = − 1

L
(cos(θ)u1 + sin(θ)u2).

Typical motion planning problems are:

1) for example (2), the parking problem: the non-
admissible curve Γ is s → (x(s), y(s), θ(s), ϕ(s)) =
(s, 0, π2 , 0),

2) for example (3), the full rolling with slipping problem,
Γ : s→ (x(s), y(s), R(s)) = (s, 0, Id), where Id is the
identity matrix.

On Figs. 2 and 3 we show our approximating trajectories for
both problems, that are in a sense universal. In Fig. 2, of
course, the x-scale of the trajectory is much larger than the
y-scale.

The basic academic kinematic problems have a lot of sym-
metries, and most of them have finite dimensional Lie algebras.
Due to these symmetries, the associated subriemannian prob-
lems are often integrable in Liouville sense (roughly speaking
minimizers can be explicitly computed up to quadratures).
These explicit solutions, of course, could be used directly
to solve the motion planning problem. The drawback of our
method is that it forgets about these particular structures since
in the nilpotent approximations along Γ the symmetries are
not preserved. However:

1) when ε tends to 0, the optimal trajectories of the original
problem converge to those of their nilpotent approxima-
tion,

Γ





x(s) = s
y(s) = c
R(s) = Id

Fig. 3. Approximating rolling with slipping, c is a constant. See also the
simulation available on the website [38]

2) the most important point: our methodology applies
generically, not only for those academic examples with
a lot of symmetries,

3) the problems reduced to their nilpotent approximation
are themselves integrable while the original generic
problems are not.

Up to now, our theory covers the following cases:
(C1) The distribution ∆ is two-step bracket generating (i.e.

dim ([∆,∆]) = n) except maybe at generic singularities,
(C2) The number of controls (i.e. dim(∆)) is p = 2, and

n ≤ 6.

The paper is organized as follows: in section II, we in-
troduce the basic concepts underlaying the theory, namely
the metric complexity, the interpolation entropy, the nilpotent
approximation along Γ, and the normal coordinates.

Section III summarizes the main results of our theory,
disseminated in our previous papers, with some complements
and details. Section IV is the detailed study of the case n = 6,
k = 4, which corresponds to example (4), the ball with a
trailer. In Section V, we state several remarks, expectations
and conclusions.

II. BASIC CONCEPTS

In this section, we fix a generic motion planning problem
P =(Γ,Σ). Also, along the paper ε is a small parameter
(we want to approximate up to ε), and there are quantities
f(ε), g(ε) that go to +∞ when ε tends to zero. We say that
such quantities are equivalent (f ' g) if limε→0

f(ε)
g(ε) = 1.

Also, d denotes the subriemannian distance, and we consider
the ε-subriemannian tube Tε and cylinder Cε around Γ :

Tε = {x ∈M | d(x,Γ) ≤ ε},
Cε = {x ∈M | d(x,Γ) = ε}.

A. Entropy versus Metric Complexity

Definition 5: The metric complexity MC(ε) of P is 1
ε times

the minimum length of an admissible curve γε connecting the
endpoints Γ(0), Γ(T ) of Γ, and remaining in the tube Tε.
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Definition 6: The interpolation entropy E(ε) of P is 1
ε

times the minimum length of an admissible curve γε con-
necting the endpoints Γ(0),Γ(T ) of Γ, and ε-interpolating Γ,
that is, in any segment of γε of length ≥ ε, there is a point
of Γ.

These quantities MC(ε), E(ε) are functions of ε which
tends to +∞ as ε tends to zero. They are considered up to
equivalence. The reason to divide by ε is that the second
quantity counts the number of ε-balls needed to cover Γ, or
the number of pieces of length ε needed to interpolate the full
path. This is also the reason for the name “entropy”.

Definition 7: An asymptotic optimal synthesis is a one-
parameter family γε of admissible curves, that realizes the
metric complexity or the entropy.

Our main purpose in the paper is twofold:

1) We want to estimate the metric complexity and the
entropy, in terms of certain invariants of the problem.
Actually, in all the cases treated in this paper, we give
explicit formulas.

2) We shall exhibit explicit asymptotic optimal syntheses
realizing the metric complexity or/and the entropy.

B. Normal Coordinates

Take a parametrized k-dimensional surface S, transversal
to ∆ (which may be defined in a neighborhood of Γ only),

S = {q(s1, ..., sk−1, t) ∈ Rn}, with q(0, ..., 0, t) = Γ(t).

Such a germ exists if Γ is not tangent to ∆. The exclusion
of a neighborhood of an isolated point where Γ is tangent to
∆, (that is Γ becomes “almost admissible”), does not affect
our estimates presented later on (it provides a term of higher
order in ε).

In the following, CSε denotes the cylinder {ξ; d(S, ξ) = ε},
and S(y, w) is a short notation for the surface defined above.

Lemma 8: (Normal coordinates with respect to S).

There are mappings x : Rn → Rp, y : Rn → Rk−1, w :
Rn → R, such that ξ = (x, y, w) is a coordinate system on
some neighborhood of S in Rn, such that:

1) S(y, w) = (0, y, w), Γ = {(0, 0, w)},
2) The restriction ∆|S = ker dw ∩i=1,..k−1 ker dyi, the

metric g|S =
∑p
i=1(dxi)

2,
3) CSε = {ξ|

∑p
i=1 xi

2 = ε2},
4) the geodesics of the Pontryagin’s maximum principle

[34] meeting the transversality conditions w.r.t. S are
the straight lines through S, contained in the planes
Py0,w0

= {ξ|(y, w) = (y0, w0)}. Hence, they are
orthogonal to S.

These normal coordinates are unique up to changes of
coordinates of the form

x̃ = T (y, w)x,
(ỹ, w̃) = (y, w),

(6)

where T (y, w) ∈ O(p), the p-orthogonal group.

C. Normal Forms, Nilpotent Approximation along Γ

1) Frames: Let us denote by F = (F1, ..., Fp) the orthonor-
mal frame of vector fields generating ∆. Hence, we will also
write P = (Γ, F ). If a global coordinate system (x, y, w), not
necessarily normal, is given on a neighborhood of Γ in Rn,
with x ∈ Rp, y ∈ Rk−1, w ∈ R, then we write:

Fj =

p∑

i=1

Qi,j(x, y, w)
∂

∂xi
+

k−1∑

i=1

Li,j(x, y, w)
∂

∂yi
(7)

+Mj(x, y, w)
∂

∂w
, j = 1, ..., p.

Hence, the subriemannian metric is specified by the triple
(Q,L,M) of smooth x, y, w-dependent matrices.

2) The general normal form: Fix a surface S as in Section
II-B and a normal coordinate system ξ = (x, y, w) for a
problem P.

Theorem 9: (Normal form, [3]) There is an orthonormal
frame F = (Q,L,M) for (∆, g) with the following prop-
erties:

1. Q(x, y, w) is symmetric, Q(0, y, w) = Id (the identity
matrix),

2. Q(x, y, w)x = x,
3. L(x, y, w)x = 0, and M(x, y, w)x = 0.
4. Conversely if ξ = (x, y, w) is a coordinate system

satisfying conditions 1, 2, 3 above, then ξ is a normal
coordinate system for the subriemannian metric defined by the
orthonormal frame F with respect to the parametrized surface
{(0, y, w)}.

Clearly, this normal form is invariant under the changes of
normal coordinates (6).

Let us write:

Q(x, y, w) = Id+Q1(x, y, w) +Q2(x, y, w) + ...,

L(x, y, w) = 0 + L1(x, y, w) + L2(x, y, w) + ...,

M(x, y, w) = 0 +M1(x, y, w) +M2(x, y, w) + ...,

where Qr, Lr,Mr are matrices depending on ξ = (x, y, w),
the coefficients of which have order r w.r.t. x (i.e. they are in
the rth power of the ideal of C∞(x, y, w) generated by the
functions xr, r = 1, ..., p). In particular, Q1 is linear in x,
Q2 is quadratic, etc.

Set u = (u1, ..., up) ∈ Rp, and define L1,y,w(x, u) =∑p
j=1 L1j

(x, y, w)uj , where L1j
(x, y, w) is the jth column

of L1(x, y, w). It is quadratic in (x, u), and Rk−1-valued.
Its ith component is the quadratic expression denoted by
L1,i,y,w(x, u).
Similarly M1,y,w(x, u) =

∑p
j=1M1j (x, y, w)uj is a quadratic

form in (x, u). The matrices of those several quadratic expres-
sion are denoted by L1,i,y,w, i = 1, ..., k − 1, and M1,y,w.

The following was proved in [3], [10] for corank 1:
Proposition 10: 1. Q1 = 0,
2. L1,i,y,w, i = 1, ..., k−1, and M1,y,w are skew symmetric

matrices.
A first useful very rough estimate in normal coordinates is

given by the following proposition:
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Proposition 11: If ξ = (x, y, w) ∈ Tε, then:

||x||2 ≤ ε,
||y||2 ≤ αε2,

for some constant α > 0.

From now on, we shall consider separately, first, the 2-step
bracket-generating case, and second, the 2-control case that
were mentioned in the introduction section.

3) Two-step bracket-generating case: In that case, we set,
in accordance to Proposition (11), that x has weight 1, and the
yi’s and w have weight 2. Then, the vector fields ∂

∂xi
have

weight -1, and ∂
∂yi

, ∂
∂w have weight −2.

Inside a tube Tε, we write our control system as a term of
order -1, plus a residue, that has a certain order w.r.t. ε. Here,
O(εk) has to be understood as a smooth term bounded by cεk,
c > 0. For a trajectory remaining inside Tε, we have:

ẋ = u+O(ε2), (a) (8)

ẏi =
1

2
x′Li(w)u+O(ε2), i = 1, ..., k − 1,

ẇ =
1

2
x′M(w)u+O(ε2),

where Li(w),M(w) are skew-symmetric matrices depending
smoothly on w.

Remark 12: In Equation (8.a), one would expect the term
O(ε) instead of O(ε2). In fact, the order 2 is due to part (1)
in Proposition 10.

In the present case, we define the Nilpotent Approximation
P̂ along Γ of the problem P by keeping the term of order -1
only:

ẋ = u, (9)

(P̂) ẏi =
1

2
x′Li(w)u, i = 1, ..., p− 1,

ẇ =
1

2
x′M(w)u.

Let us consider two trajectories ξ(t), ξ̂(t) of P and P̂ corre-
sponding to the same control u(t), issued from the same point
on Γ, and both arclength-parametrized (which is equivalent to
||u(t)|| = 1). For t ≤ ε, we have the following estimates:

||x(t)−x̂(t)|| ≤ cε3, ||y(t)−ŷ(t)|| ≤ cε3, ||w(t)−ŵ(t)|| ≤ cε3,
(10)

for a suitable constant c.
Remark 13: It follows that the distance (either d or d̂ – the

distance associated with the nilpotent approximation) between
ξ(t), ξ̂(t) is smaller than ε1+α for some α > 0.

This fact comes from the estimate just given, and the
standard ball-box Theorem [20]. It will be the key point to
reduce the motion planning problem to the one of its nilpotent
approximation along Γ.

4) The 2-control case: In this second case, we have the
following general normal form, in normal coordinates. It was
proven first in [2], in the corank 1 case. Actually, the proof
holds in any corank, without modification.

Consider Normal coordinates with respect to any surface S.
There are smooth functions, β(x, y, w), γi(x, y, w), δ(x, y, w),
such that, on a neighborhood of Γ, P can be written as:

ẋ1 = (1 + (x2)2β)u1 − x1x2βu2, (11)

ẋ2 = (1 + (x1)2β)u2 − x1x2βu1,

ẏi = γi(
x2

2
u1 −

x1

2
u2),

ẇ = δ(
x2

2
u1 −

x1

2
u2),

where moreover β vanishes on the curve Γ.
The following normal forms can be obtained, on the tube

Tε, by just changing coordinates in S in an appropriate way.
A trajectory ξ(t) of P remaining in Tε satisfies one of the
following systems of equations.

a) Generic 4− 2 case (see [17]):

ẋ1 = u1 +O(ε3),

ẋ2 = u2 +O(ε3),

ẏ = (
x2

2
u1 −

x1

2
u2) +O(ε2),

ẇ = δ(w)x1(
x2

2
u1 −

x1

2
u2) +O(ε3).

We define the nilpotent approximation as:

(P̂4,2) ẋ1 = u1,

ẋ2 = u2,

ẏ = (
x2

2
u1 −

x1

2
u2),

ẇ = δ(w)x1(
x2

2
u1 −

x1

2
u2).

As before, we consider two trajectories ξ(t), ξ̂(t) of P and
P̂ corresponding to the same control u(t), issued from the
same point on Γ, and both arclength-parametrized (which is
equivalent to ||u(t)|| = 1). For t ≤ ε, we have:

||x(t)−x̂(t)|| ≤ cε4, ||y(t)−ŷ(t)|| ≤ cε3, ||w(t)−ŵ(t)|| ≤ cε4.
(12)

This estimates implies that, for t ≤ ε, the distance (d or d̂)
between ξ(t) and ξ̂(t) is less than ε1+α for some α > 0.
Again, it will be the keypoint to reduce our problem to the
nilpotent approximation.

b) Generic 5− 2 case (see [18]):

ẋ1 = u1 +O(ε3),

ẋ2 = u2 +O(ε3),

ẏ = (
x2

2
u1 −

x1

2
u2) +O(ε2),

ż = x2(
x2

2
u1 −

x1

2
u2) +O(ε3),

ẇ = δ(w)x1(
x2

2
u1 −

x1

2
u2) +O(ε3).

We define the nilpotent approximation as:

(P̂5,2) ẋ1 = u1,

ẋ2 = u2,

ẏ = (
x2

2
u1 −

x1

2
u2),

ż = x2(
x2

2
u1 −

x1

2
u2),

ẇ = δ(w)x1(
x2

2
u1 −

x1

2
u2).
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The estimates necessary to reduce to the nilpotent approxi-
mation are:

||x(t)− x̂(t)|| ≤ cε4, ||y(t)− ŷ(t)|| ≤ cε3, (13)

||z(t)− ẑ(t)|| ≤ cε4, ||w(t)− ŵ(t)|| ≤ cε4.

c) Generic 6− 2 case (proven in Appendix):

ẋ1 = u1 +O(ε3), (14)

ẋ2 = u2 +O(ε3),

ẏ = (
x2

2
u1 −

x1

2
u2) +O(ε2),

ż1 = x2(
x2

2
u1 −

x1

2
u2) +O(ε3),

ż2 = x1(
x2

2
u1 −

x1

2
u2) +O(ε3),

ẇ = Qw(x1, x2)(
x2

2
u1 −

x1

2
u2) +O(ε4),

where Qw(x1, x2) is a quadratic form in x depending
smoothly on w.

We define the nilpotent approximation as:

(P̂6,2) ẋ1 = u1, (15)
ẋ2 = u2,

ẏ = (
x2

2
u1 −

x1

2
u2),

ż1 = x2(
x2

2
u1 −

x1

2
u2),

ż2 = x1(
x2

2
u1 −

x1

2
u2),

ẇ = Qw(x1, x2)(
x2

2
u1 −

x1

2
u2).

The estimates necessary to reduce to the nilpotent approxi-
mation are:

||x(t)− x̂(t)|| ≤ cε4, ||y(t)− ŷ(t)|| ≤ cε3, (16)

||z(t)− ẑ(t)|| ≤ cε4, ||w(t)− ŵ(t)|| ≤ cε5.

In fact, the proof of the reduction to this normal form, given
in Appendix A, also contains the 4-2 and 5-2 cases.

5) Invariants in the 6-2 case, and the ball with a trailer:
Let us consider a one-form ω that vanishes on ∆′′ =
[∆, [∆,∆]]. Set α = dω|∆, the restriction of dω to ∆. Set
H = [F1, F2], I = [F1, H], J = [F2, H], and consider the

2× 2 matrix A(ξ) =

(
dω(F1, I) dω(F2, I)
dω(F1, J) dω(F2, J)

)
.

Due to Jacobi Identity, A(ξ) is a symmetric matrix. Since
ω([X,Y ]) = dω(X,Y ) in restriction to ∆′′, we also have

A(ξ) =

(
ω([F1, I]) ω([F2, I])
ω([F1, J ]) ω([F2, J ])

)
.

Let us consider a gauge transformation, i.e. a feedback that
preserves the metric, see e.g. [11], i.e. a change of orthonormal
frame (F1, F2) obtained by setting

F̃1 = cos(θ(ξ))F1 + sin(θ(ξ))F2 ,

F̃2 = − sin(θ(ξ))F1 + cos(θ(ξ))F2 .

It is just a matter of tedious computations to check that
the matrix A(ξ) is changed for Ã(ξ) = RθA(ξ)R−θ. On the
other hand, the one-form ω is defined modulo multiplication
by a nonzero function f(ξ), and the same holds for α, since

d(fω) = fdω + df ∧ ω, and ω vanishes over ∆′′. Therefore
the following lemma holds true:

Lemma 14: The ratio r(ξ) of the (real) eigenvalues of A(ξ)
is an invariant of the structure.

Let us now consider the normal form (14), and compute
the form ω = ω1dx1 + ... + ω6dw along Γ (that is, where
x, y, z = 0). The computation of all the brackets shows that
ω1 = ω2 = ... = ω5 = 0. This also shows that in fact, along
Γ, A(ξ) is just the matrix of the quadratic form Qw.

Lemma 15: The invariant r(Γ(t)) of the problem P is the
same as the invariant r̂(Γ(t)) of the nilpotent approximation
along Γ.

Let us compute the ratio r for the ball with a trailer,
Equation (5). We denote by A1, A2 the two right-invariant
vector fields over SO(3,R) appearing in (5). We have:

F1 =
∂

∂x1
+A1 −

1

L
cos(θ)

∂

∂θ
,

F2 =
∂

∂x2
+A2 −

1

L
sin(θ)

∂

∂θ
.

[A1, A2] = A3, [A1, A3] = −A2, [A2, A3] = A1.

Let us compute the brackets: H = A3 − 1
L2

∂
∂θ , I = −A2 −

1
L3 sin(θ) ∂∂θ , J = A1 + 1

L3 cos(θ) ∂∂θ , [F1, I] = −A3− 1
L4

∂
∂θ ,

[F2, J ] = −A3 − 1
L4

∂
∂θ , and [F1, J ] = [F2, I] = 0.

Lemma 16: For the ball with a trailer, the ratio r(ξ) = 1.
These two last lemmas are a key point in the section IV:

they imply in particular that the system of geodesics of the
nilpotent approximation is integrable in Liouville sense.

III. RESULTS

In this section, we summarize and comment most of the
results obtained in the papers [13], [14], [15], [17], [18], [19].

A. General Results

We need the concept of an ε-modification of an asymptotic
optimal synthesis.

Definition 17: Given a one-parameter family of (abso-
lutely continuous, arclength parametrized) admissible curves
γε : [0, Tγε ] → Rn, an ε-modification of γε is another
one-parameter family of (absolutely continuous, arclength
parametrized) admissible curves γ̃ε : [0, Tγ̃ε ]→ Rn such that
for all ε and for some α > 0, if [0, Tγε ] is split into subintervals
of length ε ( i.e. [0, ε], [ε, 2ε], [2ε, 3ε], ...), then:

1. [0, Tγ̃ε ] is split into corresponding intervals, [0, ε1],
[ε1, ε1 +ε2], [ε1 +ε2, ε1 +ε2 +ε3], ... with ε ≤ εi < ε(1+εα),
i = 1, 2, ...,

2. for each couple of an interval I1 = [ε̃i, ε̃i + ε], (with
ε̃0 = 0, ε̃1 = ε1, ε̃2 = ε1 + ε2, ...) and the respective interval
I2 = [iε, (i+ 1)ε], d

dt (γ̃) and d
dt (γ) coincide over I2, i.e.:

d

dt
(γ̃)(ε̃i+t) =

d

dt
(γ)(iε+t), for almost all t ∈ [iε, (i+1)ε].

Remark 18: This concept of an ε-modification is for the
following use: we will construct asymptotic optimal syntheses
for the nilpotent approximation P̂ of problem P . Then, the
asymptotic optimal syntheses have to be slightly modified in
order to realize the interpolation constraints for the original
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(non-modified) problem. This has to be done “slightly” for
the length of paths to remain equivalent.

In this section it is always assumed, but not stated, that
we consider generic problems only. One first result is the
following:

Theorem 19: In the cases 2-step bracket generating, 4-2, 5-
2, 6-2, (without singularities), an asymptotic optimal synthesis
(relative to the entropy) for P is obtained as an ε-modification
of an asymptotic optimal synthesis for the nilpotent approxi-
mation P̂. As a consequence the entropy E(ε) of P is equal
to the entropy Ê(ε) of P̂.

This theorem is proven in [17]. However, we can easily get
an idea of the proof, using the estimates of formulas (10, 12,
13, 16).

All these estimates show that, if we apply an ε-interpolating
strategy to P̂ , and the same controls to P , at time ε (or
length ε, since it is always possible to consider arclength-
parametrized trajectories), the endpoints of the two trajectories
are at subriemannian distance (either d or d̂) of order ε1+α, for
some α > 0. Then the contribution to the entropy of P , due
to the correction necessary to interpolate Γ, will have higher
order.

In the two-step bracket-generating case, the following equal-
ity holds:

Theorem 20: (two-step bracket-generating case, corank k ≤
3) The entropy is equal to 2π times the metric complexity:
E(ε) = 2πMC(ε).

The reason for this distinction between corank less or more
than 3 is very important, and will be explained in the section
III-C.

Another very important result is the following logarithmic
lemma, that describes what happens in the case of a (generic)
singularity of ∆. In the absence of such singularities, as
we shall see, formulas for the entropy (as for the metric
complexity) always are of the following type:

E(ε) ' 1

εp

∫

Γ

dt

χ(t)
, (17)

where χ(t) is a certain invariant along Γ. When the curve Γ(t)
crosses transversally a codimension-1 singularity (of ∆′, or
∆′′), the invariant χ(t) vanishes. This may happen at isolated
points ti, i = 1, ..., r only. In that case, we always have the
following:

Theorem 21: (logarithmic lemma). The entropy (resp. the
metric complexity) satisfies:

E(ε) ' −2
ln(ε)

εp

r∑

i=1

1

ρ(ti)
, where ρ(t) =

∣∣∣∣
dχ(t)

dt

∣∣∣∣ .

On the contrary, there are also generic codimension-1 singu-
larities where the curve Γ, at isolated points, becomes tangent
to ∆, or ∆′, ... At these isolated points, the invariant χ(t) of
Formula 17 tends to infinity. In that case, the formula (17)
remains valid (the integral converges).

7
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isolated points onM), the distribution ! is not tangent toM.
Generically, the curve " crosses M transversally at a finite
number of isolated points ti, i = 1, ..., r, . These points are
not the special isolated points where ! is tangent toM (this
would be not generic). They are called Martinet points. This
number r can be zero. Also, there are other isolated points !j ,
j = 1, ..., l, at which " is tangent to ! (which means that "
is almost admissible in a neighborhood of !j). Out ofM, the
distribution ! is a contact distribution (a generic property).
Let " be a one-form that vanishes on ! and that is 1

on "̇, defined up to multiplication by a function which is 1
along ". Along ", the restriction 2-form d"|! can be made
into a skew-symmetric endomorphism A("(t)) of ! (skew
symmetric with respect to the scalar product over !), by
duality: < A("(t))X,Y >= d"(X,Y ). Let #(t) denote the
moduli of the eigenvalues of A("(t)). We have the following:
Theorem 22: 1. If r = 0, MC($) ! 2

!2

!

"

dt
!(t) . At points

where #(t)" +#, the formula is convergent.
2. If r $= 0, MC($) ! %2 ln(!)!2

"r
i=1

1
"(ti)

, where %(t) =
|d#(t)dt |.
3. E($) = 2&MC($).
Let us describe the asymptotic optimal syntheses. They are

shown on Figures 3, 4.

Figure 3 concerns the case r = 0 (everywhere contact type).
The points where the distribution ! is not transversal to "
are omitted (they again do not change anything). Hence ! is
also transversal to the cylinders C!, for $ small. Therefore,
! defines (up to sign) a vector field X! on C$, tangent to
!, that can be chosen of length 1. The asymptotic optimal
synthesis consists of: 1. Reaching C! from "(0), 2. Follow
a trajectory of X!, 3. Join "(t). The steps 1 and 3 cost 2$,
which is neglectible w.r.t. the full metric complexity. To get
the optimal synthesis for the interpolation entropy, one has to
make the same construction, but starting from a subriemannian
cylinder C !! tangent to ".
In normal coordinates, in that case, the x-trajectories are

just circles, and the corresponding optimal controls are just
trigonometric functions, with period 2$

! .

Fig. 4. 3-dimensional Martinet case

Figure 4 concerns the case r $= 0 (crossing Martinet
surface). At a Martinet point, the vector-field X! has a limit
cycle, which is not tangent to the distribution. The asymptotic
optimal strategy consists of: a. following a trajectory of X!
till reaching the height of the center of the limit cycle, b.
crossing the cylinder, with a neglectible cost 2$, c. Following
a trajectory of the opposite vector field %X!. The strategy for
entropy is similar, but using the tangent cylinder C !!.

C. The one-step bracket-generating case

For the corank k & 3, the situation is very similar to the
3-dimensional case. It can be competely reduced to it. For
details, see [10].
At this point, this strange fact appears: there is the limit

corank k = 3. If k > 3 only, new phenomena appear. Let us
explain now the reason for this
Let us consider the following mapping B% : !% ' !% "

TxM/!%, (X,Y )" [X,Y ] +!%. It is a well defined tensor
mapping , which means that it actually applies to vectors (and
not to vector fields, as expected from the definition). This is
due to the following formula, for a one-form " : d"(X,Y ) =
"([X,Y ])+"(Y )X%"(X)Y. Let us call I% the image by B%
of the product of two unit balls in !%. The following holds:
Theorem 23: For a generic P , for k & 3, the sets I"(t) are

convex.
This theorem is shown in [10], with the consequences that

we will state just below.
This is no more true for k > 3, the first catastrophic

case being the case 10-4 (a p = 4 distribution in R10). The
intermadiate cases k = 4, 5 in dimension 10 are interesting,
since on some open subsets of ", the convexity property may
hold or not. These cases are studied in the paper [13].
The main consequence of this convexity property is that

everything reduces (out of singularities where the logarithmic
lemma applies) to the 3-dimensional contact case, as is shown
in the paper [10]. We briefly summarize the results.
Consider the one forms " that vanish on ! and that are

1 on "̇, and again, by the duality w.r.t. the metric over
!, define d"|!(X,Y ) =< AX,Y >, for vector fields
X,Y in !. Now, we have along ", a (k % 1)-parameter
affine family of skew symmetric endomorphisms A"(t) of

Fig. 4. 3-dimensional contact case

B. Generic Distribution in R3

This is the simplest case, and it is important since many
cases reduce to it. Let us describe it in details.

Generically, the 3-dimensional space M contains a 2-
dimensional singularity (called the Martinet surface, denoted
by M). This singularity is a smooth surface, and (except at
isolated points onM), the distribution ∆ is not tangent toM.
Generically, the curve Γ crosses M transversally at a finite
number of isolated points ti, i = 1, ..., r. These points are
not the special isolated points where ∆ is tangent to M (this
would not be generic). They are called Martinet points. This
number r can be zero. There are also other isolated points τj ,
j = 1, ..., l, at which Γ is tangent to ∆ (which means that Γ
is almost admissible in a neighborhood of τj). Out of M, the
distribution ∆ is a contact distribution (a generic property).

Let ω be a one-form that vanishes on ∆ and that is 1 on
Γ̇, defined up to multiplication by a function which is 1 along
Γ. Along Γ, the restriction dω|∆ of the 2-form dω can be
made into a skew-symmetric endomorphism A(Γ(t)) of ∆
(skew symmetric with respect to the scalar product over ∆),
by duality: 〈A(Γ(t))X,Y 〉 = dω(X,Y ). Let χ(t) denote the
moduli of the eigenvalues of A(Γ(t)). We have the following:

Theorem 22: 1. If r = 0, MC(ε) ' 2
ε2

∫

Γ

dt

κ(t)
. At points

where χ(t)→ +∞, the formula is convergent.
2. If r 6= 0, MC(ε) ' −2 ln(ε)

ε2

∑r
i=1

1
ρ(ti)

, where ρ(t) =∣∣∣dχ(t)
dt

∣∣∣.
3. E(ε) = 2πMC(ε).
Let us describe the asymptotic optimal syntheses. They are

shown on Figs. 4, 5.

Fig. 4 concerns the case r = 0 (everywhere contact type).
The points where the distribution ∆ is not transversal to Γ
are omitted (again, they do not change anything). Hence ∆ is
also transversal to the cylinders Cε, for ε small. Therefore, ∆
defines (up to sign) a vector field Xε on Cε, tangent to ∆,
that can be chosen of length 1.

The asymptotic optimal synthesis consists of:
1) reaching Cε from Γ(0),
2) following a trajectory of Xε, and
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isolated points onM), the distribution ! is not tangent toM.
Generically, the curve " crosses M transversally at a finite
number of isolated points ti, i = 1, ..., r, . These points are
not the special isolated points where ! is tangent toM (this
would be not generic). They are called Martinet points. This
number r can be zero. Also, there are other isolated points !j ,
j = 1, ..., l, at which " is tangent to ! (which means that "
is almost admissible in a neighborhood of !j). Out ofM, the
distribution ! is a contact distribution (a generic property).
Let " be a one-form that vanishes on ! and that is 1

on "̇, defined up to multiplication by a function which is 1
along ". Along ", the restriction 2-form d"|! can be made
into a skew-symmetric endomorphism A("(t)) of ! (skew
symmetric with respect to the scalar product over !), by
duality: < A("(t))X,Y >= d"(X,Y ). Let #(t) denote the
moduli of the eigenvalues of A("(t)). We have the following:
Theorem 22: 1. If r = 0, MC($) ! 2

!2

!

"

dt
!(t) . At points

where #(t)" +#, the formula is convergent.
2. If r $= 0, MC($) ! %2 ln(!)!2

"r
i=1

1
"(ti)

, where %(t) =
|d#(t)dt |.
3. E($) = 2&MC($).
Let us describe the asymptotic optimal syntheses. They are

shown on Figures 3, 4.

Figure 3 concerns the case r = 0 (everywhere contact type).
The points where the distribution ! is not transversal to "
are omitted (they again do not change anything). Hence ! is
also transversal to the cylinders C!, for $ small. Therefore,
! defines (up to sign) a vector field X! on C$, tangent to
!, that can be chosen of length 1. The asymptotic optimal
synthesis consists of: 1. Reaching C! from "(0), 2. Follow
a trajectory of X!, 3. Join "(t). The steps 1 and 3 cost 2$,
which is neglectible w.r.t. the full metric complexity. To get
the optimal synthesis for the interpolation entropy, one has to
make the same construction, but starting from a subriemannian
cylinder C !! tangent to ".
In normal coordinates, in that case, the x-trajectories are

just circles, and the corresponding optimal controls are just
trigonometric functions, with period 2$

! .

Fig. 4. 3-dimensional Martinet case

Figure 4 concerns the case r $= 0 (crossing Martinet
surface). At a Martinet point, the vector-field X! has a limit
cycle, which is not tangent to the distribution. The asymptotic
optimal strategy consists of: a. following a trajectory of X!
till reaching the height of the center of the limit cycle, b.
crossing the cylinder, with a neglectible cost 2$, c. Following
a trajectory of the opposite vector field %X!. The strategy for
entropy is similar, but using the tangent cylinder C !!.

C. The one-step bracket-generating case

For the corank k & 3, the situation is very similar to the
3-dimensional case. It can be competely reduced to it. For
details, see [10].
At this point, this strange fact appears: there is the limit

corank k = 3. If k > 3 only, new phenomena appear. Let us
explain now the reason for this
Let us consider the following mapping B% : !% ' !% "

TxM/!%, (X,Y )" [X,Y ] +!%. It is a well defined tensor
mapping , which means that it actually applies to vectors (and
not to vector fields, as expected from the definition). This is
due to the following formula, for a one-form " : d"(X,Y ) =
"([X,Y ])+"(Y )X%"(X)Y. Let us call I% the image by B%
of the product of two unit balls in !%. The following holds:
Theorem 23: For a generic P , for k & 3, the sets I"(t) are

convex.
This theorem is shown in [10], with the consequences that

we will state just below.
This is no more true for k > 3, the first catastrophic

case being the case 10-4 (a p = 4 distribution in R10). The
intermadiate cases k = 4, 5 in dimension 10 are interesting,
since on some open subsets of ", the convexity property may
hold or not. These cases are studied in the paper [13].
The main consequence of this convexity property is that

everything reduces (out of singularities where the logarithmic
lemma applies) to the 3-dimensional contact case, as is shown
in the paper [10]. We briefly summarize the results.
Consider the one forms " that vanish on ! and that are

1 on "̇, and again, by the duality w.r.t. the metric over
!, define d"|!(X,Y ) =< AX,Y >, for vector fields
X,Y in !. Now, we have along ", a (k % 1)-parameter
affine family of skew symmetric endomorphisms A"(t) of

Fig. 5. 3-dimensional Martinet case

3) joining Γ(t).
The steps 1 and 3 cost 2ε, which is negligible w.r.t. the
full metric complexity. To get the optimal synthesis for the
interpolation entropy, one has to make the same construction,
but starting from a subriemannian cylinder C ′ε tangent to Γ.

In normal coordinates, in that case, the x-trajectories are
simply circles, and the corresponding optimal controls are
trigonometric functions, with period 2π

ε .
Fig. 5 concerns the case r 6= 0 (crossing Martinet surface).

At a Martinet point, the vector-field Xε has a limit cycle,
which is not tangent to the distribution.

The asymptotic optimal strategy consists of:
1) following a trajectory of Xε till reaching the height of

the center of the limit cycle,
2) crossing the cylinder, with a negligible cost 2ε, and
3) following a trajectory of the opposite vector field −Xε.

The strategy for entropy is similar, but using the tangent
cylinder C ′ε.

C. The Two-Step Bracket-Generating Case

For the corank k ≤ 3, the situation is very similar to the
3-dimensional case. It can be completely reduced to it. For
details, see [15].

At this point, this strange fact appears: there is the limit
corank k = 3. If k > 3 only, new phenomena appear. Let us
explain now the reason for this.

Let us consider the following mapping:

Bξ : ∆ξ ×∆ξ → TξM/∆ξ,
(X,Y ) → [X,Y ] + ∆ξ.

It is a well defined tensor mapping , which means that it
actually applies to vectors (and not to vector fields, as expected
from the definition). This is due to the following formula, for a
one-form ω : dω(X,Y ) = ω([X,Y ]) +LXω(Y )−LY ω(X).
Let us call Iξ the image by Bξ of the product of two unit balls
in ∆ξ. The following holds:

Theorem 23: For a generic P , and k ≤ 3, the sets IΓ(t) are
convex.

This theorem is shown in [15], with the consequences that
we will state just below.

This is no more true for k > 3, the first catastrophic
case being the case 10-4 (a p = 4 distribution in R10). The

intermediate cases k = 4, 5 in dimension 10 are interesting,
since on some open subsets of Γ, the convexity property may
hold or not. These cases are studied in the paper [18].

The main consequence of this convexity property is that
everything reduces (out of singularities where the logarithmic
lemma applies) to the 3-dimensional contact case. We briefly
summarize the results.

Consider the one-forms ω that vanish on ∆ and that are
1 on Γ̇, and again, by duality w.r.t. the metric over ∆,
define dω|∆(X,Y ) = 〈AX,Y 〉 , for vector fields X,Y in
∆. Now, we have along Γ, a (k − 1)-parameter affine family
of skew symmetric endomorphisms AΓ(t) of ∆Γ(t). Let us

write AΓ(t)(λ) = A0
Γ(t) +

k−1∑

i=1

λiA
i
Γ(t), and set χ(t) =

infλ ||AΓ(t)(λ)|| = ||AΓ(t)(λ
∗(t))||.

Out of isolated points of Γ (that count for nothing both in
the metric complexity and in the entropy), the t-one-parameter
family AΓ(t)(λ

∗(t)) can be smoothly block-diagonalized (with
2 × 2 blocks), using a gauge transformation along Γ. After
this gauge transformation, the 2-dimensional eigenspace corre-
sponding to the largest (in moduli) eigenvalue of AΓ(t)(λ

∗(t)),
corresponds to the two first coordinates in the distribution, and
to the 2 first controls. In the asymptotic optimal synthesis, all
other controls are put to zero (here the convexity property is
used), and the picture of the asymptotic optimal synthesis is
exactly that of the 3-dimensional contact case. We still have
the formulas:

MC(ε) ' 2

ε2

∫

Γ

dt

κ(t)
, E(ε) = 2πMC(ε).

The case k > 3 was first treated in [17] in the 10-
dimensional case, and was completed in general in [19]. In that
case, the situation does not reduce to the 3-dimensional contact
case: the optimal controls, in the asymptotic optimal synthesis
for the nilpotent approximation are still trigonometric controls,
but with different periods that are successive integer multiples
of a given basic period. New invariants λjθ(t) appear, and the
formula for the entropy is:

E(ε) ' 2π

ε2

∫ T

0

∑r
j=1 jλ

j
θ∑r

j=1(λjθ)
2
dθ.

The optimal controls are of the form:

u2j−1(t) = −

√√√√ jλjθ(t)∑r
j=1 jλ

j
θ(t)

sin(
2πjt

ε
), (18)

u2j(t) =

√√√√ jλjθ(t)∑r
j=1 jλ

j
θ(t)

cos(
2πjt

ε
), j = 1, ..., r

u2r+1(t) = 0 if p is odd .

These last formulas hold in the free case only (i.e. the
case where the corank k = p(p−1)

2 , the dimension of he
second homogeneous component of the free Lie-algebra with p
generators). The non-free case is more complicated (see [19]).
There is a paper by R. W. Brockett [8] closely related to these
results.
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To prove all the results in this section, one has to proceed
as follows:

1) use the theorem of reduction to nilpotent approximation
(19),

2) use the Pontriaguin’s maximum principle on the normal
form of the nilpotent approximation, in normal coordi-
nates.

D. The 2-control case, in R4 and R5.

These cases correspond respectively to the car with a trailer
(Example 2) and the ball on a plate (Example 3).

We use Theorem 19 of reduction to nilpotent approximation,
and we consider the normal forms P̂4,2, P̂5,2 of Section II-C4.
In both cases, we change the variable w for w̃ such that dw̃ =
dw
δ(w) . We look for arclength-parametrized trajectories of the
nilpotent approximation (i.e. (u1)2 + (u2)2 = 1), that start

from Γ(0), and reach Γ in fixed time ε, maximizing

ε∫

0

ẇ(τ)dτ.

Abnormal extremals do no come into the picture, and optimal
curves correspond to the Hamiltonian

H =
√

(PF1)2 + (PF2)2,

where P is the adjoint vector. It turns out that, in our normal
coordinates, the same trajectories are optimal for both the 4-2
and the 5-2 cases (one has just to notice that the solution of the
4-2 case meets the extra interpolation condition corresponding
to the 5-2 case).

Setting as usual u1 = cos(ϕ) = PF1, u2 = sin(ϕ) =
PF2, we get ϕ̇ = P [F1, F2], ϕ̈ = −P [F1, [F1, F2]]PF1 −
P [F2, [F1, F2]]PF2.

At this point, we have to notice that only the components
Px1

, Px2
of the adjoint vector P are not constant (the Hamil-

tonian in the nilpotent approximation depends only on the x-
variables), therefore, P [F1, [F1, F2]] and P [F2, [F1, F2]] are
constant (the third brackets are also constant vector fields).
Hence, ϕ̈ = α cos(ϕ)+β sin(ϕ) = αẋ1 +βẋ2 for appropriate
constants α, β. It follows that, for another constant k, we
have, for the optimal curves of the nilpotent approximation,
in normal coordinates x1, x2 :

ẋ1 = cos(ϕ),

ẋ2 = sin(ϕ),

ϕ̇ = k + λx1 + µx2.

Remark 24: 1) It means that we are looking for curves
in the x1, x2 plane, whose curvature is an affine function
of the position,

2) in the two-step bracket generating case (contact case),
optimal curves were circles, i.e. curves of constant
curvature,

3) the conditions of ε-interpolation of Γ say that these
curves must be periodic (there will be more details on
this point in the next section), that the area of a loop
must be zero (y(ε) = 0), and finally (in the 5-2 case)
that another moment must be zero.

It is easily seen that such a curve, meeting these interpola-
tion conditions, must be an elliptic curve of elastica-type. The

periodicity and vanishing surface requirements imply that it
can be the periodic elastic curve shown on Fig. 7.B only, and
parametrized in a certain way [31].

The formulas are, in terms of the standard Jacobi elliptic
functions:

u1(t) = 1− 2dn(K(1 +
4t

ε
))2,

u2(t) = −2dn(K(1 +
4t

ε
))sn(K(1 +

4t

ε
)) sin(

ϕ0

2
),

where ϕ0 = 130◦ (following [31], p. 403) and ϕ0 = 130.692◦

(following Mathematica R©), with k = sin(ϕ0

2 ) and K(k) is the
quarter period of the Jacobi elliptic functions. The trajectory
in the x1, x2 plane, shown on Fig. 7.B, has equations:

x1(t) = − ε
4K

[−4Kt
ε + 2(Eam( 4Kt

ε +K)− Eam(K))
]
,

x2(t) = k ε
2K cn( 4Kt

ε +K).

On Figs. 2 and 3, we show the ε-approximated trajectories,
which are “repeated small deformations” of the above basic
trajectory both for the car with a trailer and the ball rolling on
a plane. In the first example, the non-admissible trajectory to
be approximated is: going transversally to the car’s orientation
while keeping the trailer aligned with the car. In the second
example, the expected trajectory is: going straight while keep-
ing the same orientation (i.e. slipping without rolling). An
animated simulation of the ball rolling on a plane is available
on the website [38].

The formula for the entropy is, in both cases:

E(ε) =
3

2σε3

∫

Γ

dt

δ(t)
,

where σ is a universal constant, σ ≈ 0.00580305.
The details of the computations for the 4-2 case can be

found in [17], and in [18] for the 5-2 case.

IV. THE BALL WITH A TRAILER

We start by using Theorem 19, to reduce to the nilpotent
approximation along Γ :

(P̂6,2) ẋ1 = u1, (19)
ẋ2 = u2,

ẏ = (
x2

2
u1 −

x1

2
u2),

ż1 = x2(
x2

2
u1 −

x1

2
u2),

ż2 = x1(
x2

2
u1 −

x1

2
u2),

ẇ = Qw(x1, x2)(
x2

2
u1 −

x1

2
u2).

By Lemma 16, we can consider that

Qw(x1, x2) = δ(w)
(
(x1)2 + (x2)2

)
(20)

where δ(w) is the main invariant. In fact, it is the only
invariant for the nilpotent approximation along Γ. Moreover, if
we reparametrize Γ by setting dw := dw

4δ(w) , we can consider
that δ(w) = 1/4.

Then, we want to maximize
∫
ẇdt in fixed time ε, with

the interpolation conditions: x(0) = 0, y(0) = 0, z(0) = 0,
w(0) = 0, x(ε) = 0, y(ε) = 0, z(ε) = 0.
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From Lemma 28 in the appendix, we know that the optimal
trajectory is smooth and periodic, (of period ε).

Clearly, the optimal trajectory has also to be a length
minimizer, then we have to consider the usual Hamiltonian for
length: H = 1

2 ((PF1)2 + (PF2)2), in which P = (p1, ..., p6)
is the adjoint vector. It is easy to see that the abnormal
extremals do not come into the picture (cannot be optimal
with our additional interpolation conditions), and in fact, we
will show that the Hamiltonian system corresponding to the
Hamiltonian H is integrable.

Remark 25: This integrability property is no more true in
the general 6-2 case. It holds only for the ball with a trailer.

As usual, we work in Poincaré coordinates, i.e. we consider
level 1

2 of the Hamiltonian H, and we set:

u1 = PF = sin(ϕ), u2 = PG = cos(ϕ).

Differentiating twice, we get

ϕ̇ = P [F,G], ϕ̈ = −PFFG.PF − PGFG.PG,

where FFG = [F, [F,G]] and GFG = [G, [F,G]]. We set
λ = −PFFG, µ = −PGFG, and we get the equation:

ϕ̈ = λ sin(ϕ) + µ cos(ϕ). (21)

Now, we compute λ̇ and µ̇. We get, with similar notations as
above for the brackets (we bracket from the left):

λ̇ = PFFFG.PF + PGFFG.PG,

µ̇ = PFGFG.PF + PGGFG.PG,

and computing the brackets, we see that GFFG = FGFG =
0. Also, since the Hamiltonian does not depend on y, z, w,
we get that p3, p4, p5, and p6 are constants. Computing the
brackets FFG and GFG , we get that

λ =
3

2
p5 + p6x1, µ =

3

2
p4 + p6x2,

and then, λ̇ = p6 sin(ϕ) and µ̇ = p6 cos(ϕ). Then, by (21),
ϕ̈ = λλ̇

p6
+ µµ̇

p6
, and finally:

ẋ1 = sin(ϕ),

ẋ2 = cos(ϕ), (22)

ϕ̇ = K +
1

2p6
(λ2 + µ2),

λ̇ = p6 sin(ϕ),

µ̇ = p6 cos(ϕ).

Setting ω = λ
p6
, δ = µ

p6
, we obtain:

ω̇ = sin(ϕ),

δ̇ = cos(ϕ),

ϕ̇ = K +
p6

2
(ω2 + δ2).

It means that the plane curve (ω(t), δ(t)) has a curvature
which is a quadratic function of the distance to the ori-
gin. Then, the optimal curve (x1(t), x2(t)) projected to the
horizontal plane of the normal coordinates has a curvature
which is a quadratic function of the distance to some point.

10

Fig. 6. The dance of minimum entropy for the ball with a trailer

3. The entropy is given by the formula: E(!) = !
"4

!
!

dw
#(w) ,

where "(w) is the main invariant from (20), and # is a
universal constant.
In fact we can go a little bit further to integrate explicitely

the system (22). Set $̄ = cos(%)$! sin(%)µ, µ̄ = sin(%)$+
cos(%)µ. we get:

d$̄

dt
= !µ̄(K +

1

2p6
($̄2 + µ̄2)),

dµ̄

dt
= p6 + $̄(K +

1

2p6
($̄2 + µ̄2)).

This is a 2 dimensional (integrable) hamiltonian system. The
hamiltonian is:

H1 = !p6$̄!
2p6
4
(K +

1

2p6
($̄2 + µ̄2))2.

This hamiltonian system is therefore integrable, and solutions
can be expressed in terms of hyperelliptic functions. A liitle
numerics now allows to show, on figure 6, the optimal x-
trajectory in the horizontal plane of the normal coordinates.
On the figure 7, we show the motion of the ball with a

trailer on the plane (motion of the contact point between the
ball and the plane).Here, the problem is to move along the x-
axis, keeping constant the frame attached to the ball and the
angle of the trailer.

V. EXPECTATIONS AND CONCLUSIONS

Some movies of minimum entropy for the ball rolling on
a plane and the ball with a trailer are visible on the website
***************************.

A. Universality of some pictures in normal coordinates

Our first conclusion is the following: there are certain
universal pictures for the motion planning problem, in corank
less or equal to 3, and in rank 2, with 4 brackets at most (could
be 5 brackets at a singularity, with the logarithmic lemma).

Fig. 7. Parking the ball with a trailer

Fig. 8. The universal movements in normal coordinates

These figures are, in the two-step bracket generating case:
a circle, for the third bracket, the periodic elastica, for the 4th
bracket, the plane curve of the figure 6.
They are periodic plane curves whose curvature is respec-

tively: a constant, a linear function of of the position, a
quadratic function of the position.

This is, as shown on Figure 8, the clear beginning of a
series.

B. Robustness
As one can see, in many cases (2 controls, or corank

k " 3), our strategy is extremely robust in the following sense:
the asymptotic optimal syntheses do not depend, from the
qualitative point of view, of the metric chosen. They depend
only on the number of brackets needed to generate the space.

C. The practical importance of normal coordinates
The main practical problem of implementation of our strat-

egy comes with the !-modifications. How to compute them,

Γ





x(s) = s
y(s) = 0
R(s) = Id
θ(s) = 0

Fig. 6. Parking the ball with a trailer. See also the simulation available on
the website [38]

Following Lemma 23 in the appendix, this system of equations
is integrable.

Summarizing all the results, we get the following theorem.
Theorem 26: (asymptotic optimal synthesis for the ball

with a trailer) The asymptotic optimal synthesis is an ε-
modification of the one of the nilpotent approximation. The
latter has the following properties in normal coordinates, in
projection to the horizontal plane (x1, x2):

1) it is a closed smooth periodic curve, whose curvature is
a function of the square distance to some point,

2) the area and the 2nd order moments
∫

Γ
x1(x2dx1 −

x1dx2) and
∫

Γ
x2(x2dx1 − x1dx2) are zero,

3) the entropy is given by the formula: E(ε) = σ
ε4

∫
Γ

dw
δ(w) ,

where δ(w) is the main invariant from (20), and σ is a
universal constant.

In fact we can go a little bit further to integrate explicitly
the system (22). Set λ̄ = cos(ϕ)λ− sin(ϕ)µ, µ̄ = sin(ϕ)λ+
cos(ϕ)µ. We obtain:

dλ̄

dt
= −µ̄(K +

1

2p6
(λ̄2 + µ̄2)),

dµ̄

dt
= p6 + λ̄(K +

1

2p6
(λ̄2 + µ̄2)).

This is a 2 dimensional (integrable) Hamiltonian system.
The Hamiltonian is:

H1 = −p6λ̄−
p6

2
(K +

1

2p6
(λ̄2 + µ̄2))2.

This Hamiltonian system is therefore integrable, and solutions
can be expressed in terms of hyperelliptic functions. A little
numerics allows to show, on Fig. 7.C, the optimal x-trajectory
in the horizontal plane of the normal coordinates.

On Fig. 6, we show the motion of the ball with a trailer on
the plane (motion of the contact point between the ball and the
plane). Here, the problem is to move along the x-axis, in the
physical coordinates, while keeping both the frame attached
to the ball and the angle of the trailer constant.
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Fig. 6. The dance of minimum entropy for the ball with a trailer

3. The entropy is given by the formula: E(!) = !
"4

!
!

dw
#(w) ,

where "(w) is the main invariant from (20), and # is a
universal constant.
In fact we can go a little bit further to integrate explicitely

the system (22). Set $̄ = cos(%)$! sin(%)µ, µ̄ = sin(%)$+
cos(%)µ. we get:

d$̄

dt
= !µ̄(K +

1

2p6
($̄2 + µ̄2)),

dµ̄

dt
= p6 + $̄(K +

1

2p6
($̄2 + µ̄2)).

This is a 2 dimensional (integrable) hamiltonian system. The
hamiltonian is:

H1 = !p6$̄!
2p6
4
(K +

1

2p6
($̄2 + µ̄2))2.

This hamiltonian system is therefore integrable, and solutions
can be expressed in terms of hyperelliptic functions. A liitle
numerics now allows to show, on figure 6, the optimal x-
trajectory in the horizontal plane of the normal coordinates.
On the figure 7, we show the motion of the ball with a

trailer on the plane (motion of the contact point between the
ball and the plane).Here, the problem is to move along the x-
axis, keeping constant the frame attached to the ball and the
angle of the trailer.

V. EXPECTATIONS AND CONCLUSIONS

Some movies of minimum entropy for the ball rolling on
a plane and the ball with a trailer are visible on the website
***************************.

A. Universality of some pictures in normal coordinates

Our first conclusion is the following: there are certain
universal pictures for the motion planning problem, in corank
less or equal to 3, and in rank 2, with 4 brackets at most (could
be 5 brackets at a singularity, with the logarithmic lemma).

Fig. 7. Parking the ball with a trailer

Fig. 8. The universal movements in normal coordinates

These figures are, in the two-step bracket generating case:
a circle, for the third bracket, the periodic elastica, for the 4th
bracket, the plane curve of the figure 6.
They are periodic plane curves whose curvature is respec-

tively: a constant, a linear function of of the position, a
quadratic function of the position.

This is, as shown on Figure 8, the clear beginning of a
series.

B. Robustness
As one can see, in many cases (2 controls, or corank

k " 3), our strategy is extremely robust in the following sense:
the asymptotic optimal syntheses do not depend, from the
qualitative point of view, of the metric chosen. They depend
only on the number of brackets needed to generate the space.

C. The practical importance of normal coordinates
The main practical problem of implementation of our strat-

egy comes with the !-modifications. How to compute them,

A. Two-step
 Generating

B. Three -step Generating 

C. Four-step
 Generating 

Fig. 7. The dances of minimal entropy in the 2-control case

V. EXPECTATIONS AND CONCLUSIONS

A. Universality of Some Pictures in Normal Coordinates

Our first conclusion is the following: there are certain
universal pictures for the motion planning problem, in corank
less or equal to 3, and in rank 2, with 4 brackets at most (could
be 5 brackets at a singularity, with the logarithmic lemma).

These figures are, in the two-step bracket generating case:
a circle, for the third bracket: the periodic elastica, for the 4th

bracket: the plane curve of Fig. 7.C.
They are periodic plane curves whose curvature is respec-

tively: a constant, a linear function of the position, a quadratic
function of the position. This is, as shown on Fig. 7, the clear
beginning of a series.

In the case of more than two inputs the question is: what is
the equivalent of this series? In fact, according to our results in
Sections III-B, III-C we just know the first term (first bracket)
of the series: up to corank 3 it is still a circle (Section III-C)
and for higher corank, it is still a trigonometric curve but with
several periods that are successive multiples of a basic one,
see Formula (18).

B. Robustness

As one can see, in many cases (2 controls, or corank
k ≤ 3), our strategy is extremely robust in the following sense:
the asymptotic optimal syntheses do not depend, from the
qualitative point of view, of the metric chosen. They depend
only on the number of brackets needed to generate the space.

C. The Practical Importance of Normal Coordinates

The main practical problem of implementation of our strat-
egy comes with the ε-modifications. How to compute them ?
How to implement them ? In fact, the ε-modifications count
at higher order in the entropy. If not applied, they may cause
deviations that are not negligible. The high order w.r.t. ε in

the estimates of the error between the original system and
its nilpotent approximation (Formulas 10, 12, 13, 16) make
these deviations very small. It is why the use of our concept
of a nilpotent approximation along Γ, based upon normal
coordinates is very efficient in practice.

On the other hand, when a correction appears to be needed
(after a non-negligible deviation), it corresponds to brackets
of lower order. For example, in the case of the ball with a
trailer (4th bracket), the ε-modification corresponds to brackets
of order 2 or 3. The optimal pictures corresponding to these
orders can still be used to perform the ε-modifications.

D. Final Conclusion

This approach, to approximate optimally non-admissible
paths of nonholomic systems, looks very efficient, and in a
sense, universal. Of course, the theory is not complete, but the
cases under consideration (first, 2-step bracket-generating, and
second, two controls) correspond to many practical situations.
Nonetheless, there is still a lot of work to do to in order to
cover all interesting cases. However, the methodology to go
ahead is rather clear.

APPENDIX A
NORMAL FORM IN THE 6-2 CASE

We start from the general normal form (11) in normal
coordinates:

ẋ1 = (1 + (x2)2β)u1 − x1x2βu2,

ẋ2 = (1 + (x1)2β)u2 − x1x2βu1,

ẏi = (
x2

2
u1 −

x1

2
u2)γi(x, y, w),

ẇ = (
x2

2
u1 −

x1

2
u2)δ(x, y, w).

We perform a succession of changes of parametrization
of the surface S (w.r.t. which normal coordinates were con-
structed). These coordinate changes will always preserve the
fact that Γ(t) is the point x = 0, y = 0, w = t.

Remind that β vanishes on Γ, and since x has order 1,
we can already write on Tε: ẋ = u + O(ε3). One of the
γi’s (say γ1) has to be nonzero for Γ not to be tangent to ∆′.
Then, y1 has order 2 on Tε. Set ỹi = yi− γi

γ1
y1, for i > 1. The

differentiation gives dỹi
dt = ẏi− γi

γ1
ẏ1 +O(ε2). We set z1 = ỹ2,

z2 = ỹ3 since they have order 3. We also set w := w− δ
γ1
y1.

We are at the following point:

ẋ = u+O(ε3),

ẏ = (
x2

2
u1 −

x1

2
u2)γ1(w) +O(ε2),

żi = (
x2

2
u1 −

x1

2
u2)Li(w).x+O(ε3),

ẇ = (
x2

2
u1 −

x1

2
u2)δ(w).x+O(ε3),

where Li(w).x, and δ(w).x are linear in x. The function γ1(w)
can be put to 1 in the same way by setting y := y

γ1(w) .



12

Now let T (w) be an invertible 2×2 matrix. Set z̃ = T (w)z.
It is easy to see that we can choose T (w) such that:

ẋ = u+O(ε3),

ẏ = (
x2

2
u1 −

x1

2
u2) +O(ε2),

żi = (
x2

2
u1 −

x1

2
u2)xi +O(ε3),

ẇ = (
x2

2
u1 −

x1

2
u2)δ(w).x+O(ε3).

Next, a change of the form: w := w+L(w).z, where L(w).z
is linear in z kills δ(w) and yields ẇ = (x2

2 u1− x1

2 u2)O(ε2).
This O(ε2) has to be of the form Qw(x) +h(w)y+O(ε3),

where Qw(x) is quadratic in x. If we kill h(w), we get the
expected result. This is done with a change of coordinates of
the form: w := w + ϕ(w)y

2

2 .

APPENDIX B
PLANE CURVES WHOSE CURVATURE IS A FUNCTION OF

THE DISTANCE TO THE ORIGIN

Although this result is already known [35], we provide here
a very simple proof.

Consider a plane curve (x(t), y(t)), whose curvature is a
function of the distance from the origin, that is:

ẋ = cos(ϕ), ẏ = sin(ϕ), ϕ̇ = k(x2 + y2), (23)

for a certain smooth function k(.).
Lemma 27: Equation (23) is integrable.

Proof: Set x̄ = x cos(ϕ) + y sin(ϕ), ȳ = −x sin(ϕ) +
y cos(ϕ). Then k(x̄2 + ȳ2) = k(x2 + y2). The derivatives are:

dx̄

dt
= 1 + ȳk(x̄2 + ȳ2),

dȳ

dt
= −x̄k(x̄2 + ȳ2). (24)

We only need to show that (24) is a Hamiltonian system.
Indeed, since it is a two dimensional problem, it is always
Liouville-integrable. Therefore, we are looking for solutions
of the system of PDE’s:

∂H

∂x̄
= 1 + ȳk(x̄2 + ȳ2),

∂H

∂ȳ
= −x̄k(x̄2 + ȳ2).

They always do exist since the Schwartz integrability condi-
tions are satisfied: ∂2H

∂x̄∂ȳ = ∂2H
∂ȳ∂x̄ = 2x̄ȳk′.

APPENDIX C
PERIODICITY OF THE OPTIMAL CURVES IN THE 6-2 CASE

We consider the nilpotent approximation P̂6,2 given in
formula (15):

(P̂6,2) ẋ1 = u1, (25)
ẋ2 = u2,

ẏ = (
x2

2
u1 −

x1

2
u2),

ż1 = x2(
x2

2
u1 −

x1

2
u2),

ż2 = x1(
x2

2
u1 −

x1

2
u2),

ẇ = Qw(x1, x2)(
x2

2
u1 −

x1

2
u2).

We consider the particular case of the ball with a trailer.
Then, according to Lemma 16, the ratio r(ξ) = 1.

It follows that the last equation can be rewritten ẇ =
δ(w)((x1)2 + (x2)2)(x2

2 u1 − x1

2 u2) for some never vanishing
function δ(w) (otherwise it contradicts the full rank of ∆(3)).
We can change the coordinate w for w̃ such that dw̃ = dw

δ(w) ,
which leads to:

(P̂6,2) ẋ1 = u1,

ẋ2 = u2,

ẏ = (
x2

2
u1 −

x1

2
u2), (26)

ż1 = x2(
x2

2
u1 −

x1

2
u2),

ż2 = x1(
x2

2
u1 −

x1

2
u2),

ẇ = ((x1)2 + (x2)2)(
x2

2
u1 −

x1

2
u2).

This is a right invariant system on R6 with coordinates
ξ = (ς, w) = (x, y, z, w), for a certain nilpotent Lie group
structure over R6 (denoted by G). The group law is of the
form (ς2, w2)(ς1, w1) = (ς1 ∗ ς2, w1 + w2 + Φ(ς1, ς2)), for a
certain function Φ and where ∗ is the multiplication of another
Lie group structure on R5, with coordinates ς (denoted by G0).
In order to establish the formula for the group law, although it
is possible, we need not to compute it completely. In fact, G
is a central extension of R by G0, and for this type of central
extension, the result is a consequence of the following facts
only:

1) ∂
∂w is a right invariant vector field,

2) associativity of the law,
3) {e, w} is the center of G where e denotes the unit of

G0.

Lemma 28: The trajectories of (26) that maximize
∫
ẇdt

in fixed time ε, with interpolating conditions ς(0) = ς(ε) = 0,
have a periodic projection on ς (i.e. ς(t) is smooth and periodic
of period ε).

Remark 29: 1) Due to the invariance of (26) with re-
spect to w, it is equivalent to consider the problem with
the more restrictive terminal conditions ς(0) = ς(ε) = 0,
w(0) = 0.

2) The scheme of this proof proof works also to show
periodicity in the case of distributions with flag 2-3-4
and 2-3-5.

The idea for this proof was given to us by A. Agrachev.
Proof: Let (ς, w1), (ς, w2) be initial and terminal points

of an optimal solution of our problem with relaxed boundary
conditions ς(0) = ς(ε) only. By right translation by (ς−1, 0),
this trajectory is mapped into another trajectory of the sys-
tem, with initial and terminal points (0, w1 + Φ(ς, ς−1)) and

(0, w2 + Φ(ς, ς−1)). Hence, the cost
∫
ẇ(t)dt for this new

trajectory has the same value. As one can see, the optimal
cost is in fact independent of the ς-coordinate of the initial
and terminal conditions.

Therefore, our problem is the same as maximizing
∫
ẇ(t)dt

but with the (larger) endpoint condition ς(0) = ς(ε) (free).
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We can now apply the general transversality conditions of
Theorem 12.15, page 188 of [5]. It says that the initial and
terminal covectors (p1

ς , p
1
w) and (p2

ς , p
2
w) are such that p1

ς =
p2
ς . This is enough to show periodicity.
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