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Abstract. In this paper, we consider generic corank-2 subriemannian struc-
tures, and we show that the Spherical Hausdorf measure is always a C1-smooth
volume, which is in fact generically C2-smooth out of a stratified subset of codi-
mension 7. In particular, for rank 4, it is generically C2.

This is a continuation of previous works of the auhors.

1. Introduction

In this paper, we consider subriemannian structures s = (∆, g) over a n-dimensional
manifold M . The distribution ∆ has rank p and corank k = n− p, and g is a rie-
mannian metric over ∆. In most of the paper, k = 2. Moreover, the distribution is
assumed to be 2-step bracket generating.
The set S of such (corank 2, 2-step bracket generating) subriemannian structures

over M is embedded withe the C∞ Whitney topology.
As will be recalled in the next section, there is a natural smooth measure associ-

ated with the structure s, called the Popp measure (see [8]). It has been shown in
[1] that the Radon-Nykodim derivative Ra(ξ) of the spherical Haussdorf measure
with respect to the Popp measure is just given by the Popp-volume of the unit ball
of the nilpotent approximation of s at the point ξ. Moreover, in the same paper,
when k = 1, it is shown that Ra(ξ) is a C3 function, which is not C5 in general.
The nonsmoothness is due to certain generic singularity of the structure. The

degree 3 of differentiability is due to the fact that, in the corank one case, the
conjugate locus of the Nilpotent approximation coincides with the cut locus. This
is no more true for higher corank.
In particular, this is shown in [4], in the corank 2 case, and an explicit character-

ization of the cut-locus is given. In the same paper, it has been shown that Ra(ξ)
is generically C1 for n = 4, k = 2.

The purpose of this paper is to show that in fact, due to to this explicit simple
characterization of the cut-locus, the following holds:

Theorem 1. (corank k = 2) 1. The Radon-Nykodim derivative Ra(ξ) is always C1
2. The Radon-Nykodim derivative Ra(ξ) is generically (residual) C2, out of a

stratified set of codimension 7. In the particular case n = 4, there is an open-dense
subset of S for which Ra(ξ) is C2-smooth.
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The paper is organized as follows: in the next section 2, we recall the definition
of the Popp measure, and of the nilpotent approximation of s = (∆, g). We restate
the main result of [4], which is our key point.
In Section 3, we give the proof of Theorem 1. For this, we need an adaptation

of a very old result of Arnold [3], to the case of versal defomations of real skew-
symmetric matrices. This adaptation is presented in our appendix, together with
certain basic facts about quaternions, that are a very convenient tool in this study.

2. Prerequisites

2.1. Nilpotent approximation. We define the nilpotent approximation in the

two-step baracket generating case only. The tensor mapping:

(2.1a) [., .] : ∆ξ ×∆ξ → TξM/∆ξ,

is skew symmetric. Then, for any Z∗ ∈ (TξM/∆ξ)
∗ we have:

Z∗([X,Y ] + ∆ξ) =< AZ∗(X), Y >g

for some g-skew-symmetric endomorphism AZ∗ of ∆ξ. The mapping Z∗ → AZ∗ is
linear, and its image is denoted by Lξ.
The space Lξ = ∆ξ⊕TξM/∆ξ is endowed with the structure of a 2-step nilpotent

Lie algebra with the bracket:

[(V1,W1), (V2,W2)] = (0, [V1, V2] + ∆q).

The associated simply connected nilpotent Lie group is denoted by Gξ, and the
exponential mapping Exp : Lξ → Gξ is one-to-one and onto. By translation, the
metric gξ over ∆ξ allows to define a left-invariant subriemannian structure over Gξ,
called the nilpotent approximation of (∆, g) at ξ.
Any k-dimensional vector subspace Vξ of TξM , transversal to ∆ξ, allows to

identify Lξ and Gξ to TξM ' ∆ξ ⊕ TξM/∆ξ. If we fix ξ0 ∈M,we can chose linear
coordinates x in ∆ξ0 such that the metric gξ0 is the standard Euclidean metric,
and for any linear coordinate system y in Vξ, there are skew-symmetric matrices
L1, ..., Lk ∈ so(p,R) such that te mapping 2.1a writes:

[X,Y ] + ∆ξ =


X ′L1Y

.

.
X ′LkY

 ,

where X ′ denotes the transpose of the vector X.
This construction works for any ∆, but ∆ is one-step bracket generating iff the

endomorphisms of ∆ξ, Li, i = 1, ..., k (respectively the matices Li if coordinates y
in Vξ are chosen) are linearly independant.

2.2. Popp Measure. In the 2-step bracket generating case, the linear coordinates
y in TξM/∆ξ can be chosen in such a way that the endomorphisms Li, i = 1, ..., k
are orthonormal with respect to the Hilbert-Schmidt scalar product < Li, Lj >=
1
pTraceg(L

′
iLj). This choice defines a canonical euclidean structure over TξM/∆ξ

and a corresponding volume in this space. Then using the euclidean structure over
∆ξ, we get a canonical eucildean structure over ∆ξ ⊕ TξM/∆ξ. The choice of the
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subspace Vξ induces an euclidean structure on TξM that depends on the choice of
Vξ, but the associated volume over TξM is independant of this choice.

Definition 1. This volume form on M is called the Popp measure.

The Popp measure is a smooth volume form.

Let us recall a main result from [1].

Theorem 2. The value Ra(ξ) at ξ ∈ M of the Radon-Nykodim derivative of the
spherical Hausdorf measure with respect to the Popp measure is equal to the Popp
volume of the unit ball of the nilpotent approximation at ξ.

2.3. Geodesics and Cut-locus. We restrict to the corank 2 case. Here, we con-
sider geodesics of the nilpotent approximation of s = (∆, g) in Tξ0M ' Rn, issued
from the origin. A transversal subspace Vξ0 is chosen, together with the linear
Hilbert-Schmidt-orthonormal coordinates y in Vξ0 , and euclidean coordinates x in
∆ξ0 . The geodesics are projections on R

n of trajectories of the hamiltonian H on
T ∗Rn :

(2.2) H(p, q, x, y) = sup
u∈Rp

(−||u||2 +

p∑
i=1

piui + q1x
′L1u+ q2x

′L2u).

where p, q are the coordinates dual to x, y.
Geodesics are arclength-parametrized as soon as the initial covector p0 verifies

||p0|| = 1.
The following result is shown in [4], and is crucial for the proof of our result.

Theorem 3. The cut time tcut of the arclength-parametrized geodesic correspond-
ing to p, q1, q2 is given by:

tcut =
2π

max(σ(q1L1 + q2L2)
,

where max(σ(A)) denotes the maximum modulus of the eigenvalues of the skew
symmetric matrix A. Ingeneral, the conjugate time is not equal to the cut time. If
q1L1 + q2L2 has a double maximum eigenvalue or if [L1, L2] = 0, then the cut time
is also conjugate.

It turns out that the singularities of the Hausdorf measure will appear at collision
points of the spectrum of q1L1 + q2L2. The set of skew-symmetric matrices that
have a double eigenvalue is a codimension 3 algebraic subset of so(p,R). Then, from
the tranversality theorems ([2]), for generic (open, dense) subriemannian structures,
the set Σ2 of points ofM such that q1L1+q2L2 has a double (at least) eigenvalue for
some q1, q2 has codimension 2 in M. The problems of smoothness of the Hausdorf
measure will occur on Σ2 only.
Note that q1, q2 are constant along geodesics, since the hamiltonian (2.2) does

not depend on the y-coordinates. Along the paper we set, for the geodesic under
consideration:

q1 = r cos(θ), q2 = r sin(θ), Aξ(θ, r) =
2π

max(σ(q1L1 + q2L2)
, where ξ = (x, y) ∈M.

It is known ([6, 7, 9]) that Aξ(θ, r) is a Lipschitz function of all parameters ξ, θ, r.
We write also Aξ(θ) = Aξ(θ, 1).
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3. Proof of the Theorem

For a fixed point ξ0 = (x0, y0) ∈ M, let us consider the exponential mapping E
associated with the nilpotent approximation at ξ0, where x, y are coordinates as in
Section 2.2:

Et(p0, q0) = π(et
~H(ξ0, p0, q0)),

where π : T ∗M → M is the canonical projection, and ~H is the hamiltonian vector
field associated with the (smooth) hamiltonian (2.2). We have p0 = u0, and as above
q(t) = q0 = (q1, q2) = (r cos(θ), r sin(θ)). Also, by quasihomogeneity, Et(p, q0) =
E1(t u0, t q0).
It follows that the volume Vξ at a point ξ ∈ M of the unit ball of the nilpotent

approximation is given by the formula:

(3.1) Vξ =

∫ 2π

0

∫ Aξ(θ)

0

∫
B

Jε(u, θ, r, ξ)du dr dθ

where B is the unit ball in the euclidean p-dimensional u-space, and Jε(u, θ, r, ξ)
is the jacobian determinant of E1(u, r cos(θ), r sin(θ)).

We set fξ(θ, r) =
∫
B
Jε(u, θ, r, ξ)du, and Wξ(θ) =

∫ Aξ(θ)
0

fξ(θ, r)dr. If we show
that Wξ(θ) is C1 or C2 w.r.t (θ, ξ), it will imply that Vξ is C1 or C2 w.r.t ξ. But, in
a neighborhood of a fixed (ξ0, θ0) ∈M × S1,

Wξ(θ) =

∫ Aξ(θ)

0

fξ(θ, r)dr(3.2)

=

∫ Aξ0 (θ0)

0

fξ(θ, r)dr +

∫ Aξ(θ)

Aξ0 (θ0)

fξ(θ, r)dr

= (I) + (II).

The term (I) is smooth. Then we are concerned with eximining the smoothness of
II(ξ, θ) only.

3.1. Proof of the fact that Wξ(θ) is always C1. The tangent mapping to
II(ξ, θ), at (θ0, ξ0) is , setting z = (θ, ξ), and f(z, r) = fξ(θ, r), A(z) = Aξ(θ) :

(3.3) D II(z0)(h) =

n+1∑
i=1

f(z0, A(z0))
∂A

∂zi
(z0)hi.

This last expression makes sense, and is continuous w.r.t z0 for the following
reasons: first as we said, A(z) is Lipschitz-continuous, then the derivatives are
bounded. And, precisely, at points z0 such that A is not differentiable, f(z0, A(z0))
vanishes. This last poin follows from the fact that for a multiple eigenvalue A(z0),
the conjugate time is equal to the cut time, which makes the jacobian determinant
Jε(u, θ0, A(θ0, ξ0), ξ0) vanish for all u. This comes from the section II.3 1 in the
paper [1].

Remark 1. In fact, it follows from the same paper that, if A(z0) is a multiple
eigenvalue, the rank of Jε(u, θ0, A(θ0ξ0), ξ0) drops by 2 at least, independantly of
u. This point will be very important in the next section.

This ends the proof.



HAUSDORF MEASURE 5

3.2. Proof of the C2 result. It follows from the transversality theorems ([2, 5])
and from Lemma 1, that we can start from an open dense subsetof subriemannian
metrics, still denoted by S, such that all elements s of S meet: the set Us ⊂M×S1
of (θ, ξ) such that Aξ(θ) corresponds to a triple (at least) eigenvalue is a locally
finite union of manifolds, regularly embedded, of codimension 8 in M ×S1, and the
set Ũs ⊂M ×S1 of (θ, ξ) such that A(θ, ξ) corresponds to a double (and not triple)
eigenvalue is a locally finite union of manifolds, of codimension 3.

To show this, we can work locally, in a neighborhood N of (s0, ξ0, θ0) ⊂ S×M ×
S1, in coordinates ξ = (x, y) in M , relative to s0, from section 2.2. Then, in coor-
dinates, the (Nilpotentized at ξ) subriemannian metric s is specified by two skew-
symmetric matrices L1(ξ), L2(ξ). It is easy to see that the mapping:

(ξ, θ, L1(ξ), L2(ξ)→ L1(ξ) cos(θ) + L2(ξ) sin(θ)

is a submersion. Then, we consider the stratification by the multiplicity of eigen-
values of the space of p-skew-symmetric matices. Generically (open-dense), s can
be put transversal to this (closed) Whitney stratification.

We want to show the following property (P), for a generic (residual in the Whit-
ney topology) set S0 of subriemannian metrics over M :
(P) the partial derivatives Di(z) = f(z,A(z)) ∂A∂zi (z) from 3.3 are C1 in a neigh-

borhood of all points z0 such that A(z0) corresponds to a double (and not triple)
eigenvalue.

To do this, we fix s0 and z0 ∈ Ũs0 and we consider a (mini)versal deformation of
L(ξ0, θ0) = L1(ξ0) cos(θ0) +L2(ξ0) sin(θ0) = L(z0), as introduced in section 4.1. It
follows that:

L(ξ, θ) = L(z) = g(z)−1N(ϕ̃(z))g(z)

where N(ϕ̃(z)) is the block-diagonal N(ϕ̃(z)) = Bd(λ(z)q̂ + q(z),∆(z)), and g(z)
belongs to the orthogonal group.

The functions g(z), λ(z), q(z),∆(z) are smooth functions. We will temporarily
assume the following property (R):
(R): the map z → q(z), M × S1 → R3, has rank 3 at z0.
Then, assume that (R) holds at all points z of Ũs0 .
It means that we can change the coordinates inM×S1 for the three components

of q(z) around z0 ∈ Ũs0 , are the three first coordinates, z1, z2, z3. Note that these
3 coordinates vanish at z0.
Locally, the codimension 3 manifold Ũs0 is determined by the equations z1 =

z2 = z3 = 0.

As we said in Remark 1, the rank of Jε(u, z, A(z)) drops by 2 at least, inde-
pendantly of u, at each point z ∈ Ũs0 , and for all u. Formula 4.1 in the appendix
tell us that A(z) = 2π

λ(z)+
√
z21+z

2
2+z

2
3

where λ(z) is smooth and nonzero. We set

ẑ4 = (z4, ..., zn+1) and ẑ1 = (z1, z2, z3). Then, Jε and f(z, r) vanish with all their
first order partial derivatives w.r.t. z, r, at points ẑ1 = 0, and r = 2π

λ(z) . Hence,

(3.4) f(z, r) = Q̃z,r(ẑ1, r −
2π

λ(z)
).
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Here, Q̃z,r(.) is a quadratic form depending smoothly on z, r.

We go bach to the second partial derivatives of Wξ(θ) =
∫ A(θ0,ξ0)
0

fξ(θ, r)dr

+
∫ A(θ,ξ)
A(θ0,ξ0)

fξ(θ, r)dr, or with the new notations,W (z) =
∫ A(z0)
0

f(z, r)dr +
∫ A(z)
A(z0)

f(z, r)dr.

The first partial derivatives, at any point z0 were:

∂W (z0)

∂zi
=

∫ A(z0)

0

∂

∂zi
f(z, r)dr + f(z0, A(z0))

∂A

∂zi
(z0),

= III(z0) + IV (z0)

To show that ∂III(z)
∂zj exists and is continuous, we proceed exactly as in Section

3.1, using the fact that ∂
∂zj

f(z, r) also vanishes at (ẑ1 = 0, r = 2π
λ(z) ).

The more diffi cult point is to show that ∂IV (z)∂zj exists and is continuous.

∂IV (z)

∂zj
=

∂

∂zj
(f(z,A(z))

∂A(z)

∂zi
).

We get:

∂IV

∂zj
(z) =

∂f

∂zj
(z,A(z))

∂A(z)

∂zi
) +

∂f

∂r
(z,A(z))

∂A(z)

∂zi

∂A(z)

∂zj
+ f(z,A(z))

∂2A(z)

∂zi∂zj
.

= V (z) + V I(z) + V II(z).

The cases of V (z), V I(z) are obvious, since again ∂A(z)
∂zi

is bounded, and the

functions ∂f
∂zj

(z,A(z)), ∂f∂r (z,A(z)) are continuous and go to zero when ẑ1 tends to
zero. The only diffi culty is the case of V II(z).
Remind that A(z) = 2π

λ(z)+||ẑ1||. where λ(z) is nonzero, smooth. Then the only
problem may occur for i = 1, 2, 3.
Let us consider only 2 cases: (1) i = 1, j = 2, (2) i = 1, j = 4, the other cases

being similar.
Case (2): ∂A(z)∂z1

= −2π
(λ(z)+||ẑ1||)2 ( ∂λ∂z1 + z1

||z1|| ), and
∂2A(z)
∂z1∂z4

is bounded. It is multiplied
by f(z,A(z)), which tends to zero when ẑ1 tends to zero. Then it is zero at points
ẑ1 = 0, and it is continuous.
Case(1):∂A(z)∂z1

= −2π
(λ(z)+||ẑ1||)2 ( ∂λ∂z1 + z1

||z1|| ), and
∂2A(z)
∂z1∂z4

= C(z)+D(z) z1z2

||ẑ1||
3
2
, where

C(z) is bounded, D(z) is continuous. Then, the question is the continuity of ϕ(z) =
f(z,A(z))
||ẑ1|| , in a neighborhood of the set E = {ẑ1 = 0}. Let us use Formula 3.4. It

gives f(z,A(z)) = Q̃z,r(ẑ1, A(z)− 2π
λ(z) ). But A(z) = 2π

λ(z)+||ẑ1|| , then, A(z)− 2π
λ(z) =

ψ(z)||ẑ1||, where ψ(z) is continuous. It follows that ϕ(z) tends to zero when ẑ1
tends to zero. The subriemannian volume is C2 in a neighborhood of Ũs0 .
If we show that generically, property (R) holds, it follows that Ra(ξ) is C2 except

on a set of codimension 8 in M × S1, the theorem is proved. It is shown in the
appendix 2 that property (R) holds for a residual in S. In the case n = 6, the bad
set is generically empty in M × S1 and property (R) is open dense in S.
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4. Appendix

4.0.1. Pure Quaternions in so(4). In so(4), it is natural and useful for computations
to use quaternionic notations. Set:

i =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , j =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , k =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

ı̂ =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , ̂ =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , k̂ =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .

The matrices i, j, k (resp. ı̂, ̂, k̂) generate the so-called pure quaternions (resp.
pure skew-quaternions), the space of which is denoted by Q (resp. Q̂). The Lie
algebra so(4) = Q⊕ Q̂, and quaternions commute with skew-quaternions: [Q, Q̂] =
0.
We endow so(4) with the Hilbert-Schmidt scal product: < L1, L2 >= trace(L′1L2).

Then, i, j, k, ı̂, ̂, k̂ form an orthonormal basis. The eigenvalues ω1, ω2 of A = q+q̂
meet:

(4.1) −(ω1,2)
2 = (||q|| ± ||q̂||)2.

As a consequence, an element A ∈ so(4) has a double eigenvalue iff A ∈ Q ∪ Q̂.

4.1. Versal deformation of skew-symmetric matrices. The results of Arnold
in [3] can be easily extended to the real smooth case (C∞), for skew-symmetric
matrices, under the action of the orthogonal group:

Theorem 4. [3] Let N(p) be a family of n × n matrices smoothly depending on
p at (Rl, 0). Let OM be the orbit of N = N(0) under the action of Gl(n,R) by
conjugation. Let T (µ) be a smooth family of matrices, depending on the parameter
µ ∈ Rk, such that the mapping ϕ : µ → T (µ) transversally intersects ON at
some Ñ = g−1Ng. Then, there is a family of (smoothly depending on p) matrices
g(p) and a smooth mapping ϕ̃ : p → µ(p), such that N(p) = g(p)−1A(ϕ̃(p))g(p).
Moreover, for the transversal T (µ), one can chose the centralizer of N in gl(n,R).

We rephrase the result in the case of a skew-symmetric matrix N that has a
double (but not triple) eigenvalue. Then, by section 4.0.1, we can assume that N is
(conjugate to) a block-diagonal Bd(αq̂ ,δ), where q̂ is a unit skew-quaternion and
δ is a block-diagonal skew symmetric matrix with 2 × 2 blocks and non multiple
eigenvalues. The centralizer of q̂ in so(4,R) is the vector space of matrices of the
form λq̂ + q, where q varies over pure quaternions. Then, the centralizer of N in
so(n,R) is the space of block diagonal matrices Bd(λq̂ + q,∆), where q varies over
pure quaternions and ∆ varies over 2× 2 skew-symmetric block diagonal matrices.
Hence, we can find a smooth g(p) ∈ SO(n,R), and a smooth ϕ̃(p) such that:

N(p) = g(p)−1T (ϕ̃(p))g(p), with(4.2)

T (µ) = Bd(λ(µ)q̂ + q(µ),∆(µ)).

The versal deformation T (µ) is not universal (which means that ϕ̃ is not uniquely
determined by N(p)), however, the nondiagonal eigenvalues of T (µ) are given by
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the formula 4.1. It follows that q is determined modulo conjugation by a unit
quaternion. On the other hand, the functions λ(µ),∆(µ) are smooth and λ(µ) is
nonzero.

4.2. Lemma.

Lemma 1. 1.The set of skew symmetric matrices with a double eigenvalue is an
algebraic subset of codimension 3 in skew symmetric matrices.
2. The set of skew symmetric matrices with a triple eigenvalue is an algebraic

subset of codimension 8 in skew symmetric matrices.

The proof can be obtained as in the appendix of [10].

4.3. Genericity of (R). We consider the set S of corank-2 subriemannian metrics
on a fixed manifold M , equipped with the Whitney topology. The result being
essentially local, we work in a neighborhood of a point, in coordinates.

Lemma 2. Property (R) is resisual in S.

Note that the function q(µ) in 4.2 is defined modulo conjugation by a unit
quaternion q1(µ), depending smoothly on µ.

Let us show that the property (R) does not depend on this choice: actually, if
we set q̃(µ) = q1(µ)q(µ)q1(µ)−1, then the differential Dq(µ) is changed for:

Dq̃(µ)(v) = [Dq1(µ)(v), q(µ)] + q1(µ)Dq(µ)(v)q1(µ)−1.

But q(0) = 0, therefore the image of Dq̃(0) has the same dimension as the one
of Dq(0).
The codimension d0 of the algebraic set of 3×(n+1) matrices that have corank 1

at least is d0 = (n−1) [product of coranks] in the 3×(n+1) matrices. By Lemma 1,
the set of skew-symmetric matrices that have double maximum eigenvalue is d1 = 3.
Consider the map M : (z, L1(z), L2(z)) → Dq(z), where q is the map considered
in property (R). This mapM is a submersion. Therefore, there is a residual set S
in subriemannian metrics, for which the codimension of the set of (θ, ξ) in S1 ×M
where A(z) corresponds to a double eigenvalue, an property (R) holds at (θ, ξ) is a
stratified set of codimension d0 + d1 = n+ 2.

Acknowledgement 1. we thank with great respect the memory of V. Zakalyukin
who gave the basic idea of this result, in june 2011.
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