ON THE SPHERICAL HAUSDORF MEASURE IN SUBRIEMANNIAN GEOMETRY

UGO BOSCAIN AND JEAN-PAUL GAUTHIER

Dedicated to A. Agrachev for his 60th birthday

Abstract

In this paper, we consider generic corank-2 subriemannian structures, and we show that the Spherical Hausdorf measure is always a \mathcal{C}^{1}-smooth volume, which is in fact generically \mathcal{C}^{2}-smooth out of a stratified subset of codimension 7 . In particular, for rank 4 , it is generically \mathcal{C}^{2}.

This is a continuation of previous works of the auhors.

1. Introduction

In this paper, we consider subriemannian structures $s=(\Delta, g)$ over a n-dimensional manifold M. The distribution Δ has rank p and corank $k=n-p$, and g is a riemannian metric over Δ. In most of the paper, $k=2$. Moreover, the distribution is assumed to be 2-step bracket generating.

The set \mathcal{S} of such (corank 2, 2-step bracket generating) subriemannian structures over M is embedded withe the \mathcal{C}^{∞} Whitney topology.

As will be recalled in the next section, there is a natural smooth measure associated with the structure s, called the Popp measure (see [8]). It has been shown in [1] that the Radon-Nykodim derivative $R_{a}(\xi)$ of the spherical Haussdorf measure with respect to the Popp measure is just given by the Popp-volume of the unit ball of the nilpotent approximation of s at the point ξ. Moreover, in the same paper, when $k=1$, it is shown that $R_{a}(\xi)$ is a \mathcal{C}^{3} function, which is not \mathcal{C}^{5} in general.

The nonsmoothness is due to certain generic singularity of the structure. The degree 3 of differentiability is due to the fact that, in the corank one case, the conjugate locus of the Nilpotent approximation coincides with the cut locus. This is no more true for higher corank.

In particular, this is shown in [4], in the corank 2 case, and an explicit characterization of the cut-locus is given. In the same paper, it has been shown that $R_{a}(\xi)$ is generically \mathcal{C}^{1} for $n=4, k=2$.

The purpose of this paper is to show that in fact, due to to this explicit simple characterization of the cut-locus, the following holds:

Theorem 1. (corank $k=2$) 1. The Radon-Nykodim derivative $R_{a}(\xi)$ is always \mathcal{C}^{1}
2. The Radon-Nykodim derivative $R_{a}(\xi)$ is generically (residual) \mathcal{C}^{2}, out of a stratified set of codimension 7. In the particular case $n=4$, there is an open-dense subset of \mathcal{S} for which $R_{a}(\xi)$ is \mathcal{C}^{2}-smooth.

[^0]The paper is organized as follows: in the next section 2 , we recall the definition of the Popp measure, and of the nilpotent approximation of $s=(\Delta, g)$. We restate the main result of [4], which is our key point.

In Section 3, we give the proof of Theorem 1. For this, we need an adaptation of a very old result of Arnold [3], to the case of versal defomations of real skewsymmetric matrices. This adaptation is presented in our appendix, together with certain basic facts about quaternions, that are a very convenient tool in this study.

2. Prerequisites

2.1. Nilpotent approximation. We define the nilpotent approximation in the
two-step baracket generating case only. The tensor mapping:

$$
\begin{equation*}
[., .]: \Delta_{\xi} \times \Delta_{\xi} \rightarrow T_{\xi} M / \Delta_{\xi} \tag{2.1a}
\end{equation*}
$$

is skew symmetric. Then, for any $Z^{*} \in\left(T_{\xi} M / \Delta_{\xi}\right)^{*}$ we have:

$$
Z^{*}\left([X, Y]+\Delta_{\xi}\right)=<A_{Z^{*}}(X), Y>_{g}
$$

for some g-skew-symmetric endomorphism $A_{Z^{*}}$ of Δ_{ξ}. The mapping $Z^{*} \rightarrow A_{Z^{*}}$ is linear, and its image is denoted by \mathcal{L}_{ξ}.

The space $L_{\xi}=\Delta_{\xi} \oplus T_{\xi} M / \Delta_{\xi}$ is endowed with the structure of a 2-step nilpotent Lie algebra with the bracket:

$$
\left[\left(V_{1}, W_{1}\right),\left(V_{2}, W_{2}\right)\right]=\left(0,\left[V_{1}, V_{2}\right]+\Delta_{q}\right)
$$

The associated simply connected nilpotent Lie group is denoted by G_{ξ}, and the exponential mapping $E_{x p}: L_{\xi} \rightarrow G_{\xi}$ is one-to-one and onto. By translation, the metric g_{ξ} over Δ_{ξ} allows to define a left-invariant subriemannian structure over G_{ξ}, called the nilpotent approximation of (Δ, g) at ξ.

Any k-dimensional vector subspace \mathcal{V}_{ξ} of $T_{\xi} M$, transversal to Δ_{ξ}, allows to identify L_{ξ} and G_{ξ} to $T_{\xi} M \simeq \Delta_{\xi} \oplus T_{\xi} M / \Delta_{\xi}$. If we fix $\xi_{0} \in M$, we can chose linear coordinates x in $\Delta_{\xi_{0}}$ such that the metric $g_{\xi_{0}}$ is the standard Euclidean metric, and for any linear coordinate system y in \mathcal{V}_{ξ}, there are skew-symmetric matrices $L_{1}, \ldots, L_{k} \in \operatorname{so}(p, \mathbb{R})$ such that te mapping 2.1a writes:

$$
[X, Y]+\Delta_{\xi}=\left(\begin{array}{c}
X^{\prime} L_{1} Y \\
\cdot \\
\cdot \\
X^{\prime} L_{k} Y
\end{array}\right)
$$

where X^{\prime} denotes the transpose of the vector X.
This construction works for any Δ, but Δ is one-step bracket generating iff the endomorphisms of $\Delta_{\xi}, L i, i=1, \ldots, k$ (respectively the matices L_{i} if coordinates y in \mathcal{V}_{ξ} are chosen) are linearly independant.
2.2. Popp Measure. In the 2-step bracket generating case, the linear coordinates y in $T_{\xi} M / \Delta_{\xi}$ can be chosen in such a way that the endomorphisms $L i, i=1, \ldots, k$ are orthonormal with respect to the Hilbert-Schmidt scalar product $<L_{i}, L_{j}>=$ $\frac{1}{p} \operatorname{Trace}_{g}\left(L_{i}^{\prime} L_{j}\right)$. This choice defines a canonical euclidean structure over $T_{\xi} M / \Delta_{\xi}$ and a corresponding volume in this space. Then using the euclidean structure over Δ_{ξ}, we get a canonical eucildean structure over $\Delta_{\xi} \oplus T_{\xi} M / \Delta_{\xi}$. The choice of the
subspace \mathcal{V}_{ξ} induces an euclidean structure on $T_{\xi} M$ that depends on the choice of \mathcal{V}_{ξ}, but the associated volume over $T_{\xi} M$ is independant of this choice.
Definition 1. This volume form on M is called the Popp measure.
The Popp measure is a smooth volume form.
Let us recall a main result from [1].
Theorem 2. The value $R_{a}(\xi)$ at $\xi \in M$ of the Radon-Nykodim derivative of the spherical Hausdorf measure with respect to the Popp measure is equal to the Popp volume of the unit ball of the nilpotent approximation at ξ.
2.3. Geodesics and Cut-locus. We restrict to the corank 2 case. Here, we consider geodesics of the nilpotent approximation of $s=(\Delta, g)$ in $T_{\xi_{0}} M \simeq \mathbb{R}^{n}$, issued from the origin. A transversal subspace $\mathcal{V}_{\xi_{0}}$ is chosen, together with the linear Hilbert-Schmidt-orthonormal coordinates y in $\mathcal{V}_{\xi_{0}}$, and euclidean coordinates x in $\Delta_{\xi_{0}}$. The geodesics are projections on \mathbb{R}^{n} of trajectories of the hamiltonian H on $T^{*} \mathbb{R}^{n}$:

$$
\begin{equation*}
H(p, q, x, y)=\sup _{u \in \mathbb{R}^{p}}\left(-\|u\|^{2}+\sum_{i=1}^{p} p_{i} u_{i}+q_{1} x^{\prime} L_{1} u+q_{2} x^{\prime} L_{2} u\right) \tag{2.2}
\end{equation*}
$$

where p, q are the coordinates dual to x, y.
Geodesics are arclength-parametrized as soon as the initial covector p_{0} verifies $\left\|p_{0}\right\|=1$.

The following result is shown in [4], and is crucial for the proof of our result.
Theorem 3. The cut time $t_{c u t}$ of the arclength-parametrized geodesic corresponding to p, q_{1}, q_{2} is given by:

$$
\text { tcut }=\frac{2 \pi}{\max \left(\sigma\left(q_{1} L_{1}+q_{2} L_{2}\right)\right.},
$$

where $\max (\sigma(A))$ denotes the maximum modulus of the eigenvalues of the skew symmetric matrix A. Ingeneral, the conjugate time is not equal to the cut time. If $q_{1} L_{1}+q_{2} L_{2}$ has a double maximum eigenvalue or if $[L 1, L 2]=0$, then the cut time is also conjugate.

It turns out that the singularities of the Hausdorf measure will appear at collision points of the spectrum of $q_{1} L_{1}+q_{2} L_{2}$. The set of skew-symmetric matrices that have a double eigenvalue is a codimension 3 algebraic subset of $s o(p, \mathbb{R})$. Then, from the tranversality theorems ([2]), for generic (open, dense) subriemannian structures, the set $\overline{\Sigma_{2}}$ of points of M such that $q_{1} L_{1}+q_{2} L_{2}$ has a double (at least) eigenvalue for some q_{1}, q_{2} has codimension 2 in M. The problems of smoothness of the Hausdorf measure will occur on $\overline{\Sigma_{2}}$ only.

Note that q_{1}, q_{2} are constant along geodesics, since the hamiltonian (2.2) does not depend on the y-coordinates. Along the paper we set, for the geodesic under consideration:
$q_{1}=r \cos (\theta), q_{2}=r \sin (\theta), A_{\xi}(\theta, r)=\frac{2 \pi}{\max \left(\sigma\left(q_{1} L_{1}+q_{2} L_{2}\right)\right.}$, where $\xi=(x, y) \in M$.
It is known $([6,7,9])$ that $A_{\xi}(\theta, r)$ is a Lipschitz function of all parameters ξ, θ, r. We write also $A_{\xi}(\theta)=A_{\xi}(\theta, 1)$.

3. Proof of the Theorem

For a fixed point $\xi_{0}=\left(x_{0}, y_{0}\right) \in M$, let us consider the exponential mapping \mathcal{E} associated with the nilpotent approximation at ξ_{0}, where x, y are coordinates as in Section 2.2:

$$
\mathcal{E}_{t}\left(p_{0}, q_{0}\right)=\pi\left(e^{t \vec{H}}\left(\xi_{0}, p_{0}, q_{0}\right)\right)
$$

where $\pi: T^{*} M \rightarrow M$ is the canonical projection, and \vec{H} is the hamiltonian vector field associated with the (smooth) hamiltonian (2.2). We have $p_{0}=u_{0}$, and as above $q(t)=q_{0}=(q 1, q 2)=(r \cos (\theta), r \sin (\theta))$. Also, by quasihomogeneity, $\mathcal{E}_{t}\left(p, q_{0}\right)=$ $\mathcal{E}_{1}\left(t u_{0}, t q_{0}\right)$.

It follows that the volume V_{ξ} at a point $\xi \in M$ of the unit ball of the nilpotent approximation is given by the formula:

$$
\begin{equation*}
V_{\xi}=\int_{0}^{2 \pi} \int_{0}^{A_{\xi}(\theta)} \int_{B} J_{\varepsilon}(u, \theta, r, \xi) d u d r d \theta \tag{3.1}
\end{equation*}
$$

where B is the unit ball in the euclidean p-dimensional u-space, and $J_{\varepsilon}(u, \theta, r, \xi)$ is the jacobian determinant of $\mathcal{E}_{1}(u, r \cos (\theta), r \sin (\theta))$.

We set $f_{\xi}(\theta, r)=\int_{B} J_{\varepsilon}(u, \theta, r, \xi) d u$, and $W_{\xi}(\theta)=\int_{0}^{A_{\xi}(\theta)} f_{\xi}(\theta, r) d r$. If we show that $W_{\xi}(\theta)$ is \mathcal{C}^{1} or \mathcal{C}^{2} w.r.t (θ, ξ), it will imply that V_{ξ} is \mathcal{C}^{1} or \mathcal{C}^{2} w.r.t ξ. But, in a neighborhood of a fixed $\left(\xi_{0}, \theta_{0}\right) \in M \times S_{1}$,

$$
\begin{align*}
W_{\xi}(\theta) & =\int_{0}^{A_{\xi}(\theta)} f_{\xi}(\theta, r) d r \tag{3.2}\\
& =\int_{0}^{A_{\xi_{0}}\left(\theta_{0}\right)} f_{\xi}(\theta, r) d r+\int_{A_{\xi_{0}}\left(\theta_{0}\right)}^{A_{\xi}(\theta)} f_{\xi}(\theta, r) d r \\
& =(I)+(I I)
\end{align*}
$$

The term (I) is smooth. Then we are concerned with eximining the smoothness of $I I(\xi, \theta)$ only.
3.1. Proof of the fact that $W_{\xi}(\theta)$ is always \mathcal{C}^{1}. The tangent mapping to $I I(\xi, \theta)$, at $\left(\theta_{0}, \xi_{0}\right)$ is, setting $z=(\theta, \xi)$, and $f(z, r)=f_{\xi}(\theta, r), A(z)=A_{\xi}(\theta)$:

$$
\begin{equation*}
D I I\left(z_{0}\right)(h)=\sum_{i=1}^{n+1} f\left(z_{0}, A\left(z_{0}\right)\right) \frac{\partial A}{\partial z_{i}}\left(z_{0}\right) h_{i} \tag{3.3}
\end{equation*}
$$

This last expression makes sense, and is continuous w.r.t z_{0} for the following reasons: first as we said, $A(z)$ is Lipschitz-continuous, then the derivatives are bounded. And, precisely, at points z_{0} such that A is not differentiable, $f\left(z_{0}, A\left(z_{0}\right)\right)$ vanishes. This last poin follows from the fact that for a multiple eigenvalue $A\left(z_{0}\right)$, the conjugate time is equal to the cut time, which makes the jacobian determinant $J_{\varepsilon}\left(u, \theta_{0}, A\left(\theta_{0}, \xi_{0}\right), \xi_{0}\right)$ vanish for all u. This comes from the section II. 31 in the paper [1].

Remark 1. In fact, it follows from the same paper that, if $A\left(z_{0}\right)$ is a multiple eigenvalue, the rank of $J_{\varepsilon}\left(u, \theta_{0}, A\left(\theta_{0} \xi_{0}\right), \xi_{0}\right)$ drops by 2 at least, independantly of u. This point will be very important in the next section.

This ends the proof.
3.2. Proof of the \mathcal{C}^{2} result. It follows from the transversality theorems ([2, 5]) and from Lemma 1, that we can start from an open dense subsetof subriemannian metrics, still denoted by \mathcal{S}, such that all elements s of \mathcal{S} meet: the set $U_{s} \subset M \times S_{1}$ of (θ, ξ) such that $A_{\xi}(\theta)$ corresponds to a triple (at least) eigenvalue is a locally finite union of manifolds, regularly embedded, of codimension 8 in $M \times S_{1}$, and the set $\tilde{U}_{s} \subset M \times S_{1}$ of (θ, ξ) such that $A(\theta, \xi)$ corresponds to a double (and not triple) eigenvalue is a locally finite union of manifolds, of codimension 3 .

To show this, we can work locally, in a neighborhood \mathcal{N} of $\left(s_{0}, \xi_{0}, \theta_{0}\right) \subset \mathcal{S} \times M \times$ S_{1}, in coordinates $\xi=(x, y)$ in M, relative to s_{0}, from section 2.2. Then, in coordinates, the (Nilpotentized at ξ) subriemannian metric s is specified by two skewsymmetric matrices $L_{1}(\xi), L_{2}(\xi)$. It is easy to see that the mapping:

$$
\left(\xi, \theta, L_{1}(\xi), L_{2}(\xi) \rightarrow L_{1}(\xi) \cos (\theta)+L_{2}(\xi) \sin (\theta)\right.
$$

is a submersion. Then, we consider the stratification by the multiplicity of eigenvalues of the space of p-skew-symmetric matices. Generically (open-dense), s can be put transversal to this (closed) Whitney stratification.

We want to show the following property (P), for a generic (residual in the Whitney topology) set \mathcal{S}_{0} of subriemannian metrics over M :
(P) the partial derivatives $D_{i}(z)=f(z, A(z)) \frac{\partial A}{\partial z_{i}}(z)$ from 3.3 are \mathcal{C}^{1} in a neighborhood of all points z_{0} such that $A\left(z_{0}\right)$ corresponds to a double (and not triple) eigenvalue.

To do this, we fix s_{0} and $z_{0} \in \tilde{U}_{s_{0}}$ and we consider a (mini)versal deformation of $L\left(\xi_{0}, \theta 0\right)=L_{1}\left(\xi_{0}\right) \cos \left(\theta_{0}\right)+L_{2}\left(\xi_{0}\right) \sin \left(\theta_{0}\right)=L\left(z_{0}\right)$, as introduced in section 4.1. It follows that:

$$
L(\xi, \theta)=L(z)=g(z)^{-1} N(\tilde{\varphi}(z)) g(z)
$$

where $N(\tilde{\varphi}(z))$ is the block-diagonal $N(\tilde{\varphi}(z))=B d(\lambda(z) \hat{q}+q(z), \Delta(z))$, and $g(z)$ belongs to the orthogonal group.

The functions $g(z), \lambda(z), q(z), \Delta(z)$ are smooth functions. We will temporarily assume the following property (R) :
(R): the map $z \rightarrow q(z), M \times S_{1} \rightarrow \mathbb{R}^{3}$, has rank 3 at z_{0}.

Then, assume that (R) holds at all points z of $\tilde{U}_{s_{0}}$.
It means that we can change the coordinates in $M \times S_{1}$ for the three components of $q(z)$ around $z_{0} \in \tilde{U}_{s_{0}}$, are the three first coordinates, z_{1}, z_{2}, z_{3}. Note that these 3 coordinates vanish at z_{0}.

Locally, the codimension 3 manifold $\tilde{U}_{s_{0}}$ is determined by the equations $z_{1}=$ $z_{2}=z_{3}=0$.

As we said in Remark 1, the rank of $J_{\varepsilon}(u, z, A(z))$ drops by 2 at least, independantly of u, at each point $z \in \tilde{U}_{s_{0}}$, and for all u. Formula 4.1 in the appendix tell us that $A(z)=\frac{2 \pi}{\lambda(z)+\sqrt{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}}}$ where $\lambda(z)$ is smooth and nonzero. We set $\hat{z}_{4}=\left(z_{4}, \ldots, z_{n+1}\right)$ and $\hat{z}_{1}=\left(z_{1}, z_{2}, z_{3}\right)$. Then, J_{ε} and $f(z, r)$ vanish with all their first order partial derivatives w.r.t. z, r, at points $\hat{z}_{1}=0$, and $r=\frac{2 \pi}{\lambda(z)}$. Hence,

$$
\begin{equation*}
f(z, r)=\tilde{Q}_{z, r}\left(\hat{z}_{1}, r-\frac{2 \pi}{\lambda(z)}\right) \tag{3.4}
\end{equation*}
$$

Here, $\tilde{Q}_{z, r}($.$) is a quadratic form depending smoothly on z, r$.
We go bach to the second partial derivatives of $W_{\xi}(\theta)=\int_{0}^{A\left(\theta_{0}, \xi_{0}\right)} f_{\xi}(\theta, r) d r$
$+\int_{A\left(\theta_{0}, \xi_{0}\right)}^{A(\theta, \xi)} f_{\xi}(\theta, r) d r$, or with the new notations, $W(z)=\int_{0}^{A\left(z_{0}\right)} f(z, r) d r+\int_{A\left(z_{0}\right)}^{A(z)} f(z, r) d r$.
The first partial derivatives, at any point z_{0} were:

$$
\begin{aligned}
\frac{\partial W\left(z_{0}\right)}{\partial z_{i}} & =\int_{0}^{A\left(z_{0}\right)} \frac{\partial}{\partial z_{i}} f(z, r) d r+f\left(z_{0}, A\left(z_{0}\right)\right) \frac{\partial A}{\partial z_{i}}\left(z_{0}\right), \\
& =\operatorname{III}\left(z_{0}\right)+I V\left(z_{0}\right)
\end{aligned}
$$

To show that $\frac{\partial I I I(z)}{\partial z j}$ exists and is continuous, we proceed exactly as in Section 3.1, using the fact that $\frac{\partial}{\partial z_{j}} f(z, r)$ also vanishes at $\left(\hat{z}_{1}=0, r=\frac{2 \pi}{\lambda(z)}\right)$.

The more difficult point is to show that $\frac{\partial I V(z)}{\partial z j}$ exists and is continuous.

$$
\frac{\partial I V(z)}{\partial z j}=\frac{\partial}{\partial z_{j}}\left(f(z, A(z)) \frac{\partial A(z)}{\partial z_{i}}\right)
$$

We get:

$$
\begin{aligned}
\frac{\partial I V}{\partial z j}(z) & \left.=\frac{\partial f}{\partial z_{j}}(z, A(z)) \frac{\partial A(z)}{\partial z_{i}}\right)+\frac{\partial f}{\partial r}(z, A(z)) \frac{\partial A(z)}{\partial z_{i}} \frac{\partial A(z)}{\partial z_{j}}+f(z, A(z)) \frac{\partial^{2} A(z)}{\partial z_{i} \partial z_{j}} \\
& =V(z)+V I(z)+V I I(z)
\end{aligned}
$$

The cases of $V(z), V I(z)$ are obvious, since again $\frac{\partial A(z)}{\partial z_{i}}$ is bounded, and the functions $\frac{\partial f}{\partial z_{j}}(z, A(z)), \frac{\partial f}{\partial r}(z, A(z))$ are continuous and go to zero when \hat{z}_{1} tends to zero. The only difficulty is the case of $\operatorname{VII}(z)$.

Remind that $A(z)=\frac{2 \pi}{\lambda(z)+\left\|\hat{z}_{1}\right\| \text {. }}$ where $\lambda(z)$ is nonzero, smooth. Then the only problem may occur for $i=1,2,3$.

Let us consider only 2 cases: (1) $i=1, j=2$, (2) $i=1, j=4$, the other cases being similar.

Case (2): $\frac{\partial A(z)}{\partial z_{1}}=\frac{-2 \pi}{\left(\lambda(z)+\left\|\hat{z}_{1}\right\|\right)^{2}}\left(\frac{\partial \lambda}{\partial z_{1}}+\frac{z_{1}}{\left\|z_{1}\right\|}\right)$, and $\frac{\partial^{2} A(z)}{\partial z_{1} \partial z_{4}}$ is bounded. It is multiplied by $f(z, A(z))$, which tends to zero when \hat{z}_{1} tends to zero. Then it is zero at points $\hat{z}_{1}=0$, and it is continuous.

Case(1): $\frac{\partial A(z)}{\partial z_{1}}=\frac{-2 \pi}{\left(\lambda(z)+\left\|\hat{z}_{1}\right\|\right)^{2}}\left(\frac{\partial \lambda}{\partial z_{1}}+\frac{z_{1}}{\left\|z_{1}\right\|}\right)$, and $\frac{\partial^{2} A(z)}{\partial z_{1} \partial z_{4}}=C(z)+D(z) \frac{z_{1} z_{2}}{\left\|\hat{z}_{1}\right\|^{\frac{3}{2}}}$, where $C(z)$ is bounded, $D(z)$ is continuous. Then, the question is the continuity of $\varphi(z)=$ $\frac{f(z, A(z))}{\left\|\left\|z_{1}\right\|\right.}$, in a neighborhood of the set $E=\left\{\hat{z}_{1}=0\right\}$. Let us use Formula 3.4. It gives $f(z, A(z))=\tilde{Q}_{z, r}\left(\hat{z}_{1}, A(z)-\frac{2 \pi}{\lambda(z)}\right)$. But $A(z)=\frac{2 \pi}{\lambda(z)+\left\|\hat{z}_{1}\right\|}$, then, $A(z)-\frac{2 \pi}{\lambda(z)}=$ $\psi(z)\left\|\hat{z}_{1}\right\|$, where $\psi(z)$ is continuous. It follows that $\varphi(z)$ tends to zero when \hat{z}_{1} tends to zero. The subriemannian volume is \mathcal{C}^{2} in a neighborhood of $\tilde{U}_{s_{0}}$.

If we show that generically, property (R) holds, it follows that $R_{a}(\xi)$ is \mathcal{C}^{2} except on a set of codimension 8 in $M \times S_{1}$, the theorem is proved. It is shown in the appendix 2 that property (R) holds for a residual in \mathcal{S}. In the case $n=6$, the bad set is generically empty in $M \times S_{1}$ and property (R) is open dense in \mathcal{S}.

4. Appendix

4.0.1. Pure Quaternions in so(4). In so(4), it is natural and useful for computations to use quaternionic notations. Set:

$$
\begin{aligned}
& i=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right), \quad j=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), \quad k=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), \\
& \hat{\imath}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right), \quad \hat{\jmath}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), \quad \hat{k}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

The matrices i, j, k (resp. $\hat{\imath}, \hat{\jmath}, \hat{k}$) generate the so-called pure quaternions (resp. pure skew-quaternions), the space of which is denoted by Q (resp. \hat{Q}). The Lie algebra $s o(4)=Q \oplus \hat{Q}$, and quaternions commute with skew-quaternions: $[Q, \hat{Q}]=$ 0.

We endow so(4) with the Hilbert-Schmidt scal product: $\left.<L_{1}, L_{2}\right\rangle=\operatorname{trace}\left(L_{1}^{\prime} L_{2}\right)$.
Then, $i, j, k, \hat{\imath}, \hat{\jmath}, \hat{k}$ form an orthonormal basis. The eigenvalues ω_{1}, ω_{2} of $A=q+\hat{q}$ meet:

$$
\begin{equation*}
-\left(\omega_{1,2}\right)^{2}=(\|q\| \pm\|\hat{q}\|)^{2} . \tag{4.1}
\end{equation*}
$$

As a consequence, an element $A \in s o(4)$ has a double eigenvalue iff $A \in Q \cup \hat{Q}$.
4.1. Versal deformation of skew-symmetric matrices. The results of Arnold in [3] can be easily extended to the real smooth case $\left(\mathcal{C}^{\infty}\right)$, for skew-symmetric matrices, under the action of the orthogonal group:

Theorem 4. [3] Let $N(p)$ be a family of $n \times n$ matrices smoothly depending on p at $\left(\mathbb{R}^{l}, 0\right)$. Let O_{M} be the orbit of $N=N(0)$ under the action of $G l(n, \mathbb{R})$ by conjugation. Let $T(\mu)$ be a smooth family of matrices, depending on the parameter $\mu \in \mathbb{R}^{k}$, such that the mapping $\varphi: \mu \rightarrow T(\mu)$ transversally intersects O_{N} at some $\tilde{N}=g^{-1} N g$. Then, there is a family of (smoothly depending on p) matrices $g(p)$ and a smooth mapping $\tilde{\varphi}: p \rightarrow \mu(p)$, such that $N(p)=g(p)^{-1} A(\tilde{\varphi}(p)) g(p)$. Moreover, for the transversal $T(\mu)$, one can chose the centralizer of N in $\operatorname{gl}(n, \mathbb{R})$.

We rephrase the result in the case of a skew-symmetric matrix N that has a double (but not triple) eigenvalue. Then, by section 4.0.1, we can assume that N is (conjugate to) a block-diagonal $B d(\alpha \hat{q}, \delta)$, where \hat{q} is a unit skew-quaternion and δ is a block-diagonal skew symmetric matrix with 2×2 blocks and non multiple eigenvalues. The centralizer of \hat{q} in $s o(4, \mathbb{R})$ is the vector space of matrices of the form $\lambda \hat{q}+q$, where q varies over pure quaternions. Then, the centralizer of N in $\operatorname{so}(n, \mathbb{R})$ is the space of block diagonal matrices $B d(\lambda \hat{q}+q, \Delta)$, where q varies over pure quaternions and Δ varies over 2×2 skew-symmetric block diagonal matrices.

Hence, we can find a smooth $g(p) \in S O(n, \mathbb{R})$, and a smooth $\tilde{\varphi}(p)$ such that:

$$
\begin{align*}
& N(p)=g(p)^{-1} T(\tilde{\varphi}(p)) g(p), \quad \text { with } \tag{4.2}\\
& T(\mu)=B d(\lambda(\mu) \hat{q}+q(\mu), \Delta(\mu))
\end{align*}
$$

The versal deformation $T(\mu)$ is not universal (which means that $\tilde{\varphi}$ is not uniquely determined by $N(p)$), however, the nondiagonal eigenvalues of $T(\mu)$ are given by
the formula 4.1. It follows that q is determined modulo conjugation by a unit quaternion. On the other hand, the functions $\lambda(\mu), \Delta(\mu)$ are smooth and $\lambda(\mu)$ is nonzero.

4.2. Lemma.

Lemma 1. 1.The set of skew symmetric matrices with a double eigenvalue is an algebraic subset of codimension 3 in skew symmetric matrices.
2. The set of skew symmetric matrices with a triple eigenvalue is an algebraic subset of codimension 8 in skew symmetric matrices.

The proof can be obtained as in the appendix of [10].
4.3. Genericity of (R). We consider the set \mathcal{S} of corank- 2 subriemannian metrics on a fixed manifold M, equipped with the Whitney topology. The result being essentially local, we work in a neighborhood of a point, in coordinates.

Lemma 2. Property (R) is resisual in \mathcal{S}.
Note that the function $q(\mu)$ in 4.2 is defined modulo conjugation by a unit quaternion $q_{1}(\mu)$, depending smoothly on μ.

Let us show that the property (R) does not depend on this choice: actually, if we set $\tilde{q}(\mu)=q_{1}(\mu) q(\mu) q_{1}(\mu)^{-1}$, then the differential $D q(\mu)$ is changed for:

$$
D \tilde{q}(\mu)(v)=[D q 1(\mu)(v), q(\mu)]+q_{1}(\mu) D q(\mu)(v) q_{1}(\mu)^{-1}
$$

But $q(0)=0$, therefore the image of $D \tilde{q}(0)$ has the same dimension as the one of $D q(0)$.

The codimension d_{0} of the algebraic set of $3 \times(n+1)$ matrices that have corank 1 at least is $d_{0}=(n-1)$ [product of coranks] in the $3 \times(n+1)$ matrices. By Lemma 1 , the set of skew-symmetric matrices that have double maximum eigenvalue is $d_{1}=3$. Consider the map $\mathcal{M}:\left(z, L_{1}(z), L_{2}(z)\right) \rightarrow D q(z)$, where q is the map considered in property (R). This $\operatorname{map} \mathcal{M}$ is a submersion. Therefore, there is a residual set \mathcal{S} in subriemannian metrics, for which the codimension of the set of (θ, ξ) in $S_{1} \times M$ where $A(z)$ corresponds to a double eigenvalue, an property (R) holds at (θ, ξ) is a stratified set of codimension $d_{0}+d_{1}=n+2$.

Acknowledgement 1. we thank with great respect the memory of V. Zakalyukin who gave the basic idea of this result, in june 2011.

References

[1] A. Agrachev, D. Barilari, U. Boscain, On the Hausdorff volume in sub-Riemannian geometry. Calculus of Variations and PDE's Volume 43, Numbers 3-4 March 2012.
[2] R. Abraham, R.J. Robbin, Transversal mappings and flows, W.A. Benjamin Inc., New-YorkAmsterdam, 1967.
[3] V.I. Arnold, On Matrices depnding on parameters, Russian Math. Surveys, 26, 1971,2, 101114.
[4] D. Barilari, U. Boscain, J.P. Gauthier, On 2-step, corank 2 nilpotent sub-Riemannian metrics . to appear on SIAM Journal Control and Optimization.
[5] M. Goresky, R. Mc Pherson, Sratified Morse Theory, Springer Verlag, 1988.
[6] M.D. Bronstein, Smoothness of roots of polynomials depending on parameters, Sibirsk Math. Zh, 20, 1979, $\mathrm{N}^{\circ} 3$, pp. 493,501.
[7] K. Kurdyka, L. Paunescu, Hyperbolic polynomilals and real analytic perturbation theory, Duke Mayh. Journ., 141(1),23-149, 2008.
[8] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications (Mathematical Surveys and Monographs, Volume 91), (2002) American Mathematical Society.
[9] A. Kriegl, P.W. Michor, A. Rainer, Many Parameter Lipschitz Perturbation of Unbounded Operators, preprint.
[10] C. Romero-Melendez, J.P. Gauthier, F. Monroy-Perez, On complexity and motion planning for corank 1 surriemannian metrics, ESAIM COCV, Vol. 10, 2004, 634-655.

CmAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, and INRIA TEAM GECO

E-mail address: boscain@cmap.polytechnique.fr
Current address: LSIS, UMR CNRS 6168, Avenue Escadrille Normandie Niemen, 13397 MARSEILLE Cedex 20, and INRIA Team GECO

E-mail address: gauthier@univ-tln.fr

[^0]: 1991 Mathematics Subject Classification. 49J15, 93C15.
 Key words and phrases. optimal control, subriemannian geometry.

