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Abstract

The purpose of this paper is twofold: 1. We apply the adaptive observer

developed in Boizot et al. (2010) to a wastewater system, following two cas-

cade steps. First, we apply it to a simplified model of the system. Second,

we use this “simplified” estimation as a measurement for the full system. 2.

Although the observability analysis is trivial, the equations contain rather

complicated terms. Therefore, it is not reasonable to change coordinates

for those of the required observability canonical form. Hence, we have to

establish and work with the “unusual” equations of the observer in natural

coordinates.

Let us point out that the simulations are done taking into account the small

number of measurements (three) available in practice.
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1. Introduction

The present work deals with the observer design of non linear dynamical

systems, and application to a wastewater treatment system.

The need to develop observers or “software sensors” for Activated Sludge

Processes in perspective of on-line monitoring is due to the following facts,5

among others:

1) Although sensors for measuring chemical and biological variables are

widespread and very advanced, such measurements are still unreliable and

noisy,

2) The implementation and maintenance costs of these adavanced sensors are10

high.

A lot of work has been developed on the synthesis of nonlinear observers

for (bio)chemical processes (Alcaraz-Gonzalez et al., 2002; Assis and Filho,

2000; Bastin and Dochain, 1990; Bastin and Impe, 1995; Busvelle and Gau-15

thier, 2003, 2005; Chachuat et al., 2003; Dochain, 2008; Gauthier et al., 1992;

Nejjari et al., 2008; Rapaport and Dochain, 2005; Sotomayor et al., 2002).

Here, we have chosen an adaptive high-gain observer as proposed in the paper

(Boizot et al., 2010) for the following reasons. This observer is high-gain, but

it is also extended-Kalman-filter based: First, in the context of large transi-20

tions, it is an high-gain (HG) observer which guarantees theoretical conver-

gence with arbitrary rate, under certain observability assumptions. Second,

for small enough initial estimation error, it behaves like a classical extended

Kalman filter (EKF), i.e. it is more or less optimal w.r.t. noise. Moreover,

in a deterministic setting, it has good convergence properties (Baras et al.,25
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1988).

Here, transition from HG mode to EKF mode is performed via an adaptation

procedure based upon the level of innovation (i.e. the level of new informa-

tion appearing through the “recent” observations).

For the general theory of high-gain nonlinear observers, (see Boizot and30

Busvelle, 2007; Boizot et al., 2010; Busvelle and Gauthier, 2005; Gauthier

and Kupka, 2001).

The EKF is widely used and works rather well in practice. The main dis-

advantage for the EKF algorithm is that it requires an approximate knowl-

edge of the initials conditions. Conversely, the HG-EKF algorithm converges35

whatever the initial guess but is rather sensitive with respect to noise. Then,

the idea is to switch between the EKF and the HG-EKF algorithm. If the

estimation error of the HG-EKF becomes sufficiently small then the EKF is

used. The switching between these two modes can be done by having the

high-gain parameter θ evolving between 1 and θmax. The adaptation is made40

by using a differential equation driven by the “innovation”.

Usually this method is applied by previously changing coordinates in order to

put the system under a certain observability canonical form. In our case, we

prefer to write our observer in the natural coordinates in order that it is not

necessary to realize on-line the inverse coordinates change. The counterpart45

of this choice is that the Riccati equation of the Kalman filter has not the

standard form. Detailed computations are provided in our appendix A.

Moreover here, in order to simplify the computations, we use cascade ob-

servers (reduced and complete): A first observer of the type above is used

on a simplified model to provide an intermediate estimate of the state, this50
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estimation being itself used as the output of the non simplified system.

Actually, for the complete observer with the three practical outputs, the

computations are very heavy, even working in natural coordinates.

In Section 2 we recall the structure of our observer, which is just the multi-

output version of the one developed in the paper (Boizot et al., 2010). The55

section 3 is devoted to the crucial concept of innovation, which is used in or-

der to switch between the EKF and HG-EKF modes. The section 4 presents

in a few lines the idea of a cascade observer. Section 5 is devoted to the

application to a wastewater treatment plant. First we recall the equations

of the process, in full and simplified form. Then we perform the observabil-60

ity analysis in both cases. Thirdly we show noisy simulation results for the

cascade observer.

2. Systems under consideration and observer equations

2.1. The observability canonical form

We consider a smooth nonlinear system of the form:65

dx
dt

= f (x, u) ,

y = h(x) = Cx,
(1)

which is mapped by a diffeomorphism ψ into the following system:

dξ

dt
= F (ξ, u) = A (t) ξ + b (ξ, u) ,

y = Cξ,
(2)

where x, ξ ∈ Rn are the state vectors, where u, the control variable

belongs to a certain bounded subset of Rp and the output y ∈ Rd0 .
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Note: We have chosen to consider a linear output only, since it corre-

sponds to our practical case and computations are simpler. However the70

general case is similar.

The matrices A(t), C and the vector b (ξ, u) have a following form:

A(t) =




0 a2(t) 0 · · · 0

0 0 a3(t)
. . .

...
... · · ·

. . .
. . . 0

... · · · · · · 0 ak(t)

0 0 · · · · · · 0




,

C = (a1(t), 0, · · · , 0) = (Id, 0, · · · , 0),

(3)

where Id is the d0 identity matrix.

b(ξ, u) =




b1(ξ1, u)

b2(ξ1, ξ2, u)
...

bn(ξ1, · · · , ξn, u)



. (4)

The state vector ξ(t) is assumed to have a ”block” structure75

ξ =
(
ξ
′

1 ξ
′

2 · · · ξ
′

n

)′

, where ξi ∈ Rdi with d0 ≥ d1 ≥ · · · ≥ dk. The matrices

ai (t) have dimension di−1 × di and belong to a compact subset Ki of the set

of di−1 × di matrices of maximum rank di. The f (x, u), ai (t) , bi (ξ, u) are

assumed smooth w.r.t ξ, u and t, the bi depend on ξ in a “block” triangular

way and are compactly supported.80

Along the paper x (resp. ξ) is called the natural coordinate (resp. the
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observable coordinate).

The structure conditions guarantee obviously “uniform” and “uniform in-

finitesimal” observability in the sense of Gauthier and Kupka (2001). The85

compact support conditions can be artificially forced outside the “practical”

domain where the state is assumed to remain. All the results in Boizot et al.

(2010) extend without any difficulty to the case of such a structure with such

“compact support” assumptions. It is just a matter of rewriting.

It follows from the observability theory in Gauthier and Kupka (2001) that90

this canonical form together with the associated regularity assumptions is

pertinent in several situations: For any system meeting strong observabil-

ity assumptions, coordinates can be changed for “observable coordinates” in

which this canonical form is met.

Along the paper TF denotes the tangent mapping to the mapping F : x →95

F (x), Rn → Rn i.e. its Jacobian matrix in coordinates. Accordingly T 2F

denotes the double tangent, a skew-symmetric bilinear mapping, Rn-valued,

and for any u ∈ Rn we define the matrix D2F (x) {u} by T 2F (u, v) =

D2F (x) {u} · v.

We denote by Lb the bound on the Jacobian matrix Tb(ξ, u) of b(ξ, u) (i.e.100

‖Tb(ξ, u)‖ ≤ Lb). Since b(ξ, u) is compactly supported and u is bounded, b

is Lipschitz w.r.t ξ uniformly in u: ‖b(ξ, u)− b(η, u)‖ ≤ Lb ‖ξ − η‖.

2.2. Observer structure in observable coordinates

Let Q (n× n) , R (d0 × d0) be symmetric positive definite matrices. Let

θ be the high-gain parameter, θ ≥ 1. For θ = 1 the observer will just be an105

ordinary EKF.

Set ∆ = BD
(
1, 1

θ
, · · · , 1

θk−1

)
, the block diagonal matrix with diagonal blocks
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Idd0,
1
θ
Idd1 , · · ·. Set Qθ = θ∆−1Q∆−1, Rθ = θ−1R. The equations of the

system in observable coordinates are:

dξ

dt
= Tψ (ψ−1(ξ)) f (ψ−1(ξ), u) ,

dξ

dt
= F (ξ, u) .

(5)

y = Cξ. (6)

The equations for the HG-EKF in the observable coordinates are:110

dξ̂

dt
= F (ξ̂, u) + PC

′

R−1
θ (y − Cξ̂), (7)

dP

dt
= TF (ξ̂, u) P + P TF (ξ̂, u)

′

+Qθ − PC
′

R−1
θ CP. (8)

In the natural coordinates we have x̂ = ψ−1(ξ̂) = Φ
(
ξ̂
)
, where x̂ denotes

the estimate of x. Following our appendix A, the equations for the HG-EKF

become:
dx̂

dt
= f(x̂, u) + pC

′

(x̂, u)R−1
θ (y − h (x̂)) , (9)

115

dp

dt
= Tf(x̂, u)p+ pTf(x̂, u)

′

+ qθ(x̂)− pC
′

R−1
θ Cp

+Tψ(x̂)−1D2ψ(x̂)
{
pC

′

R−1
θ (h(x̂)− y)

}
p

+pD2ψ(x̂)
{
pC

′

R−1
θ (h(x̂)− y)

}′ (
Tψ(x̂)−1)′

,

(10)

where

qθ (x̂) = (Tψ (x̂))−1Qθ

(
(Tψ (x̂))−1)′

. (11)

3. Innovation

The function Ind introduced below and called the innovation reflects the

quality measurement of the estimation error on a small moving time interval
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of size d. The strategy is to adapt the High-gain parameter θ according to120

Ind. Due to the observability properties of our system, if the estimate x̂ is

far from x then θ will increase to High-gain mode. Contrarily, if x̂ is close to

x, innovation will be small and θ will decrease to 1 (Kalman filtering mode).

For this, the variable θ will be subject to the differential equation (15) just

below.125

Let Go (θ) be defined as follows:

Go (θ) =





1
∆T
θ2 if θ ≤ θ1,

1
∆T

(θ − 2θ1)
2 if θ > θ1,

(12)

where θ1 =
1
2
θmax and ∆T small enough is a constant.

The innovation Ind (t), with forgetting horizon d, is:

Ind (t) =

∫ t

t−d

‖y (τ)− ŷ (τ)‖2 dτ, (13)

where ŷ (τ) is the prediction from the initial state x̂ (t− d).130

Let us define

G (θ, Ind) = µ (Ind)Go (θ) + (1− µ (Ind))λ (1− θ) , (14)

for a λ > 0 and with µ (Ind) a smooth function equal to 1 if Ind ≥ γ1, to 0 if

Ind ≤ γ0, with 0 ≤ µ (Ind) ≤ 1 for γ0 ≤ Ind ≤ γ1. Another admissible choice

for µ is a sigmoid function, µ : ] 0; +∞ [→] 0; 1 [ , µ(Ind) =
1

1+e−β·(Ind−m) . The

equation for the HG parameter θ is:135

θ̇ = G (θ, Ind). (15)

The parameters β and m of the sigmoid play the same role as the parameters

γ0 and γ1. The zero value of the sigmoid function corresponds to “moving
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towards Kalman filtering mode” with maximum speed, although the value

one corresponds to “moving towards the high gain mode” with maximum

speed. The duration of the transition part is controlled by the parameter β140

(The higher β, the shorter the transition). In practice, the best results are

obtained for a small transition time i.e a large value of β. All details can be

found in Boizot et al. (2010).

Finally our adaptive observer in original coordinates is given by the set of

equations (9, 10, 13, 15).145

Comment 1: Roughly speaking, we can summarize the methodology as

follows:

1) A single Extended Kalman Filter equation, depending on a single param-

eter θ realizes the observers in both modes: for θ = 1, it coincides with the

ordinary Extended Kalman Filter. For θ large it is a HG-KF, as proposed150

for instance in Gauthier and Kupka (2001).

2) Guarantee of convergence of the error is obtained (see 4 below) in observ-

able coordinates only. It is possible to overcome the dificulty of performing

this coordinate change on-line, via the equations (9, 10, 11) of the trans-

formed EKF equations to natural coordinates.155

3) The dynamics of the parameter θ is driven by the “innovation” term com-

puted over a slipping window. Small innovation means that the estimation

error is close to zero, hence, it is suitable to move θ to ordinary EKF mode.

Conversely, large innovation means large estimation error, hence, the strat-

egy is to move to high-gain mode. This is done via the “driving equation”160

15.

4) It is well known that the Riccati matrix P is related to the Gramm observ-
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ability matrix of the linearized system along the estimate trajectory. Then

it reflects the “innovation” relative to this linearized system. However, this

“linearized innovation” is not enough for our purposes.165

5) Guarantee of convergence: Following Boizot et al. (2010), the con-

vergence result is as follows: For all noise characteristics (Q,R) (depending

on the noise in EKF mode) the parameters (θ, m, d, β) can be chosen in

such a way that global arbitrary exponential convergence can be achieved:

‖ǫ‖ ≤ e−α(t−T ∗) × ‖ǫ0‖, (α arbitrary, T ∗ arbitrary).170

Comment 2: Due to (13) the observer system (9, 10, 13, 15) is not a

system of ODE. However existence and uniqueness of solutions is guarantied

and it is more or less clear how to proceed numerically.

4. The interest of natural coordinates, and of a cascade observer175

It turns out that the change of variable ψ(x) is not so easy to apply. It

is the reason why we have chosen to work in natural coordinates. In these

natural coordinates according to our observer equations, it is enough to be

able to compute the inverse Jacobian Dψ(x̂)−1. For our application below,

this would be still hard in the case of the full equations. It is why we have180

chosen (in natural coordinates) the following strategy.

We apply first our observer to a simplified model (five states, three outputs).

We use the estimate provided by this first observer as the output of the full

system. In this way the computation of both inverse Jacobians is easy (See

Fig. 1).185

Insert figure 1 about here
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5. Application

The process under consideration is a real small-size wastewater treatment

plant composed of a unique aeration tank equipped with surface aerators

which provide oxygen and mix the influent wastewater with biomass (Fig. 2).190

Here, we address the question of online estimation of the effluent quality.

Insert figure 2 about here

A European Union directive fixed the maximum pollutant concentra-

tions allowed in the effluent of small size wastewater treatment plants: The

biochemical oxygen demand over an elapsed period of five days BOD5 <195

25 mg/l, the chemical oxygen demand COD < 125 mg/l and the total sus-

pended solid TSS < 35 mg/l. These three quantities are defined below in

terms of the state of the model.

The model used is based upon the Activated Sludge Model N1 (ASM 1) from

Henze et al. (1987). Then our biodegradation model consists of 12 state200

variables (Table 1): Actually, we consider only biodegradation, the state

variables describing the total alkalinity being not included.

Insert table 1 about here

The three quality requirements characterizing the effluent are defined by:

BOD5 = 0.25(SS +XS + (1− fp)(XBH +XBA)),

COD = SS + SI +XS +XI +XBH +XBA +XP ,

TSS = 0.75(XS +XI +XBH +XBA +XP ).

(16)

Remark: 1. The stoichiometric and kinetic parameter values considered205

are listed in Tables 2 and 3. The complete set of equations and influent
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conditions can be found on the International Water Association task group on

benchmarking of control strategies for wastewater treatment plants website

(http://www.benchmarkwwtp.org/, 2010).

2. Regarding the simplified model, in the paper, for the benefit of the reader,210

we provide all explicit formulas and values of the constants and kinetic

functions.

Insert table 2 about here

Insert table 3 about here

The model assumptions are the following: - The reactor is well mixed,215

- the separation of liquid and solid phases is perfect and no reaction occurs

in the settler, - the sum of all settler flowrates equals the settler influent

flowrate. Our model is of the form ẋ = f (x, u), where the control u consists

of the state ub of the turbines and the value Qin of the influent average flow.

The input ub in (19) is a binary sequence switching between 0 and 1 and220

representing the state of turbines (off/on) that aerate the plant.

Natural coordinates are concentrations of the species, i.e. all components xi

of the state vector are the concentrations listed in Table 1. Each equation

has the type of a material balance, including kinetic degradation, then the

components fi of the dynamics are as follows:225

- For soluble components (i= 1, 2, 9, 10, 11)

fi (x) =
Qin

V

(
xini − xi

)
+ ri (x) (17)

- For particulate components (i= 3, 4, 5, 6, 7, 12)

fi (x) =
1

V

[
Qin

(
xini − xi

)
+QrsQ

in −Qw

Qrs +Qw
xi

]
+ ri (x) (18)
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- For dissolved oxygen concentration (i= 8)

f8 (x) =
Qin

V

(
xin8 − x8

)
+ r8 (x) + ubkLa (S

max
O − SO) (19)

where ri (x), i = 1, · · · , 12 are nonlinear functions not given here (see

Henze et al. (1987)). They represent the apparent reaction rates depending230

on the kinetic rates of degradation of the components.

Remark: 3. The variables SI , XI and XP , related with the equations cor-

responding to i = 1, 3, 7, do not appear in the other equations. Hence these

variables are not observables, and we cannot do better for them than simple

prediction. Therefore, pertinent dimension of the state space is n = 9.235

The constant kLa is the oxygen transfer coefficient (kLa = 10 h−1) and

Smax
O is the dissolved oxygen saturation concentration (Smax

O = 8 mgl−1).

The volume of the aeration tank is (V = 6000 m3). The settler is a cylin-

drical tank where the solids are either recirculated to the aeration tank240

(Qrs = 18446 m3day−1) or extracted from the system (Qw = 385 m3day−1).

We make here the reasonable assumption of three measurements only:

SO, SNO and SNH , located inside the aeration tank. Although the WWTP

with these three outputs is observable, it is too complicated for our purpose.

We use first a simplified model of lower dimension that has been developed245

in Chachuat et al. (2003).

5.1. The reduced model

The author in Chachuat et al. (2003) proceeds as follows: 1. He re-

groups the species SS and XS into a single one XCOD (COD for “chemical

oxygen demand”), XCOD = SS + XS. 2. It is known that the dynamics of250
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XBH , XBA, XND are slow w.r.t. the other. Then, they are assumed to be

constant. Hence the variables αi, i = 1, .., 8 defined below are constant. It is

also commonly accepted that the ratios XND

XS
, XCOD

SS
, XCOD

XS
vary slowly. As a

consequence the variables α9, KCOD, KND below are also assumed constant.

Removing the three unobservable variables XP , XI , SI leads to a simplified255

model with 5 state variables SO, SNO, SNH , XCOD, SND with the three observ-

able variables SO, SNO, SNH . All these simplifications provide the following

reduced model:

ṠO = Qin

V
(Sin

O − SO) + α1
XCOD

KCOD+XCOD

· SO

KO,H+SO
+ r̃1 (y) + ubkLa (S

max
O − SO)

(20)

˙SNO = Qin

V
(Sin

NO − SNO) + α3
XCOD

KCOD+XCOD

·
KO,H

KO,H+SO

SNO

KNO+SNO
+ r̃2 (y)

(21)

˙SNH = Qin

V
(Sin

NH − SNH) + α5
XCOD

KCOD+XCOD

·
(

SO

KO,H+SO
+ ηNO,g

KO,H

KO,H+SO

SNO

KNO+SNO

)

+r̃3 (y) + α6SND

(22)

˙XCOD = Qin

V

(
X in

COD − KS

KCOD
XCOD

)

+α7
XCOD

KCOD+XCOD

(
SO

KO,H+SO

+ηNO,g
KO,H

KO,H+SO

SNO

KNO+SNO

)
+ α8

(23)

˙SND = Qin

V
(Sin

ND − SND)− α6SND + α9

· XCOD

KND+XCOD

(
SO

KO,H+SO
+ ηNO,h

KO,H

KO,H+SO

· SNO

KNO+SNO

)
(24)
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The parameters α1, α2, α3, α4, α5, α6, α7, α8, α9, KND and KCOD are

defined as follows, their value is given in Table 4, the values of the influent260

concentrations being listed in Table 5.

α1 = −1−YH

YH
µHXB,H

α2 = −4.57µA

YA
XB,A

α3 = − 1−YH

2.86YH
µHXB,HηNO,g

α4 =
µA

YA
XB,A

α5 = −iXBµHXB,H

α6 = kaXB,H

α7 = − 1
YH
µHXB,H

α8 = (1− fp) (bHXB,H + bAXB,A)

α9 = kh
XND

XS
XB,H

(25)

KCOD = KS
XCOD

SS

KND = KX
XCOD

XS
XB,H

(26)

r̃1 (y) = α2
SNH

KNH,A+SNH

SO

KO,A+SO

r̃2 (y) = α4
SNH

KNH,A+SNH

SO

KO,A+SO

r̃3 (y) = −α4
SNH

KNH,A+SNH

SO

KO,A+SO

(27)

Insert table 4 about here

Insert table 5 about here265
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5.1.1. Observability analysis

For the simplified model (20 - 24), with outputs SO, SNO, SNH the “prac-

tical” domain is (R+)
5, the positive orthant in (R)5.

1. The points where SO, SNO are both zero may appear in practice, this is

called “anaerobic behavior”. This type of functioning remains nevertheless270

temporary and is not very frequent since the switch off period of the aer-

ator is limited by the operating constraint toffmax = 120 min. In that case,

the variable XCOD has no influence on the outputs. Therefore the system

is not observable in any sense and there is nothing better to do than simple

prediction.275

2. On the subdomain D ⊂ (R+)
5, D = {SO 6= 0 or SNO 6= 0} it is easily

computed that the system is uniformly observable and uniformly infinitesi-

mally observable in the sense of Gauthier and Kupka (2001). This is reflected

by the fact that the matrix a2 (t) has rank two on D (remember that a2 is a

function of t via is dependence on the output variables).280

This is enough for the high-gain theory works, and in particular our adaptive

algorithm developed in Boizot et al. (2010).

5.1.2. Change of variables

The change of variables Ψ that relates natural coordinates to observer285

coordinates is trivial: It consists of setting just

X̃COD =
XCOD

KCOD +XCOD

. (28)

The state vector x = (SO SNO SNH XCOD SND)
′

is changed for ξ =

16



(
SO SNO SNH X̃COD SND

)′

, therefore our system is almost naturally in ob-

servable coordinates. The inverse Jacobian is trivial to compute.

5.2. Observer for the complete model290

The observability analysis of the full system with the estimate provided

by the reduced observer is trivial (after forgetting about the unobservable

variables SI , XI and XP , see remark 3). It leads to similar conclusions of

uniform observability and uniform infinitesimal observability.

In that case the state is 9-dimensional and the output is 6-dimensional: Actu-295

ally the variables XS, SS that have been glued together in XCOD = SS +XS,

can be splitted out from the reduced model. This is done using the previous

assumption that KCOD is a constant (26):

XCOD

SS

= 1 +
XS

SS

=
KCOD

KS

. (29)

5.2.1. Change of variables

The change of variables ψ from natural to observable coordinates is trivial:300

x = (SO SNO SNH SS XS SND XBH XBA XND)
′

is changed for

ξ = (SO SNO SNH SS XS SND r8 r9 r11)
′

.

Of course the functions r8 r9 r11 are such that the change of variables is an

embedding.

5.3. Choice of the parameters related to innovation305

The choice of the parameters (θmax, β, m, ∆T , λ, d) in the case of our

application is given in Table 6.

Insert table 6 about here

17



Remember that the purpose of these parameters is to tune the way the

high-gain evolves between 1 (EKF mode) and θmax (HG mode). This choice310

has been obtained just by successive trials.

5.4. Conditions for a realistic simulation

5.4.1. Input concentrations

In order to perform realistic simulations, the influent concentrations (Sin
I ,

Sin
S , · · ·, X in

COD) (typical values given in Table 5) cannot be considered as315

constant. We have modelled the variations of these concentrations by an

additive noise. In practice, due the length of the feeding pipe (maybe several

kilometers), these perturbations should appear rather slowly. However, we

have willingly chosen fast dynamics for these noises. An illustrative example

of these variations is shown on figure 3.320

Insert figure 3 about here

5.4.2. Desadaptation of kinetic rates and stoichiometric coefficients

These parameters are not very well known in practice, and may be sub-

ject to large unexpected variation. We have considered simultaneously, for

each reaction rate (theoretically given by Henze et al. (1987)) a periodic de-325

sadaptation of amplitude 20%. Moreover, these desadaptations are realized

in a completely asynchrone way.

Here, we consider 3 periods over the 14 days under consideration, with a

phase difference uniformly displayed over the 8 reaction rates.

330

These conditions of simulation 5.4.1 and 5.4.2 above are presumably worse

than what may appear in practice.
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6. Results

As commonly accepted, all simulations shown in this section are done

with the outputs perturbed by a realistic additive Orstein-Uhlenbeck process.335

The alternative control ub has been chosen as in practice: “On” during 15

minutes and “off” during 5 minutes. Our simulation file (dry weather) covers

14 days and the value of the input flow rate Qin come from the benchmark

file (http://www.benchmarkwwtp.org/, 2010).

To evaluate the performances of our observer on the WWTP, we com-340

pare a Luenberger observer, an ordinary EKF, and our adaptive HG-EKF.

No comparison is shown with an ordinary HG-EKF (non adaptive): In that

case the results are rather bad, the observer being very sensitive to noise.

The averages and standard deviations are computed over the whole duration

of 14 days. However the illustrative figures presented below show the 3 first345

days only, where the effect of the unknown initial conditions is significant.

The table 7 shows a clear improvement, for our adaptive HG observer.

Insert table 7 about here

6.1. Reconstruction of the variables XI , SI , XP350

As we said these unobservable variables are reconstructed by simple pre-

diction. The results are shown in Table 8.

Insert table 8 about here
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6.2. Effluent quality

To validate the method and estimate the effluent outputs, we simulate the355

complete settler as described in Takacs et al. (1991). This model simulates

the solids profile throughout the settling column, including the underflow and

effluent suspended solid concentrations. Comparisons of the three quality

requirements with their estimates are presented in Table 9. In this table we

show again the average and the standard deviation of the estimation error.360

Insert table 9 about here

The figure 4 displays the output variables BOD5, COD, TSS and their

estimates, over 3 days. The effect of the high gain at the beginning of the

response is very clear. The error really converges quickly to zero, which is

not the case for the EKF, for which a significant error remains for long.365

Insert figure 4 about here

7. Conclusion

The method proposed here for state reconstruction of a WWTP seems

to be a real improvement with respect to classical methods. It is technically

twofold: First the implementation of the adaptive HG-EKF is not too com-370

plicated due to the use of natural coordinates which simplifies hugely the

computations. Second the use of a cascade observer also leads to reasonable

computations for the complete model.

Note that here we have studied only the case of a 20 Celsius influent tem-

perature (a summer scenario). The kinetic and stoichiometric parameters375
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of the models can be very different for a winter scenario. More generally a

possible improvement could be a multi-model strategy taking into account

the exterior temperature.
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A. Change of variables in the HG-EKF

We do the computations in the case of our two applications only, that

have special features w.r.t the general cases where the theory applies:

1. The change of variables is of the form x = Φ(ξ), where x is the original430

coordinate and ξ is the “observable coordinate”. In general it is not the case,

but ξ = ψ (x, u).

2. The output consists of the first state coordinates i.e. C = (Id, 0), y =

Cx = Cξ, CTΦ (ξ) = C.

Also, in the computations below, equations are ẋ = f (x, u (t)) and ξ̇ =435

F (ξ, u (t)). But we omit the dependence in t and we use ẋ = f (x) , ξ̇ = F (ξ).

This has no consequence in the computations. Also, the fact that Qθ, Rθ

depend on θ that itself depends on t has no consequence. In fact, the matrix

A (t) above depends on t via a dependence on the outputs SO, SNO and SNH .

We set ξ̇ = F (ξ, t), x = Φ(ξ), x̂ = Φ
(
ξ̂
)
, then, TΦ◦Φ−1 (x)F (Φ−1 (x) , t) =440

f (x, t).

Or, dropping t from now on: f ◦ Φ (ξ) = TΦ (ξ)F (ξ).
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It follows that:

Tf (Φ (ξ)) TΦ (ξ) = D2Φ (ξ) (F (ξ)) + TΦ (ξ)TF (ξ).

Hence:445

Tf (x) = D2Φ (ξ) {F (ξ)} TΦ (ξ)−1

+TΦ (ξ)TF (ξ)TΦ (ξ)−1 if x = Φ(ξ) .
(30)

The equations of the HG-EKF are:

˙̂
ξ = F

(
ξ̂
)
+ PC

′

R−1
θ

(
y − Cξ̂

)

˙̂x = TΦ
(
ξ̂
)
˙̂
ξ = TΦ

(
ξ̂
)
F
(
ξ̂
)

+TΦ
(
ξ̂
)
P TΦ

(
ξ̂
)′

(
TΦ

(
ξ̂
)′
)

−1

· C
′

R−1
θ

(
y − Cξ̂

)
.

(31)

Setting p = TΦ
(
ξ̂
)
P TΦ

(
ξ̂
)′

,

˙̂x = f (x̂) + p C
′

R−1
θ

(
y − Cξ̂

)
. (32)

The equation for P is:

Ṗ = TF
(
ξ̂
)
P + P TF

(
ξ̂
)′

+Qθ − PC
′

R−1
θ CP, (33)

which produces:

ṗ = TΦ
(
ξ̂
)
Ṗ TΦ

(
ξ̂
)′

+

•︷ ︸︸ ︷
TΦ

(
ξ̂
)
P TΦ

(
ξ̂
)′

+ TΦ
(
ξ̂
)
P

•︷ ︸︸ ︷
TΦ

(
ξ̂
)

′

, (34)
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ṗ = TΦ
(
ξ̂
)
TF

(
ξ̂
)
TΦ

(
ξ̂
)
−1

p

+p

(
TΦ

(
ξ̂
)
TF

(
ξ̂
)
TΦ

(
ξ̂
)
−1
)′

+TΦ
(
ξ̂
)
QθTΦ

(
ξ̂
)′

− pC
′

R−1
θ Cp

+

•︷ ︸︸ ︷
TΦ

(
ξ̂
)
P TΦ

(
ξ̂
)′

+ TΦ
(
ξ̂
)
P

•︷ ︸︸ ︷
TΦ

(
ξ̂
)

′

.

(35)

By (30):450

ṗ =

(
Tf

(
ξ̂
)
−D2Φ

(
ξ̂
){

F
(
ξ̂
)}

TΦ
(
ξ̂
)
−1
)
p

+p

(
Tf

(
ξ̂
)
−D2Φ

(
ξ̂
){

F
(
ξ̂
)}

TΦ
(
ξ̂
)
−1
)′

+q − pCTR−1
θ Cp

+

•︷ ︸︸ ︷
TΦ

(
ξ̂
)
P TΦ

(
ξ̂
)′

+ TΦ
(
ξ̂
)
P

•︷ ︸︸ ︷
TΦ

(
ξ̂
)

′

,

(36)

where q = TΦ
(
ξ̂
)
QθTΦ

(
ξ̂
)′

, or:

ṗ = Tf (x̂) p+ pTF (x̂)
′

+ q − pCTR−1
θ Cp

−D2Φ
(
ξ̂
){

F
(
ξ̂
)}

TΦ
(
ξ̂
)
−1

p

−p

(
D2Φ

(
ξ̂
){

F
(
ξ̂
)}

TΦ
(
ξ̂
)
−1
)′

+

•︷ ︸︸ ︷
TΦ

(
ξ̂
)
TΦ

(
ξ̂
)
−1

p+ p

(
TΦ

(
ξ̂
)
−1
)′

•︷ ︸︸ ︷
TΦ

(
ξ̂
)

′

.

(37)
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



ṗ = (I) + (II) + (III) ,

(I) = Tf (x̂) p+ p (TF (x̂))
′

+q − pCTR−1
θ Cp,

(II) =




•︷ ︸︸ ︷
TΦ

(
ξ̂
)
−D2Φ

(
ξ̂
){

F
(
ξ̂
)}




·TΦ
(
ξ̂
)
−1

p,

(III) = (II)
′

.

(38)

Now, let us compute

•︷ ︸︸ ︷
TΦ

(
ξ̂
)
:

•︷ ︸︸ ︷
TΦ

(
ξ̂
)
= D2Φ

(
ξ̂
){

˙̂
ξ
}

= D2Φ
(
ξ̂
){

F
(
ξ̂
)
+ PC

′

R−1
θ

(
y − Cξ̂

)}
.

(39)

We use now the following formula, just coming from the fact that 0 =

T 2 (Φ−1 ◦ Φ (ξ)):

0 = T 2Φ−1 ◦ Φ (ξ) (TΦ (ξ)u, TΦ (ξ) v)

+TΦ−1 (x) T 2Φ (ξ) (u, v) .
(40)

Or455

D2Φ (ξ) {u} = −TΦ (x)D2Φ−1 (x)
{
TΦ−1 (x)−1 u

}
TΦ (ξ) .

(41)

Putting (39) in (38) gives:

(II) = D2Φ (ξ)
{
PC

′

R−1
θ

(
y − Cξ̂

)}

·TΦ
(
ξ̂
)
−1

p,
(42)
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and using (41),

(II) = −TΦ (x̂)D2Φ−1 (x̂){
TΦ

(
ξ̂
)
P TΦ

(
ξ̂
)′

C
′

R−1
θ (y − Cx̂)

}
p,

(43)

(II) = −TΦ (x̂)D2Φ−1 (x̂)
{
pC

′

R−1
θ (y − Cx̂)

}
p. (44)

Going back to (38), we get:

ṗ = Tf (x̂) p+ pTf (x̂)
′

+ q − pCTR−1
θ Cp

+TΦ (x̂)D2Φ−1 (x̂)
{
pC

′

R−1
θ (Cx̂− y)

}
p

+p
(
D2Φ−1 (x̂)

{
pC

′

R−1
θ (Cx̂− y)

})′

TΦ (x̂)
′

.

(45)
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Figure 1: The cascade observer

Figure 2: Wastewater treatment plant
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Definition Notation

1. Soluble inert organic matter (g COD.m−3) SI

2. Readily biodegradable substrate (g COD.m−3) SS

3. Particulate inert organic matter (g COD.m−3) XI

4. Slowly biodegradable substrate (g COD.m−3) XS

5. Active heterotrophic biomass (g COD.m−3) XB,H

6. Active autotrophic biomass (g COD.m−3) XB,A

7. Particulate products arising XP

from biomass decay (g COD.m−3)

8. Oxygen (g COD.m−3) SO

9. Nitrate and nitrite nitrogen (g N.m−3) SNO

10. NH+
4 +NH3 nitrogen (g N.m−3) SNH

11. Soluble biodegradable organic nitrogen (g N.m−3) SND

12. Particulate biodegradable organic nitrogen (g N.m−3) XND

Table 1: List of variables
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Parameter Unit Value

YA g cell COD formed 0.24

(g N oxidized)−1

YH g cell COD formed 0.67

(g COD oxidized)−1

fp dimensionless 0.08

iXB g N (g COD)−1 0.08

in biomass

iXP g N (g COD)−1 0.06

in particulate products

Table 2: Stoichiometric parameters.
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Parameter Unit Value

µH d−1 4.0

KS g COD m−3 10.0

KO,H g COD m−3 0.2

KNO g NO3 −N m−3 0.5

bH d−1 0.3

ηNO,g dimensionless 0.8

ηNO,h dimensionless 0.8

kh (g cell COD d)−1 3.0

KX (g cell COD)−1 0.1

µA d−1 0.5

KNH,A g NH3 −N m−3 1.0

bA d−1 0.05

KO,A g COD m−3 0.4

ka m3 (g COD d)−1 0.05

Table 3: Kinetic parameters.
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Coefficient Value

α1 - 5892

α2 - 875

α3 - 1648

α4 191

α5 - 957

α6 150

α7 - 17855

α8 830

α9 561

KCOD 574

KND 296

Table 4: Constant coefficients.
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Concentration Value

Sin
I 30 g COD m−3

Sin
S 69.5 g COD m−3

X in
I 51.2 g COD m−3

X in
S 202.32 g COD m−3

X in
BH 28.17 g COD m−3

X in
BA 0 g COD m−3

X in
P 0 g COD m−3

Sin
O 0 g COD m−3

Sin
NO 0 g COD m−3

Sin
NH 31.56 g COD m−3

Sin
ND 6.95 g COD m−3

X in
ND 10.59 g COD m−3

X in
COD 271.82 g COD m−3

Table 5: Influent concentrations.

Parameter value of the reduced observer value of the complete observer

θmax 20 10

β 1664π
e

1664π
e

m 2 40

∆T 0.01 0.01

λ 200 200

d 0.1 0.1

Table 6: Parameters for the adaptation.
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Variable Luenberger EKF HG-EKF Range

m σ m σ m σ

SND -0.02 0.07 -0.02 0.07 -0.01 0.08 [0.5 - 1.2]

SS -0.03 0.11 -0.03 0.11 -0.02 0.10 [0.6 - 1.7]

XS 0.30 7.85 0.28 7.86 -0.21 7.59 [38.3 - 110.0]

XBH 96.17 81.39 96.68 81.29 41.64 85.52 [2635.3 - 3670.7]

XBA -8.29 4.50 -7.20 4.41 -5.89 3.14 [75.0 - 154.2]

XND 0.02 0.61 0.02 0.61 -0.02 0.60 [2.7 - 7.0]

Table 7: Comparisons between Luenberger, EKF and adaptive HG-EKF.

Variable Luenberger EKF HG-EKF Range

m σ m σ m σ

SI -0.03 0.12 -0.03 0.12 -0.03 0.12 [29.9 - 30.1]

XI 3.93 1.89 3.94 1.88 3.76 1.84 [1224.7 - 1259.2]

XP 28.48 8.42 28.51 8.40 20.29 7.82 [270.0 - 510.4]

Table 8: Comparisons between Luenberger, EKF and adaptive HG-EKF.

Quality requirements Luenberger EKF HG-EKF Range

m σ m σ m σ

BOD5 0.04 0.04 0.04 0.04 0.01 0.04 [0 - 2.2]

COD 0.22 0.15 0.22 0.15 0.09 0.15 [0 - 30.1]

TSS 0.18 0.13 0.19 0.13 0.09 0.10 [0 - 9.2]

Table 9: Quality requirements.
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Figure 4: Effluent quality (black: model - red : EKF observer - blue: HG-EKF observer)
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