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Abstract

In this paper, we propose a general methodology for identifying and re-
constructing sensor faults on dynamical processes. This methodology is is-
sued from the general identification theory developed in the previous papers
(Busvelle and Gauthier, 2003, 2004, 2005): In fact, this identification theory
provides also a general framework for the problem of “observability with un-
known inputs”. Indeed, many problems of fault detection can be formulated
as such observability problems, the (eventually additive) faults being just
considered as unknown inputs. Our application to “sensor fault detection”
for WasteWater Treatment Plants (WWTP) constitutes an ideal academic
context to apply the theory: First, in this 3-5 case (3 sensors, 5 states),
the theory applies generically and, second, any system is naturally under
the “observability canonical form” required to apply the basic high-gain ob-
server from Gauthier and Kupka (1994). A simulation study on the Bleesbrük
WWTP is proposed to show the effectiveness of this approach.
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1. Introduction

State estimation and Fault Detection and Isolation (FDI) constitute the
purpose of this paper. The main purpose of a FDI scheme is to detect the
fault when it occurs, by generating an alarm, but also by identifying the
nature and the location of the fault. A fault is a malfunction of actuators5

or sensors, or more generally of internal state variables of the system. These
malfunctions occur due to certain abnormal circumstance. If unchecked, such
an unallowable deviation of at least one characteristic property or variable
from its acceptable range may be devastating (Isermann and Ball, 1996; Is-
ermann, 2011; Palade and Bocaniala, 2010). Various FDI approaches have10

been proposed (Frank, 1990, 1996; Patton and Chen, 1993). Others methods
based on computational Intelligence techniques can be found in Palade and
Bocaniala (2010). In Isermann (2011), several model-based methods are de-
fined and developed: Fault detection with parameter estimation, with parity
equations, with state observers and state estimation.15

In general the FDI methods do not always afford the shape, the magnitude
of the time-dependent fault.

Among these approaches, observer based FDI attract a great deal of at-
tention from the research community (Chen and Patton, 1999; Frank and20

Ding, 1997; Yang and Saif, 1995; De Persis and Isidori, 2000, 2001). In this
model-based subcategory, residuals are constructed as the difference between
the actual process behavior and the expected one described by its mathemati-
cal model. Using these residuals, a decision is easily achievable whether there
is a fault or not. One difficulty is to make a robust observer w.r.t. distur-25

bances which are not faults (De Persis and Isidori, 2000, 2001; Besançon,
2003).

In this paper, where continuous (smooth) nonlinear systems in state-
space representation are considered, we propose a systematic methodology30

dedicated to fault reconstruction with an application to the field of wastew-
ater treatment systems. Via this method, it is possible to detect sensor drift
faults and incipient faults, which are not readily detected using other meth-
ods. Along the paper, we make the reasonable assumption that several faults
do not occur simultaneously, i.e. we deal with the problem of observability35

with a single unknown input function.
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In the context of observer-based methods, sliding mode observers are ap-
plied to reconstruct the faults by an appropriate processing of the so-called
“equivalent output error injection” concept. Readers may refer to Tan and40

Edwards (2002, 2003). In other papers, (Edwards, 2004), unknown-input
observers are used in order to reconstruct the fault.
Here, we develop a general theory of observability for unknown inputs, in or-
der to reconstruct simultaneously the states and the graph of the fault. This
theory is a by-product of the identification theory developed in Busvelle and45

Gauthier (2003, 2004, 2005), and it leads naturally to the use of high-gain
observers.

The structure of the paper is as follows: First (Section 2), we state the
main lines of the theory of “observability for unknown inputs”. In Section50

3, we briefly recall the structure of the basic high-gain observer that comes
naturally to the rescue. In Section 4, the proposed method is illustrated by an
application to the Bleesbrük WWTP. Finally, the short section 5 is devoted
to a comparison to another popular method, with a similar geometric flavor
(De Persis and Isidori, 2000, 2001).55

2. Observability for unknown inputs, versus identification

2.1. generalities

It turns out that the concept of “observability for unknown inputs” (or
“unknown-observability”) can be seen just as a rephrasing of the concept of
identifiability in the sense of Busvelle and Gauthier (2003, 2004, 2005). These60

three papers contain a complete theory for the case of a single unknown input
(or a single function of the state to be identified). In the context of FDI,
a single unknown input corresponds to a single fault. If several faults may
occur simultaneously, one should consider several unknown inputs (the addi-
tive faults that could appear simultaneously on different sensors for instance).65

The theory is parallel to the “deterministic observation theory” of Gau-
thier and Kupka (1994, 1996, 2001). It requires the same mathematical
tools and methods to be understood. In this Section, we state the main re-
sults of the theory. Although these results can be stated in a clear intrinsic70

way, we limit ourselves to the characterizations in terms of “normal forms”.
Moreover we ignore certain classical difficulties (such as finite escape-time,
analyticity versus smoothness, global-Lipschitzness...). For more details, the
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reader should refer to Busvelle and Gauthier (2003, 2004, 2005).
The concept of genericity under consideration in the paper is the usual one75

from differential topology, i.e. it is genericity w.r.t. the Whitney topology.
Since in most cases the problems are located on a compact subset of the state
space, it is enough in practice to consider the metric C∞ topology: A func-
tion is close to zero if its values together with the values of all its derivatives
are small enough.80

A main idea that the reader should keep in mind is the following: The
observability property (resp. Identifiability, observability for unknown in-
puts) is the property of injectivity of a certain mapping. Therefore it is a
very unstable property: For instance, the function f(x) = x3 is injective,85

but it does not remain injective under perturbation by a very small function
with very small derivatives. Due to this unstability, it is impossible to ex-
pect interesting general results. However, the injectivity becomes stable if we
require the additional property of “infinitesimal injectivity”, i.e. injectivity
of the linearizations (Note that the function f(x) = x3 is not infinitesimally90

injective at x = 0).

These considerations are the reasons why it is not realistic to avoid con-
sidering the concept of “infinitesimal observability” (resp: Identifiability,
unknown-observability).95

2.2. definitions and systems under consideration

Systems under consideration are smooth (Cω or C∞) systems of the form:

Σ

{
dx
dt

= f(x, ϕ(t))
y = h(x, ϕ(t))

(1)

Where the state x = x(t) lies in an n-dimensional manifold X , x(0) = x0.
The observation y is Rdy - valued and f , h are respectively a smooth (param-
eterized) vector field and a smooth function. The function ϕ (the unknown100

input) is a function of time (in the context of identifiability, it is an unknown
function of the state). To simplify, each trajectory is assumed to be defined
on some interval [0, Tx0,ϕ[ depending on both the initial condition and the
unknown function ϕ, but containing a fixed time interval I = [0, i].

105

The goal is to estimate both the state variable x and the unknown func-
tion ϕ : R+ → R. In the applied part of the paper (Section 4), the unknown
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ϕ will be denoted by d (for “disturbance”).

Let Ω = X × L∞[I], where L∞[I] is the set of R-valued measurable110

bounded functions defined over I, and by L∞[Rdy ] the set of measurable
bounded functions from I to R

dy .

Then we can define the input/output mapping PΣ, mapping the initial
state x0 and the input function ϕ̂ to the output function y :115

PΣ :
Ω → L∞[Rdy ]

(x0, ϕ̂(.)) → y(.)
(2)

Definition 1. Σ is said to be “unknown-observable” if PΣ is injective.

The infinitesimal version of unknown-observability is defined as follows.
Let us consider the first variation of the system (1), where Tx denotes the
tangent mapping w.r.t. x, and dϕ denotes the differential w.r.t. :120

TΣx0,ϕ̂,ξ0,η





dx

dt
= f(x, ϕ̂)

dξ

dt
= Txf(x, ϕ̂)ξ + dϕf(x, ϕ̂)η

ŷ = dxh(x, ϕ̂)ξ + dϕh(x, ϕ̂)η

(3)

and the input/output mapping of TΣ is:

PTΣ,x0,ϕ̂ :
Tx0X × L∞[R] → L∞[Rdy ]

(ξ0, η(.)) → ŷ(.)
(4)

Definition 2. Σ is said to be infinitesimally unknown-observable if PTΣ,x0,ϕ̂
is injective for any (x0, ϕ̂(.)) ∈ Ω i.e. ker (PTΣ,x0,ϕ̂) = {0} for any (x0, ϕ̂(.)).

In other terms, the linearizations along any trajectory of the system are
observable linear time-dependent systems.125

Remark: Both identifiability and infinitesimal identifiability mean in-
jectivity of certain mapping. Clearly injectivity depends on the domain (re-
stricting the domain provides a weaker property). Therefore, it could seem
that these notions are not well defined, since they depend on the regularity130
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assumed for the inputs (the domain for ϕ̂). In fact it is not the case: In-
deed, if an analytic system Σ is not (infinitesimally) unknown-observable for
certain L∞ input function, then there exists another analytic function which
makes the system not (infinitesimally) unknown-observable.

2.3. Main results stated in terms of “canonical forms”135

The theory is parallel to the observability theory from Gauthier and
Kupka (2001): Every unknown-observable system may be put (up to a change
of coordinates) into one of the canonical forms presented in the theorems 1,
2 and 3 below.
In order to achieve default reconstruction, it is enough to develop a observer140

for unknown inputs adapted to each of these canonical forms.

In the previous papers (Busvelle and Gauthier, 2003, 2004, 2005), the
following results are established:

• Systems are generically unknown-observable if and only if the number145

of observations is three or more. Generic systems can be put under the
canonical form of theorem 3 below.

• Contrarily, unknown-observability is not at all generic when the number
of observations is only one or two. In this case, infinitesimally unknown-
observable systems are exhausted by certain geometric properties that150

are equivalent to the normal forms presented in theorems 1 and 2 below.

Theorem 1. (dy = 1) if Σ is infinitesimally unknown-observable, then, there
is a subanalytic closed subset Z of X, of codimension 1 at least, such that
for any (x0 ∈ X \ Z, there is a coordinate neighborhood (x1, · · · , xn, Vx0),
Vx0 ⊂ X \ Z in which Σ (restricted to Vx0) can be written:155

Σ1





ẋ1 = x2
...

ẋn−1 = xn and
∂ψ(x, ϕ)

∂ϕ
6= 0

ẋn = ψ(x, ϕ)

y = x1

(5)

6



Theorem 2. (dy = 2) if Σ is infinitesimally unknown-observable, then, there

is an open-dense subanalytic subset Ũ of X×R, such that each point (x0, ϕ0)

of Ũ , has a neighborhood Vx0 × Iϕ0, and coordinates x on Vx0 such that the
system Σ restricted to Vx0 × Iϕ0, denoted by Σ|Vx0×Iϕ0

, has one of the three

following normal forms:160

• Type 1 normal form:

Σ2,1





y1 = x1
ẋ1 = x3

...
ẋ2k−3 = x2k−1

ẋ2k−1 = f2k−1(x1, . . . , x2k+1)
ẋ2k = x2k+1

...
ẋn−1 = xn
ẋn = fn(x, ϕ)

y2 = x2
ẋ2 = x4

...
ẋ2k−2 = x2k

(6)

with (∂fn
∂ϕ

6= 0)

165

• Type 2 normal form:

Σ2,2





y1 = x1
ẋ1 = x3

...
ẋ2r−3 = x2r−1

ẋ2r−1 = ψ(x, ϕ)

y2 = x2
ẋ2 = x4

...
ẋ2r−2 = x2r
ẋ2r = F2r(x1, . . . , x2r+1, ψ(x, ϕ))

ẋ2r+1 = F2r+1(x1, . . . , x2r+2, ψ(x, ϕ))
...

ẋn−1 = Fn−1(x, ψ(x, ϕ))
ẋn = Fn(x, ψ(x, ϕ))

(7)
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with ∂ψ

∂ϕ
6= 0, ∂F2r

∂x2r+1
6= 0, . . . , ∂Fn−1

∂xn
6= 0

170

• Type 3 normal form:

Σ2,3





y1 = x1
ẋ1 = x3

...
ẋn−3 = xn−1

ẋn−1 = fn−1(x, ϕ)

y2 = x2
ẋ2 = x4

...
ẋn−2 = xn
ẋn = fn(x, ϕ)

(8)

with ∂(fn−1,fn)
∂ϕ

6= 0
175

Here is the result for the generic case:

Theorem 3. (dy = 3) if Σ is an infinitesimally unknown-observable generic
system, then there is a connected open dense subset Z of X such that for any
x0 ∈ Z, there exist a smooth C∞ function F and a (y̌, y̌′, . . . , y̌(2n))-dependent
embedding Φy̌,...,y̌(2n)(x) such that on Z, trajectories of Σx0,ϕ are mapped via180

Φy̌,...,y̌2n into trajectories of the following system.

Σ3+





ż1 = z2

ż2 = z3
...

ż2n = z2n+1

ż2n+1 = F (z1, . . . , z2n+1, y̌, . . . , y̌
(2n+1))

ȳ = z1

(9)

where zi, i = 1, . . . , 2n+ 1 has dimension p− 1, and with

{
x = Φ−1

y̌,...,y̌(2n)(z)

ϕ = ψ(x, y̌)
(10)
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for a certain smooth function ψ.185

Here y̌ is a certain selected output among the outputs yi, y1 for instance,
and ȳ consists of the remaining outputs y2, y3.
The proof of this theorem, with detailed results in the generic case, can be
found in Busvelle and Gauthier (2004). This is the crucial result for our190

application.

2.4. The generic 3-5 case

The 3-outputs 5-states case is the most simple generic case. It has the
additional good property that it is naturally under a useful canonical form,
as soon as the outputs are components of the state, which is often the case.195

We start with a system of the form:

Y = (y1, y2, y3) = (x1, x2, x3), x = (x1, . . . , x5), ẋ(t) = f(x)
200

We would like to realize Fault Reconstruction for an additive default
d(t) on the first output, i.e. in fact, y1(t) = x1(t) + d(t). Setting z1(t) =
x1(t)+ d(t), z2(t) = x2(t), . . . , z5(t) = x5(t), the system can be rewritten as:

y1(t) = z1(t), y2(t) = z2(t), y3(t) = z3(t),

ż1(t) = f1(z1(t)− d(t), z2(t), . . . , z5(t)) + ḋ

żi(t) = fi(z1(t)− d(t), z2(t), . . . , z5(t)), i = 2, · · ·5.
(11)

or:

ż = g(z, d, ḋ) (12)

2.4.1. The most naive strategy205

A simple way to proceed is to assume that ḋ = 0. We get a 6-state
equation of the form:

ż(t) = g(z1(t), z2(t), . . . , z5(t), d)

ḋ = 0
(13)
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or, setting Z = (z, d),

Ż = G(Z)

y = (Z1, Z2, Z3)
(14)

Then, a step change on d corresponds exactly to a (maybe large) jump
of the state Z in the model (14).210

In that case, a high-gain observer will do the reconstruction job: It has
precisely the property to recover arbitrarily fast large changes in the initial
conditions.

System (14) is a rather general 6-state 3-output system, but the form (14)
is all ready enough for our purposes.215

Indeed, in general (for a generic system), the 3× 3 matrix formed by the
lines:

(
∂Gi

∂z4
,
∂Gi

∂z5
,
∂Gi

∂d
), i = 1, . . . , 3 (15)

is invertible, which means by the implicit function theorem that, freezing
the variables z1, z2, z3.220

The mapping G̃ = (G1(z4, z5, d), G2(z4, z5, d), G3(z4, z5, d)) has an inverse G̃1.

It is then clear that the system is unknown-observable: Knowing the out-
put Y (t) = (z1(t), z2(t), z3(t)) and differentiating, we get (ż1(t), ż2(t), ż3(t)) =
G̃(z4(t), z5(t), d(t)), which we can invert for each value of z1(t), z2(t), z3(t),225

and we get the knowledge of z4(t), z5(t), d(t).

This shows that actually the system is unknown-observable (which we
know), but also provides a practical way to observe, by using approximate
derivators.230

2.4.2. The general strategy

A more general strategy is to use as in Busvelle and Gauthier (2003, 2004,
2005) a local model for the fault d(t). For example, a simple local model
is d(k) = 0. The question is not that this polynomial models the function
d globally as a function of t, but only locally, on reasonable time intervals235

(reasonable w.r.t. the performances required for input-state reconstruction).
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Now, we are in the general situation of a 6+k-state, 3-output system.
The fact that the original system is infinitesimally unknown-observable im-
plies that the extended 6+k-system can be put under certain appropriate
observability normal form.240

Again, for this normal form, the use of approximate derivators would allow
state reconstruction.

2.5. Observers for unknown inputs

It is a remarkable fact that, for all the normal forms described above,
such a polynomial local model allows the use of the high-gain observers from245

Gauthier and Kupka (2001).

We leave the details to the reader and we just explain below (section 3)
what happens in the 3-5 case (our application), when we make the naive
assumption ḋ = 0 of Section 2.4.1 above.250

2.6. The necessity of the theoretical analysis

One could ask: Why is it necessary to perform such a heavy theoreti-
cal analysis to get the trivial conclusion that “high gain observers must be
used”?
In fact, the preliminary analysis of the unknown-input observability property255

is absolutely necessary, as shows the following example. It shows also that
“parametric identification” may be very dangerous without careful analysis.
The example is even linear, therefore it leads more simply to the use of a
standard Luenberger observer (not high gain). One can imagine that in the
nonlinear case, more catastrophic phenomena may appear.260

Consider the linear system on R
2

Σe





ẋ1 = x2 − u

ẋ2 = u

y = x1

(16)

This system is not unknown-observable: Actually, setting X = (x10, x20),
the mapping (u(.), X) → y(.) is linear, and it is easily seen that it is not
injective: Its Kernel K is the set of couples of the form (u = etx20, X =265

(0, x20)).
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However chosing, without observability analysis, a local model of the form
u(k) = 0, one obtains the extended linear system:

Σe,1





ẋ1 = x2 − u

ẋ2 = u

u̇ = u1
...

u̇k−1 = 0

y = x1

(17)

Note that (Σe,1) is an observable linear system, and that a standard Luen-
berger observer will provide “some result”, with arbitrary exponential decay.270

However, this result may be a nonsense. In fact, the system Σe, although
non unknown-observable, is unknown-observable inside the class of polyno-
mial unknown-inputs.

3. Our choice of the high gain observer in the 3-5 case

3.1. Preliminary275

Let us go back to the system (14), and consider the 3×3 matrix J defined
in formula (15) above, Jij =

∂Gi

∂Z
, i = 1, . . . , 3, j = 4, . . . , 6.

The invertibility of this Jacobian matrix characterizes the infinitesimal
observability in the sense of Gauthier and Kupka (2001), as was observed280

above. In this particular 3× 5 case, it provides a generalization of the basic
single-output observability normal form from Gauthier and Kupka (1994)
(See also theorem 2.1, p.22 in Gauthier and Kupka (2001)).

Actually, in the 2-dimensional single output case considered in Gauthier285

and Kupka (2001),we would have the corresponding normal form:





y = x1

ẋ1 = f1(x1, x2, u)

ẋ2 = f2(x1, x2, u) with
∂f1
∂x2

6= 0

(18)

The condition ∂f1
∂x2

6= 0 for infinitesimal observability is the analog of our
condition that J is invertible.
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At this step, we could use (up to a certain additional simple change
of coordinates) a High-gain extended Kalman filter. In fact, here, there290

is a simpler solution. Due to Hammouri and Farza (2003) a multi-output
generalization of the results in Gauthier and Kupka (1994) shows that we can
directly apply the basic version of the (constant gain) high-gain Luenberger
observer.

3.2. The multi-output high-gain Luenberger observer295

We forget about the usual difficulty in high-gain observers of any kind,
that consists of smoothly prolongating the system out of a compact set (the
“physical” space), in order that it meets certain global-Lipschitz assump-
tions. In the case of our application, this is more or less trivial.

300

Physical space will be

Ps = {M1 ≥ z1 − d ≥ ε1,Mi ≥ zi ≥ εi > 0} , (19)

for i = 2,. . . ,5.

For this 3-5 case, it is easily seen that the condition from Hammouri and
Farza (2003), that allows the use of a constant gain high-gain observer re-305

duces to the following property (P ):

(P ) There is a constant 3× 3 matrix S such that all (which means for all
possible values of the variables in the physical domain) the 3× 3 matrices J
satisfy: STJ + JTS ≤ −aId, for a certain a > 0.310

This will be the case in our application, reconstruction of sensor fault for
the Bleesbrük WWTP, presented in Section 5.

Let us point out again that, when property (P ) holds, it is possible to315

construct a constant gain, high-gain Luenberger observer that guarantees
arbitrarily fast state reconstruction (or fault reconstruction in our case).

4. Application

4.1. Activated Sludge Process
Due to its efficiency, the Activated Sludge Process (ASP) is the most fre-320

quent device for wastewater treatment. An ASP is a chemical-biological pro-
cess, where a mixed community of microorganisms (called Activated Sludge),
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is used to remove pollutant. A basic ASP layout is composed of an aerated
tank and a settler (Fig. 1).

Insert figure 1 about here325

Wastewater is treated first in the tank, where the level of substrate is
degraded by microorganisms. Next, sedimentation takes place in the set-
tler, in order to separate the clean water and the settled solid. A portion
of the sludge is recycled with the aim to maintain an appropriate biomass
concentration. The remaining amount of sludge is purged.330

Insert Nomenclature about here

Several mathematical models are proposed for the WWTP. The most
popular model is the Activated Sludge Model No.1 (ASM1). However, this
nonlinear model is rather complex: 11 state variables and 19 constant param-
eters. Different kinds of reduced models for the Activated sludge plant have335

been proposed (Jeppsson and Olsson, 1993; Mulas et al., 2007; Smets et al.,
2003; Steffens et al., 1997). Here we consider the reduced 5-dimensional dy-
namical model that was developed by Chachuat et al. (2003).

The following simplifications were applied:340

• Dynamic simplification: When applying a homotopy method, het-
erophic (XB,H), autrophic (XB,A) biomass and inert particulate organic
compounds (XI) were detected as the slowest state dynamics. Thus,
these variables can be assumed constant over a few days. Eliminat-
ing these three states with the concentration of soluble inert organic345

compound (SI), a 7-dimensional dynamic model was obtained.

• Organic compounds simplification: Based on more heuristic considera-
tions, soluble (SS) and particulate (XS) concentrations are glued into
a single organic compound (denoted by XDCO).

• Nitrogenized compounds simplification: Due to a simplification of the350

mathematical expression that describes the organic nitrogen hydrolysis,
the dynamics with respect to soluble and particulate organic nitrogen
becomes a separated independent system that we do not consider.

Also the following standard assumptions are considered:
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• The reactor is well mixed355

• The settler is perfect: No reaction occurs there and the separation
between solid and liquid is ideal.

These simplifications lead to the following set of equations:

˙SNO = Din (SinNO − SNO)− α1
XDCO

KDCO+XDCO

· KO,H

KO,H+SO

SNO

KNO+SNO
+ α2

SNH

KNH,A+SNH

SO

KO,A+SO

(20)

˙SNH = Din (SinNH − SNH)− α3
XDCO

KDCO+XDCO

· SO

KO,H+SO
+ α4

XDCO

KDCO+XDCO

KO,H

KO,H+SO

SNO

KNO+SNO

−α2
SNH

KNH,A+SNH

SO

KO,A+SO
+ α5SND

(21)

ṠO = −DinSO − α6
XDCO

KDCO+XDCO

SO

KO,H+SO

−α7
SNH

KNH,A+SNH

SO

KO,A+SO
+ kLa (S

sat
O − SO)

(22)

˙XDCO = Din (X in
DCO − α8XDCO)− α9

XDCO

KDCO+XDCO

SO

KO,H+SO

+α10
XDCO

KDCO+XDCO

KO,H

KO,H+SO

SNO

KNO+SNO
+ α11

(23)

˙SND = Din (SinND − SND)− α5SND + α12
XDCO

KND+XDCO

SO

KO,H+SO

+α13
XDCO

KND+XDCO

KO,H

KO,H+SO

SNO

KNO+SNO

(24)

With: α1 = µH .XB,H .ηNO,g.
1−YH
2.86YH

, α2 = µA
YA
.XB,A, α3 = µH .XB,H .iNBM ,

α4 = µH .XB,H .iNBM .ηNO,g, α5 = ka.XB,H , α6 = µH .XB,H .
1−YH
YH

, α7 =360

4.57.µA
YA
.XB,A, α8 =

KS

KDCO
, α9 =

µH .XB,H

YH
, α10 =

µH .XB,H

.
YH .ηNO,g, α11 = (1−

frXI
).(bH .XB,H + bA.XB,A), α12 = kh.

XND

XS
.XB,H , α13 = kh.

XND

XS
.XB,H .ηNO,h.

In this paper, we work in simulation using certain data generated by the
team of modeling and simulation of LTI-CRP Henri Tudor in Luxembourg,365

by using the ASM1 model and SIMBA software (see http://www.enic.impl-
nancy-fr/COSTWWTP/Benchmark).
In fact dry, rain and storm data files are generated from a benchmark simu-
lation of the results for the Bleesbrük wastewater plant (in Luxembourg).

The measured concentrations of this station are: The dissolved oxygen370

(SO), nitrate (SNO) and ammonia (SNH).
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4.2. The Luenberger high-gain observer

The purpose of the study is the reconstruction of the sensor faults. A
sensor fault is an unknown function that will be identified on-line. Consider
the reduced ASP system described by equations 20, 21, 22, 23, 24. The un-375

known function d will represent the fault signal applied to the SNO sensor.
It is assumed to be an additive fault. As explained above, in order to re-
construct the function d, the state vector is extended by making d a state
variable, and we just model the fault as a jump of initial conditions: ḋ = 0.

The vector G is as follows:380

G(Z) =




Din(SinNO − (z1 − d)) + α2
z2

KNH,A+z2
z3

KO,A+z3

−α1
KO,H

KO,H+z3

(z1−d)
KNO+(z1−d)

z4,

Din(SinNH − z2)− α2
z2

KNH,A+z2
z3

KO,A+z3
− (α3

z3
KO,H+z3

+α4
KO,H

KO,H+z3

(z1−d)
KNO+(z1−d)

)z4 + α5z5,

−Dinz3 − α7
z2

KNH,A+z2
z3

KO,A+z3

+kla(S
sat
O − z3)− α6

z3
KO,H+z3

z4,

(DinXDCOin+α11)
KDCO

(1− z4)
2 −Dinα8(1− z4)z4

− 1
KDCO

(α9
z3

KO,H+z3
+ α10

KO,H

KO,H+z3

(z1−d)
KNO+(z1−d)

)(1− z4)
2z4,

Din(SinND − z5)− α5z5

+(α12
z3

KO,H+z3
+ α13

KO,H

KO,H+z3

(z1−d)
KNO+(z1−d)

) z4KDCO

KND+z4(KDCO−KND)

0




Here, of course, z6 = d.

Remark: Here, for simplicity in the expressions, we have made the extra
change of variables z4 =

Xdco

Kdco+Xdco
. But this is not absolutely necessary.385

The equation of the standard high gain Luenberger observer is:

˙̂
X(t) = G(X̂)−Kθ(CX̂ − y) (25)

Where Kθ = ∆θK for θ > 1, large enough and:

• ∆θ is the block diagonal matrix ∆θ = BD(θI3, θ
2I3), where I3 is the390

3-dimensional identity matrix,
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• K is a certain constant gain, such that: (G̃∗(X̂)−KC)′L−L(G̃∗(X̂)−
KC) ≤ −aId, a > 0, L constant symmetric positive definite.

Here G̃∗(X) denotes the Jacobian matrix of G̃(X) w.r.t. X (G̃(X) de-395

fined in Section 2.4.1).

In the single output case, the existence of such a K comes from Gauthier
and Kupka (1994).
The multi-output case is much more complicated and has been studied in400

Hammouri and Farza (2003). The existence of K is guaranteed by the prop-
erty (P ) of Section 3 above.
To check that property (P ) holds in our case, it is enough to observe that the
Jacobian matrix J has the following form on the “physical space” Ps (from
(19)):405

J =




−a 0 f
−b α e
−c 0 0


,

where all the functions a, b, c, f, e, α are strictly positive. The technical
lemma in our appendix provides property (P ).

Here, we did not use the explicit construction of the constant gain K410

provided by (Hammouri and Farza, 2003), but a heuristic one that works
quite well. We have chosen K = L−1C

′

, where L is the solution of the
following Riccati equation:

−G′L− LG + C ′C − LQL = 0 (26)

With Q = diag(10−3, 10−3, 10−3, 10−3, 10−3, 10−1),
415

and

G =




0 0 0 ∂g1(x)
∂x4

∂g1(x)
∂x5

∂g1(x)
∂d

0 0 0 ∂g2(x)
∂x4

∂g2(x)
∂x5

∂g2(x)
∂d

0 0 0 ∂g3(x)
∂x4

∂g3(x)
∂x5

∂g3(x)
∂d

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, at a typical (or average) point x.
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We obtain the constant Luenberger gain:

K =




3.73 1.43× 10−2 5× 10−3

1.43× 10−2 5.69× 10−1 4.255× 10−1

5× 10−3 4.255× 10−1 2.9189
0 −2× 10−4 −10−3

0 10−3 −2× 10−4

10−1 3× 10−4 −5× 10−4




420

4.3. Numerical simulations

The three outputs are corrupted by an additive colored noise. In a stan-
dard way, we have chosen an Ornstein-Uhlenbeck process Xt, simulating the
following stochastic equation (Uhlenbeck and Ornstein, 1930):

dXt = −aXtdt+ δ
√
2adWt, (27)

where Wt is a standard Wiener process.425

The coefficients a ,δ have been chosen in order to get the realistic noise
level shown in the results below.

The kinetic and stoichiometric parameter values considered are those de-430

fined for the ASM1 model (Smets et al., 2003) (see table 1). The complete
others parameters values can be found in table 2.

Insert table 1 about here

Insert table 2 about here435

4.3.1. Step fault

At the second day, a step fault is applied to the SNO sensor (Fig. 2). The
amplitude equal to 2 mg/l (compared to an average value of 6 mg/l). The 3
state variables SNO, SNH and SO are measured.

Insert figure 2 about here440
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Simulations, displayed on Fig. 3, 4 and 5, show the observer outputs :
d, XDCO, SND. They demonstrate the effectiveness of the proposed method
to estimate states and simultaneously reconstruct the sensor faults even for
systems subject to noisy measurements.

Insert figure 3 about here445

Insert figure 4 about here

Insert figure 5 about here

Although we reconstruct simultaneously the unknown state variablesXDCO,
SND, the main purpose of these simulations is to detect and reconstruct the
additive sensor fault d. One readily checks on Fig. 3, that the observer’s out-450

put d is close to zero when there is no fault (before day 2), while it reaches
quickly the value 2 mg/l when the fault occurs.

4.3.2. Slow drift and intermittent fault

In order to validate completely the method, it is interesting to consider,
besides the step, the most classical types of malfunctions: Slow drift and in-455

termittent fault. The corresponding simulation results are shown respectively
on Fig. 6 and 7.

Insert figure 6 about here

Insert figure 7 about here

On these two figures, one can see that the method preserves the shape460

and amplitude of the fault with high fidelity, despite the noisy measurements.

5. Comparison with other methods

Our method lies in the framework of geometric control theory. Another
popular method of this type (referred to as the DPIM) has been developed
by De Persis and Isidori (2000, 2001). Let us analyze what is different in our465

approach.
The DPIM is rather closely related to ours, however the basic problem is
different: One wants (1) to detect the occurrence of the fault and simultane-
ously (2) to reject perturbations. What we do here is in a sense weaker since
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we do not ask rejection of any perturbation.470

In this case where there is no perturbation, however, the DPIM makes sense,
and we feel that our method is stronger, from two points of view:
a) we do not only detect the occurrence of the fault, but we reconstruct the
fault.
b) we do not limit ourselves to control affine systems (w.r.t. the fault in475

particular), but we consider general nonlinearities.

This last point (b) has to be developed: Assume for instance an additive
sensor fault on the output, of the form y(t) = h(x) + d(t) for simplicity.
Without loss of generality, we may assume that y(x) = x1+ d. Then, setting480

x1 + d = x̃1, we get y = x̃1, and the equations for the dynamics are already
fully nonlinear w.r.t. d(t), even starting from a system affine w.r.t. d(t). The
DPIM simply does not apply.
It is the case in our application. Now, let us have a look to the example in
De Persis and Isidori (2001), where the DPIM not only works, but allows to485

reconstruct fully the fault (we cite: “In this particular example, it is even
possible to identify the value of m.”).

It turns out that, in their case, l = number of controls = 3, k = number
of “unknown faults” = 1. Assuming the l (= 3) controls as known constants,490

we are in the generic situation of m = 3 outputs, k = 1 unknown input: The
generic case.
Actually, it is easily seen that our theorem 3 applies, and that the change of
variables chosen in De Persis and Isidori (2001) leads exactly to our normal
form Σ3+ of Theorem 3.495

Considering now the controls as nonconstant, it is easy to see that we ob-
tain the normal form Σ3+, but with its linear part becoming time-dependent
through the 3 controls. Hence, our high-gain observer still applies, and this
is more or less what is suggested in De Persis and Isidori (2001) at the end
of the paper.500

Other related works in the same spirit are:
a) Hou and Patton, but in the linear case (Hou and Patton, 1998),
b) Kabore and Wang (Kabore and Wang, 2001), where conditions are given
for observability (detectability) for unknown inputs. This work has not really505

a geometric flavor, and moreover, it applies to control affine problems only.
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6. Conclusion

An approach for sensor fault identification and reconstruction for a class
of nonlinear systems has been proposed based on a theory of observability
for unknown inputs. The sensor fault is considered as the unknown input.510

Our theory naturally leads to the use of a Luenberger-type high gain ob-
server. The Bleesbrük ASP with ASM1 model provides an ideal case study.
Simulations with ASP have shown the effectiveness of our strategy for fault
reconstruction, in the presence of noisy measurements. The Luenberger high
gain observer used for this application is specially simple.515

There are several open questions after this work: First, from theoretical
point of view, it seems to us that it is now necessary to complete our theory
(to the case of simultaneous faults, for instance). Although it is rather clear
how to proceed, the task is not technically so obvious. From the point of view520

of the application, we are starting to apply the method to a real waste-water
system. As usual, this is presumably the beginning of a long story.
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tion).

7. References
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A. Appendix: Technical lemma

Let C be a compact subset contained in the set of matrices of the form:

A =




−a 0 d
−b α e
−c 0 0




610

with a, b, c, d, e, α > 0.
Let N be of the form

N =




0 0 −r
0 −1 0
rs 0 0




Then, for s, r > 0 large enough

N
′

A+ A
′

N < −βId, β > 0 ∀A ∈ C615

Proof.

N
′

A =




−crs 0 0
b −α −e
ar 0 −dr




X =




x
y
z
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X
′

N
′

AX = −crsx2 − αy2 − drz2 + bxy − eyz + arxz

−αy2 + bxy − eyz = −(αy2 − 2
√
αy bx−ez

2
√
α

+ ( bx−ez
2
√
α
)2) + (bx−ez)2

4α2620

−αy2 + bxy − eyz = −(
√
αy − bx−ez

2
√
α
)2 + b2x2

4α2 + e2z2

4α2 − bexz
2α2

X
′

N
′

AX = −(
√
αy− bx−ez

2
√
α
)2 + (( b2

4α2 − crs)x2 + ( e2

4α2 − dr)z2 + (ar− be
2α2 )xz)

The result follows QED.
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Nomenclature

625

SI Soluble inert organic matter concen-
tration (mgl−1)

iNBM Mass of nitrogen in the biomass
(gNg−1

COD)
SS Readily biodegradable substrate

concentration (mgl−1)
iNXI Mass of nitrogen in the inert partic-

ulate organic matter (gNg−1
COD)

SO Dissolved oxygen concentration
(mgl−1)

Kl a Coefficient of oxygen rate (d−1)

SsatO Dissolved oxygen saturation concen-
tration (mgl−1)

KNH,AHalf-saturation coefficient of ammo-
nia for autotrophs (gNHm−3)

SNO Nitrate and nitrite nitrogen concen-
tration (mgl−1)

KN0 Half-saturation coefficient of ni-
trate for denitrifying heterotrophs
(gNOm−3)

SNH Ammonia nitrogen concentration
(mgl−1)

K0,A Half-saturation coefficient of oxygen
autotrophs (gO2m

−3)
SND Soluble biodegradable organic nitro-

gen concentration (mgl−1)
K0,H Half-saturation coefficient of oxygen

heterotrophs (gO2m
−3)

XI Particulate inert organic matter
concentration (mgl−1)

KS Half-saturation coefficient for het-
erotrophic organisms (gDCOm−3)

XS Slowly biodegradable substrate con-
centration (mgl−1)

KX Half-saturation coefficient for hy-
drolysis of slowly biodegradable
substrate gDCOg−1

DCO

XB,H Active heterotrophic biomass con-
centration (mgl−1)

YA Yield coefficient for autotrophic or-
ganisms (−)

XB,A Active autotrophic biomass concen-
tration (mgl−1)

YH Yield coefficient for heterotrophic
organisms (−)

XND Particulate biodegradable organic
nitrogen concentration (mgl−1)

µA Maximum specific growth rate for
autotrophic organisms (d−1)

bA Autotrophic organisms decay rate
coefficient (d−1)

µH Maximum specific growth rate for
heterotrophic organisms (d−1)

bH Heterotrophic organisms decay rate
coefficient (d−1)

in influent (d−1)

frXI Fraction of biomass generating the
particulate products (−)

Din Influent flow rate (m3d−1)
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Figure 1: Typical small-size activated sludge treatment plant.

Parameter Value Range of variation
YH 0.67 0.38 - 0.75
iNBM 0.08 -
KS 10 5-225
K0,H 0.2 0.01-0.20
KNO 0.5 0.01-0.50
KNH,A 1.0 -
K0,A 0.40 0.40-2.0
ηNO,g 0.8 0.6-13.2
ηNO,h 0.8 -
YA 0.24 0.07-0.28
frXI 0.08 -
µH 4.0 0.60-13.2
µA 0.5 0.20-1.0
ka 0.05 -
kh 3.0 -
fSS 0.79 -
Din(d−1) 69.2 (mean) 62.85-79.52

Table 1: ASM1 Kinetic and stoichiometric parameters.
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Parameter Value
α1 3923
α2 283
α3 796
α4 637
α5 124
α6 3904
α7 1293
α8 0.045
α9 14860
α10 11888
α11 693
α12 480
α13 384
KDCO 220
KND 258
XB,A 136 gDCOm−3

XB,H 2489 gDCOm−3

XND 6gNm−3

kla 240 d−3

VO 1333m3

Table 2: Different parameter values.
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Figure 2: The faulty SNO sensor.
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Figure 3: The difference between the applied and the reconstructed step sensor
fault.
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Figure 4: The difference between estimated and real XDCO (unmeasured state) -
No visible difference.
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Figure 5: The difference between estimated and real SND (unmeasured state) - No
visible difference.
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Figure 6: The difference between the applied and the reconstructed slow drift sensor
fault.
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Figure 7: The difference between the applied and the reconstructed intermittent
sensor fault .
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