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Abstract. In this paper we study a model of geometry of vision due to Petitot, Citti and Sarti.
One of the main features of this model is that the primary visual cortex V1 lifts an image from R2 to
the bundle of directions of the plane. Neurons are grouped into orientation columns, each of them
corresponding to a point of this bundle.

In this model a corrupted image is reconstructed by minimizing the energy necessary for the
activation of the orientation columns corresponding to regions in which the image is corrupted. The
minimization process gives rise to an hypoelliptic heat equation on the bundle of directions of the
plane.

In the original model directions are considered both with and without orientation giving rise
respectively to a problem on the group of rototranslations of the plane SE(2) or on the projective
tangent bundle of the plane PTR2.

We provide a mathematical proof of several important facts for this model. We �rst prove that
the model is mathematically consistent only if direction are considered without orientation. We then
prove that generically the convolution of a L2(R2,R) function (e.g. an image) with a 2-D Gaussian
is generically a Morse function. This fact is important since the lift of Morse functions to PTR2

is de�ned on a smooth manifold. We then provide the explicit expression of the hypoelliptic heat
kernel on PTR2 in terms of Mathieu functions.

Finally we present the main ideas of an algorithm which allows to perform image reconstruction
on real non-academic images. A very interesting point is that this algorithm is massively parallelizable
and needs no information on where the image is corrupted.

Keywords: sub-Riemannian geometry, image reconstruction, hypoelliptic di�u-
sion

1. Introduction. In this paper we study a model of geometry of vision initially
due to Petitot (see [30, 31] and references therein), then re�ned by Citti and Sarti
[13, 14], and by the authors of the present paper in [9]. This model was also studied
by Hladky and Pauls [23] and, independently, by Duits et al. in a series of papers
mostly for contour completion [16] and contour enhancement [17, 18].

To start with, assume that a grey-level image is represented by a function I ∈
L2(D,R), where D is an open bounded domain of R2. The algorithm that we present
here is based on three crucial ideas coming from neurophysiology:

1. It is widely accepted that the retina approximately smoothes the images by
making the convolution with a Gaussian function (see for instance [25, 27, 29]
and references therein), equivalently solving a certain isotropic heat equation.
Moreover, in image processing smoothing by the same technique is a widely
used method. Then, it is an interesting question in itself to understand generic
properties of these smoothed images. Our �rst result (proved in in Appendix
A) is that, given G(σx, σy) the two dimensional Gaussian centered in (0, 0)
with standard deviations σx, σy > 0, then the smoothed image

f = I ∗G(σx, σy) ∈ L2(R2,R) ∩ C∞(R2,R),
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is generically a Morse function (i.e. a smooth function having as critical points
only maxima, minima and saddles). The fact that this smoothed image is a
Morse function has interesting consequences, as explained in the following.
Remark 1. In several applications, the convolution is made with a Gaus-
sian of small standard deviations. Equivalently, the smoothed image can be
obtained as the solution of an isotropic heat equation with small �nal time.
Remark 2. These results can be generalized to non-Gaussian �lters and
even to non-linear smoothing processes. What is crucial is the request that
this �ltering process produces a Morse function. See for instance [15] for some
of these generalizations.

2. The primary visual cortex V1 lifts the image from R2 to the bundle
of directions of the plane PTR2.
In a simpli�ed model1 (see [31, p. 79]), neurons of V1 are grouped into
orientation columns, each of them being sensitive to visual stimuli at a given
point a of the retina and for a given direction p on it. The retina is modeled by
the real plane, i.e. each point is represented by a ∈ R2, while the directions
at a given point are modeled by the projective line, i.e. p ∈ P 1. Hence,
the primary visual cortex V1 is modeled by the so called projective tangent
bundle PTR2 := R2 × P 1. From a neurological point of view, orientation
columns are in turn grouped into hypercolumns, each of them being sensitive
to stimuli at a given point a with any direction. In the same hypercolumn,
relative to a point a of the plane, we also �nd neurons that are sensitive to
other stimuli properties, like colors. In this paper, we focus only on directions
and therefore each hypercolumn is represented by a �ber P 1 of the bundle
PTR2. See Figure 1.1.
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Figure 1.1. A scheme of the primary visual cortex V1.

This space has the topology of R2 × P 1 (it is a trivial bundle) and its points
are triples (x, y, θ), where (x, y) ∈ R2, θ ∈ R/(πZ).

1For example, in this model we do not take into account the fact that the continuous space of
stimuli is implemented via a discrete set of neurons.
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The smoothed image f : R2 → R is lifted to a a function f̄ de�ned as follows:

f̄(x, y, θ) =


f(x, y) if θ is the direction of the level set of f ,

0 otherwise.

It follows that f̄ has support on a set Sf ⊂ PTR2. The following fact consti-
tutes our second result. If f is a Morse function (which happens generically
due to the smoothing of the retina as explained above), then Sf is an embed-
ded surface in PTR2, see Proposition 19.

3. If the image is corrupted or missing on a set Ω ⊂ D (i.e. if I is de�ned on
D\Ω), then the reconstruction of I in Ω is made by minimizing a given cost.
This cost represents the energy that the primary visual cortex should spend
in order to excite orientation columns which corresponds to points in Ω and
hence that are not directly excited by the image. An orientation column is
easily excited if it is close to another (already activated) orientation column
sensitive to a similar direction in a close position (i.e. if the two are close in
PTR2).
When the image to be reconstructed is a curve, this gives rise to a sub-
Riemannian problem (i.e. an optimal control problem linear in the control
and with quadratic cost) on PTR2, which we brie�y discuss in Sections 2.3,
2.4, 2.5.
When the image is not just a curve, the reconstruction is made by considering
the di�usion process naturally associated with the sub-Riemannian problem
on PTR2 (described by an hypoelliptic heat equation). Such a reconstruc-
tion makes use of the function f̄ as initial condition in a suitable way. The
reconstructed image is then obtained by projecting the result of the di�usion
from PTR2 to R2.

In this paper we study this model providing a mathematical proof of several im-
portant facts and adding certain important details with respect to its original version
given in [13, 14]. The main improvements are described in the following. Let us �rst
recall that PTR2 can be seen as the quotient of the group of rototranslations of the
plane SE(2) ≃ R2 × S1 by Z2, where the quotient is the identi�cation of antipodal
points in S1.

• As already mentioned, we start with any function I ∈ L2(D,R) and we
prove that after convolution with a Gaussian of standad deviations2 σx = σy,
generically, we are left with a Morse function f ∈ L2(R2,R) ∩ C∞(R2,R)
(see Appendix A). This smoothing process is important to guarantee certain
regularity of the domain of de�nition of the lifted function f̄ .

• Our de�nition of the lift is suitable to all smooth functions, since we don't
require conditions like nondegenerate gradient (as in [13]) or more complicated
condition on the so called non-Legendrian solitary points (as in [23, Thm 1.6]).

• In the �rst version of this model [13] the image is lifted on SE(2) (i.e. di-
rections are considered with orientation), while in the second one [14] it is
lifted on PTR2 (i.e. directions are considered without orientation). The next
contribution of our paper is to show that the problem of reconstruction of
images for smooth functions is well posed on PTR2 while it is not on SE(2).
First, on PTR2 the lift is unique, while on SE(2) it is not, since level sets of

2We �x σx = σy to guarantee invariance by rotrotranslations of the algorithm.
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the image are not oriented curves. Second, the problem on SE(2) cannot be
interpreted as a problem of reconstruction of contours (see Remarks 4, 13 and
[9]). Third, as proved in Proposition 19, the domain Sf of the lift of a Morse
function f is much more natural on PTR2 than on SE(2). On PTR2 it is a
manifold, while on SE(2) it is a manifold with a boundary (for a continuous
choice of the orientation of the level sets of f). The boundary appears on
minima, maxima and saddles of f . In the di�usion process, starting with an
initial condition which is concentrated on a manifold is much more natural
than starting with an initial condition which is concentrated on a manifold
with a boundary.

• We show that the sub-Riemannian structure over PTR2 is not trivializable
which means that it cannot be speci�ed by a single global orthonormal frame
as in [14]. For a detailed discussion of this issue see Remark 6 and [9].

• We give the expression of the hypoelliptic heat kernel over PTR2, while,
previously, it was known only on SE(2) (see [4] and [16, 17], where it was
found independently).

• We provide an e�ective algorithm for image reconstruction that looks un-
expectedly e�cient on real non-academic examples as shown in Section 3.3.
Moreover our algorithm has the good feature to be massively parallelizable
(see Section 3). This is just the materialization of the classical fact that the
noncommutative Fourier transform disintegrates the regular representation
over SE(2). Moreover the algorithm does not need the information of where
the original image is corrupted.

Other numerical methods to compute hypoelliptic di�usion on SE(2) for image pro-
cessing have been developed. For instance: group convolution methods (see [12, 17,
19]) �nite di�erences [13, 14, 20]3 and �nite elements methods. (See [17, 18]. These
last works are related to the noncommutative Fourier transform on SE(2) and are
extensions of the works by August [7].) Most of these works are about contour en-
hancement. In our opinion, at the present moment, our results seems to be the most
convincing.

Remark 3. Notice that from the very beginning of the algorithm, we deal with
the intensity of the image. Other related algorithms [13, Sec. 3.3], [23] are instead
composed of two reconstruction steps. After the lift of the image, these algorithms
have to deal with a surface in SE(2) or PTR2 with a hole, corresponding to the
corrupted part. The �rst reconstruction step is thus to �ll the hole as a surface,
without considering the intensity of the image. The second reconstruction step is
then to put the intensity on the reconstructed part. See Remarks 15 and 22.

The results of our algorithm can be compared to the ones coming from psycho-
logical experiments. Moreover, they can be useful to reconstruct the geometry of an
image, as a preliminary step of exemplar-based methods (see [11]).

Notice that an alternative technique of image processing (in particular for contour
completion) based on physiological models of the visual cortex have been developed
in [16, 17, 18, 26]. In these models non-isotropic di�usion is associated to an optimal
control problem with drift having as solution elastica curves.

The structure of the paper is the following. In Section 2 we present in detail
the sub-Riemannian structure de�ned on PTR2. We then de�ne the corresponding

3Notice that classical �nite di�erence methods �hardly works� to compute hypoelliptic di�usion.
This is due to the di�usion at di�erent scales on di�erent directions as a consequence of the non-
ellipticity of the di�usion operator.
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hypoelliptic di�usion which is one of the main tools used in the algorithm of image
reconstruction and we �nd explicitly the corresponding kernel on PTR2. At the end,
we present in detail the mathematical algorithm.

Section 3 is devoted to the discussion about the numerical integration of the
hypoelliptic evolution and to the presentation of samples.

Appendix A is devoted to the detailed proof that, generically, the convolution of
a L2 function over a bounded domain D ⊂ R2 with a Gaussian G is a Morse function.
In particular, we prove that the set of functions I ∈ L2(D) whose convolution with a
Gaussian is a Morse function in L2(D) is residual (i.e. it is a countable intersection
of open and dense sets). We then prove that the set of functions I ∈ L2(D) such that
I ∗G restricted to a compact K ⊂ R2 is a Morse function is open and dense. Notice
again that the proof can be adapted to any reasonable smoothing process, not only
Gaussian.

2. The mathematical model and the algorithm.

2.1. Reconstruction of a curve. In this section we brie�y describe an algo-
rithm to reconstruct interrupted planar curves. The main interest of this section is
the de�nition of the sub-Riemannian structure over PTR2, from which we are going
to de�ne the sub-elliptic di�usion equation.

Consider a smooth function γ0 : [a, b] ∪ [c, d] → R2 (with a < b < c < d)
representing a curve that is partially hidden or deleted in (b, c). We assume that
starting and ending points never coincide, i.e. γ0(b) ̸= γ0(c), and that initial and �nal
velocities γ̇(b) ad γ̇(c) are well de�ned and nonvanishing.

We want to �nd a curve γ : [b, c] → R2 that completes γ0 in the deleted part and
that minimizes a cost depending both on the length and on the curvature Kγ of γ.
Recall that

Kγ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2

where (x, y) are the components of γ.
The fact that γ completes γ0 means that γ(b) = γ0(b), γ(c) = γ0(c). It is also

reasonable to require that the directions of tangent vectors coincide, i.e. γ̇(b) ≈
γ̇0(b), γ̇(c) ≈ γ̇0(c) where

v1 ≈ v2 if it exists α ∈ R \ {0} such that v1 = α v2. (2.1)

Remark 4. Notice that we have required boundary conditions on initial and �nal
directions without orientation. Alternatively, the problem above can be formulated
requiring boundary conditions with orientation, i.e. substituting in (2.1) the condition
α ∈ R+. However, this choice does not guarantee existence of minimizers for the cost
we are interested in, see [9] and Remark 6 below.

In this paper we are interested in the minimization of the following cost, de�ned
for smooth curves γ in [b, c]:

J [γ] =

∫ c

b

√
∥γ̇(t)∥2 + ∥γ̇(t)∥2K2

γ(t) dt (2.2)

This cost is interesting for several reasons:
• It depends on both length and curvature of γ. It is small for curves that are
straight and short;
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Figure 2.1. A trajectory with two cusps.

• It is invariant by rototranslation (i.e. under the action of SE(2)) and by
reparametrization of the curve, as should be any reasonable process of recon-
struction of interrupted curves.

• Minimizers for this cost do exist in the natural functional space in which this
problem is formulated, without involving sophisticated functional spaces or
curvatures that become measures. Indeed, in [9] we have proved:
Proposition 5. For every (xb, yb), (xc, yc) ∈ R2 with (xb, yb) ̸= (xc, yc) and
vb, vc ∈ R2\ {0}, the cost (2.2) has a minimizer over the set

D :=

γ ∈ C 2([b, c],R2) s.t.

√
∥γ̇(t)∥2(1 +K2

γ(t)) ∈ L1([b, c],R),
γ(b) = (xb, yb), γ(c) = (xc, yc),
γ̇(b) ≈ vb, γ̇(c) ≈ vc.

 .(2.3)

Remark 6. In [28, 32, 33], it has been proved that minimizers for the cost
(2.2) are analytic functions for which γ̇ = 0 at most for two isolated points.
At these points the limit of ∥γ̇(t)∥Kγ(t) is well de�ned. They are cusp points,
i.e. points at which γ̇ becomes opposite. See Figure 2.1.
Notice that at cusp points the limit direction (regardless of orientation) is
well de�ned. In [9] it is proved that if boundary conditions are required with
orientation, then the cost (2.2) has no minimum over the set D .

• Minimizing the cost J [γ] is equivalent to minimize the energy-like cost

E [γ] =

∫ c

b

(
∥γ̇(t)∥2 + ∥γ̇(t)∥2K2

γ(t)
)
dt.

This is a good model for describing the energy necessary to excite orientation
columns which are not directly excited by the image (because they correspond
to the corrupted part of the image).

However, the most interesting aspect is that this cost is a Riemannian length for
lifts of planar curves over PTR2 (more precisely J [γ] is a sub-Riemannian length, see
below). As a consequence, we have a di�usion equation naturally associated with this
cost that can be used to reconstruct more complicated images and not just curves.

Remark 7. One could argue that there is no reason to give the same weight to
the length term ∥γ̇∥ and to the curvature term ∥γ̇(t)∥2K2

γ(t). However, if we de�ne
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the cost

Jβ [γ] :=

∫ c

b

√
∥γ̇(t)∥2 + β2∥γ̇(t)∥2K2

γ(t) dt

with a �xed β ̸= 0 and if we consider an homothety (x, y) 7→ (βx, βy) and the cor-
responding transformation of a curve γ = (x(t), y(t)) to γβ = (βx(t), βy(t)), then it
is easy to prove that Jβ [γβ ] = β2J1 [γ] = β2J [γ]. Therefore the problem of mini-
mizing Jβ is equivalent to the minimization of J with a suitable change of boundary
conditions.

Although the mathematical problem is equivalent by changing β, this parameter
will play a crucial role in the following, see Remark 21.

Another interesting feature is the uniqueness of this sub-Riemannian distance.
Beside the possibility of adding a weight β on the curvature term, that can be removed
via an homothety, it is the unique sub-Riemannian distance for lift of planar curves
on PTR2 that is invariant under the action of SE(2). See Proposition 14 below.

2.2. Sub-Riemannian manifolds. In this section we recall some standard def-
initions of sub-Riemannian geometry, that we use in the following. We start by re-
calling the de�nition of sub-Riemannian manifold.

De�nition 8. A (n,m)-sub-Riemannian manifold is a triple (M,N,g), where
• M is a connected smooth manifold of dimension n;
• N is a smooth distribution of constant rank m < n satisfying the Hörmander
condition, i.e. N is a smooth map that associates to q ∈M a m-dim subspace
N(q) of TqM and ∀ q ∈M we have

span {[X1, [. . . [Xk−1, Xk] . . .]](q) | Xi ∈ VecH(M)} = TqM

where VecH(M) denotes the set of horizontal smooth vector �elds on M ,
i.e.

VecH(M) = {X ∈ Vec(M) | X(q) ∈ N(q) ∀ q ∈M} .

• gq is a Riemannian metric on N(q), that is smooth as function of q.
A Lipschitz continuous curve q(·) : [0, T ] → M is said to be horizontal if q̇(t) ∈

N(q(t)) for almost every t ∈ [0, T ]. Given an horizontal curve q(·) : [0, T ] → M , the
length of q(·) is

l(q(·)) =
∫ T

0

√
gq(t)(q̇(t), q̇(t)) dt. (2.4)

The distance induced by the sub-Riemannian structure on M is the function

d(q0, q1) =inf{l(q(·)) | q(0) = q0, q(T ) = q1, q(·) horizontal}.

The connectedness assumption for M and the Hörmander condition guarantee
the �niteness and the continuity of d(·, ·) with respect to the topology of M (Chow's
Theorem, see for instance [6]). The function d(·, ·) is called the Carnot-Charateodory
distance and gives to M the structure of metric space (see [8, 22]).

It is a standard fact that l(q(·)) is invariant under reparametrization of the curve
q(·). On one side, if an admissible curve q(·) minimizes the so-called energy functional

E(q(·)) =
∫ T

0

gq(t)(q̇(t), q̇(t)) dt.
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with �xed T (and initial and �nal �xed points), then v =
√

gq(t)(q̇(t), q̇(t)) is constant
and q(·) is also a minimizer of l(·). On the other side, a minimizer q(·) of l(·) such
that v is constant is a minimizer of E(·) with T = l(q(·))/v.

A geodesic for the sub-Riemannian manifold is a curve q(·) : [0, T ] → M such
that for each su�ciently small interval [t1, t2] ⊂ [0, T ], then q(·)|[t1,t2]

is a minimizer

of E(·). A geodesic for which gq(t)(q̇(t), q̇(t)) is identically equal to one is said to be
arclength parameterized.

Locally, the pair (N,g) can be speci�ed by assigning a set of m smooth vector
�elds spanning N, that are moreover orthonormal for g, i.e.

N(q) = span {X1(q), . . . , Xm(q)} , gq(Xi(q), Xj(q)) = δij . (2.5)

Such a set {X1, . . . , Xm} is called a local orthonormal frame for the sub-Riemannian
structure. When (N,g) can be de�ned by m globally de�ned vector �elds as in (2.5)
we say that the sub-Riemannian manifold is trivializable.

Given a (n,m)-trivializable sub-Riemannian manifold, the problem of �nding a
curve minimizing the energy between two �xed points q0, q1 ∈M is naturally formu-
lated as the following optimal control problem

q̇(t) =

m∑
i=1

ui(t)Xi(q(t)) , (2.6)

ui(.) ∈ L∞([0, T ],R),
∫ T

0

m∑
i=1

u2i (t) dt→ min,

q(0) = q0, q(T ) = q1. (2.7)

It is a standard fact that this optimal control problem is equivalent to the minimum
time problem with controls u1, . . . , um satisfying u1(t)

2 + . . . + um(t)2 ≤ 1 in [0, T ].
When the sub-Riemannian manifold is not trivializable, the equivalence with the
optimal control problem (2.6)-(2.7) is just local.

When the manifold is analytic and the orthonormal frame can be assigned by m
analytic vector �elds, we say that the sub-Riemannian manifold is analytic. In this
paper we deal with an analytic sub-Riemannian manifold.

A sub-Riemannian manifold is said to be of 3D contact type if n = 3, m = 2
and for every q ∈ M we have span{N(q), [N,N](q)} = TqM . This is the case that we
study in this paper. For details, see [5].

Remark 9. As a consequence of the invariance by reparameterization of the cost
(2.4), it is equivalent to state the minimization problem in the space of Lipschitz or
absolutely continuous curves (i.e. for ui(·) ∈ L∞([0, T ],R) or for ui(·) ∈ L1([0, T ],R).)
See [9, Lemma 1].

2.2.1. Left-invariant sub-Riemannian manifolds. In this section we present
a natural sub-Riemannian structure that can be de�ned on Lie groups. All along the
paper, notations are adapted to group of matrices only. For general Lie groups, by
gv with g ∈ G and v ∈ L, we mean (Lg)∗(v) where Lg is the left-translation on the
group.

De�nition 10. Let G be a Lie group with Lie algebra L and P ⊆ L a subspace
of L satisfying the Lie bracket generating condition

Lie P := span {[p1, [p2, . . . , [pn−1, pn]]] | pi ∈ P} = L.

Endow P with a positive de�nite quadratic form ⟨., .⟩. De�ne a sub-Riemannian
structure on G as follows:
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• the distribution is the left-invariant distribution

N(g) := gP;

• the quadratic form g on N is given by

gg(v1, v2) := ⟨g−1v1, g
−1v2⟩.

In this case we say that (G,N,g) is a left-invariant sub-Riemannian manifold.
In the following we de�ne a left-invariant sub-Riemannian manifold by choosing

a set of m vectors {p1, . . . , pm} which form an orthonormal basis for the subspace
P ⊆ L with respect to the metric from De�nition 10, i.e. P = span {p1, . . . , pm} and
⟨pi, pj⟩ = δij . We thus have

N(g) = gP = span {gp1, . . . , gpm}

and gg(gpi, gpj) = δij . Notice that every left-invariant sub-Riemannian manifold is
trivializable.

2.3. Lift of a curve on PTR2 and the sub-Riemannian problem. Consider
a smooth planar curve γ : [b, c] → R2. This curve can be naturally lifted to a curve
γ̄ : [b, c] → PTR2 in the following way. Let (x(t), y(t)) be the Euclidean coordinates
of γ(t). Then the coordinates of γ̄(t) are (x(t), y(t), θ(t)), where θ(t) ∈ R/(πZ) is the
direction of the vector (x(t), y(t)) measured with respect to the vector (1, 0). In other
words,

θ(t) = arctan

(
ẏ(t)

ẋ(t)

)
mod π. (2.8)

Of course we can extend by continuity the de�nition to points where γ̇(t̄) = 0 but
limt→t̄ θ(t) is well de�ned. We assume
[H] θ : [b, c] → R/(πZ) is absolutely continuous.
Notice that θ̇ = ∥γ̇∥Kγ , hence hypothesis [H] is equivalent to require that ∥γ̇∥Kγ ∈
L1([b, c],R).

The requirement that a curve (x(t), y(t), θ(t)) satis�es the constraint (2.8) under
[H] can be slightly generalized by requiring that (x(t), y(t), θ(t)) is an admissible
trajectory of the control system on PTR2: ẋ

ẏ

θ̇

 = u1(t)

 cos(θ)
sin(θ)

0

+ u2(t)

 0
0
1

 (2.9)

with u1, u2 ∈ L1([b, c],R). Indeed each smooth trajectory γ satisfying [H] is an
admissible trajectory of (2.9).

Since u1(t)
2 = ∥γ̇(t)∥2, u2(t)2 = θ̇2 = ∥γ̇(t)∥2Kγ(t)

2, we have

J [γ] =

∫ c

b

√
u1(t)2 + u2(t)2 dt

Hence, the problem of minimizing the cost (2.2) on the set of curves D is (slightly)

9



generalized considering the optimal control problem (here q(·) = (x(·), y(·), θ(·)))

q̇ = u1(t)X1(q) + u2(t)X2(q), (2.10)

X1(q) =

 cos(θ)
sin(θ)

0

 , X2(q) =

 0
0
1

 , (2.11)

l(q(·)) =
∫ c

b

√
u1(t)2 + u2(t)2 dt→ min, (2.12)

q(b) = (xb, yb, θb), q(c) = (xc, yc, θc), (2.13)

(xb, yb) ̸= (xc, yc), u1, u2 ∈ L1([b, c],R). (2.14)

Remark 11. Notice that there are admissible trajectories q(·) = (x(·), y(·), θ(·))
of the control system (2.10) for which the condition θ(t̄) = limt→t̄ arctan

(
ẏ(t)
ẋ(t)

)
is not

veri�ed (consider for instance the trajectory x(t) = 0, y(t) = 0, θ(t) = t) or such that
x(·) or y(·) fail to be smooth. However, it has been proved in [9] that minimizers of
(2.10)-(2.14) are minimizers of (2.2) on the set D and they are smooth.

Remark 12. (non-trivializability) A certain abuse of notation appears in
formulas (2.9), (2.12), and (2.13), as in [14]. Indeed the vector �eld X1 is not well
de�ned on PTR2. For instance, it takes two opposite values in θ and θ + π, that are
identi�ed. A correct de�nition of the sub-Riemannian structure requires two charts:

• Chart A: θ ∈]0 + kπ, π + kπ[, k ∈ Z, x, y ∈ R.

q̇ = uA1 (t)X
A
1 (q) + u2(t)X2(q), XA

1 =

 cos(θ)
sin(θ)

0

 ,

l(q(·)) =
∫ c

b

√
uA1 (t)

2 + u2(t)2 dt,

• Chart B: θ ∈]− π/2 + kπ, π/2 + kπ[, k ∈ Z, x, y ∈ R.

q̇ = uB1 (t)X
B
1 (q) + u2(t)X2(q), XB

1 =

 cos(θ)
sin(θ)

0

 ,

l(q(·)) =
∫ c

b

√
uB1 (t)

2 + u2(t)2 dt,

One can check that the two charts are compatible and that this sub-Riemannian
structure is non-trivializable, while PTR2 is parallelizable.

Since the formal expression of XA
1 and XB

1 are the same, while they are de�ned
on di�erent domains, one can proceed with a single chart (however, one should bear
in mind that u1 changes sign when passing from the chart A to the chart B in R ×
R×]π/2, π[). In the following, since we study a �sum of squares� hypoelliptic di�usion
on this sub-Riemannian structure, the problem disappears.

This sub-Riemannian manifold is of 3D contact type: the distribution has dimen-
sion 2 over a three-dimensional manifold and

span{X1(q), X2(q), [X1, X2](q)} = TqPTR2.
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2.4. The sub-Riemannian problem on SE(2). It is convenient to lift the
sub-Riemannian problem on PTR2 (2.10)-(2.14) on the group of rototranslation of
the plane SE(2), in order to take advantage of the group structure. It is the group of
matrices of the form

SE(2) =


 cos(θ) − sin(θ) x

sin(θ) cos(θ) y
0 0 1

 | θ ∈ R/(2πZ),
x, y ∈ R

 .

In the following we often denote an element of SE(2) by g = (x, y, θ).
A basis of the Lie algebra of SE(2) is {p1, p2, p3}, with

p1 =

 0 0 1
0 0 0
0 0 0

 , p2 =

 0 −1 0
1 0 0
0 0 0

 , p3 =

 0 0 0
0 0 1
0 0 0

 .

We de�ne a trivializable sub-Riemannian structure on SE(2) as presented in
Section 2.2.1: consider the two left-invariant vector �elds Xi(g) = gpi with i = 1, 2
and set

N(g) = span {X1(g), X2(g)} gg(Xi(g), Xj(g)) = δij .

In coordinates, the optimal control problem

ġ ∈ N(g), l(g(.)) =

∫ c

b

√
gg(t)(ġ, ġ) dt→ min, (2.15)

g(b) = (xb, yb, θb), g(c) = (xc, yc, θc), (2.16)

(xb, yb) ̸= (xc, yc), (2.17)

has the form (2.10)-(2.14), but θ ∈ R/(2πZ). Notice that the vector �eld (cos(θ), sin(θ), 0)
is well de�ned on SE(2).

Remark 13. It is worth mentioning that the problem (2.15)-(2.17) (i.e. the prob-
lem (2.10)-(2.14) with θ ∈ R/(2πZ)) cannot be interpreted as a problem of reconstruc-
tion of planar curves where initial and �nal positions and initial and �nal direction of
velocities (with orientation) are �xed. For instance, consider the curve starting from
(x, y, θ) = (0, 0, 0) and corresponding to controls u1(t) = π/2− t, u2(t) = 1. The cor-
responding trajectory in the (x, y) plane is (− cos(t)+ 1

2 (π−2t) sin(t)+1, π sin2
(
t
2

)
+

t cos(t)−sin(t)). Notice that this trajectory has a cusp at time t = π/2. For t ∈ [0, π/2[
we have that θ is the angle with respect to (1, 0) of the vector (ẋ(t), ẏ(t)), while for
t ∈]π/2, π], it is not. See Figure 2.2.

The control problem (2.10)-(2.14) de�ned on PTR2 is left-equivariant under the
action of SE(2). Indeed, topologically, PTR2 can be seen as the quotient of SE(2) by
Z2 (in other words SE(2) is a double covering of PTR2). In coordinates, (x, y, θ) ∈
PTR2 corresponds to the two points (x, y, θ), (x, y, θ + π) ∈ SE(2). Also, there is a
natural transitive action of SE(2) on PTR2 given by cos(θ) − sin(θ) x

sin(θ) cos(θ) y
0 0 1


︸ ︷︷ ︸

∈SE(2)

 x′

y′

θ′


︸ ︷︷ ︸
∈PTR2

=

 cos(θ)x− sin(θ)y + x′

sin(θ)x+ cos(θ)y + y′

θ′ + θ


︸ ︷︷ ︸

∈PTR2

11



Figure 2.2. A case in which θ ∈ R/(2πZ) is not the direction of γ̇.

where θ′ + θ is intended modulo π. The orthonormal frame for the sub-Riemannian
structure on PTR2 given by X1 and X2 in formula (2.10) is indeed left-equivariant
under the action of SE(2).

In other words, given (x, y, θ) ∈ PTR2 such that g ∈ SE(2) satis�es (x, y, θ) =
g(0, 0, 0), then

X1(x, y, θ) = gp1, X2(x, y, θ) = gp2. (2.18)

The following proposition can be checked directly.
Proposition 14. Let (PTR2,N,g) be a sub-Riemannian manifold and assume

that it is left-equivariant under the natural action of SE(2). This means that if
{F1, F2} is an ortnonormal frame for the sub-Riemannian structure then

F1(x, y, θ) = gF1(0, 0, 0), F2(x, y, θ) = gF2(0, 0, 0), (2.19)

where g ∈ SE(2) is such that (x, y, θ) = g(0, 0, 0). Then, up to a change of coordinates
and a rotation of the orthonormal frame, we have that

F1(x, y, θ) =

 cos(θ)
sin(θ)

0

 . F2(x, y, θ) =

 0
0

1/β

 (2.20)

for some β > 0. Notice that the problem of �nding curves minimizing the length for
the sub-Riemannian problem on PTR2 for which an orthonormal frame is given by
(2.20), is equivalent to the optimal control problem (2.10), with the cost (2.4).

2.5. The Sachkov synthesis. The solution of the minimization problem (2.10)-
(2.14) on PTR2, can be obtained from that of the problem on SE(2) (2.15)-(2.17).
The latter has been studied by Yuri Sachkov in a series of papers [28, 32, 33] (the �rst
one in collaboration with I. Moiseev).

The authors computed the optimal synthesis for the problem, i.e., they computed
the optimal trajectory connecting each pair of points. They also gave a precise de-
scription of the cut locus, i.e. the set of points where geodesics lose optimality. The
problem is simpli�ed by the group structure: it is enough to study the case where the
starting point is the identity.

The complete optimal synthesis and the description of the cut locus for the prob-
lem formulated on PTR2 has not been computed. However, as noticed by Sachkov,
if we want to �nd the optimal trajectory joining (x, y, θ) to (x̄, ȳ, θ̄) in PTR2, it
is enough to �nd the shortest path among the four optimal trajectories joining the
following points in SE(2):

12



?
?

?

Figure 2.3. The problem of connecting level sets

• (x, y, θ) to (x̄, ȳ, θ̄)
• (x, y, θ + π) to (x̄, ȳ, θ̄)
• (x, y, θ) to (x̄, ȳ, θ̄ + π)
• (x, y, θ + π) to (x̄, ȳ, θ̄ + π)

Moreover, Yuri Sachkov built a numerical algorithm for curve reconstruction on
PTR2. In this paper, we will not go further on the subject of reconstruction of
curves. For our purpose of image reconstruction, the sub-Riemannian structure only
is important, since it allows to de�ne intrinsically a nonisotropic di�usion process.

2.6. The hypoelliptic heat kernel. When the image is not just a curve, one
cannot use the algorithm described above in which curves are reconstructed by solv-
ing a sub-Riemannian problem with �xed boundary conditions. Indeed, even if a
corrupted image is thought as a set of interrupted curves (the level sets), it is unclear
how to connect the di�erent components of the level set among them (see Figure 2.3).

Moreover, if the corrupted part contains the neighborhood of a maximum or
minimum, then certain level sets are completely missing and cannot be reconstructed.

Remark 15. The di�culty of reconstructing a portion of an image contain-
ing a maximum or a minimum is also the main drawbacks of methods based on
sub-Riemannian minimal surfaces. These algorithms (see [13, 14, 23]) consider the
boundary of the lift of the corrupted part as a closed curve γ in the space SE(2) or
PTR2. They then ��ll the hole� with the surface that has boundary γ and minimizes
the surface area computed with respect to the sub-Riemannian metric. As clearly
explained in [23], this method can fail for 3 main reasons: the minimal surface does
not exist (depending on the regularity of γ), it can be non-unique, or even can exist
but its projection on R2 does not coincide with the corrupted part (either not covering
the whole part or covering also a part of the non-corrupted image).

A second problem is that, even if the surface exists and it is computed, one has
to choose how di�use the intensity of the image on the reconstructed surface. See [23,
Def 7.3] for the introduction of an �interpolation� function ft and a �disambiguation�
function F .
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We then use the original image as the initial condition for the nonisotropic di�u-
sion equation associated with the sub-Riemannian structure.

Roughly speaking, this di�usion equation describes the density of probability of
�nding the system in the point (x, y, θ) at time t, while replacing the controls in
equation (2.10) by independent Wiener processes.

This di�usion equation is

∂tϕ(x, y, θ, t) = ∆Hϕ(x, y, θ, t) (2.21)

where

∆H = (X1)
2 + (X2)

2 = (cos(θ)∂x + sin(θ)∂y)
2 + ∂2θ

Since at each point (x, y, θ) we have

span {X1, X2, [X1, X2]} = T(x1,x2,θ)PTR
2,

Hörmander theorem [24] implies that the operator ∆H is hypoelliptic.
The di�usion described by the equation (2.21) is highly non isotropic. Indeed one

can estimate the hypoelliptic heat kernel in terms of the sub-Riemannian distance
(see for instance [4]), that is highly non isotropic as a consequence of the ball-box
theorem (see for instance [8]).

Remark 16. Notice that the sub-elliptic di�usion equation corresponding to the
sub-Riemannian structure (2.15)-(2.17) on SE(2), has the same form (2.21). The only
di�erence is that on SE(2), θ ∈ R/(2πZ).

Remark 17. In [4] it has been proved that the Laplacian ∆H is intrinsic on
SE(2), meaning that it does not depend on the choice of the orthonormal frame for
the sub-Riemannian structure. One can easily prove that this is the case also for ∆H

on PTR2.

2.7. The hypoelliptic heat kernel on SE(2). The hypoelliptic heat kernel
for the equation (2.21) on SE(2) was computed in [4, 16]. More precisely, thanks
to the left-invariance of X1 and X2, the equation (2.21) admits a a right-convolution
kernel pt(.), i.e. there exists pt such that

et∆Hϕ0(g) = ϕ0 ∗ pt(g) =
∫
G

ϕ0(h)pt(h
−1g)µ(h) (2.22)

is the solution for t > 0 of (2.21) with initial condition ϕ(0, g) = ϕ0(g) ∈ L1(SE(2),R)
with respect to the Haar measure µ.

We have computed pt in [4]:

pt(g) =

∫ +∞

0

λ

(
+∞∑
n=0

ea
λ
nt < cen(θ,

λ2

4
),Xλ(g)cen(θ,

λ2

4
) > +

+
+∞∑
n=1

eb
λ
nt < sen(θ,

λ2

4
),Xλ(g)sen(θ,

λ2

4
) >

)
dλ. (2.23)

Here λ indexes the unitary irreducible representations of the group and

Xλ(g) : L2(S1,C) → L2(S1,C),
Xλ(g)ψ(α) = eiλ(x cos(α)−y sin(α))ψ(α+ θ)
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is the representation of the group element g = (x, y, θ) on L2(S1,C).
The functions sen and cen are the 2π-periodic Mathieu cosines and sines, and

< ϕ1, ϕ2 >:=
∫
S1 ϕ1(α)ϕ2(α) dα. The eigenvalues of the hypoelliptic Laplacian are

aλn := −λ2

4 − an

(
λ2

4

)
and bλn := −λ2

4 − bn

(
λ2

4

)
, where an and bn are characteristic

values for the Mathieu equation. For details about Mathieu functions see for instance
[3, Chapter 20].

Since the operator ∂t −∆H is hypoelliptic, then the kernel is a C∞ function of
(t, g) ∈ R+ ×G. Notice that pt(g) = et∆H δId(g).

The kernel (2.23) has been obtained by using the generalized Fourier transform.
Once again, we refer to [4] for a detailed description of the generalized Fourier trans-
form and the method to compute the kernel.

2.8. The hypoelliptic heat kernel on PTR2. SE(2) is a double covering of
PTR2. To a point (x, y, θ) ∈ PTR2 correspond the two points (x, y, θ) and (x, y, θ+π)
in SE(2). From the next proposition it follows that we can interpret the hypoelliptic
heat equation on PTR2 as the hypoelliptic heat equation on SE(2) with a symmetric
initial condition. It permits also to compute the heat kernel on PTR2 starting from
the one on SE(2).

Proposition 18. Let ϕ0 ∈ L1(SE(2),R) and assume that ϕ0(x, y, θ) = ϕ0(x, y, θ+
π) a.e. Then the solution at time t of the hypoelliptic heat equation (2.21) on SE(2),
having ϕ0 as initial condition at time zero, satis�es

ϕ(t, x, y, θ) = ϕ(t, x, y, θ + π). (2.24)

Moreover if ϕ0 ∈ L1(PTR2,R), then the solution at time t of the hypoelliptic heat
equation on PTR2 (2.21) having ϕ0 as initial condition at time zero is given by

ϕ(t, x, y, θ) =

∫
PTR2

ϕ0(x̄, ȳ, θ̄)Pt(x, y, θ, x̄, ȳ, θ̄) dx̄ dȳ dθ̄ (2.25)

where

Pt(x, y, θ, x̄, ȳ, θ̄) := pt((x̄, ȳ, θ̄)
−1 ◦ (x, y, θ)) + pt((x̄, ȳ, θ̄)

−1 ◦ (x, y, θ + π)).(2.26)

In the right hand side of equation (2.26), the group operations are intended in SE(2).
Proof. De�ne the element Π = (0, 0, π) ∈ SE(2) and observe the following prop-

erties:
• Π is idempotent.
• Property (2.24) reads as ϕ0(gΠ) = ϕ0(g).
• The kernel pt(g) satis�es pt(Πg) = pt(gΠ). Indeed, call g = (x, y, θ) and
observe that, given a real function ψ(α), we have

Xλ (Π ◦ g)ψ(α) = Xλ ((−x,−y, θ))ψ(α) =
= Xλ ((x, y, θ + π))ψ(α) = Xλ (g ◦Π)ψ(α).

Reminding the explicit expression of pt given in (2.23), we have pt(Πg) =
pt(gΠ). But pt is real, hence the equality follows.
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We compute now ϕ(t, gΠ) in SE(2) with ϕ0 satisfying (2.24) and we prove that
ϕ(t, gΠ) = ϕ(t, g). Indeed,

ϕ(t, gΠ) =

∫
G

ϕ0(h)pt(h
−1gΠ) dh =

∫
G

ϕ0(lΠ)pt(Π
−1l−1gΠ) d(lΠ) =

=

∫
G

ϕ0(l)pt(Πl
−1gΠ) dl =

∫
G

ϕ0(l)pt(l
−1gΠ ◦Π) dl =

=

∫
G

ϕ0(l)pt(l
−1g) dl = ϕ(t, g).

Let us prove now the expression (2.25) for ϕ(t, [g]) ∈ L1(PTR2,R) for initial
data ϕ0([g]). Consider the function ψ0(g) ∈ L1(SE(2),R) de�ned by ψ0(g) = ϕ([g]),
that clearly satis�es (2.24). Consider the unique solution ψ(t, g) of the hypoelliptic
equation (2.21), that is given by ψ(t, g) = ψ0 ∗ pt(g). Since ψ(t, g) = ψ(t, gΠ), the
function ϕ(t, [g]) := ψ(t, g) is well de�ned.

It remains to show that ϕ de�ned above is the solution of (2.21) on PTR2. Indeed
∂tϕ = ∂tψ = ∆Hψ. Since the vector �elds de�ning ∆H both on SE(2) and PTR2

coincide, then the di�erential operators ∆H de�ned on SE(2) and PTR2 coincide,
hence ∆Hψ = ∆Hϕ. Thus ϕ satis�es (2.21). Since ϕ(0, [g]) = ϕ0([g]), then ϕ is the
(unique) solution.

The explicit expression (2.25) is a direct consequence of the de�nition ϕ(t, [g]) :=
ψ(t, g) and of the explicit expression of ψ given in (2.22). Indeed,

ϕ(t, [g]) = ψ(t, g) =

∫
SE(2)

ψ0(h)pt(h
−1g)dh =

∫
R2

∫ 2π

0

ψ0(h)pt(h
−1g) dh =

=

∫
R2

∫ π

0

ψ0(h)pt(h
−1g) + ψ0(hΠ)pt((hΠ)−1g) dh =

=

∫
PTR2

ϕ0(h)
(
pt(h

−1g) + pt(h
−1gΠ)

)
dh.

The expression (2.25) is recovered by writing g = (x, y, θ), h = (x̄, ȳ, θ̄) and recalling
that gΠ = (x, y, θ + π).

2.9. The mathematical algorithm. In this section we describe the main steps
of the mathematical algorithm for image reconstruction. In the next section we give
some guidelines for numerical implementation.

STEP 1: Smoothing of Ic Assume that the grey level of a corrupted image is
described by a function Ic : Dc := D2 \ Ω → [0,∞[. The set Ω represents the region
where the image is corrupted. The subscript �c� means �corrupted�. After making the
convolution with a Gaussian of standard deviations σx = σy > 04, we get a smooth
function de�ned on R2, which is generically is a Morse function:

fc = Ic ∗G(σx, σy).

We recall that a smooth function fc : R2 → R is said to be Morse if it has only isolated
critical points with nondegenerate Hessian. Roughly speaking, a Morse function is a
function whose level sets are like those of Figure 2.4.

4Ic is considered to be zero outside Dc. Moreover we assume σx = σy to guarantee invariance
by rototranslations of the algorithm.
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Figure 2.4. Level sets of a Morse function.
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Figure 2.5. Lift of an image with a maximum point.

STEP 2: The lift of fc : R2 → R to a function f̄c : PTR2 → R
This is made by associating to every point (x, y) of R2 the direction θ ∈ R/(πZ)

of the level set of fc at the point (x, y). This direction is well de�ned only at points
where ∇fc ̸= 0. At points where ∇fc = 0, we associate all possible directions (see
Figure 2.5). More precisely, we de�ne the lifted support Sf , associated with the
function f as follows,

Sf = {(x, y, θ) ∈ R2 × P 1 s.t. ∇fc(x, y) · (cos(θ), sin(θ)) = 0},

where the dot means the standard scalar product on R2. Let Π : Sf → R2 be the
standard projection (x, y, θ) ∈ Sf → (x, y) ∈ R2. Notice that if ∇fc(x, y) ̸= 0 then
Π−1(x, y) is a single point, while if ∇fc(x, y) = 0 then Π−1(x, y) = R/(πZ).

Let us study the set Sf , when fc is a Morse function. If (x, y) ∈ R2 is such that
∇fc(x, y) ̸= 0 and U is a small enough open neighborhood of (x, y), then the lift of
Sf is a manifold in U × P 1. See Figure 2.6 A. If (x, y) is an isolated maximum of
fc, and U is a small enough open neighborhood of (x, y) having a level set of fc as
boundary, then Sf is a Möbius strip in U × P 1. See Figure 2.6 B. The same happens
when (x, y) is an isolated minimum or saddle point of fc. Indeed we have:

Proposition 19. If fc : R2 → R is a Morse function, then Sf is an embedded
2-D submanifold of R2 × P 1.
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Figure 2.6. In Figure A, we draw the lifted support of a function, the level sets of which are

the ones of a linear function with nonvanishing gradient. Figure B presents the lifted support of a

function in a neighborhood of a maximum point.

Proof. Consider the surface S̄ ∈ SE(2) given by the equation

g(x, y, θ) := cos(θ)∂xfc + sin(θ)∂yfc = 0. (2.27)

If (x, y, θ) ∈ S̄ then (x, y, θ + π) ∈ S̄ as well and S̄ is a double covering of Sf . It is
enough to show that S̄ is a surface.

At points (x, y, θ) ∈ S̄ where ∇fc ̸= 0 then dg is non-zero. Indeed ∂θg = 0 would
imply that the vector ∇fc ̸= 0 is orthogonal to two non-zero vectors. At points where
∇fc = 0 we have (

∂xg
∂yg

)
= Hfc ·

(
cos(θ)
sin(θ)

)
. (2.28)

which cannot be zero since the Hessian Hfc of fc is non-degenerate by the Morse
assumption.

STEP 3: Lift of fc to a distribution in R2 × P 1 supported on Sf

Consider the distribution on R2 × P 1:

f̄c(x, y, θ) = fc(x, y)δ(g)

where δ(g) is the Dirac-delta distribution associated with g(x, y, θ) := cos(θ)∂xfc +
sin(θ)∂yfc in the sense of [21, p.222]. This distribution is supported on Sf and it is
canonically de�ned by fc. Notice that this choice is not crucial and there are other
possibilities. For example, in [14] the Dirac delta is replaced by a a power of the
cosine of the angle, centered on the angle θ.

18



Remark 20. This step is formally necessary for the following reason. The surface
Sc is 2D in a 3D manifold, hence the real function fc de�ned on it is vanishing a.e. as
a function de�ned on PTR2. Thus the hypoelliptic evolution of fc (that is, the next
STEP 4) produces a vanishing function. Multiplying fc by a Dirac delta is a natural
way to obtain a nontrivial evolution.

STEP 4: Hypoelliptic evolution

Fix T > 0. Compute the solution at time T to the Cauchy problem,{
∂tϕ(g, t) = ((cos(θ)∂x + sin(θ)∂y)

2 + β2∂2θ )ϕ(g, t)
ϕ(g, 0) = f̄c(g).

(2.29)

Remark 21. In the formula above, the Laplacian is given by X2
1 + β2X2

2 , thus
it depends on the �xed parameter β. This means that we use evolution depending on
the cost Jβ rather than J . Tuning this parameter will provide better results of the
reconstruction algorithm.

STEP 5: Projecting down

Compute the reconstructed image by choosing the maximum value on the �ber.

fT (x, y) = max
θ∈P 1

ϕ(x, y, θ, T ).

Again other choices are possible for this projection.

Remark 22. The algorithm depends on two parameters. The �rst is the time
of the evolution T , the second is the relative weight β in formula (2.29). A variant of
this algorithm consists of re-iterating the steps above for very short di�usion times.
This idea was already presented in [13] to build a minimal surface.

Remark 23. One main features of this algorithm is that it does not need the
knowledge of the corrupted part. As a consequence the di�usion acts also in the non-
corrupted region. However, due to the highly nonisotropic character of the di�usion,
this e�ect is not too visible as show our results below. Modi�cations of the algorithm
which keep the original image unmodi�ed are possible, by admitting the di�usion only
in the corrupted part, like in [13, 14].

3. Numerical implementation and results. First we present the main lines
of the algorithm used in our simulations.

3.1. STEPS 2-3: Lift of an image. The formal de�nition of the lifted function
is hard to realize numerically for two reasons: the discretization of the angle variable
θ and the presence of a delta function.

Both issues are solved changing the de�nition of the lifted function:

f̄c(x, y, θ) = f(x, y)ϕ(∇f(x, y), θ),

where ϕ(0, θ) = 1/(2ε)∀ θ ∈ R/(πZ) and ϕ(v, θ) = ϕ1(arg(v)− θ) where ϕ1(β) is the
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π-periodic function assuming the following values over the interval [0, π]:

ϕ1(β) :=

{
1/(2ε) if β ∈

[
π
2 − ε, π2 + ε

]
,

0 otherwise,

for a �xed ε > 0.
Since the space is discretized, the non-zero values of f̄c are no longer de�ned over

a set of null measure, hence the discretized hypoelliptic di�usion gives non vanishing
function for all T > 0. Thus, it is not necessary to perform STEP 3.

3.2. STEP 4: Hypoelliptic evolution. In this section we give the crucial
ideas to compute e�ciently the hypoelliptic evolution (2.29). Here ⟨., .⟩ is the scalar
product in R2 and Rθ is the rotation operator of angle θ.

First of all, the main feature of the noncommutative Fourier transform is to
desintegrate the regular representation of SE(2). This was the main ingredient of the
computation of the hypoelliptic heat kernel in [4]. Using the Fourier transform again,
the hypoelliptic heat equation is transformed into a family of parabolic equations.
These are more suitable for standard numerical methods.

Roughly speaking, the non-commutative Fourier transform f̂(Λ) of the function
f(x, y, θ) =: f(X, θ), for Λ ∈ R2, is an operator meeting:

[f̂(Λ)ψ](θ) =

∫
X

∫
S1

f(X,α)ψ(α+ θ)dαe2πi⟨R−θΛ,X⟩dx = ˜(f ∗θ ψ)(R−θΛ), (3.1)

where ∗θ is the convolution with respect to the angular variable and ˜ is the 2-D
Fourier transform with respect to the spatial variables X = (x, y).

Then it is natural to consider the Fourier transform with respect to X. Indeed,
apply this transform u→ ũ to the initial value problem:{

∂tu = ∆Hu
u(0, X, θ) = f̄c(X, θ),

(3.2)

that gives {
∂tũ = β2∂2θ ũ− 4π2(x cos(θ) + y sin(θ))2ũ

ũ(0, X, θ) = ˜̄fc(X, θ). (3.3)

Hence, for each point in the Fourier space, we have to solve an evolution equation
with Mathieu right-hand term.

This is the principle of the algorithm, which is �massively parallelizable� in the
sense that we solve simultaneously the equation (3.3) at each point of the Fourier
space.

3.3. Results of image reconstruction. In this section we provide results of
image reconstruction using the algorithm presented above. For these examples, we
have tuned the parameters β, that is the relative weight, and T , the �nal time of
evolution.

Notice again that this algorithm processes the image globally and does not need
the information about where the image is corrupted. The counterpart is that it modify
also the non-corrupted part.

We present three result.
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• Figure 3.1 shows an image which is corrupted in a small piece of it. Then
the di�usion can be applied for a rather small time avoiding an important
di�usion e�ect in the noncorrupted part.

• Figure 3.2 shows a strongly corrupted image. In this case a larger di�usion
time is necessary to �inpaint� completely the corrupted part. The di�usion
e�ect is clearly much more important. However in our opinion the result is
surprisingly good.

• Due to pixelization of the image, one could think that corruption along the
diagonal is the worst situation. Figure 3.3 show that this is not the case.

Figure 3.1. Reconstruction of an image corrupted on a small portion. Here the di�usion is

applied for a small time

Figure 3.2. Reconstruction of an image deeply corrupted. A larger time of di�usion is necessary

Acknowledgements The authors are greatly indebted with A. Agrachev for
his suggestions in the re�nement of the mathematical model. The authors are also
grateful to S. Masnou and R. Duits for very helpful discussions.

A Genericity of Morse properties of Gaussian convolution. In this ap-
pendix, we prove that, generically, the convolution of a L2 function over a bounded
domain D ⊂ R2 with a Gaussian G is a Morse function. In particular, we �rst prove
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Figure 3.3. Reconstruction of an image corrupted on the diagonal

in Theorem 26 that the set of functions I ∈ L2(D,R) the convolution of which with
a Gaussian is a Morse function is residual5 in L2(D,R). We then prove in Theorem
28 that the set of functions I ∈ L2(D,R) such that I ∗G restricted to a compact
K ⊂ R2 is a Morse function is open and dense.

De�nition 24. Let Z, Y be C1 manifolds, F : Z → Y a C1 map and W ⊂ Y
a submanifold. We say that F is transversal to W at z ∈ Z, in symbols F ⊤∩ zW , if,
where y = F (z), either y ̸∈W or y ∈W and

1. the inverse image (TzF )
−1(TyW ) splits and

2. the image (TzF )(TzZ) contains a closed complement to TyW in TyY .
We say that F is transversal to W , in symbols F ⊤∩W , if F ⊤∩ zW for every z ∈ Z.

We recall that a closed subspace F of a Banach space E splits when there exists
a closed subspace G such that E = F ⊕G.

Remark 25. If E is Hilbert, then every closed subspace splits. See [2, Prop.
2.1.15].

Theorem 26. Let D be a bounded domain of the plane R2. Fix σx, σy > 0.
Consider the convolution map6

Γ :

{
L2(D,R) → C∞(R2)

I 7→ I ∗G,

where G is the Gaussian centred at (0, 0)

G(x, y) :=
1

2πσxσy
e
− x2

2σ2
x
− y2

2σ2
y .

Let X :=
{
I ∈ L2(D,R) s.t. ρ(I) is a Morse function

}
. Then, X is residual in L2(D,R).

Proof. The proof relies on parametric transversality Theorems. The version we
use is Abraham's formulation, see [1, Th. 19.1], recalled in the following.

Theorem 27. Let A, X, Y be C r manifolds, ρ : A → C r(X,Y ) a C r represen-
tation, W ⊂ Y a submanifold, and evρ : X × A → Y the evaluation map. De�ne
AW ⊂ A by AW = {a ∈ A | ρa ⊤∩W}. Assume that:

1. X has a �nite dimension n and W has a �nite codimension q in Y ,
2. A and X are second countable,

5We recall that a subset of a topological space is residual when it is a countable intersection of
open and dense sets.

6I is considered to be zero outside D.
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3. r > max {0, n− q},
4. evρ ⊤∩W .

Then, AW is residual in A. We apply Theorem 27 with A = L2(D,R), X = R2,
r = 2. We choose Y = R2 × R× R2 × R3 and ρ the 2-jets of Γ(I), i.e.,

ρ :

{
A → C r(X,Y )
I 7→ (Π1,Π2,Γ(I), ∂xΓ(I), ∂yΓ(I), ∂2xxΓ(I), ∂2xyΓ(I), ∂2yyΓ(I))

where

Π1 :

{
X → R

(x, y) 7→ x
and Π2 :

{
X → R

(x, y) 7→ y
are the canonical projections.

We �x

W =
{
(x, y, a, p1, p2, q1, q2, q3) ∈ Y s.t. (x, y) ∈ R2, p1 = p2 = 0, q1q3 − q22 = 0

}
.

A function I ∈ C2(R2) is a Morse function if and only if

evρ(x, y, I) = ρI (x, y) = (x, y,Γ(I)(x, y), ∂xΓ(I)(x, y), ∂yΓ(I)(x, y),
∂2xxΓ(I)(x, y), ∂2xyΓ(I)(x, y), ∂2yyΓ(I)(x, y))

does not belong to W for all (x, y) ∈ R2.
Remark that W is not a manifold. However, it is an algebraic set and hence it

is a �nite union of manifolds. In the following, we apply Theorem 27 as if W were a
manifold, with the understanding that the Theorem is applied to each component.

We now verify each of the conditions 1-4 in Theorem 27. Condition 1 holds with
n = 2 and q ≥ 3 for each component of W . Condition 2 holds, since A and X
are separable metric spaces and hence second countable. Condition 3 holds for each
component of W .

Now we verify condition 4, that is the transversality condition evρ ⊤∩ W . Fix
x, y, I such that evρ(I, (x, y)) ∈ W . Condition 1 in De�nition 24 holds because of
Remark 25. We now verify condition 2 in De�nition 24, where Z = R2 × A. In the
following, we prove that (T(x,y,I)evρ)(T(x,y,I)(R2×A)) is the whole Tevρ(x,y,I)Y . The
map T(x,y,I)evρ has the following triangular form

T(x,y,I)evρ =

 1 0 ∗
0 1 ∗
0 0 TIevρ(x, y, I)

 (3.4)

We are left to prove that the tangent mapping TIevρ(x, y, I) is surjective in R×R2×
R3, for arbitrary (x, y) �xed. After a suitable change of coordinate, we can assume
that σx = σy = 1 and that (0, 0) ∈ D. Let ε > 0 such that D ⊃ Q := [−ε, ε]× [−ε, ε].
De�ne the function in L2(D,R)

δI(x̄, ȳ) = c0 + c1x̄+ c2ȳ + c3x̄
2 + c4x̄ȳ + c5ȳ

2

G(x− x̄, y − ȳ)

restricted to Q, and zero in D\Q. The map ρ is linear in I, thus TIevρ(x, y, I) [δI] =
23



evρ(x, y, δI). Consider the linear operator

evρ(x, y, δI) =



∫
Q
δI(x̄, ȳ)G(x− x̄, y − ȳ) dx̄dȳ∫

Q
δI(x̄, ȳ)∂1G(x− x̄, y − ȳ) dx̄dȳ∫

Q
δI(x̄, ȳ)∂2G(x− x̄, y − ȳ) dx̄dȳ∫

Q
δI(x̄, ȳ)∂211G(x− x̄, y − ȳ) dx̄dȳ∫

Q
δI(x̄, ȳ)∂212G(x− x̄, y − ȳ) dx̄dȳ∫

Q
δI(x̄, ȳ)∂222G(x− x̄, y − ȳ) dx̄dȳ


as a function of the 6 variables (c0, . . . , c5), and consider the linear system evρ(x, y, δI) =
(a, p1, p2, q1, q2, q3), where (a, p1, p2, q1, q2, q3) ∈ Y is �xed. A direct computation

shows that the determinant of the system is 65536ε28

164025σ8
xσ

8
y
> 0, thus the system always

has a solution, i.e. TIevρ(x, y, I) is surjective.
By applying Theorem 27, we get AW residual in A. We now prove that AW = X.

Since I ∈ X implies evρ(x, y, I) ̸∈W , then ρI ⊤∩W , hence A ⊃ X.
Now let us prove the inclusion A ⊂ X. Let I ∈ A and �x (x, y) ∈ R2.

Nonintersection claim : ρI(x, y) ̸∈W .

Proof of the claim. By contradiction, let

w = evρ(x, y, I) ∈W.

Since ρI ⊤∩ (x,y)W , then
(
T(x,y)ρI

) (
T(x,y)R2

)
contains a closed complement to TwW

in TwY .
Observe that

dim
(
T(x,y)ρI

) (
T(x,y)R2

)
≤ dim

(
T(x,y)R2

)
= 2

and codimTwW ≥ 3, thus
(
T(x,y)ρI

) (
T(x,y)R2

)
cannot contain a closed complement

to TwW in TwY . A contradiction.

By applying the claim for each (x, y) ∈ R2, we get that ρI is a Morse function.
Theorem 28. Let K be a compact subset of R2 with non-empty interior. Under

the hypothesis of Theorem 26, the set XK :=
{
I ∈ L2(D,R) s.t. ρI|K is a Morse function

}
is open and dense in L2(D,R).

Proof. Applying the openness of nonintersection Theorem [1, Th. 18.1] and
using the nonintersection claim, we get that XK is an open subset of L2(D,R). Since
XK ⊃ X and X is dense, then the conclusion holds.
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