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Abstract

The main contribution of this paper is to provide a solution to the noise sensitivity of high-gain observers. We propose a
nonlinear observer that possesses simultaneously the properties of 1) the extended Kalman filter, which behaves well with
respect to noise, and 2) the high-gain extended Kalman filter that is performant with respect to large perturbations.

The idea is to adapt the gain in terms of the innovation.

We prove a general convergence result, propose guidelines to practical implementation and show simulation results for an
example.
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1 Introduction

We deal with an observer for nonlinear systems. This
question is usually addressed either in a stochastic or
deterministic setting. The stochastic representation (see
[6, 20,21] for rigorous definitions):{

dX(t) = f(X(t), u(t))dt+Q
1
2 dW (t)

dY (t) = h(X(t), u(t)) +R
1
2 dV (t)

(1)

naturally leads us to consider the extended Kalman fil-
ter (EKF) algorithm because of its noise filtering prop-
erties (see e.g. [21]). Let us consider the deterministic
representation of (1):{

x(t)
dt = f(x(t), u(t))

y(t) = h(x(t), u(t)).
(2)

The analytical study of the EKF shows that conver-
gence of the estimated state to the real state is theoreti-
cally guaranteed provided that the estimate lies into the
neighborhood of the real trajectory (see [4, 11, 22]). In
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other words, the convergence of the observer is theoret-
ically justified only if we already have a somewhat pre-
cise of what the state is, and that no unpredicted state
jumps occur.

On the other hand, the high-gain formalism allows us to
build globally convergent observers: the initial estimate
can be chosen anywhere in a compact subset of the state
space. This approach essentially requires two ingredients
(see [2, 10,16–18,23]):

• the system under consideration must have a “strong
observability property”. This property is generic when
the number of outputs is greater than the number of
inputs (see [18]). On the contrary, if there are less
inputs than outputs, this property is very restrictive.
But in both cases, strongly observable systems may
be put under the observability canonical form used in
this paper,

• the observer algorithm is embedded with the high-gain
structure, based on a fixed scalar parameter, called
the high-gain parameter denoted by θ (Cf. Subsection
2.3).

In this formalism, as shown in [18], convergence takes
place whenever θ is set at a large enough value. This
algorithm though has an important drawback: a high
valued θ leads to noise amplification.
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Our purpose is to combine the noise filtering properties
of the extended Kalman filter with the global conver-
gence properties of the high-gain extended Kalman fil-
ter. The high-gain structure should be used only when
necessary. In order to achieve this goal, we let θ vary
with time. We adapt it under the guise of the differential
equation:

dθ(t)
dt

= F (θ, I) .

When θ = 1 the high-gain EKF is a classic EKF. Thus θ
must evolve between 1 and a high enough value, whose
existence has to be proven.

High-gain observers based on such ideas were pro-
posed in [1, 2, 10]. They are of the Luenberger style:
the correction gain is computed offline. In Bulliger and
Allgöwer [10], the problem of the tuning of θ is ad-
dressed. The parameter increases until convergence be-
comes effective. In this algorithm, θ cannot go down, the
efficiency with respect to noise is not the main purpose
there. In Praly et al. [2] the adaptation is driven by the
evolution of the model nonlinearities. They model the
way the Lipschitz parameter of b(x, u) changes (refer
to Subsection 2.2), and adapt θ accordingly. In Khalil
et al. [1], the efficiency with respect to noise is the ob-
jective. The difference lies in the type of observer used.
The local convergence of the EKF allows us to define an
observer that filters noise very efficiently.
Another method to attack the problem of the non-
globally guaranteed convergence of the EKF was studied
in Grizzle et al. [14]. They used an EKF together with
numerical differentiation observers.

The type of system under consideration, and the ob-
server are introduced in Section 2. The main theorem
appears in Section 3 and the proof in Section 4. Finally,
in Section 5, an illustrative example is used to give an
account of the observer performances. Guidelines to the
choice of parameters are provided.

2 Systems under consideration and observer
definition

2.1 Notations

For a vector v, diag(v) is a diagonal matrix, diagonal
being equal to v.
The contribution of the variable u to the vector fields,
and time dependencies are sometimes omitted to ease
the reading of equations.

2.2 The observability canonical form

We suppose that the system is under the multiple in-
puts, single output observability form (3). As explained
in [12,17,18], this form reflects the observability charac-
teristics of the system (see also Remark 1). It is there-
fore pertinent in many situations since we want to apply

observers to observable systems.
This structure is also a requirement in any proof of ex-
ponential convergence of high-gain observers: all the sys-
tems used in [1, 2, 10, 18, 23] have a structure similar to
the one in system (3).

Single output systems are considered only for the clarity
of the exposition. This observer construction, and the
proof, remain valid in the multiple output case. Since
there is no unique observability form in the multiple out-
put case, the observer has to be adapted to each situa-
tion. Details on this topic can be found in [5]. The sys-
tem under consideration is:{

dx
dt = A (u)x+ b (x, u)

y = C (u)x
(3)

where x (t) ∈ X ⊂ Rn, X compact, y (t) ∈ R and u(t) ∈
Uadm ⊂ Rnu is a bounded function.
The matrices A (u) and C (u) are defined by:

A(u) =



0 a2 (u) 0 · · · 0

0 a3 (u)
. . .

...
...

. . . . . . 0

0 an (u)

0 · · · 0


C (u) = (a1 (u) , 0, · · · , 0)

with 0 < am ≤ ai(u) ≤ aM for any u in Uadm. The vector
field b (x, u) is assumed to be compactly supported and
to have the following triangular structure:

b (x, u) =


b1 (x1, u)

b2 (x1, x2, u)
...

bn (x1, . . . , xn, u)


We denote Lb the bound on the Jacobian matrix b∗ (x, u)
of b (x, u) (i.e. ‖b∗ (x, u)‖ ≤ Lb). Since b (x, u) is com-
pactly supported and u is bounded, b is Lipschitz w.r.t.
x, uniformly in u: ‖b (x1, u)− b (x2, u)‖ ≤ Lb ‖x1 − x2‖.

Remark 1

• When the matrixA(u) is input driven, Luenberger style
observers 1 cannot be used anymore. Kalman-like ob-
servers can be applied to such systems.

• The relevance of the form (3) is discussed in Section 2
of [11]. For instance, the Lipschitz assumption on b is
not a restriction. This second point has to be developed:

1 i.e. having a fixed, correction gain computed offline.
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(1) First in general, for physical reasons, the state space
is bounded,

(2) As explained in [18], convergence of nonlinear ob-
servers on a non-compact space is a nonsense,

(3) Even if the state space is not bounded, the Lipschitz
assumption is not required for the dynamic output
stabilization.

2.3 Observer definition

The extended Kalman filter with adaptive high-gain is
given by the system:

dz
dt = A(u)z + b(z, u)− S−1C ′R−1

θ (Cz − y(t))
dS
dt = −(A(u) + b∗(z, u))′S − S(A (u) + b∗ (z, u))

+C ′R−1
θ C − SQθS

dθ
dt = F (θ(t), Id (t))

= µ (Id)×F0(θ) + λ (1− µ(Id))× (1− θ)
(4)

where

• z(0) ∈ χ, θ(0) = 1, and θ(t) ≥ 1,
• S(0) is a (n× n) symmetric positive definite matrix,

the second equation is therefore a Riccati equation,
• b∗(z, u) denotes the Jacobian of the vector field b(x, u)

w.r.t. x, computed along the estimated trajectory.
• Qθ and Rθ are defined as follows:

let Q be a (n× n) symmetric positive definite matrix,
R > 0 a scalar, and

∆ = diag

({
1,

1
θ(t)

,
1

θ(t)2
, . . . ,

1
θ(t)n−1

})
.

Then Qθ = θ(t)∆−1Q∆−1, and Rθ = θ(t)−1R.
• The function Id is called the innovation. It is the quan-

tity:

Id(t) =
∫ t

t−d
‖y (τ)− ŷ (τ)‖2 dτ

· y is the actual output of the system (3), i.e. the
measurements, and
· ŷ is a prediction of the output trajectory of the sys-

tem (3), computed over the interval [t − d, t] with
initial state z(t− d).

• The functions F0 and µ are:

F0(θ) =

{
1

∆T θ
2 if θ ≤ θ1

1
∆T (θ − 2θ1)2 if θ > θ1

(5)

and, with 0 < γ0 < γ1:

µ(Id) =


0 if Id ≤ γ0

∈ [0; 1] if γ0 < Id < γ1

1 if Id ≥ γ1

(6)

F is such that,
· when Id(t) ≥ γ1: θ increases towards 2θ1 and is

above θ1 in a time less than ∆T , for any θ1, and
· when Id(t) ≤ γ0: θ decreases toward 1, at a rate set

via the parameter λ.
The function µ controls which part of F is active at a
given time.

Remark 2 • When we use (1) to represent the system,
Q and R are the state and output noise covariance
matrices, respectively. Hence, those two matrices are
not meaningless parameters. They determine the noise
filtering properties of the extended Kalman filter mode
of the above defined observer.

• The definition of F looks cumbersome at first glance.
It is, in fact, a simple function that meets our needs
regarding the increase and the decrease of θ, and re-
spects the requirements appearing in Subsection 4.2.

3 The main theorem

3.1 Innovation

Our definition of innovation, Id(t), is different from pre-
vious definitions (e.g. [9,15]). It is a quality measurement
of the estimation error justified by Lemma 4.

Remark 3 As is well known from the linear case, the
matrix S is closely related to innovation, since the
Gramm of observability of the linearized system is a
lower bound of S. Therefore, one can suppose that S
should be used instead of innovation. Unfortunately,
in our result, we need to use the nonlinear innovation,
according to the following Lemma.

Lemma 4 Let x0
1, x

0
2 ∈ Rn and u ∈ Uadm. Let us con-

sider the outputs y
(
0, x0

1, ·
)

and y
(
0, x0

2, ·
)

of system (3)
with initial conditions respectively x0

1 and x0
2. Then the

following property (called persistent observability) holds:

∀d > 0,∃λ0
d > 0 such that ∀u ∈ L1

b(Uadm)

‖x0

1−x
0

2‖2 ≤
1
λ0
d

∫ d

0

‖y
(
0, x0

1, τ
)
−y
(
0, x0

2, τ
)
‖2dτ (7)

Proof. A proof of this lemma in the continuous-discrete
case can be found in [7].

Let us set x0
1 = z(t − d), and x0

2 = x(t − d) then, with
the notations of Subsection 2.3, Lemma 4 gives:

‖z(t− d)− x(t− d)‖2 ≤ 1
λ0
d

∫ t

t−d
‖y (τ)− ŷ (τ)‖2 dτ,

or, equivalently,

‖z(t− d)− x(t− d)‖2 ≤ 1
λ0
d

Id(t).
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That is to say, up to a multiplication by a constant,
innovation at time t upper bounds the estimation error
at time t− d.

3.2 Main result

Theorem 5 For any time T ∗ > 0 and any ε∗ > 0, there
exists 0 < d < T ∗, ∆T > 0, λ > 0, and θ1 > 0 such that
F is properly defined, and:

for all t ≥ T ∗, and any couple (x(0), z(0)) ∈ χ× χ:

‖x (t)− z (t)‖2 ≤ ε∗e−a (t−T∗) (8)

where a > 0 is a constant (independent from ε∗).

In order to prove this theorem, we study the Lyapunov
function

(
ε
′
Sε
)

(t). A change of variables is done to
make θ more tractable. In this new system of coordi-
nates, inequalities that represent the local and the global
convergence properties are obtained. We then prove that
the function F defined in (4) allows us to pass from one
configuration to the other. More importantly, we show
that positive values of θ1 exists such that the observer
converges globally. As a consequence, the algorithm is
consistent. We reverse the change of variables to get in-
equality (8).

The overall proof is divided into two parts. We compute
preliminary inequalities in Subsection 4.1. The articula-
tion of the proof is explained in Subsection 4.2.

4 Proof of the theorem

4.1 Part 1

Recall that θ(t) ≥ 1, for all t ≥ 0.
Let us denote ε = z − x and consider the change of
variables x̃ = ∆x, ε̃ = ∆ε, z̃ = ∆z, S̃ = ∆−1S∆−1,
b̃(.) = ∆b(∆−1.) and b̃∗ (·) = ∆b∗

(
∆−1·

)
∆−1.

We have the relations:

• ∆A = θA∆, A∆−1 = θ∆−1A,
• C∆ = C in the single output case,
• d∆

dt = − θ̇θN∆ and d∆−1

dt = θ̇
θN∆−1, where N is the

(n× n) matrix diag ({0, 1, 2, . . . , n− 1}).

The error dynamics in the new coordinates are:

dε̃
dt = θ

[
−F(θ,Id)

θ2 Nε̃+Aε̃− S̃−1C ′R−1Cε̃

+ 1
θ

(
b̃ (z̃, u)− b̃ (x̃, u)

)]
,

and

dS̃
dt = θ

[
F(θ,Id)
θ2

(
NS̃ + S̃N

)
−
(
A′S̃ + S̃A

)
− S̃QS̃

− 1
θ S̃b̃

∗ (z̃)− 1
θ b̃
∗ (z̃)′ S̃ + C ′R−1C

]
.

(9)

Let us now establish a crucial inequality concerning the
Lyapunov function ε̃′S̃ε̃ :

dε̃′S̃ε̃
dt = θ

[
−ε̃′C ′R−1Cε̃− ε̃′S̃QS̃ε̃

+ 2
θ ε̃
′S̃
(
b̃ (z̃, u)− b̃ (x̃, u)− b̃∗ (z̃, u) ε̃

)]
(10)

with Q ≥ qm Id and considering that ε̃′C ′R−1Cε̃ ≥ 0

d
dt

(
ε̃′S̃ε̃

)
≤ −θqmε̃′S̃2ε̃

+2ε̃′S̃
(
b̃ (z̃, u)− b̃ (x̃, u)− b̃∗ (z̃, u) ε̃

)
.

(11)
In order to continue our computations and actually find
an upper bound for ε̃′S̃ε̃ we need:

• extra information on the matrix S̃, and
• to upper bound the term

(
b̃ (z̃, u)− b̃ (x̃, u)− b̃∗ (z̃, u) ε̃

)
.

This latter step can be performed in two different ways.
One translates the local convergence, and the other ex-
presses the global convergence (C.f. Subsection 4.2).

We want to study the properties of S̃ independently from
θ. We remove it from equation (9) by means of the fol-
lowing timescale modification: dτ = θ (t) dt. The corre-
sponding notation is S (τ) = S̃ (t). A few computations
gives us the Riccati equation in the τ time scale:

dS̄
dτ = F(θ̄,Ī)

θ̄2

(
NS̄ + S̄N

)
−
(
A′S̄ + S̄A

)
+ C ′R−1C

−S̄QS̄ − 1
θ̄

(
S̄b̃∗ (z̄, ū) + b̃∗ (z̄, ū)′ S̄

)
.

(12)
The information we need is given in the Lemma below.

Lemma 6 ( [18]) Let us consider the Riccati equation
(12) together with the assumptions:

(1) the functions ai (u (t)),
∣∣∣̃b∗i,j (z, u)

∣∣∣, ∣∣∣∣F(θ,I)
θ
2

∣∣∣∣are

smaller than aM > 0,
(2) ai (u (t)) > am > 0,
(3) aId ≤ S(0) ≤ bId,
(4) θ(0) = 1.

Then two constants 0 < α < β exists such that, the
solution of equation (12) satisfies, for all τ > 0, the
inequality

αId ≤ S (τ) ≤ βId. (13)
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Thus, this relation is true in the original time scale t .

Proof. The two bounds α and β are obtained as the
minimum and maximum elements respectively out of a
set of three.

(1) since θ(0) = 1 and S(0) is assumed bounded, so is
S̄(0),

(2) for a given τ0 > 0, Lemma 6.2.18 of [18], (page 113),
gives us bounds for S̄(τ0) for τ ≥ τ0. Assumptions
(1) and (2) are necessary for this purpose , C.f.
Lemma 6.2.14,

(3) bounds for τ ∈]0; τ0[ are obtained from the expres-
sions of dSdτ , dS

−1

dτ , and Gronwall’s lemma.

It is well known that α and β can be expressed as some
function of the Gramm observability matrix and the
Gramm controllability matrix (see [18]).

4.2 Part 2

Let T ∗, and ε∗ be two positive scalars.
First of all let us choose a time horizon d (in Id (t)), and
a time T such that 0 < d < T < T ∗. Set ∆T = T − d
and choose λ > 0 in system (4). F is such that:∣∣∣∣F(θ, Id)

θ2

∣∣∣∣ < 1
∆T

+
λ

4
.

Since this bound is independent from θ, we can use
Lemma 6 to obtain α and β, independently from θ. In-
equality (11), and S̃ ≥ α Id give:

dε̃′S̃ε̃(t)
dt ≤ −αqmθε̃′S̃ε̃ (t)+2ε̃′S̃

(
b̃ (z̃)− b̃ (x̃)− b̃∗ (z̃) ε̃

)
.

(14)
From (14) we can deduce two inequalities: the first one,
global, will be used mainly when ε̃′S̃ε̃ (t) is not in the
neighborhood of 0 and θ is large. The second one, local,
will be used when ε̃′S̃ε̃ (t) is small, whatever the value
of θ. The Lipschitz 2 assumption of (3) gives:∥∥∥b̃ (z̃)− b̃ (x̃)− b̃∗ (z̃) ε̃

∥∥∥ ≤ 2Lb ‖ε̃‖ . (15)

(15) and Lemma 6 turns (14) into the “global inequal-
ity”:

dε̃′S̃ε̃ (t)
dt

≤ −
(
αqmθ − 4

β

α
Lb

)
ε̃′S̃ε̃ (t) . (16)

2 The change of coordinates keeps the Lipschitz constant
unchanged.

We now build the “local inequality”. According to
Lemma 5.2 of [11], (page 284):∥∥∥b̃ (z̃)− b̃ (x̃)− b̃∗ (z̃) ε̃

∥∥∥ ≤ Kθn−1 ‖ε̃‖2 ,

for some K > 0. Since 1 ≤ θ ≤ 2θ1, (14) gives also:

dε̃′S̃ε̃ (t)
dt

≤ −αqmε̃′S̃ε̃ (t) + 2K (2θ1)n−1
∥∥∥S̃∥∥∥ ‖ε̃‖3 .

We notice that ‖ε̃‖3 =
(
‖ε̃‖2

) 3
2 ≤

(
1
α ε̃
′S̃ε̃ (t)

) 3
2
, thus

ε̃′S̃ε̃ (t) ≤ −αqmε̃′S̃ε̃ (t) +
2K (2θ1)n−1

β

α
3
2

(
ε̃′S̃ε̃ (t)

) 3
2
.

(17)
This is the “Local inequality”. It is interpreted via
Lemma 5.1 of [11]: if

ε̃′S̃ε̃ (T0) ≤ α5q2
m

16K2 (2θ1)2n−2
β2

for some T0 > 0, then for all t ≥ T0:

ε̃′S̃ε̃ (t) ≤ 4ε̃′S̃ε̃ (T0) e−αqm(t−T0).

Consequently, if we find a γ ∈ R+∗ such that

γ ≤ 1
(2θ1)2n−2 min

(
αε∗

4
,
α5q2

m

16K2β2

)
(18)

then ε̃′S̃ε̃ (T0) ≤ γ implies, for all t ≥ T0

ε̃′S̃ε̃ (t) ≤ αε∗

(2θ1)2n−2 e−αqm(t−T0). (19)

Now, from (16), since θ ≥ 1,

ε̃′S̃ε̃ (T ) ≤ ε̃′S̃ε̃ (0) e(−αqm+4 βαLb)T

and if we suppose θ ≥ θ1 for t ∈ [T, T ∗], T ∗ > T , using
(16) again

ε̃′S̃ε̃ (T ∗) ≤ ε̃′S̃ε̃ (0) e(−αqm+4 βαLb)T e(−αqmθ1+4 βαLb)(T∗−T )

(20)

≤ M0e−αqmT e4 βαLbT
∗
e−αqmθ1(T∗−T )

where M0 = sup
x,z∈χ

ε′Sε (0) = sup
x,z∈χ

ε̃′S̃ε̃ (0).

Let us choose θ1 and γ to satisfy both

M0e−αqmT e4 βαLbT
∗
e−αqmθ1(T∗−T ) ≤ γ (21)
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and (18). This is possible since e−cte×θ1 < cte
θ2n−2
1

for θ1

large enough. In the definition of F , equation (4), we set
∆T = T − d and γ1 = λ0

dγ
β .

We claim that T0 ≤ T ∗ exists such that ε̃′S̃ε̃ (T0) ≤ γ.
Indeed, if ε̃′S̃ε̃ (T0) > γ for all T0 ≤ T ∗ then thanks to
Lemma 4:

γ < ε̃′S̃ε̃ (T0) ≤ β ‖ε̃ (T0)‖2

≤ β ‖ε (T0)‖2 ≤ β
λ0
d

Id (T0 + d)

Therefore, Id (T0 + d) ≥ γ1 for T0 ∈ [0, T ∗] and hence
Id (T0) ≥ γ1 for T0 ∈ [d, T ∗]. From the definition of
function F0 in (4), we have θ (t) ≥ θ1 for t ∈ [T, T ∗]. The
contradiction is given by (20) and (21): ε̃′S̃ε̃ (T ∗) ≤ γ.

Finally, for t ≥ T0, using (19)

‖ε (t)‖2 ≤ (2θ1)2n−2 ‖ε̃ (t)‖2

≤ (2θ1)2n−2

α ε̃′S̃ε̃ (t)

≤ ε∗e−αqm(t−T0) ≤ ε∗e−αqm(t−T∗)

which proves the theorem.

Remark 7 Let us observe that disturbances can be de-
tected in a time less than d. Suppose that a perturbation
occurs at time t0. Since innovation is, in practice, com-
puted in a sliding horizon procedure, and since Lemma
4 is valid for any 0 < d̃ < d, then innovation at times
t0 + d̃ contains information on that perturbation. Pro-
vided the perturbation is large enough, it is detected, and
the adaptation is triggered, in a time less than d (i.e. be-
fore t0 + d).

5 Illustrative Example

In order to illustrate the performance of the adaptive
high-gain extended Kalman filter, we introduce the sys-
tem:

(Σ)


(

dx1
dt

dx2
dt

)
=

(
x1 − x3

1
3 − x2u

ε [3sin(x1)− x2 − η]

)
y = x1.

(22)

It is a modified version of the Fitzhugh-Nagumo model
used for biological simulations of nerve fibers (see [6,19]
and references herein). Notice that the A matrix is in-
put driven.
This system is trivially observable since it is already un-
der the normal form. This is convenient since the search
for normal forms is not the object of the present arti-
cle. However, readers interested in this topic can refer

0

1

0 m

Id

µ(Id)

Figure 1. A sigmoid, or switch like, function.

to [3, 6, 13,18] for instance.
The parameter η is supposed to be poorly known, or
subject to sudden changes during runtime. Since it is ob-
servable, we can estimate it. We augment the state space
with the variable x3 = η, and the simple model ẋ3 = 0.

The simulation of (Σ) and of the associated observer
is performed with Matlab/Simulink. System parameters
are set to ε = 0.8, η = 5, x1(0) = 1.06, and x2(0) = 2.69.
The input variable is a sine wave of amplitude 1, angu-
lar frequency 1 rad/sec and no offset.
A non-measured perturbation is introduced as a step
change of η from 5 to −6.
Finally, the output is corrupted by an additive Orstein-
Ulhenbeck process. A detailed explanation of the imple-
mentation issues can be found in [5, 8].

In a high-gain EKF, the role of the parameters Q, R,
and θ1 is both to ensure global convergence and to limit
the influence of noise. They are acting one against the
other, which makes them difficult to tune. In our adap-
tive version, those three parameters have clearly defined
roles since the adaptive strategy decouples them. How-
ever, the adaptive strategy requires the use of some ex-
tra parameters. We propose the following methodology
for the tuning procedure:

(1) set the performance parameters, Q, R and θ1;
(2) set the parameters d, λ, define a function µ(Id),

and choose m (See Figure 1).

The choice of those multiple parameters is based on sim-
ulation campaigns, or on the use of real data, if acces-
sible. The tuning methodology is justified by theorem 4
as we know that configuration exists rendering the ob-
server efficient.

Step 1
Consider a non adaptive version of the observer:
F = 0. The matrices Q and R are chosen according
to the representation (1). Noise reduction is the ob-
jective, see [15] for example.
Choose 2θ1 to achieve efficient converging perfor-
mance and limit overshoots (see [6, 11]).

Step 2

d: When d (C.f. Lemma 4) is too small, innovation
isn’t sufficiently large to distinguish an increase in

6



the estimation error from the influence of noise. On
the other hand, a value that is too high increases
the computation time as the prediction is done on
a larger time interval. The choice of d has to be
made from the knowledge of the time constant of
the system. A fraction (e.g. 1

3 to 1
5 ) of time constant

appears to be a reasonable choice.
λ: With a high value for λ, θ decreases quickly. In

practice, θ often bounces up and down after large
disturbances. This is avoided by setting λ to a value
that is not so high in order to give some resilience
to θ. For example, take λ = 1.

µ: We arbitrarily chose a sigmoid for the function µ
(see Figure 1). It is a Lipschitz switch-like function
that can be easily shaped.

m : It is the most important parameter. Its role ap-
pears clearly in Figure 1: adaptation is triggered
only when Id(t) > m. One can choose the other
parameters more or less arbitrarily, without any
critical effect on the adaptation performance. It is
not the case with m. Indeed, if we suppose that
the observer estimates perfectly the state of the
system, then the output trajectory predicted dur-
ing the computation of innovation is equal to the
output signal without noise. As far as the output
signal is corrupted by noise v(t), ymeasured(t) =
y(t− d, x(t− d), τ) + v(τ) and

Id(t) =
∫ t
t−d ‖y(t− d, x(t− d), τ) + v(τ)

−y(t− d, z(t− d), τ)‖2dτ
=
∫ t
t−d ‖v(τ)‖2dτ 66= 0

Denoting σ the standard deviation of v(t), a one-
sigma (empirical) rule gives Id(t) ≤ σ2d. Therefore,
m ≈ σ2d is an appropriate choice. Notice that al-
though m is an important parameter, it is not diffi-
cult to tune it correctly.

We display the simulation results of two scenarios. The
initial state of the observer is wrong in both cases. In the
first one (Figure 2), the variable η jumps only once. In
the second scenario (Figures 3 and 4), η jumps repeat-
edly. The real state is always plotted in black, and the
estimated state in red. The top graph of Figure 3 gives
an account of the noise level.
On Figure 3, we can see:

• at time 60, a medium scale perturbation illustrating
how innovation catches disturbances, allowing high-
gain parameter to increase and ensuring convergence,
• at time 120, a perturbation too small to lead to a value

of innovation large enough to trigger θ,

On Figure 4, we see at times 30, 90, 150 and 180, that
innovation bounces up and down. This is the kind of
situation where having set λ to a small value is useful.

Figure 2. Simulation result of the initial scenario

Figure 3. Second scenario: state variables estimation

m

Figure 4. Second scenario: innovation and high-gain param-
eter

The overall behavior of the observer is the one we were
searching for: noise smoothing when estimation error is
small, and high-gain dynamics when large estimation
error is detected. Keep in mind that an EKF, with the
Q and R matrices used here, converges in 700 units of
time after a jump like the one of Figure 2.
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6 Conclusion

In this article we proposed an extended Kalman filter
having an adaptive high-gain parameter that increases
or decreases in terms of the variation of the innovation.
The effect of this adaptation is that the observer mainly
commutes between two modes:

• Kalman filtering mode when the innovation is small,
• High-gain mode when the innovation is large.

We proved the global exponential convergence to zero of
the estimation error of the observer. We proposed guide-
lines for the tuning of the parameters of the observer
and we performed certain simulations on a Fitzhugh-
Nagumo-like model with noise and large perturbations.
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[23] A Tornambè. High-gain observers for non-linear systems.
International Journal of System Science, 13(4):1475–1489,
1992.

8


