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1 Glossary

• Observability

An observed (and eventually controlled) dynamical system is observable if
two distinct initial conditions can be distinguished (via the observations)
by choosing the control function.

• Universal inputs

A universal input is a control function allowing to distinguish between all
initial conditions.

• Observer

An observer system is a device, given in general under the guise of a dif-
ferential equation (or a differences equation in the discrete case), allowing
to track asymptotically the state trajectory of the system, using only the
controls and the observations.

• Input-output map

An input-output map is a mapping (for fixed initial condition) which to
"control functions" associates "output functions". It is in general assumed
to be "causal" in some sense.

• Realization A realization of an input-output map is a (controlled) non-
linear system realizing the given input-output map. A realization (system)
is said minimal if it is controllable and observable.

2 Definition of the subject and its importance

Observability analysis, design of nonlinear observers and realization of input-
output maps are subjects of central interest in control theory and systems analy-
sis. Related to the synthesis of observer systems is the very important question of
"dynamic output stabilization": usually in practice a stabilizing feedback law is
applied to the system via the estimation of the state provided by some observer
device. Also, the topic is strongly connected with filtering theory, including the
standard linear Kalman filter but also nonlinear filtering theory. Realization of
some input-output behavior covers the practical idea of modelling systems by
differential equations on the basis of input-output experiments (identification).
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3 Introduction

In this article, we discuss the basic concepts and methods in observability, ob-
servation and realization theories. The area is so large that there are thousands
contributions. We provide a nonexhaustive tiny list of references which is cer-
tainly far from complete, but corresponds to our taste: an entirely subjective
selection. We focus on the continuous finite dimensional case, but there are very
important developments for systems governed by PDE’s, and for discrete time
systems.

In this continuous, finite dimensional context, we chose the geometric set-
ting, however there are other possibilities (algebraic setting, formal power series,
Volterra series,..).

For more details, we provide a list of books of significant interest dealing
with the topics.

After setting the general definitions, we consider very shortly linear systems
for which the theory is perfectly well established for long, the pioneers being
Kalman and Luenberger.

Then we state some important results from the geometric nonlinear observ-
ability theory, the most significant contributions being undoubtedly those of
Hermann and Krener [10] and Sussmann [23, 24, 25]. Also, contrarily to the
case of linear systems, the observability of a system depends on the control
applied to it. The existence of universal controls is a very important point, clar-
ified by Sussmann [26]. We state the main result. About observability in an
analytic-geometry setting, there are also interesting and important results by
Bartoziewicz.

The next part of the paper is devoted to realization theory, where mostly
two problems may be considered:

1. given a nonlinear system, find a minimal realization;
2. Given some input-output mapping, find a realization of it (it will be

minimal by construction).
The most important contribution in this setting is Jakubczyk’s one [12, 13].

In fact, it follows a basic idea of Kalman, first for finite automata and second
for linear systems. We like Jakubczyk’s approach since in particular, it contains
very naturally the linear case. To our knowledge, this natural approach has not
been used (in the nonlinear framework) for practical identification of nonlinear
systems. However it is rather clear that interesting developments are possible.
Moreover, it is not so hard to show complete equivalence between this geometric
approach and the formal power series approach.

The contribution of Crouch about realization of finite Volterra series is also
important, original and involves a lot of geometric considerations. We just refer
to the original paper.

Realizing or approximating a system by a bilinear or state linear one is an
important question in view of the observer synthesis problem. We state some
results on the subject. In particular, there is an important geometric repre-
sentation theorem (by bilinear systems) due to Fliess and Kupka [8], that we
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explain.

After these theoretical considerations, we go to a more practical topic: ob-
servers. Besides the linear case, there are several contributions in nonlinear
observers synthesis (sliding modes, high gain,...). Here, we focus on two natural
generalizations of the linear results:

1. the output injection method (the equivalent for observability of feedback
linearization) due mostly to Isidori, Krener, Respondek [17, 18];

2. The use of the deterministic version of the linear Kalman’s filter: it ap-
plies to bilinear systems, that are popular also by several approximation results
(Fliess and Jacob in particular [11]).

4 Preliminaries

Surprisingly in the nonlinear case controllability plays a role in the observability
properties of a system. It is the reason for the title of the next section.

4.1 Nonlinear systems under consideration and controlla-

bility

We consider nonlinear systems (Σ) of the usual form:

(Σ)

{
ẋ = f(x,u); u ∈ U,

y = h(x).
(1)

Here, the state space x lives either in Rn or more generally in some n-dimensional
differentiable manifold X. The set U of values of control u is some arbitrary set
(for simplicity, we assume a closed subset of Rl, may be finite). The observation
function h takes values in Rp. To simplify, we will consider the analytic case only,
i.e. f and h are real-analytic w.r.t. x. In the special cases where U has some
analytic structure (i.e. U = Rl for instance) we assume joint real analyticity
w.r.t. (x,u).

If W is an open subset of X, we denote by Σ|W the system Σ restricted to
W.

Some initial condition x0 ∈ X being fixed, such a system Σ defines
(via Cauchy existence and uniqueness Theorem) an input-output mapping PΣ :
L
∞[U ] → AC[Rp], u(.) → y(.), where L∞[U ] is the set of functions defined

on semi-open intervals [0, Tu[ (depending on the control u(.)). Possibly Tu =
+∞. Here AC[Rp] denotes the set of absolutely continuous functions over some
interval [0, Ty[ possibly depending on the output function y(.). Moreover, Ty =
inf(Tu, e(u, x0)), where e(u,x0) is the explosion time of the solution of (1)
associated with the initial condition x0, and the control u(.).

Particular cases of systems under consideration are the usual linear systems
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(L), bilinear systems (B) or state-linear systems (LX) :
⎧
⎨
⎩

(L) ẋ = Ax+Bu, y = Cx; X = R
n,U = R

l,

(B) ẋ = Ax+Bx⊗ u, y = Cx; X = R
n,U = R

l,

(LX) ẋ = A(u)x, y = Cx, X = R
n.

(2)

In these formulas, A,B,C are linear. Of course, in the case of a linear system
(L), with initial condition x0 = 0, the input-output mapping PL is a linear
mapping.

Our system Σ is said "controllable" if the Lie algebra Lie(Σ) of smooth
vector fields on X generated by the vector fields fu, u ∈ U (where f

u
(x) =

f(x,u)) has dimension n at each point of X.
Also, we say that a system Σ is symmetric if ∀u ∈ U, ∃v ∈ U s.t. fv = −fu,

and Σ is complete if all the vector fields fu, u ∈ U, are complete.
The following fact is standard, for analytic systems. A system is controllable

iff:

• 1. the accessibility set A(x0) of x0 ∈ X, i.e. the set of points that can

be reached from x0 by some trajectory of Σ, in positive time, has open

interior in X, whatever x0 ∈ X.

• 2. The orbit O(x0) of x0 ∈ X, i.e. the set of points that can be joined to

x0 by some continuous curve which is a concatenation of trajectories of Σ
in positive or negative time, is equal to X, whatever x0 ∈ X.

Moreover in 1, 2 above, it is enough to restrict to piecewise constant control

functions. Also, if Σ is symmetric, O(x0) = A(x0) ∀x0 ∈ X.

4.2 Definition and characterization of observability, mini-

mal systems

Here, Cω(X) denotes the vector space of real analytic functions over X. First,

let Θ ⊂ C
ω(X) denote the "observation space of Σ”, i.e. the smallest vector

subspace of Cω(X) containing the p components hi(.) of the output function

h and closed under Lie derivation Lfu in the direction of the vector fields fu,

u ∈ U. Then, Θ is also closed under Lie derivation in the direction of vector

fields in Lie(Σ) and Θ is generated as a real vector space by the functions

(Lfur
)kr (Lfu

r−1
)kr−1 ......(Lfu1

)k1hi.

Definition 1 The observability distribution ∆ of Σ is the distribution ker(dΘ)
formed by the kernel of the one-forms dθ, θ ∈ Θ. The system Σ is said rank-

observable if the distribution ∆ is trivial. This fact is also called the "observ-

ability rank condition".

The important fact relating the observability and controllability properties

is that the observability distribution ∆ has no singularities as soon as Σ
is controllable: the rank of ∆ is preserved along trajectories of vector fields

f
u
. Moreover, it is clear that ∆ is involutive, hence integrable by Frobenius’s

Theorem. Leaves of ∆ are levels of Θ.
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Definition 2 (Indistinguishability and weak indistinguishability relations) Let
I be the binary relation over X defined by x

1

0
Ix2

0
if for any (piecewise constant)

control u(.) : [0, Tu[→ U such that e(u, x1
0
) = e(u,x2

0
) = Tu, then the correspond-

ing output functions y1(t), y2(t) from both initial conditions x1
0
, x2

0
are equal,

t ∈ [0, Tu[. The relation I is called the indistinguishability relation for Σ. If V
is an open subset of X, we denote by IV (V -indistinguishability relation) the in-
distinguishability relation for the restriction Σ|V . The weak-indistinguishability

relation, denoted by I
w is the equivalence relation associated with the foliation

of X generated by ∆.

The indistinguishability relation is an equivalence relation as soon as Σ is

complete. It is not an equivalence relation in general. Hence in general, V -

indistinguishability also is not equivalence over V.

Definition 3 the system Σ is said observable if the relation I is the trivial

relation. It is said weakly observable if for all x0 ∈ X, there is a neighborhood

W of x0 such that for each neighborhood V of x0, V ⊂W, IV (x0) = x0.

Then weak observability means that locally, we can find inputs such that the

initial conditions are distinguished by the observations, in arbitrarily short time.

Observability means just that distinct initial conditions can be distinguished by

observations. The system Σ being observable, analytic, this can be done in

arbitrary short time.

In view of realization theory, we say that Σ is minimal if it is both control-

lable and observable. We say that it is weakly minimal if it is controllable

and weakly observable.

Definition 4 A universal input for Σ is an input u(.), that distinguishes among

any pair of distinct states in arbitrarily short time.

4.3 Observers

For a system Σ of the form (1) (that we assume observable) an observer is a
system of the form: {

ż = F (z, y, u),
x̂ = H(z, u),

(3)

where z ∈ Z, some manifold. The observer system is fed by y(t) and u(t),
the output and input of Σ. The mapping H : H ×U → X, and we require that,

for a large set of initial condition z0 for z, the output x̂(t) tracks asymptotically

the state x(t) of the system, i.e. at least,

lim
t→+∞

d(x̂(t), x(t)) = 0, (4)

where d is some (Riemannian) metric over X. In general, there are additional
requirements on the rate of convergence to zero of the estimation error ε(t) =
d(x̂(t), x(t)) (such as exponential convergence, with arbitrary exponential rate).
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Of course even without such additional requirements, this definition is very
vague and not serious at all. It has to be made more precise, depending on the
context. There are mostly 2 types of problems:

• This definition depends on the metric d. It may happen that ε(t) goes to
zero for some Riemannian metric d, although it goes to infinity for some
other metric d′

. Also, the state variables z or x may explode in finite time.
Therefore, in general it is reasonable to require (4) only for trajectories
of Σ that remain in a given compact subset of X for all positive times.
In that case, the usual convergence requirements becomes independent of
the Riemannian metric d.

• One cannot expect to observe unobservable systems. Then, one has to
require convergence for "good" inputs only.

4.4 Abstract definition of an input-output map

We define the topological group G (resp. the topological semi group S) of
extended (resp. positive time) piecewise constant controls as follows: typical
elements of G and S are words of the form:

ǔ(ť) = (uk, tk)....(u1, t1), (5)

where ui ∈ U and ti ∈ R (resp. R+). The operation over G and S is the
concatenation of words. We consider also the neutral element ε : ǔ(ť)ε = εǔ(ť) =
ǔ(ť). We define the equivalence relation ∼ over G and S as being generated by
the relations: {

(u,0) ∼ ε,
(u, s)(u, θ) ∼ (u, s+ θ).

(6)

We consider the quotient spaces G := G/ ∼, S := S/ ∼ . Both are embedded
with the topology co-induced by the maps:

ǔ(.) : Rk → G (resp. (R+)k → S).

For θ ∈ R+ and ǔ(ť) ∈ S, we define

θ ∗ ǔ(ť) = (ur+1, θ − ηr)(ur , tr)...(u1, t1) for θ ∈ [ηr, ηr+1[,

ηr = t1 + ...+ tr,

θ ∗ ǔ(ť) = ǔ(ť) for θ ≥ ηk.

A real mapping: P : G → R (resp. S → R) with open domain D is said

analytic if , for all ǔ(ť) ∈ D, the mapping ť → P (ǔ(ť)) is analytic at ť as a

mapping Rk
→ R.

The domain D of P : D ⊂ S → R is said "star-shaped" if θ ∗ a ∈ D for all

θ ∈ R+ and a ∈ D.

Denote B̌(š) = ((b̌m(šm), ..., b̌1(š1)) ∈ Gm (resp. Sm), with

b̌i(ši) = (bini , sini )....(bi1 , si1
), bij ∈ U,
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and set:

ΨB̌(š)

ǔ(ť)
= (Ψb̌m(šm)

ǔ(ť)
, ....,Ψb̌1(š1)

ǔ(ť)
),

Ψb̌i(ši)

ǔ(ť)
= P (b̌i(ši)ǔ(ť)).

The rank of P is defined as

rank(P ) = sup
k,B̌(š),ǔ(ť)

rankDťΨ
B̌(š)

ǔ(ť)
,

where Dť means the differential w.r.t. ť ∈ Rk, and all the arguments cross the

possible domain defined by the domain D of P.

Definition 5 An (abstract) input-output mapping P is an analytic mapping,
from some open and star-shaped subset D ⊂ S, with finite rank.

An extension P+ of an analytic mapping P is an analytic mapping such that

dom(P ) ⊂ dom(P+) ⊂ S and P = P+|dom(P ) (restriction of P+ to Dom(P )).

Remark 6 Given a pointed nonlinear system (Σ, x0) where Σ is of the form
(1) and x0 ∈ X, it is clear that the associated input-output mapping defines an

abstract input-output mapping, the rank of which is the dimension n of the state

space.

5 Linear systems

The simplest case for observability, design of observers and realization theory is
the linear case.

Given a linear system (L) from (2) the following results are standard and
more or less obvious:

• The observability property is independent of the control u(.) applied to
the system, i.e (L) is observable iff it is observable for some fixed arbitrary
control u(.).

• The observability distribution ∆ is a field of constant planes, given by
∆ = ∩

n−1

i=1
ker(CAi). Then Σ is observable iff rank(∆) = 0. This condition

is known as the observability rank condition.

• If (L) is observable the following device (Luenberger observer):{
ż = (A− ΩC)z +Ωy +Bu,

Ω : Rn → R
p
, z ∈ R

n
,

(7)

is an arbitrary exponential rate observer, i.e. the matrix Ω can be

chosen in such a way that the the matrix A−ΩC has arbitrary spectrum,

which implies:

||ε(t)|| = ||z(t) − x(t)|| ≤ k(α)e−αt||z0 − x0|| = k(α)e−αt||ε0||, (8)
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where α > 0 is arbitrary, and k is some polynomial in α, independent of
Ω.

• Any linear system restricts to a controllable one on some subspace, and is
mapped to an observable one, by the canonical projection Π : Rn → R

n/I.

• Let Y (t) denote an "impulse response" (Y (t) : Rl → R
p, t ≥ 0). The

input-output map is the causal linear mapping P : u(.) → y(.) = Y ∗

u, where ∗ denotes the convolution of (positive time) signals. Then as-

sume that (as a formal power series) Y (t) =
∞∑

k=1

Gk
tk

k!,
and let H denote

the infinite block-Hankel matrix constructed from the sequence of blocks

G1, G2, ..., Gk, ..

Then, Y (t) is the impulse response of a linear system (L) iff H has finite

rank n.

6 Observability of nonlinear systems

What is clear is that if a system is rank-observable, then it is weakly observ-

able. This is due to a Baker-campbell-Hausdorf-like formula, valid for piecewise

constant controls ǔ(ť) :

y(t) =
∑

(Lfuk
)rk ...(Lfu1)

r1h(x0)
t
rk

k
...tr1

1

rk!...r1!
. (9)

Indeed by real analyticity, if y1(t) = y2(t), all the terms (Lfuk
)rk ...(Lfu1)

r1h(x1
0
)

and (Lfuk
)rk ...(Lf

u1
)r1h(x2

0
) are equal, which contradicts the rank assumption,

for x
1

0
, x

2

0
close enough.

Conversely, assume that Σ is controllable and not rank-observable. Then,
the observability distribution ∆ is constant rank, integrable, nontrivial. Leaves
of ∆ are levels of Θ. By the same formula (9) points of such leaves are indistin-
guishable. Therefore Σ is not weakly observable. Then, the following theorem
holds:

Theorem 7 A controllable system Σ is weakly observable iff it is rank-observable.

The other important result (Sussmann) is:

Theorem 8 If Σ is observable, there is a universal input. Moreover, the set of

universal inputs is generic.

7 Realization theory

7.1 Minimal realizations given a realization

We are given a realization i.e. a pointed system (Σ, x0), x0 ∈ X. In fact, the
results follow from the Sussmann’s theorem on quotient manifolds: a closed
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equivalence relation R differentiably passes to the quotient (i.e. quotient is a
manifold and canonical projection is submersive) if there are enough complete
vector fields that respect R. We apply this theorem to the indistinguishability
relation R = I in the case of a complete and controllable system. Then all
vector fields of Lie(Σ) respect I. This is exactly Sussmann’s requirement, so
that not only there is a quotient manifold and canonical mapping is submersive,
but moreover vector fields of Lie(Σ) pass to the quotient. Also, the elements of
Θ obviously pass to the quotient.

If Σ is not controllable, then, as a first step, we can use the standard
Hermann-Nagano Theorem to restrict to a (controllable) leaf of the distribu-
tion Lie(Σ). Then, we have a similar theorem to the one of the linear case.

Theorem 9 If Σ is complete, then we can restrict to the leaf of Lie(Σ) con-

taining x0 ∈ X to get a controllable system. Passing to the quotient manifold by

the indistinguishability relation I , we get a minimal realization. Moreover, two

minimal realizations are unique up to a diffeomorphism of the state spaces.

For complete systems, there is an interesting refinement of this theorem. A

realization is said weakly-minimal if it is controllable, weakly observable. It

turns out that the equivalence relation Iw associated to∆meets also Sussmann’s
conditions. It follows that the system goes to quotient, and we get a weakly
minimal realization Σ̂ with state space X̂. We can apply the previous theorem
9 to Σ̂ to get again the (unique) minimal realization Σm of Σ, with state space
Xm.The following theorem is almost obvious.

Theorem 10 X̂ is a covering space of Xm. Moreover, any covering space of

Xm determines a weakly-minimal realization of Σ, by a trivial lifting procedure.

In particular, there is (up to diffeomorphisms) a single simply-connected
weakly-minimal realization.

Note that in fact the relation Iw is the same relation as: x1
0
Iwx2

0
if there

is a continuous curve γ : [0, 1] → X connecting x1
0
to x2

0
and for r, s ∈ [0, 1],

γ(r)Iγ(s).

7.2 Minimal realizations given an abstract input-output

map

The set of controls U being given, we consider an abstract input-output map
defined over the whole group G (domain D = G). Note that this is the case in
particular for the input-output mappings determined by a complete symmetric
system.

In that case we have the following theorem, due to Jakubczyk.

Theorem 11 An abstract input-output mapping with domain G has a unique

minimal realization, which is complete.
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Remark 12 The finite rank assumption for the input-output mapping is a gen-

eralization of the finite rank assumption of the Hankel matrix of the linear case.

It is also the analog of certain finite rank assumptions appearing in the formal

power series approach of Fliess, or in the Volterra-kernels approach.

Remark 13 There is one ugly detail in this theory: in general, we don’t get a

paracompact manifold as the state space X.

The idea for the proof of the theorem is very simple: we consider the sub-

group H of G defined by H = {a ∈ G|P (ca) = P (c), ∀c ∈ G}. Then , the state

space will just be X = G/H. The finite rank condition implies that X has the

structure of an Hausdorff analytic manifold. The output function h is defined

by h(gH) = P (g). The vector-field f
u
is defined via its one parameter group:

exp(tfu)(gH) = Π((u, t)g), where Π : G→ G/H is the canonical projection.

A more practical result is the following: if we assume that the set U of values
of the control is a finite set, then the following global result (containing a local
one) can be proven.

Theorem 14 Assume U is finite, then, a necessary and sufficient condition
for P to have a realization (weakly-minimal) is that P has an extension P+

with star-shaped domain D+. The state space X of this realization is Hausdorff,
paracompact.

In the general analytic case with infinite U, there is only existence of certain
local realizations.

7.3 Bilinear or state-linear realization

This point will be extremely important for the problem of constructing observer
systems (Section 8). A system is said control affine if the vector fields fu form an
affine family w.r.t. u. The single control case (l = 1) is just the case f(x,u) =
f(x) + g(x)u where f and g are two vector fields on X. Note that a bilinear
system is just a state linear system, which is moreover affine in the controls.

A state linear realization (LX,x0) from Formula (2) is said minimal if it is ob-
servable and controllable in the following sense: the orbit of x0 is not contained
in a strict subspace of Rn (the smallest such subspace would be automatically
invariant under all the operators A(u), u ∈ U). First, it is rather simple to
show that any pointed state-linear system (LX, x0) has a minimal state-linear
realization. Of course, the additional property to be bilinear is hereditary.

Note that for state-linear systems, the observation space is a (finite-dimensional)
vector space of linear forms over X. It turns out that this finite dimensionality
condition is in fact a necessary and sufficient condition. This is a very important
result from Fliess and Kupka:

Theorem 15 Assume that Σ has a finite dimensional observation space Θ. Then,
Σ is embeddable in a state-linear system. In other terms (Σ, x0) has a state linear
(minimal) realization.
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The proof is very easy. It is enough to take:

• X = Θ∗ (dual space of Θ),

• For ϕ ∈ Θ∗, Ciϕ = ϕ(hi), i = 1, ..., p,

• A(u) = (Lfu)
∗ (transpose of Lfu),

• The initial state x̂0 meets x̂0(ϕ) = ϕ(x0) for ϕ ∈ Θ.

Besides the fact that this result allows to solve the observer problem for
such systems, "truncating" in some manner the observation space it is a way to
approximate systems by state-linear ones , and to get approximate observers.

An interesting particular case where this theorem applies is the case of sys-
tems with polynomial observation h and state-linear dynamics:

{
ẋ = A(u)x,
y = P (x),

where P is some polynomial mapping. It is clear that Θ is finite-dimensional.
More generally, if we start with a system with state-linear dynamics, we can
approximate uniformly h on compact sets by a polynomial mapping to get a
state-linear realization (and later on, an approximate observer device).

7.4 State-linear skew-adjoint realization

Here, for the sake of simplicity in the exposition we limit ourselves to the single
output case p = 1.

This section describes some particular cases and some generalizations of the
results of the previous section, in view of synthesis of observers with a method
presented in Section 8.4.

For some reason that will be made clear in the section 8.4 we would like
to know when it is possible to embed a system (or to have a realization of
a system) into a skew-symmetric, or more generally skew-adjoint, state-linear
one. This means that all the matrices A(u) are skew-symmetric w.r.t. the usual
scalar product over the state space Rn of the realization. By the theorem 15,
necessary conditions for the nonlinear system Σ (minimal and complete) be
embeddable into a such one is that Θ be finite dimensional and hence the group
of diffeomorphisms of X generated by the vector fields f

u
be a Lie group G.

One could think that a necessary condition is that G be a compact Lie group.
This is not the case as shows the following example:

{
ẋ = u, x,u ∈ R,

y = cos(x) + cos(αx), where α is irrational.

The proper condition is given by the following theorem:
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Theorem 16 The system Σ (complete, minimal) can be embedded into a state-
linear skew symmetric system iff:

1. dim(Θ) <∞ (from what it follows that G is a Lie group),
2. The observation function h(x) lifts over G into h̃ (in a natural way), an

almost periodic function over G.

Remind that an almost periodic function over G is a function that prolongs

into a continuous function over the Bohr compactification G� of G. The two

conditions of Theorem 16 are equivalent to the fact that G is a Lie group and h̃ is

a finite linear combination of coefficients of unitary irreducible finite dimensional

representations of G.

If G is "embeddable in a compact group", i.e. if G is the semi-direct product

of a compact group by a finite dimensional real vector space then, any h can be

approximated in some sense by an almost periodic one.

Actually, a special interesting case is the following: the system Σ is such that

X = G, a compact Lie group, and the vector fields fu are right invariant vector

fields over G.We can take h as any continuous function h : G→ R, and consider

the abstract Fourier transform ĥ of h. In fact, by Peter-Weyl’s Theorem, h is a

uniform limit over G of finite linear combinations of the form

h(g) =
∑

i

αiΦi(g),

where Φi(g) is a coefficient of an irreducible (hence finite dimensional) unitary
representation of G. This means that h has approximations hm that converge
uniformly to h over G, such that the system

(Σm)

{
ġ = A(u)g,
y = hm(g),

has a state-linear minimal realization of the form:{
ẋ = Am(u)x, x ∈ C

n, Am(u) is skew-adjoint,

y = C
m
x.

Hence the input-output mapping of any right invariant system over

a compact group can be approximated by the one of a skew-adjoint

state-linear one.

Now, let us consider again a (complete, minimal) system Σ, with finite di-
mensional Lie algebra, but the group G is not compact. In that case h̃ (a lift
of h over G) can be approximated uniformly on any compact subset of G by
a function h

m
, which is a finite linear combination of "positive type" functions

over G. This approximation result is known as the Gelfand-Raikov Theorem.
As a consequence we have the theorem:
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Theorem 17 The system (Σn)

{
ġ = A(u)g,
y = hm(g),

has a (infinite dimensional) skew-

adjoint state linear realization on a separable complex Hilbert space H, i.e:

{
Ψ̇ = A(u)Ψ,
y =< Ψ, ξ > .

Here ξ,Ψ ∈ H and < ., . > is the scalar product over H. All the operators

A(u) are densely defined, essentially skew-adjoint operators, infinitesimal gen-

erators of strongly continuous one parameter groups of unitary operators over

H.

With this result, in Section 8.4, we will be able to construct reasonable

approximate observers for Σ.

8 Observers

8.1 The Kalman’s observer for state-linear systems

This is just the deterministic version of the linear time-dependant Kalman filter.
Therefore, inputs being known, it applies to state-linear systems (LX) from (2).
Contrarily to linear systems, observability for those systems is not a property
independent of the inputs: for some input u(.) it might be observable, for other it
might be not. Clearly, if we want the observer to have some asymptotic property
of convergence of the estimation error, it is reasonable to require that the input
under consideration keeps a certain minimum level of observability when
the time grows to infinity. It is natural to consider inputs living in the space
U =L∞[0,∞[,Rp of measurable U-valued bounded functions. For an input u ∈ U

and for a real a ≥ 0, set ua(t) = u(t + a). We denote by Φu(t) the matrix

resolvent of the linear equation Φ̇u(t) = A(u(t))Φu(t). Then for T > 0, the
Gramm-observability matrix:

Gu,T =

∫ T

0

Φu(t)
∗C∗CΦu(t)dt, (10)

where ∗ stands for adjoint operator, measures observability in the following
sense: the system is observable for u : [0, T ] → U iff Gu,T is positive definite.

Hence there are several type of assumptions that are possible to express that

u : [0,+∞[→ U keeps a certain level of observability when the time passes. The

most simple one is the following:

There are α,T, T0 > 0 such that for all θ ≥ T0, Guθ,T ≥ αIdn, where Idn
is the identity matrix. This condition means intuitively that, from time T0 on,

the input u has minimum observability level α on all time intervals of length T.

Such an input could be called a "persistent-excitation" for Σ.

Then, the following theorem is just a restatement of the classical results

about the deterministic version of the linear time dependant Kalman’s filter:

14



Theorem 18 The matrices Q and R being positive definite symmetric matrices

with adequate dimensions, the Riccati system:

{
(1) Ṡ = −A(u(t))′S(t)− S(t)A(u(t)) + C∗R−1C − SQS,

(2) ż = A(u(t))z − S−1C∗R−1(Cz − y(t)),
(11)

is an asymptotic observer for persistent-excitations u(.). Convergence of the
estimation error is exponential. The matrices S(t) (as soon as the same holds
for the initial condition S0) live in the open cone of positive definite symmetric
matrices.

8.2 Observers for systems that are injectable in a state-

linear one

Of course, the technique of the previous section applies stricto-sensu to such
systems from Section (7.3).

8.3 The output-injection idea

It turns out that both the Luenberger observer (7) for linear systems and the
Kalman observer (11) for state-linear systems can be applied in more general
nonlinear situations.

Assume that Σ is linear "up to output injection", i.e.

(Σ)

{
ẋ = Ax+ϕ(y,u)

y = Cx

}
, (12)

or respectively that Σ is state-linear (or bilinear) up to output injection,
i.e.

(Σ)

{
ẋ = A(u)x+ϕ(y,u)

y = Cx

}
, (13)

where ϕ (the output injection) is some nonlinear term depending on the output
and input only. Then there are easy modifications of the Luenberger observer
(resp. the Kalman’s observer) that provide exactly the same results of con-
vergence of the estimation error as for the corresponding systems without the
output-injection term.

For case (12) we take the observer under the Luenberger-modified form:

ż = (A−ΩC)z + ϕ(y,u) +Ω(y − Cz),

while for case (13) we take:

{
Ṡ = −A(u(t))′S(t) − S(t)A(u(t)) +C∗R−1C − SQS

ż = A(u(t))z + ϕ(y,u) − S−1C∗R−1(Cz − y(t)).

To check the result it is enough to write the estimation error equation and

to see that it is exactly the same as in the situation without output-injection.

15



For that reason, it is important to characterize systems that can be

put under the form of a linear or state-linear system up to output-

injection.

There is an industry around this question. It starts with works of Isidori,

Krener, Respondek. The first result of this type is in the uncontrolled case. For

an uncontrolled system

(Σ)

{
ẋ = f(x)
y = h(x)

,

with single output (p = 1), consider the vector fields Xi defined by

LX1
(Lf )

i−1h = δi,n, i = 1, ..., n, where δ is the Kronecker symbol,

Xj = −[f,Xj−1], j = 2, ..., n,

The system Σ can be linearized up to a diffeomorphism and an output injection

iff the 2 following conditions are met:

• 1. The family {dh, dLfh, ..., d(Lf )n−1h} has full rank n at all points of X.

• 2. [Xk,Xm] = 0 for 1 ≤ k,m ≤ n.

Of course, this is a "local almost everywhere result" only.

There is also a lot of results on the problem of characterizing systems that
are diffeomorphic to or embeddable in state-linear systems up to out-

put injection. A significant result to the problem of embedding up to output
injection is the one of Jouan ([14]).

8.4 Observers for skew-adjoint state linear systems

Again, to simplify the exposition we consider the single output case p = 1 only.
In the case we have a (minimal) state-linear realization which is also skew-

adjoint, there is a construction of an observer which is much simpler than
Kalman’s one (no Riccati equation besides the prediction-correction equation
(11), (2)). Moreover this construction extends to infinite-dimensional re-

alizations, a fact which allows to treat any (complete minimal) system with
finite dimensional Lie algebra.

To start, consider some skew-symmetric state linear system:

(LX)

{
ẋ = A(u)x, A(u) skew-symmetric ∀u ∈ U,

y = Cx,
(14)

We consider the following candidate observer system:

ż = A(u)z − rC∗(Cz − y), (15)

in which r > 0 is a parameter. The estimation error is, with ε = z − x :

ε̇ = (A(u) − rC∗C)ε.
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Then it is not so hard to show that, if u : [0,∞[→ U is a "persistent exci-
tation" of Σ in some sense (for instance in the sense of Section 8.1), then we
have:

lim
t→+∞

||ε(t)|| = 0.

As a consequence, the systems with compact group G of diffeomorphisms (or
with G semidirect product of compact by vector space), admit also approximate
observers, using the results of Section 7.4.

It turns out that this method can be extended in a reasonable way to systems
with (infinite dimensional) skew-adjoint state-linear realization. In particular,
it is possible to construct approximate observers for all (complete minimal)
systems with finite dimensional Lie algebra.

Consider a skew adjoint realization from Section 7.4:

{
Ψ̇ = A(u)Ψ,
y =< Ψ, ξ > .

on the (separable) Hilbert space H. Then, the candidate observer device is:

Λ̇ = A(u)Λ − rξ(< Λ, ξ > −y(t)). (16)

In fact, the persistency assumption cannot be of the same type as in the finite
dimensional case. The reason is that the Gramm observability matrix Gu,T is a

compact operator in that case. Hence it cannot satisfy an inequality of the type

Gu,T ≥ αIdH since H is infinite dimensional.

Hence, the definition of a persistent excitation has to be replaced by one of

the following type: there is a time T > 0 and a real sequence θn, θn → +∞, with

θn+1 − θn bounded, such that the translated inputs uθn : [0, T ]→ R
l converge

to u
∗ in the weak-* topology of L∞[0,T ],Rl (which topology is precompact over

bounded sets) and u∗ is a universal input for Σ on [0, T ].
This means also that a certain level of observability is preserved, on regularly

spaced time intervals, while the time increases.
In that case, of course the result is weaker than in the finite dimensional

case. We have only:
weak- lim

t→+∞
ε(t) = 0.

9 Future directions

For observability and synthesis of observers, besides the improvement of the
current methods (including sliding modes, high gain,...) several directions have
to be investigated more deeply, namely infinite dimensional systems, delay and
hybrid systems.

For realization theory, and as a consequence identification theory, almost
no "practical result" is known in the nonlinear context. However we think
interesting and consistent developments are possible, even starting from the
apparently abstract theory outlined there. This is clearly the challenge for future.
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