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Abstract This paper is about generalized Fourier descrip-
tors, and their application to the research of invariants un-
der group actions. A general methodology is developed,
crucially related to Pontryagin’s, Tannaka’s, Chu’s and Tat-
suuma’s dualities, from abstract harmonic analysis. Appli-
cation to motion groups provides a general methodology
for pattern recognition. This methodology generalizes the
classical basic method of Fourier-invariants of contours of
objects. In the paper, we use the results of this theory,
inside a Support-Vector-Machine context, for 3D objects-
recognition. As usual in practice, we classify 3D objects
starting from 2D information. However our method is rather
general and could be applied directly to 3D data, in other
contexts.

Our applications and comparisons with other methods
are about human-face recognition, but also we provide tests
and comparisons based upon standard data-bases such as
the COIL data-base. Our methodology looks extremely effi-
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cient, and effective computations are rather simple and low
cost.

The paper is divided in two parts: first, the part relative
to applications and computations, in a SVM environment.
The second part is devoted to the development of the gen-
eral theory of generalized Fourier-descriptors, with several
new results, about their completeness in particular. These
results lead to simple formulas for motion-invariants of im-
ages, that are “complete” in a certain sense, and that are used
in the first part of the paper. The computation of these invari-
ants requires only standard FFT estimations, and one dimen-
sional integration.

Keywords Harmonic analysis · Invariants theory · SVM ·
Fourier descriptors · Pattern recognition

1 Introduction

1.1 The Purposes and Contents of the Paper

Our contributions in this paper are at several different levels,
from the point of view of both the theory and applications:

A. From the theoretical point of view, we develop a
theory of Fourier-based descriptors for functions spaces on
a group or a homogeneous space of a group. Typical appli-
cation is the case where the functions space is the space of
2D or 3D images and the group is the group of motions,
or the group of motions plus dilations. The purpose is to
construct a “complete set of invariants” under this action.
Completeness means that this set of invariants will allow to
discriminate between all possible images, up to the effect of
motions, or motions plus dilations.

The method we develop is inspired from the classical
method of Fourier-Descriptors for contours of 2D objects,
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the basic ideas of which are rather simple. If one wants to
discriminate among two contours of objects, (which is a sim-
ple way to provide motion invariants of the objects under
consideration), one may consider the two following quan-
tities: the contour being denoted by ρ(θ), and its Fourier
series by ρ̂n, the “spectral densities” |ρ̂n|2, and the “shifts
of phases”1 ϕ(ρ̂n)

n
− ϕ(ρ̂m)

m
form a complete set of invariants

under the action α → ρ(θ + α) of translations of the con-
tour. It means that all the information about the contour is
contained in these invariants, and the contour can be recon-
structed, modulo translation, from these quantities. Notice
that this method is just based upon the classical covariance
properties of the usual Fourier series (of the contours) under
the effect of translations.

In fact, there is a deep abstract reason behind this, that
will allow to generalize these Fourier-descriptors to much
more general situations: the Pontriaguin’s duality theory.
Pontriaguin’s duality theory (available for Abelian groups)
can be generalized in several ways. First generalization is
Tannaka duality, available for compact groups. As we shall
see, using Tannaka duality, we will be able to generalize per-
fectly the classical Fourier-descriptors to the case of func-
tion spaces over an arbitrary compact group.

A second generalization (not very popular), is Chu-
duality, valid for the so-called Moore groups. The group
M2 of motions of the plane is not a Moore group, however,
it is in some sense a “limit of Moore groups”: the motions
of the plane (translations plus rotations) that have a rota-
tion part which is a multiple of a certain elementary an-
gle θ , form a Moore-group, that we denote by M2,N when
θ = 2π

N
. Clearly, the group of Motions M2 is the limit when

N → +∞ of the groups M2,N and at least in practice for
objects recognition, it is enough to consider motions that
belong to M2,N for N large enough. It turns out that the
Fourier descriptors generalize to these Moore groups, and
that again, we are able to prove certain “completeness
results”, but surprisingly in the case where N is odd only.

General Motion groups such as the group of motions on
the plane M2 belong to another class (namely the Tatsuuma
class), for which a duality theory is also available. However,
this class is less tractable, and we are not able to show that
the invariants generalizing the Fourier descriptors are com-
plete in the case of M2, even in a weak sense. However, they
are very simple and have several good qualities in practice.
For plane images, on which the 2D motions act, we get the
following two simple expressions, for the quantities gener-
alizing the classical Fourier descriptors:
“Spectral densities”-type invariants:

I r
1 (f ) =

∫ 2π

0
|f̃ (r, θ)|2dθ, (1.1)

1Here ϕ(z) denotes the phase of the complex number z.

“Shift of phases”-type invariants:

I ξ1,ξ2(f ) =
∫ 2π

0
f̃ (Rθ (ξ1 + ξ2)f̃ (Rθ (ξ1))f̃ (Rθ (ξ2))dθ,

(1.2)

where f̃ (r, θ) is the Fourier transform expressed in polar
coordinates in the frequency-plane, of the image f (x, y),
and the variables ξ1, ξ2 live in the frequency plane. Here Rθ

is the two dimensional rotation operator with angle θ .

Remark 1

1. All along the paper, we focus on applications to objects
recognition and discrimination. But our method is very
general, and can be applied to many other problems in
different contexts.

2. It is reasonable to weaken the notion of completeness (for
a set of invariants of functions on a group G—or a homo-
geneous space of a group G—, under the action of G):
there is no hope to get a general completeness result in
a so abstract setting. We will be happy with “weak com-
pleteness”, i.e. discrimination among a “big” subset of
the full set of functions or images. By “big”, we mean
residual, i.e. countable intersection of open-dense sets.
For more details about this question of completeness in
the case of Abelian groups, see the thesis [18] and the
paper [19].

Notation 1 In the paper, we will use indistinctly two ter-
minologies: “Fourier descriptors” and “Motion descriptors”.
The second terminology will be used when we want to focus
on the case of motion groups.

B. To go from 2D information to 3D discrimination,
we have chosen the following strategy. A 3D object is rep-
resented by a number of 2D “model” pictures from several
points of view. We use the fact that the motion descriptors
are continuous functions of both their parameters r, ξ1, ξ2

(that are homogeneous to frequencies) and the images f

(with the L
2 topology of the energy of signals). This con-

tinuity expresses robustness with respect to small defor-
mations.

An object will be given under the guise of a number of
“model” pictures (from several points of view). Due to the
invariance under motions, this number can be small. De-
pending on the class of problems, a certain range of the pa-
rameters r, ξ1, ξ2 is selected, and the corresponding Fourier
descriptors are computed. This set of values of the descrip-
tors is the data characterizing an object. If the range of val-
ues of the parameters is properly selected, this data deter-
mines a cloud of points in the space of parameters, and this
cloud of points is characteristic of the object modulo 3D mo-
tions: the object is recognized when we decide that its set of
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motion descriptors belongs to the corresponding cloud, i.e.
the picture is close to one (at least) of the “model” pictures,
up to motion, but not close to the others.

Then, to discriminate between two objects modulo mo-
tions (and possibly modulo rescaling, after renormalization
of the descriptors), one has just to decide whether or not
a measurement (the set of descriptors of an object, which
forms a point in the parameters space) belongs to a certain
cloud in the parameters space (and not to the others). To do
this, we use this characteristic data inside a nonlinear clas-
sifier. We have chosen a classifier of SVM (Support-Vector-
Machine) type, in order to introduce a “learning step”, dur-
ing which some “separation criteria” of the different clouds
are computed, or actuated when adding new data.

Remark 2 The range of values of the parameters r, ξ1, ξ2 is
selected depending on the problem. This is done in practice
just by trials. But, the parameters being homogeneous to fre-
quencies, it is easily understood that if discrimination is due
to “texture”, high frequencies will be chosen. If discrimina-
tion is due to “shape” properties, low frequencies will dis-
criminate.

Remark 3

1. The formulas (1.1), (1.2) for descriptors (and other for-
mulas in the paper) show that the values of the descrip-
tors can be easily computed: they are just usual Fourier
transforms (evaluated by FFT) plus integration over cir-
cles. Hence, numerical part of this work is more or
less obvious.

2. These formulas have another important nice property
(which is not true for the weakly-complete set of invari-
ants we exhibit at the end of the paper). The final (weakly
complete) set of invariants requires a preliminary estima-
tion of the centroid of the image, all the other compu-
tations depending on this preliminary result. Accuracy
of the computation of this centroid reflects on accuracy
of all the other invariants. It is not the case in formulas
(1.1), (1.2), that are, in some sense, more intrinsically re-
lated to the group of motions. Determining first a centroid
corresponds to eliminating the effect of translations, and
restricting to the action of the rotations group. Intuitively,
this two-step way of thinking is not robust.

3. There are other motion-invariant formulas that are usu-
ally applied in the area of objects recognition. We have
found a substantial improvement of our results by cou-
pling our motion descriptors with other classical invari-
ants, the Zernike moments namely.

To finish with this introductory presentation, let us pro-
vide the following self-justification of our work.

There is actually no need of the “heavy” theory we de-
velop in this paper to perform our applications: after ex-
hausting the formulas (1.1), (1.2), (and other formulas in

the paper), one could just observe that these formulas are
motion-invariant, rescaling-covariant, and go directly to the
applications.

In fact the justification of our theoretical contribution is
the following:

1. Our theory here provides a very general methodology ap-
plicable to a lot of practical problems, that are concerned
with the action of small groups on large spaces (although
the method is based upon the basic idea behind the clas-
sical Fourier descriptors for contours).

2. The theory is very interesting, even from a purely math-
ematical point of view.

3. The question of completeness of our “generalized Fourier
descriptors” was still open.

4. The invariants obtained are simple, easily computed and
physically make sense, since they are homogeneous to
spectral densities.

1.2 History and Related Works

There are 3 key related directions in which other recent
works have been developed:

1. A lot has been done around applications of group the-
ory and abstract harmonic analysis in signal and image
processing. A nice review in the area of “image under-
standing” is provided in [27]. In this approach, several
“modeling assumptions” are made to perform the tran-
sition from 2D to 3D. See also [28] for instance. In our
paper, we completely ignore this problematic of “under-
standing”, since we have no assumption and no informa-
tion other than 2D images from several points of view.

2. From the computational point of view, harmonic analy-
sis leads unavoidably to evaluation of “abstract” Fourier
transforms, that very often reduce to usual Fourier trans-
forms or Fourier series, computed in practice by FFT.
A lot of work is around generalization of this FFT. The
basic paper in this direction is [2] and many applied con-
tributions start from this theoretical contribution. A re-
cent reference is [46]. Related recent work is also [8, 31].

3. One of the reasons for which abstract harmonic analy-
sis is interesting in applications for shape discrimination
is the covariance of the Fourier transform with respect to
the group action (the effect of the group action reflects on
the Fourier transform by multiplication by some unitary
operator). This covariance property is of course a key-
point that we use in our theory. In this direction, besides
our papers, a lot of other contributions are important, and
we don’t claim to be exhaustive at all. Recent contribu-
tions are [33, 52].

In this paper, we follow the initial approach of one of
the authors: considering the group of motions of the plane,
Gauthier et al. [15, 19] introduced the motion descriptors.
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H. Fonga [13] improved on this work. Several other nice
contributions in the same area are [17, 30]. In many con-
tributions the completeness question is not considered and
even “shift of phases” invariants are omitted.

Other tools may be used to exploit the idea of invari-
ance/covariance w.r.t. group actions. They are mostly of two
types:

a. computing some invariant moments, the most popular be-
ing the Zernike moments [29, 38, 39], that we use also in
this paper.

b. making group-invariant multiscale analysis: wavelets
adapted to certain group actions. This is certainly a
promising direction. See [33, 41, 48].

Also, except in very special contexts, our descriptors will
not be applied directly to images: one has for instance to
“isolate” the pertinent piece of the image and apply to it our
methodology or similar other. In this perspective, several lo-
cal approaches have been developed recently [26, 34, 36, 37,
50].

In this paper, we forget about these local questions. Our
assumption is: images of isolated objects, subject to differ-
ent motions, or visible under different points of view. It is
why the data bases we use in the paper (COIL and others)
are certainly not those that are used nowadays for these (dif-
ferent) local problematics. (Typical recent benchmark data-
bases may be found on [44].)

1.3 Organization of the Paper

As claimed at the end the above Sect. 1.1, our purposes in
the paper are twofold: we want to develop some theory of
“generalized Fourier descriptors”, and we want to apply it
to invariant object recognition, in SVM environment. For
that reason, our paper is divided in two parts. In order not to
bother the reader interested only with applications, we have
decided to put the applicative part first.

The second part of the paper develops the theory, ex-
hausts our final formulas and final completeness results. But
we claim that this part is very important, in the sense that it
provides a general methodology, applicable to a lot of other
areas than invariant objects recognition.

We have rejected all the complicated proofs in a long
appendix, together with the computational methods for our
motion descriptors. As we said, the computation is very
easy, since it reduces to two steps: 1. FFT computations, 2.
Integrating over circles. Therefore the appendix is organized
as follows:

In Appendix 1, we give some trivial technical details
about the classical motion descriptors for contours, that are
useful for the understanding of our methodology.

In Appendix 2, we justify the notion of the “cyclic lift”
of an image f (x, y) (a function on the plane) to a cer-
tain function f (x, y, θ) on the group of motions, neces-
sary for our study. It turns out that the natural “trivial lift”

f (x, y) → f (x, y) is not enough for our purposes, since it
doesn’t produce complete invariants.

Appendix 3 states a simple transversality fact, necessary
to prove that our final invariants are weakly complete (i.e.
complete over a residual subset of the set of images). With
this elementary result, we can apply standard transversality
theorems.

Appendix 4 is devoted to the practical computation of the
motion descriptors.

Appendix 5 proves a convergence result that is crucially
needed to apply Tannaka-Chu duality theories, which are
our main technical tools.

Finally, Appendix 6 contains the proofs of several very
technical lemmas that we need in our developments. Most
of them are stated in Sect. 3.

A standard reader can easily understand our methodology
in its full generality without reading a single line of these
appendices, if he believes that the lemmas we state in the
text are true.

In the first part of the paper, besides our aim to demon-
strate empirically the ability of such descriptors to be used
successfully in color objects recognition, we also want
to show how they can be combined with another well
known set of invariant descriptors: the Zernike Moments.
We present results obtained by testing our method with stan-
dard data-bases in the objects recognition community: the
COIL data-base [11, 40] which contains images from 100
objects, the A R face data-base [35] (126 people), the ORL
data-base [43], a self-made cellular phones data-base (20
phones) and a self-made data-base of few objects under dif-
ferent lighting conditions.

Sections 2.1 and 2.2 of are devoted to the review of Mo-
tion Descriptors and Zernike Moments. Then in Sect. 2.3 the
basic theory of Support-Vector-Machines is briefly recalled
for the sake of completeness. Our experimental and numer-
ical results are illustrated in Sect. 2.4.

The second part of the paper is divided in several sec-
tions:

First, Sect. 3.1 provides more details and comments about
the classical Fourier descriptors for contours. Section 3.1.1
recalls the definition of the abstract Fourier transform in the
group-theoretic context, together with its main properties,
including the crucial “covariance property” w.r.t. transla-
tions. We include the explicit computation of the Fourier
transform in the case of the group M2 of motions of the
plane.

Then, in Sect. 3.1.2, we show how one can formally
copy the classical Fourier-descriptors for contours to get an
abstract expression of the Fourier descriptors in a general
context. Invariance under the group action, is shown. Sect-
ion 3.2 treats the special case of M2. In Sect. 3.3, we treat the
case of compact groups, and we introduce Tannaka and Chu
dualities that are the main ingredients of our work. Based
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upon Tannaka duality, we prove (weak) completeness of
the Fourier descriptors in the general case of compact
groups. This is one of our most beautiful result (known for
long, but still unpublished).

The last part of the paper, Sect. 3.4 contains our new re-
sults, and is specially devoted to the group M2,N of mo-
tions with discrete rotations. Chu duality allows (overcom-
ing several hard technical details) to generalize the result
over compact groups. More or less, we construct a (weakly)
complete set of invariants, containing the “spectral densi-
ties” and “shift of phases” motion descriptors. This is ob-
tained by following exactly the same strategy as in the pre-
vious cases. The strange fact is that it works only if N is an
odd number.

Finally our short conclusions are stated in Sect. 4.

2 The Objects Recognition Process

Feature extraction and objects recognition are subject to
large research in the field of image processing. To classify
objects from images two steps are usually required: first, ex-
tracting some features from the images, second, use these
features in a classification tool. Feature extraction needs to
consider the effectiveness on both data representation and
class separability [14]. We are interested in the problem of
recognition of individual objects. We describe three methods
for objects recognition and their applications for classifying
objects.

2.1 Review of Motion Descriptors

2.1.1 Definition of First-Type-Motion-Descriptors
(Spectral Densities Type)

First-Type-Motion-Descriptors (1st MD) are defined as fol-
lows. Let f be a square summable function on the plane,
and f̃ its Fourier transform2:

f̃ (ξ) =
∫

R2
f (x)e−i〈x,ξ〉

R2 dx. (2.1)

If (λ, θ) are polar coordinates of the point ξ , we shall
denote again by f̃ (λ, θ) the Fourier transform of f at the
point (λ, θ). We define [15, 19] the mapping:

I r
1 (f ) : R+ −→ R+,

r −→ I r
1 (f ),

2All along the paper, we omit the important detail that certain formulas
make sense in fact on L

1 ∩L
2 spaces only, but prolong in a unique way

to L
2 spaces. It is the case here.

by

I r
1 (f ) =

∫ 2π

0
|f̃ (r, θ)|2dθ. (2.2)

Here I r
1 is the feature vector which describes each im-

age f and will be used as an input of our first supervised
classification method.

2.1.2 Properties

Fourier descriptors I r
1 calculated according to equation

(2.2), have several elementary properties crucial for invari-
ant object recognition [15]:

Motion-Descriptors are motion and reflection-invariant:

• If M is a “Motion” such as g = f ◦ M ,

I r
1 (f ) = I r

1 (g), ∀r ∈ R
+. (2.3)

• If there exists a reflexion 
 such that g = f ◦ 
,

I r
1 (f ) = I r

1 (g), ∀r ∈ R
+. (2.4)

• Motion descriptors are scaling-covariant:

If k is a real constant such as g(x) = f (kx) for all x ∈ R
2,

I r
1 (g) = 1

k4
I

r
k

1 (f ), ∀r ∈ R
+. (2.5)

The proof is obvious and left to the reader.

2.1.3 Definition of Second-Type-Motion-Descriptors (Shift
of Phases Type)

Second-Type-Motion-Descriptors (2nd MD) are a second
family of invariants (containing the first one) which is
“closer to completeness” and very natural as explained in
the second part of this paper. Originally they were defined
in [13, 18, 19]. They are denoted by I ξ1,ξ2 and they are de-
fined by:

I ξ1,ξ2(f ) =
∫

s1

f̃ (Rθ (ξ1 + ξ2)f̃ (Rθ (ξ1))f̃ (Rθ (ξ2))dθ,

ξ1, ξ2 ∈ R
2. (2.6)

Here Rθ(ξ) denotes the rotation of angle θ of the vector ξ ∈
R

2, i.e. Rθ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ).

Remark 4

1. It is clear that I ξ1,ξ2 is invariant with respect to motions.
2. It is also clear that the set of invariants I ξ1,ξ2 is com-

pletely determined by the smaller set obtained by taking
ξ1 of the form (0, r1), r1 ∈ R

+.
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Hence an alternative definition of I ξ1,ξ2 is given by:

Iω
f (λ1, λ2) =

∫
S1

[f̃ ( − λ1 sin(θ + ω) − λ2 sin θ,

λ1 cos(θ + ω) + λ2 cos θ)

× f̃ (−λ1 sin(θ + ω),λ1 cos(θ + ω))

× f̃ (−λ2 sin θ,λ2 cos(θ))]dθ, (2.7)

where λ1, λ2 ∈ R
+ and ω ∈ [0,2π[.

2.1.4 Properties

The following properties are elementary and left to the
reader to check:

• For a real-valued f , I ξ1,ξ2(f ) is a real number.
• The quantity I ξ1,ξ2(f ) is symmetric in ξ1, ξ2, i.e.:

Iω
f (λ1, λ2) = I−ω

f (λ2, λ1). (2.8)

2.1.5 Important Remark

In Sects. 3.4.4, 3.4.5 appears a third-type of Generalized-
Motion-Descriptors. We don’t use them in practice. There
are two reasons for this:

− First, using the first and second Type-Descriptors we ob-
tain already extremely good results as the reader shall
see.

− Second the computation of each of the Third Type
Motion-Descriptors requires a preliminary estimation
of the centroid of the image (although the computation
of the first and second type descriptors do not require
any such estimation). This estimation can be sensitive to
noise and affects the sensitivity of all third-type Motion-
Descriptors. Notice that the same problem appears for
any invariant system requiring the preliminary estima-
tion of this centroid. However this third type class is not
far from being complete as is shown in Sect. 3.4.5.

2.2 Zernike Moments

The Zernike Moments (ZM) are computed from the set of
orthogonal Zernike polynomials defined over the polar coor-
dinates (r, θ) space inside a unit circle. The two dimensional
Zernike Moments ζpq of an image intensity function f are
defined as in [6]:

ζpq = p + 1

π

∫ 1

0

∫ π

−π

f (r, θ)Vpq(r, θ)rdrdθ, |r| ≤ 1

(2.9)

where the Zernike polynomials are defined as:

Vpq = Rpq(r)e−jqθ . (2.10)

The real-valued radial polynomials Rpq are:

Rpq(r) =
p−|q|∑
s=0

(−1)q
(p − s)!

s!(p−2s+|q|
2 )!(p−2s−|q|

2 )! r
p−2s .

(2.11)

That is the Zernike moments are just the scalar product
of f with the Vpq .

Moduli of the Zernike moments are rotation-invariant:
image rotation in the spatial domain just implies a phase
shift of the Zernike moments.

Mukandan et al. [38], and Khotanzad [29] have shown
that translation- invariance of Zernike moments can be
achieved using some image normalization method. In [6]
Chee-Way Chong, presents a mathematical framework for
the derivation of translation invariance of radial moments
defined in polar form.

2.3 Review of SVM Based Classification

Most of the methods in objects recognition include a classi-
fication step. Here we have chosen the famous and efficient
SVM approach.

SVM is a universal learning machine (developed in par-
ticular by Vladimir Vapnik [5, 53]). A review of the basic
principles follows, considering a 2-class-problem (whatever
the number of classes, it can be reduced to a 2-class-problem
by a “one-against-others” method).

The SVM method maps the input vectors (the motion-
invariants of the objects from several points of view), or the
“initial feature space” Rd into a higher dimensional “fea-
ture space” Q. The mapping is determined by a kernel func-
tion K . The “separation” properties of this kernel mapping
are theoretically based upon the well known Mercer’s The-
orem.

After this embedding in higher dimension, a decision rule
in the feature space Q is chosen, under the form of a sep-
arating hyperplane maximizing the separation margin. This
optimization problem (of maximizing the margin) can be ex-
pressed as a standard quadratic-programming problem, i.e.
maximize W(α):

W(α) =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj ), (2.12)

under the constraints:

n∑
i=1

αiyi = 0, (2.13)
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and 0≤ αi ≤ T for i = 1,2, . . . , n where αi ∈ R
d are the

training sample set vectors, and yi ∈ {−1,1} the correspond-
ing class labels. T is a constant needed in the case of non-
separable classes. The kernel K(u,v) determines an inner
product in the feature space Q. The condition required by
Mercer’s Theorem is that the kernel K be a symmetric pos-
itive definite function, i.e. for g �=L2 0:
∫

Ω

∫
Ω

K(u,v)g(u)g(v)dudv > 0, (2.14)

on a certain compact set Ω .
The choice of the kernel K(u,v) determines the structure

of the feature space Q. A kernel that satisfies the positive-
definiteness assumption (2.14) may be presented under the
form:

K(u,v) =
∑

k

akΦk(u)Φk(v), (2.15)

where ak are positive scalars and the functions Φk form a
basis of the feature space Q. Vapnik considered mostly three
types of SVM kernels [5]:

• Polynomial SVM:

K(x,y) = (xy + 1)p. (2.16)

• Radial Basis Function SVM (RBF):

K(x,y) = e
(

−‖x−y‖2

2σ2 )
. (2.17)

• Two-layer neural network SVM:

K(x,y) = tanh(kxy − θ). (2.18)

The kernel is chosen a-priori (depending on the prob-
lem). Other parameters of the decision rule are obtained
from (2.12), i.e. the set of numerical parameters {αi} which
determine the support vectors and the scalar b, defined just
below.

The separating plane is constructed from those input vec-
tors, for which αi �= 0. These vectors are called support-
vectors and lie on the boundary margin. The number Ns of
support-vectors determines the accuracy and the speed of
the SVM procedure. Mapping the separating plane back to
the input space R

d, gives a separating surface leading to the
following nonlinear decision rules:

C(x) = Sgn

(
Ns∑
i=1

yiαi .K(δi, x) + b

)
. (2.19)

Where δi belongs to the set Ns of support vectors defined
at the training step.

A SVM based classifier contracts all the informations
contained in the training set relevant for classification, into

Fig. 1 Training process

the support vectors. This procedure reduces the size of the
training set by identifying its most important points.

Moreover, if the feature space is already a high dimen-
sional space (which is our case here in) then SVM is a quite
natural procedure [54].

In this paper, we used LIBSVM [9]. It consists of an inte-
grated software for support vector classification, regression,
and distribution estimation. It supports multi-class classifi-
cation.

2.4 Experimental Results

2.4.1 Test Protocol

In order to test our approach, we performed a cross valida-
tion using:

− Three public data-bases: the COIL-100 [11, 29], the ORL
face data-base [43] and the A R face color data-base [35].

− Two self made data-bases: One consisting of similar ob-
jects (cellular phones) and the second consisting of 15
different objects subject to two different lightings.

• Training Step:
During the training step (Fig. 1), the data flow is as fol-

lows:
The input image is resampled to 128 × 128 pixels, and

a standard FFT is computed for each color channel (Red,
Green, and Blue). The three corresponding first and second
type Motion-Decriptors are computed from the FFT values
and the Zernike moments are also computed from the 3 color
channels.

Hence the final size of the feature-vector used for
SVM training is d = 63 × 3 = 189 for first-type Motion-
Descriptors, d = 63 × 3 = 189 for second-type Motion-
Descriptors and d = 14 × 3 = 42 for Zernike Moments. The
result of the training step consists of the (Model) set of sup-
port vectors determined by the SVM based method.

• Decision Step:
During the decision step, the Motion Descriptors or

Zernike Moments are computed in the same way, and the
model determined during the training step is used to perform
the SVM decision. The output is the image class (Fig. 2).

The classification error rate was evaluated using cross-
validation.
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Fig. 2 Decision process

For each database, we evaluated separately the classifica-
tion error obtained using the First-Type Motion-Descriptors,
the Second-Type Motion Descriptors, the Zernike Moments,
and the combination of all three feature vectors. In this last
case, the dimension of the feature space is d = 2 × 189 +
42 = 420.

Since we used the RBF kernel in the SVM classification
process, we have to tune the kernel size, i.e. the value of
σ in (2.17). This has been done empirically for each data-
base, choosing the kernel σopt value providing minimum er-
ror rate.

For certain bases we also studied the influence of the
number of training images (number of points of view for
each object) on the performance of classification, in order to
minimize the duration of the training step for a-priori given
performances.

As already stated in the introduction we have also tested
the robustness with respect to lighting changes. As expected,
reasonable robustness with respect to lighting is obtained
under the condition of a contour-pretreatment only.

2.4.2 Experiments

A. The COIL-100 database
The Columbia Object Image Library (COIL-100, Fig. 3)

[11] is a database of color images of 100 different objects,
where 72 images of each object were taken at pose intervals
of 5°. The images were pre-processed in such a way that
each of them fits the size of 128 × 128 pixels.

• Classification performance
Table 1 and Fig. 4 present results obtained testing our ob-

ject recognition method with the COIL-100. Tests have been
performed using 5-fold cross validation (58 images used
for training, 14 images used for testing, for each validation
step). Optimum error values are depicted in � (Fig. 4). In
this case, first-type Motion-Descriptors outperform Zernike
Moments, and the combination of both descriptors improve
significantly the global performances of the system. For this
data-base second-type Motion-Descriptors do not improve
the results.

Other methods testing the COIL-100 database, in the lit-
erature, provide error rates varying from 12.5% to 0.1%. See
for instance [42].

Fig. 3 Sample objects of COIL-100 database

Table 1 Cross validated error rate on COIL-100 data-base

ZM 1st MD 1st MD + ZM 2st MD

σopt = 0.1 0.22% 0.09% 0.01% 0.09%

Fig. 4 Influence of number of training samples for COIL

In our global approach, we reach the error-rate e =
0.01%, which corresponds to one faulty image over 7200
only.

We studied the influence of the number of image sam-
ples used during the training step. Results are depicted in
Fig. 4. The faster convergence is obtained for the combina-
tion of first type Motion-Descriptors together with Zernike
moments. Using only 20% of images (∼14 images per ob-
ject) at the training step, we get e = 2%.

• Robustness against noise
In order to study the robustness with respect to noise of

the Zernike moments and Generalized-Motion-Descriptors,
we have used a noisy data-base. This database has been cre-
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Fig. 5 Sample of COIL noisy object

Table 2 Error rate on COIL-100 noisy database

Sd ZM 1st MD 1st MD and ZM 2ndMD

0.03 0.40% 0.29% 0.4% 0.02%

0.08 0.29% 0.36% 0.54% 0.02%

0.12 0.27% 0.38% 0.51% 0.02%

0.16 0.34% 0.40% 0.42% 0.04%

0.19 0.26% 0.47% 0.48% 0.05%

0.23 0.43% 0.38% 0.61% 0.06%

ated by adding some Gaussian noises to the COIL images. In
order to test several noise levels, we created data-bases with
different standard deviation Sd (0.08 < Sd < 0.23). Some
examples of noisy images are depicted in Fig. 5.

Table 2 shows our results with noisy data-bases. Tests
have been done using 9-fold cross validation and the best
set of SVM parameters obtained in Sect. 2.3. Results
show that noise has little influence on classification perfor-
mances when we use either Zernike moments or first type
Motion-descriptors or both. However second type Motion-
Descriptors seem to be much more robust to additive noise.

B. The ORL database
Face detection is a difficult problem for which a lot of

methods have been studied [4, 23, 24, 32, 51].
The ORL database used in this paper (Fig. 6) is composed

of 400 grey level images of size 112 × 92. There are 40 per-
sons with ten images per each. The images are taken at dif-
ferent time occurrences with varying lighting conditions, fa-
cial expressions (open/closed eyes, smiling/no-smiling), and
facial details (glasses/no glasses). All the subjects are in up-
right, frontal position (with tolerance for some pose varia-
tion).

Published results in the literature show a range of error
rate varying from 7.5% to 0% [20, 35]. The protocol for
testing is different from one paper to another.

Fig. 6 Face samples from the ORL database

Table 3 Error rate on ORL data-base

SVM
Kernel
RBF

ZM 1st MD 2ndMD 1st MD
and
ZM

2ndMD
and
ZM

σ = 0.1 25% 9.5% 3.25% 4.75% 2.25%

In [23], Hjelmas reported a classification error rate e =
15% using the ORL data-base with feature vector consisting
of Gabor-wavelet coefficients.

In [24], the PCA based method (from [51]), the LDA-
based method (from [4]) and a nearest-neighbor-based
method (NN) where tested for comparisons. With 10 im-
ages of each subject for the training step the error rate is
6.25% with LDA-based method and the best performance is
an error of 2.1% with NN-based method.

In [47], a hidden Markov model (HMM) based approach
is used, and the best model resulted in a 13% error rate.

Lawrence et al. [32] take the convolutional neural net-
work approach for the classification of ORL database, and
the best error is 3.83%.

We performed experiments on the ORL data-base us-
ing the Zernike moments, first-type Motion-Descriptors and
second-type Motion-Descriptors. The results are shown in
Table 3. The second-type Motion-Descriptors applied to the
ORL data-base clearly improved on the result. The best re-
sult are obtained with combination of Zernike moments and
second-type Motion-Descriptors.

C. The A R face data-base
The second face-data-base we used to validate our ap-

proach (Fig. 7) was created by Martinez [35]. It contains
over 4.000 color images corresponding to 126 people’s faces
(70 men and 56 women).

This data-base consists of frontal view faces with differ-
ent facial expressions, illumination conditions, and occlu-
sions (sun glasses and scarf). Each image in the data-base is
a 786 × 576 pixels array and each pixel is represented by 24
bits of RGB color.
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Fig. 7 Face samples from the A R data-base

Table 4 Error rate on A R face data-base

SVM
RBF
Kernel

Z M 1st MD 2ndMD 1st MD
and
ZM

2ndMD
and ZM

σ = 0.1 10.61% 2.31% 0.92% 0.46% 0.46%

For our experiments, reported in Table 4, the images were
normalized to a final 512 × 512 pixel size array.

The performance obtained are:

− e = 2.31%, using a 10-fold cross validation and first-type
Motion-Descriptors.

− e = 0.92% with second-type Motion-Descriptors.
− The addition of Zernike Moment to the first type Motion-

Descriptors provides the best performance: e = 0.46%.

It should be noticed that our approach gives much bet-
ter results than in [35]. The errors obtained there vary from
15 to 5%. However other problems are dealt with, such as
detecting occlusions.

D. The Cellular-phones data-base
This cellular-phones (Fig. 8) data-base has been cre-

ated in our laboratory in order to illustrate the ability of
Motion-Descriptors and Zernike Moments to discriminate
between very similar objects. The data-base contains 20 ob-
jects (phones) and 300 images by object. The acquisition
protocol is similar to the COIL acquisition, each object be-
ing put on a turntable in order to perform an acquisition each
1.2 degree.

Applied to this cellular-phone data-base, first type
Motion-Descriptors and Zernike Moments (and combina-
tion) give both a null error using cross validation. It is
the reason why we did not test the second type Motion-
Descriptors (that are more complicated to compute and
will not improve anything since they contain the first type
Motion-Descriptors which already give zero error).

We also studied the influence of the number of samples
used during the learning step. The results are reported in

Fig. 8 Sample objects of the cellular phone database

Fig. 9 Influence of the number of training samples for the cellu-
lar-phone data-base

Fig. 9. First-type Motion-Descriptors are globally more effi-
cient than Zernike Moments and one can note that as in the
COIL case, the combination of both provides a faster con-
vergence: e < 2% is obtained when only 3% of the available
samples are used during the training step.

Robustness study with respect to lighting. The purpose
is to test the robustness of the methods with respected to
illumination changes.

A data-base of 15 objects has been created. We provide
images corresponding to two lighting conditions (Fig. 10).
The study is illustrated with these two experiments.

In the first, we train the system with images taken un-
der lighting 1 and we test the data set corresponding to the
second lighting condition.

As we already said it is very intuitively reasonable in such
conditions to perform a pre-treatment consisting of con-
tour extraction. For this purpose we preprocess the images
through a Sobel edge filter.

The results are depicted on Fig. 11. The horizontal axis
represents the learning sample percentage and the vertical
axis represents the error rate. In this experiment the feature
vector is just the first type Motion-Descriptors. We observe
that the contour extraction improves on the results, as ex-
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Fig. 10 Different lightings

Fig. 11 Influence of contour-extraction on the number of training sam-
ples with first motion-descriptors

pected, since the error e < 5% is obtained when only 4%
of samples are used during the training step, while without
contour-extraction the error is e ≈ 10%.

We also observed that the use of Second-type Motion-
Descriptors does not improve on these robustness results,
except for the number of training samples that can be re-
duced to 3% to get approximately the same robustness.

3 Theory of Generalized Fourier Descriptors

Let us start with a few preliminaries about:

• The classical Fourier descriptors for contours.
• The main facts about the abstract Fourier transform from

group harmonic analysis. The example of the group M2

of motions of the plane is treated explicitly.
• The generalization of Fourier Descriptors for contours to

Fourier Descriptors in the large.

3.1 Preliminaries

The Fourier-Descriptors method is a very old method used
for pattern analysis from the old days on. The oldest refer-
ence we were able to find is [45]. Recent ones are [30, 52].
One of the authors and his co-workers have several contribu-
tions in the area [13, 15, 18, 19]. Basically, the method uses
the good properties of standard Fourier series with respect to
translations. For the sake of completeness, let us recall this
basic idea, that has been used successfully several times for
pattern recognition. For details, see for instance [45].

The method applies to the problem of discrimination of
2D-patterns by their exterior contour. Let the exterior con-
tour be well defined, and regular enough (piecewise smooth,
say). Assume that it is represented as a closed curve, ar-
clength parametrized and denoted by s(θ). The variable θ

is the arclength, from some arbitrary reference point θ0 on
the contour, and s(θ) denotes the value of the angle between
the tangent to the contour at θ and some privileged direc-
tion (the x-axis, say). By construction, the function s(θ)

is obviously invariant under 2D translation of the pattern.
Let now ŝn denote the Fourier series of the periodic func-
tion s(θ). The only arbitrary object that makes the function
s non-invariant under motions (translations plus rotations)
of the pattern, is the choice of the initial point θ0. As it is
well known, a translation of θ0 by a, θ0 := a + θ0, changes
ŝn for eianŝn, where i = √−1. (Here, the total arclength is
normalized to 2π .) Set ŝn = ρne

iϕn . Let us define the “shifts
of phases” Rn,m = ϕn

n
− ϕm

m
. Then, it is easy to check that

the “discrete power spectral densities” Pn = |ŝn|2 and the
“shifts of phases” Rn,m form a complete set of invariants
of exterior contours, under motions of the plane. They are
also homotetic-invariants as soon as the total arclength is
normalized.

This result is extremely efficient for shape discrimina-
tion, it has been used an incredible number of times in many
areas. It is very robust and physically interesting for several
reasons (in particular the fact that the Pn are just discrete
“power spectral densities”, and that both Pn and Rn,m can
be computed very quickly using FFT algorithms). Also, the
extraction of the “exterior-contour” is more or less a stan-
dard procedure in image processing.

The main default of the method is that it doesn’t take
any account of the “texture” of the pattern: two objects with
similar exterior contours have similar “Fourier-Descriptors”
Pn and Rn,m.

This apparently naive method is in fact conceptually very
important: as soon as one knows a bit about abstract har-
monic analysis, one immediately thinks about possible ab-
stract generalizations of this method. The first paper that we
know in which this idea of “abstract generalization” of the
method appears is the paper [7]. One of the authors here in
worked on the subject, with several co-workers [13, 15, 18,



54 J Math Imaging Vis (2008) 30: 43–71

19]. In particular, there is a lot of very interesting results in
the theses [18] and [13]. A recent reference is [52]. Unfor-
tunately, our results being very incomplete, they were never
completely published. We would like here to give a series of
more or less final result, not yet completely satisfactory, but
very interesting and convincing.

They lead to the “Generalized-Fourier-Descriptors”
that are used in the first part of this paper, and that look ex-
tremely efficient for objects discrimination, in addition to
a standard Support-Vector-Machine technique. Moreover, at
the end, they are computed in practice with standard Fourier
integrals, then with FFT algorithms, and hence the algo-
rithms are “fast”.

3.1.1 First Preliminary: The Fourier Transform on Locally
Compact Unimodular Groups

Classical Fourier descriptors for exterior contours will just
correspond to the case of the “circle” group as the reader can
check, i.e. the group of rotations eiθ of the complex plane.

By a famous theorem of Weil, a locally compact group
possesses a (almost unique) Haar-measure [57], i.e. a mea-
sure which is invariant under (left or right) translations.
For instance the Haar measure of the circle group is dθ

since d(θ + a) = dθ . A group is said unimodular if its left
and right Haar measures can be taken equal (that is, the
Haar measure associated with left or right translations). An
Abelian group is obviously automatically unimodular. A less
obvious result is that a compact group is automatically uni-
modular.

The most pertinent examples for pattern recognition are
of course the following:

1. The circle group C.
2. The group of motions of the plane M2. It is the group of

rotations and translations (θ, x, y) of the plane. As one
can check, the product law on M2 is

(θ1, x1, y1).(θ2, x2, y2)

= (θ1 + θ2, cos(θ1)x2 − sin(θ1)y2 + x1,

sin(θ1)x2 + cos(θ1)y2 + y1). (3.1)

It represents the geometric composition of two mo-
tions. The main difference with the circle group is that
it is not Abelian (commutative). This expresses the fact
that rotations and translations of the plane do not com-
mute. However, it is unimodular: the measure dθdxdy is
simultaneously left and right invariant.

3. The group of y-homotheties and x-translations of the
upper two dimensional half plane: (y1, x1).(y2, x2) =
(y1y2, x1 + x2). Here, the y′

is are positive real num-

bers. Left and right Haar measure is dx
dy
y

since dx
dy
y

=
d(x + a)

d(by)
by

.

This Abelian group is related to the classical Fourier-
Mellin transform. A similar group of interest is the
(Abelian) group of θ -rotations and λ homotheties of the
complex or two dimensional plane: (θ1, λ1).(θ2, λ2) =
(θ1 + θ2, λ1λ2). Here again, the λi ’s are positive real
numbers but the θi ’s belong to the circle group. Of
course, if one takes an image centered around it’s gravity
center, then, the effect of translations is eliminated, and
it remains only the action of rotations and homotheties.
Applying the theory developed in the second part of this
paper to the case of this group leads to complete invari-
ants with respect to motions and homotheties. This is re-
lated with the nice work of [17].

Unfortunately, in this case, the computation of all the
invariants is based upon a preliminary estimation of the
gravity center of the image. Hence, the invariants are si-
multaneously very sensitive to this preliminary estima-
tion.

4. The group of translations, rotations and homotheties of
the 2D plane itself (we don’t write the multiplication but
it is obvious) is unfortunately not unimodular. Hence the
theory in this section does not apply. It is why one has to
go back to the previous group.

5. The group SO3 of rotations of R
3. It is related to the

human mechanisms of vision (see the paper [7]).
6. Certain rather unusual groups play a fundamental role

in our theory below: the groups M2,N of motions, the ro-
tation component of which is an integer multiple of 2π

N
.

They are subgroups of M2, and if N is large, M2,N could
be reasonably called the “group of translations and suf-
ficiently small rotations”. In some precise mathematical
sense, M2 is the limit when N tends to infinity of the
groups M2,N .

For standard Fourier series and Fourier transforms, there
are several general ingredients. Fourier series correspond to
the circle group, Fourier transforms to the R (or more gen-
erally R

p) group. In both cases, we have the formulas:

ŝn =
∫

G

s(θ)e−inθ dθ,

f̂ (λ) =
∫

G

f (x)e−iλx dx.

(3.2)

Formally, in these two formulas appear an integration
over the group G with respect to the Haar measure (respec-
tively dθ, dx) of the function (respectively s, f ) times (the
inverse of) the “mysterious” term einθ (resp. eiλx).This term
is the “character” term. It has to be interpreted as follows:
For each n (resp. λ), the map C → C, z → einθ z (resp. the
map z → eiλxz) is a unitary map (i.e. preserving the norm
over C), and the map θ → einθ (resp. x → eiλx) is a contin-
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uous3 group-homomorphism to the group of unitary linear
transformations of C. For a general topological group G,
such a mapping is called a “character” of G.

The main basic result is the Pontryagin’s duality theo-
rem [21], that claims the following:

Theorem 1 (Pontryagin’s duality Theorem) The set of char-
acters of an Abelian locally-compact group G is a locally-
compact Abelian group (under natural multiplication of
characters), denoted by G^, and called the dual group of
G.The dual group (G^)^ of G^ is isomorphic to G.

Then, the Fourier transform over G is defined like that: it
is a mapping from L

2(G,dg) (space of square integrable
functions over G, with respect to the Haar measure dg),
to the space L

2(G^, dĝ), where dĝ is the Haar measure
over G^:

f → f̂ ,

f̂ (ĝ) =
∫

G

f (g)χĝ(g
−1)dg.

(3.3)

Here, ĝ ∈ G^ and χĝ(g) is the value of the character χĝ

on the element g ∈ G.
As soon as one knows that the dual group of R is R itself,

and the dual group of the circle group is the discrete additive
group Z of integer numbers, it is clear that formulas (3.2) are
particular cases of formula (3.3).

It happens that there is a generalization of the usual
Plancherel’s Theorem: The Fourier Transform4 is an isom-
etry from L

2(G,dg) to L
2(G^, dĝ). The general form of the

inversion formula follows:

f (g) =
∫

G

f̂ (ĝ)χĝ(g)dĝ. (3.4)

In our cases (R,C), this gives of course the usual formu-
las.

In the case of non-Abelian groups, the generalization
starts to be less straightforward. To define a reasonable
Fourier transform, one cannot consider only characters (this
is not enough for a good theory, leading to Plancherel’s The-
orem). One has to consider more general objects than char-
acters, namely, unitary irreducible representations of G. A
(continuous) unitary representation of G consists of replac-
ing C by a general complex Hilbert5 space H , and the char-
acters χĝ by unitary linear operators Tĝ(g) : H → H , such

3Along the paper, the topology over unitary operators on a Hilbert or
Euclidean space is not the normic, but the strong topology.
4Precisely, Haar measures can be normalized so that Fourier transform
is isometric.
5In the paper, all Hilbert spaces are assumed separable.

that the mapping g → Tĝ(g) is a continuous6 homomor-
phism. Irreducible means that there is no nontrivial closed
subspace of H which is invariant under all the operators
Tĝ(g), g ∈ G. Clearly, characters are very special cases
of continuous unitary irreducible representations. The main
fact is that, for locally compact non-Abelian groups, to get
Plancherel’s formula, it is enough to replace characters by
these representations.

Definition 1 Two representations T1,T2 of G, with respec-
tive underlaying Hilbert spaces H1,H2 are said equivalent if
there is a linear invertible operator A : H1 → H2, such that,
for all g ∈ G:

T2(g) ◦ A = A ◦ T1(g). (3.5)

More generally, a linear operator A, eventually noninvert-
ible, meeting condition (3.5), is called an intertwining op-
erator between the representations T1, T2.

The set of equivalence classes of unitary irreducible rep-
resentations of G is called the dual set of G, and is denoted
by G^.

One of the main differences with the Abelian case is that
G^ has in general no group structure. However, in this very
general setting, Plancherel’s Theorem holds:

Theorem 2 Let G be a locally compact unimodular group
with Haar measure dg. Let G^ be the dual of G. There is
a measure over G^ (called the Plancherel’s measure, and
denoted by dĝ), such that, if we define the Fourier transform
over G as the mapping:

L
2(G,dg) → L

2(G^,dĝ),

f → f̂ ,

f̂ (ĝ) =
∫

G

f (g)Tĝ(g
−1)dg,

(3.6)

then, f̂ (ĝ) is a Hilbert-Schmidt operator over the underlay-
ing space Hĝ, and the Fourier transform is an isometry.

As a consequence, the following inverse formula holds:

f (x) =
∫

G^
Trace[f̂ (ĝ)Tĝ(g)]dĝ. (3.7)

More generally, if T is a unitary representation of G—
not necessarily irreducible—one can define the Fourier
transform f̂ (T ) by the same formula (3.6).

All this could look rather complicated. In fact, it is not
at all, and we shall immediately make it explicit in the case
of main interest for our applications to pattern recognition,
namely the group of motions M2.

6For the strong topology of the unitary group U(H).
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In the following, for the group M2, (and later on M2,N ),
we take up the notations below:

Notation 2 Elements of the group are denoted indifferently
by g = (θ, x, y) = (θ,X), where X = (x, y) ∈ R

2. The
usual scalar product over R

2 is denoted by 〈., .〉R2,or sim-
ply 〈., .〉 if no confusion is possible. Then, the product over
M2 (resp. M2,N ) writes (θ,X).(α,Y ) = (θ + α,RθY + X),
where Rθ is the rotation operator of angle θ .

Example 1 Group M2 of motions of the plane [55]. In
that case, the unitary irreducible representations fall in two
classes: 1. characters (one dimensional Hilbert space of
the representation), 2. The other irreducible representations
have infinite dimensional underlaying Hilbert space H =
L

2(C,dθ) where C is the circle group R/2πZ, and dθ is the
Lebesgue measure over C. These representations are para-
metrized by any ray R from the origin in R

2, R = {αV , V

some fixed nonzero vector in R
2, α a real number, α > 0}.

For r ∈ R (the ray), the representation Tr expresses as fol-
lows, for ϕ(.) ∈ H :

[Tr(θ,X).ϕ](u) = ei〈r,RuX〉ϕ(u + θ). (3.8)

The Plancherel’s measure has support the second class of
representations, i.e. characters play no role in that case.

It is easily computed that the Fourier transform of f ∈
L

2(M2,Haar) writes, with X = (x, y):

[f̂ (r).ϕ](u) =
∫ ∫ ∫

M2

f (θ, x, y)e−i〈r,Ru−θX〉

× ϕ(u − θ)dθdxdy. (3.9)

The main property of the general Fourier-transform
that we will use in the paper concerns obviously its behavior
with respect to translations of the group. Let f ∈ L

2(G,dg)

and set fa(g) = f (ag). Due to the invariance of the Haar
measure w.r.t. translations of G, we get the crucial general-
ization of a well known formula:

f̂ (ĝ) ◦ Tĝ(a) = f̂a(ĝ). (3.10)

3.1.2 Second Preliminary: General Definition of the
Generalized Fourier Descriptors, from Those Over
the Circle Group

In the case of exterior contours of 2D patterns, the group un-
der consideration is the circle group C. The set of invariants
Pn,Rm,n has first to be replaced by the (almost equivalent)
set of invariants, Pn, R̃m,n, where the new “phase invariants”
R̃m,n are defined by:

R̃m,n = ŝnŝmŝn+m. (3.11)

The first 3 Lemmas 9, 10, 11 of Appendix 1 justify this
definition: at least on a residual subset of L

2(C), these sets
of invariants are equivalent. This is enough for our practical
purposes.

Remark 5

1. There is a counterexample in [19] showing that the sec-
ond set of invariants is weaker (does not discriminate
among all functions).

But in practice, discriminating over a very big dense
subset of functions is enough. Moreover, it is unexpected
to be able to do more, in general.

2. Nevertheless, in the case of the additive groups R
n, these

second invariants discriminate completely. This is shown
in [18].

3. For complete invariants over L
2(G) in the general

Abelian case, generalizing those, see [13, 18, 19].

Now, an important fact has to be pointed out. There is
a natural interpretation and generalization of the “phase-
invariants” R̃m,n in terms of representations.

We are given an arbitrary unimodular group G, with Haar
measure dg. We define the Fourier transform f̂ of f , as the
map from the set of (equivalence classes of) unitary irre-
ducible representations of G, given by formula (3.6).

Let us state now a crucial definition, and a crucial theo-
rem.

Definition 2 The following sets I1, I2, are called respec-
tively the first and second-Fourier-Descriptors (or Motion-
Descriptors) of a map f ∈ L

2(G). For ĝ, ĝ1, ĝ2 ∈ G^,

I
ĝ

1 (f ) = f̂ (ĝ) ◦ f̂ (ĝ)∗,

I
ĝ1,ĝ2
2 (f ) = f̂ (ĝ1)⊗̂f̂ (ĝ2) ◦ f̂ (ĝ1⊗̂ĝ2)

∗,
(3.12)

where f̂ (ĝ)∗ denotes the adjoint of f̂ (ĝ), and where
ĝ1⊗̂ĝ2 denotes the (equivalence class of) (Kronecker)
Hilbert tensor product of the representations ĝ1 and ĝ2, and
f̂ (ĝ1)⊗̂f̂ (ĝ2) is the Hilbert tensor product of the Hilbert-
Schmidt operators f̂ (ĝ1) and f̂ (ĝ2).7

Then, clearly, in the particular case of the circle group,
these formulas coincide with those defining Pn, R̃m,n.

Let us temporarily say that a (grey-level) image f on G

is a compactly supported real nonzero function over G, with
positive values (the grey levels).

Theorem 3 The quantity I1(f ) is determined by I2(f ) (by
abuse, we write I1(f ) ⊂ I2(f )) and I1(f ), I2(f ) are invari-
ant under translations of f by elements of G.

7Later, it will be easier to compute the adjoint operator I ∗
2 , better

than I2.
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Proof That I1(f ) is determined by I2(f ) comes from the
fact that, f being an image, taking for ĝ2 the trivial char-

acter c0 of G, we get that I
ĝ1,ĝ2
2 (f ) = av(f )I

ĝ1
1 (f ), where

the “mean value” of f,av(f ) = ∫
G

f (g)dg > 0, av(f ) =
(I

c0,c0
2 )1/3. That I

ĝ

1 (fa) = I
ĝ

1 (f ) (where fa(g) = f (ag),
the translate of f by a) comes from the classical property

(3.10) of Fourier transforms. That I
ĝ1,ĝ2
2 (f ) = I

ĝ1,ĝ2
2 (fa),

comes from the other trivial fact, just a consequence of the
definition,

f̂a(ĝ1⊗̂ĝ2) = f̂ (ĝ1⊗̂ĝ2) ◦ (Tĝ1(a)⊗̂Tĝ2(a)),

and from the unitarity of the representations. �

Our purpose in the remaining of the paper is to com-
pute these invariants and to investigate about their complete-
ness (at least on a big subset of L

2(G)) and their perti-
nence. We will mostly consider either an Abelian or com-
pact group G, or one of our motion groups M2 and M2,N .

3.2 The Generalized Fourier Descriptors for the Motion
Group M2

Here, using the results stated in Example 1, let us compute
the generalized Fourier Descriptors from the Definition 2
and observe that these invariants coincide with the invari-
ants (1.1), (1.2) under consideration from the beginning
of this paper.

Remark 6 We consider functions f on the group of motions
that are functions of X = (x, y) only (they do not depend on
θ , i.e. they are the “trivial” lifts on the group M2 of functions
on the plane R

2).

Straightforward computations from formulas (3.8), (3.9)
of Example 1 give:

[I r
1 (f )ϕ](u) =

∫
C

|f̃ (Rθ r)|2dθ〈ϕ,1〉L2(C),

[I r1,r2
2 (f )ϕ](u1, u2)

=
∫

C

f̃ (Rθ (r̂1 + r̂2))f̃ (Rθ r̂1) (3.13)

× f̃ (Rθ r̂2)dθ

∫ ∫
C×C

ϕ(a, b)dadb,

with r̂i = R−ui
ri , i = 1,2.

Clearly, these invariants are completely determined by
those used in the first part of the paper:

I r
1 (f ) =

∫
C

|f̃ (Rθ r)|2dθ, r ∈ R,

I
ξ1,ξ2
2 (f ) =

∫
C

f̃ (Rθ (ξ1 + ξ2))f̃ (Rθξ1)f̃ (Rθξ2)dθ, (3.14)

for ξ1, ξ2 ∈ R
2.

Remark 7 The Generalized-Fourier-Descriptors are real
quantities (this is not an obvious fact for the second type
invariants, but it is easily checked).

Completeness of these invariants is still an open question.
However in the remaining of the paper we will prove certain
completeness results in other very close cases.

3.3 The Case of Compact (Non-Abelian) Groups

This is the most beautiful part of the theory, showing in a
very convincing way that the formulas (3.12) are really per-
tinent: in the compact case, (including the classical Abelian
case of exterior contours), the Generalized Fourier Descrip-
tors are weakly complete. This is due to the Tannaka-Krein
duality theory. (See [22, 25].)

3.3.1 Chu and Tannaka Categories, Chu and Tannaka
Dualities

Tannaka Theory is the generalization to compact groups of
Pontriaguin’s duality theory.

The following facts are standard: The dual of a compact
group is a discrete set, and all its unitary irreducible repre-
sentations are finite dimensional.

The main lines of Tannaka theory is like that: we start
with a compact group G.

1. There is the notion of a Tannaka category TG, that de-
scribes the structure of the finite dimensional unitary rep-
resentations of G;

2. There is the notion of a quasi representation Q of a Tan-
naka category TG;

3. The set rep(G)^ of quasi representations of the Tannaka
category TG has the structure of a topological group;

4. The groups rep(G)^ and G are naturally isomorphic.
(Tannaka duality).

This scheme completely generalizes the scheme of Pon-
tryagin’s duality to the case of compact groups.

In fact, Tannaka duality theory is just a particular case
of Chu duality, which will be the crucial form of duality
needed for our purposes. Hence, let us introduce precisely
Chu duality [10, 22], and Tannaka duality will just be the
particular case of compact groups.

Let temporarily G be an arbitrary topological group.
For all n ∈ N the set repn(G) denotes the set of contin-

uous unitary representations of G over C
n. repn(G) is en-

dowed with the following topology: a basis of open neigh-
borhoods of T ∈ repn(G) is given by the sets W(K,T , ε),
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ε > 0, and K ⊂ G, a compact subset,

W(K,T , ε) = {τ ∈ repn(G) | ‖T (g) − τ(g)‖ < ε,∀g ∈ K,

where the norm of operators is the usual Hilbert-Schmidt
norm. If G is locally compact, so is repn(G).

Definition 3 The Chu-Category of G is the category π(G),
the objects of which are the finite dimensional unitary rep-
resentations of G, and the morphisms are the intertwining
operators.

Definition 4 A quasi-representation of the category π(G)

is a function Q over ob(π(G)) such that Q(T ) belongs to
U(HT ), the unitary group over the underlaying space HT of
the representation T , with the following properties:

0. Q commutes with Hilbert direct-sum: Q(T1⊕̇T2) =
Q(T1)⊕̇Q(T2),

1. Q commutes with the Hilbert tensor product: Q(T1⊗̂T2)

= Q(T1)⊗̂Q(T2),
2. Q commutes with the equivalence operators: for an

equivalence A between T1 and T2, A ◦ Q(T1) = Q(T2) ◦
A,

3. the mappings, repn(G) → U(Cn), T → Q(T ) are con-
tinuous.

The set of quasi-representations of the category π(G) is
denoted by rep(G)^.

There are “natural” quasi representations of G: for
each g ∈ G, the mapping Ωg(T ) = T (g) defines a quasi-
representation of π(G).

Remark 8 rep(G)^ is a group with the multiplication
Q1.Q2(T ) = Q1(T ).Q2(T ).

The neutral element is E, with E(T ) = Ωe(T ) = T (e),
for e the neutral of G.

There is a topology over rep(G)^ such that it becomes a
topological group. A fundamental system of neighborhoods
of E is given by the sets W(K^

n1
, . . . ,K^

np, ε), ε > 0 and K^
ni

is compact in repni
(G), with W(K^

n1
, . . . ,K^

np, ε) = {Q ∈
rep(G)^ | ‖Q(T ) − E(T )‖ < ε, ∀T ∈ ∪K^

ni
}.

The first main result is that, as soon as G is locally com-
pact, the mapping Ω : G → rep(G)^, g → Ωg is a continu-
ous homomorphism.

Definition 5 A locally compact G has the duality property
if Ω is a topological group isomorphism.

The main result is:

Theorem 4 If G is locally compact, Abelian, then G has the
duality property. (This is no more than Pontryagin’s duality.)

If G is compact, G has the duality property. (This is
Tannaka-Krein theory.)

In the last section of the paper, for the purpose of pat-
tern recognition, we will use crucially the fact that another
class of groups, namely the Moore groups, have also the
duality property.

3.3.2 Generalized Fourier Descriptors over Compact
Groups

Our result in this section is based upon Tannaka theory, and
shows that the weak-completeness—i.e. completeness over
a residual subset of L

2(G,dg)—of the Generalized-Fourier-
Descriptors (which holds on the circle group, and which is
crucial for pattern recognition of “exterior contours”) gen-
eralizes to compact separable groups.

If G is compact separable, then, we have the following
crucial but obvious lemma:

Lemma 1 The subset R of functions f ∈ L
2(G,dg) such

that f̂ (ĝ) is invertible for all T = ĝ ∈ G^ is residual in
L

2(G,dg).

Proof It follows from [12] that if G is compact separa-
ble, then G^ is countable. For a fixed ĝ, the set of f such
that f̂ (ĝ) is not invertible is clearly open, dense. Hence, R

is a countable intersection of open-dense sets, in a Hilbert
space. �

The main theorem is:

Theorem 5 Let G be a compact separable group. Let R be
the subset of elements of L

2(G,dg) on which the Fourier
transform takes values in invertible operators. Then R is
residual in L

2(G,dg), and the Generalized Fourier De-
scriptors discriminate over R.

Proof Let us take two functions f,h ∈ R, such that the
associated Generalized-Fourier-Descriptors are equal. The
equality of the first-type Fourier-Descriptors gives f̂ (ĝ) ◦
f̂ (ĝ)∗ = ĥ(ĝ) ◦ ĥ(ĝ)∗, for all ĝ ∈ G^. Since f̂ (ĝ) is in-
vertible, we deduce that there is u(ĝ) ∈ U(Hĝ), such that

f̂ (ĝ) = ĥ(ĝ) u(ĝ).
If T is a reducible unitary representation, it is a finite

direct sum of irreducible representations, and therefore, the
equality f̂ (T ) ◦ f̂ (T )∗ = ĥ(T ) ◦ ĥ(T )∗, for all ĝi ∈ G^ also
defines an invertible u(T ) = ĥ(T )−1 f̂ (T ). (By the finite
sum decomposition, ĥ(T ) = ⊕̇ĥ(ĝi ), hence ĥ(T ) is invert-
ible.) Moreover it is obvious that the mappings repn(G) →
M(n,C), T → f̂ (T ) are continuous therefore the mapping
T → u(T ) = ĥ(T )−1 f̂ (T ) is also continuous.
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Also, the equality of the (second) Fourier-Descriptors for
the irreducible representations, [due to the finite decompo-
sition of any representation in a direct sum of irreducible
ones, plus the usual properties of Hilbert tensor product] im-
plies the equality of Fourier-Descriptors for arbitrary (non-
irreducible) unitary finite-dimensional representations, i.e.,
if T ,T ′ are such unitary representations, non-necessarily ir-
reducible, we have also:

f̂ (T )⊗̂f̂ (T ′) ◦ f̂ (T ⊗̂T ′)∗ = ĥ(T )⊗̂ĥ(T ′) ◦ ĥ(T ⊗̂T ′)∗.

(3.15)

Replacing in this last equality f̂ (T ) = ĥ(T ) u(T ), and tak-
ing into account the fact that all the f̂ (T ), ĥ(T ) are invert-
ible, we get that:

u(T ⊗̂T ′) = u(T )⊗̂u(T ′), (3.16)

for all finite dimensional unitary representations T ,T ′ of G.
Now, for such T ,T ′, and for A intertwining T and T ′, we

have also Af̂ (T ) = ∫
G

f (g)AT (g−1)dg = ∫
G

f (g)T ′(g−1)

Adg = f̂ (T ′)A. It follows that Aĥ(T )u(T ) = ĥ(T ′)u(T ′)A,
hence, ĥ(T ′)Au(T ) = ĥ(T ′)u(T ′)A, in which ĥ(T ′) is in-
vertible. Therefore, Au(T ) = u(T ′)A. By Definition 4, u

is a quasi-representation of the category π(G). By The-
orem 4, G has the duality property, and for all ĝ ∈ G^,
u(ĝ) = Tĝ(g0) for some g0 ∈ G. Then:

f̂ (ĝ) = ĥ(ĝ)Tĝ(g0),

and, by the main property (3.10) of Fourier transforms,
f̂ = ĥa , f = ha for some a ∈ G. �

3.4 The Case of the Group of Motions with Small
Rotations M2,N

This section contains our final results. We will consider the
action on the plane of the group M2,N of translations and
small rotations. In the case where N is an odd number, we
will be able to achieve a full theory and to get a weak-
completion result. To focus on main ideas, the proof of sev-
eral crucial technical lemmas is postponed to Appendix 6.

3.4.1 Moore Groups and Duality for Moore Groups

For details, we refer to [22]. We already know that compact
groups have all their unitary irreducible representations of
finite dimension. But they are not the only ones.

Definition 6 A Moore group is a locally-compact group,
such that all its unitary irreducible representations have
finite-dimensional underlaying Hilbert space.

Theorem 6 The groups M2,N are Moore groups.

Proof These groups are semidirect products of the type
G0 � R

2, where G0 is a (Abelian) finite group. Then we
can use Mackey’s Imprimitivity Theorem to compute their
dual (see [56] for instance). By this theorem, their unitary
irreducible representations are parametrized by the (contra-
gredient) action of the action of G0 on R

2, and their un-
derlaying Hilbert spaces are the spaces of square summable
functions on these orbits, with respect to the correspond-
ing quasi-invariant measures. These orbits are finite. Hence,
their L

2-space is isomorphic to C
N . �

Theorem 7 (Chu duality) [22] Moore groups (separable)
have the duality property.

Then, we will try to copy what has been done for compact
groups to our Moore groups. There are several difficulties,
due to the fact that the functions under consideration (the
images) are very special functions over the group. In fact,
they are functions over the homogeneous space R

2 of M2,N .

3.4.2 Representations, Fourier Transform and Generalized
Fourier Descriptors over M2,N

In fact, considering “images”, we will be interested only
with functions on M2,N that are also functions on the plane
R

2. One of the main problems, as we shall see, is that there
are several possible “lifts” of the functions of L

2(R2) on
L

2(M2,N ), and that the “trivial” lift is bad for our purposes.
Typical elements of M2,N are still denoted by g =

(θ, x, y) = (θ,X), X = (x, y) ∈ R
2, but now, θ ∈ N̆ =

{0, . . . ,N − 1}. Each such θ represents a rotation of angle
2θπ
N

, that we still denote by Rθ .

The Haar measure is the tensor product of the uniform
measure over N̆ and the Lebesgue measure over R

2. The
dual space Ĝ is the union of the finite set Z/NZ = N̆ (char-
acters) with the “Slice of Cake” S , corresponding to nonzero
values of r ∈ R

2 of angle α(r), 0 ≤ α(r) < 2π
N

. The support
of the Plancherel Measure is S (characters are of no use).

Here ϕ ∈ C
N , i.e. ϕ : N̆ → C. We have exactly the same

formula as for M2:

[Tr(θ,X).ϕ](u) = ei〈r,RuX〉ϕ(u + θ), (3.17)

but r ∈ S and the map l2(N̆) → l2(N̆), ϕ(u) → ϕ(u+ θ), is
just the θ−shift operator over C

N.
The Fourier transform has a similar expression to for-

mula (3.9):

[f̂ (r).ϕ](u) =
∑
N̆

(∫ ∫
R2

f (θ, x, y)e−i〈r,Ru−θX〉

× ϕ(u − θ)dxdy

)
. (3.18)
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Similar computations to those of Sect. 3.2 lead to the fi-
nal formula for the Fourier descriptors relative to the trivial
lift of functions f over R

2 into functions over M2,N (not
depending on θ):

I r
1 (f ) =

∑
θ∈N̆

|f̃ (Rθ r)|2dθ, r ∈ R, (3.19)

I
ξ1,ξ2
2 (f ) =

∑
θ∈N̆

f̃ (Rθ (ξ1 + ξ2))f̃ (Rθξ1)f̃ (Rθξ2)dθ,

for ξ1, ξ2 ∈ R
2.

By Theorem 3, these Generalized Fourier Descriptors
are invariant under the action of M2,N on L

2(R2). Let
us explain the main problem that appears when we try to
generalize Theorem 5 of Sect. 3.3.2.

For this, we have to consider the special expression of
the Fourier transform of the “trivial lift” of a function on the
plane. Similarly to the case of M2, we get:

[f̂ (r)ϕ](u) =
∑
N̆

f̃ (Rθ−ur)ϕ(u − θ)

= 〈ϕ(θ), f̃ (R−θ r)〉l2(N̆)
. (3.20)

The crucial point in the proof of the main theorem 5 is
that the operators f̂ (r) are all invertible. But, here, it is not at
all the case since the operators defined by the formula above
are far from invertible: they always have rank 1.

To overcome this difficulty, we have to chose another
lift of functions on the plane to functions on M2,N , the
trivial lift being too rough. This is what we do in the next
section.

3.4.3 The Cyclic-Lift from L
2(R2) to L

2 (M2,N )

From now on, we consider functions on R
2, that are square-

summable, and that have their support contained in a trans-
lated of a given compact set K (the “screen”).

Given a compactly supported function in L
2(R2,R), we

can define its average and its (weighted) centroid, as follows:

av(f ) =
∫

K

f (x, y)dxdy,

centr(f ) = (xf , yf ) = Xf

=
(∫

K

xf (x, y)dxdy,

∫
K

yf (x, y)dxdy

)
.

Definition 7 The cyclic-lift of a compactly supported f ∈
L

2(R2,R), with nonzero average, onto L
2(M2,N ) is the

function f c(θ, x, y) = f (RθX + centr(f )
av(f )

).

Note that centr(f )
av(f )

is the “geometric center” of the im-

age f and that f c(0,X) is the “centered image”.
The set of K-supported real valued functions is a closed

subspace H = L
2(K) of L

2(R2). The set I of elements of
H with nonzero average is an open subset of H, therefore
it has the structure of a Hilbert manifold. This is important
since we shall apply to this space the parametric transversal-
ity theorem of [1].

Definition 8 From now on, a (grey level, or one-color) “im-
age” f is an element of I .

Notice that moreover, usual images have positive value
(grey or color levels vary between zero and 1). This will be
of no importance here in.

By Lemma 12 in Appendix 2, we know that f and g

differ from a motion angle 4kπ
N

if and only if f c and gc

differ from a motion with angle equal to 2kπ
N

.
In this way, we reduce the problem of equivalence with

rotation of certain multiples of a small angle, to the problem
of equivalence of the cyclic lifts over M2,N .

This problem will be treated now, with the same method
as in Sect. 3.3 (case of compact groups). For crucial reasons
that will appear clearly below, we will consider only the case
of an odd N = 2n + 1. Note that if N is odd, when k varies
in N̆ , 2k modN also varies in N̆ .

3.4.4 Fourier-Transform, Generalized-Fourier-Descriptors
of Cyclic-Lifts over M2,2n+1

Using the expression (3.17) of the unitary irreducible repre-
sentations over M2,N , easy computations give the following
results:

For r1, r2 ∈ S ,

[Tr1⊗̂r2
(θ,V )ϕ](u1, u2)

= ei〈R−u2 r1+R−u1 r2,V 〉ϕ(u1 + θ,u2 + θ). (3.21)

As a consequence:

[Tr1⊗̂r2
(θ,X)∗ϕ](u1, u2)

= e−i〈Rθ−u2 r1+Rθ−u1 r2,X〉ϕ(u1 − θ,u2 − θ). (3.22)

For the Fourier transform of a cyclic lift f c , we get:

[f̂ c(r)Ψ ](u)

=
∑
α

f̃ (R2α+ur)e
i〈R2α+ur, 1

av(f )
Xf 〉

Ψ (−α),

=
∑
α∈N̆

f̃ (Ru−2αr)e
i〈Ru−2αr, 1

av(f )
Xf 〉

Ψ (α). (3.23)
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Here, as above, f̃ (V ) denotes the usual 2-D Fourier
transform of f at V . We get also:

[f̂ c(r)∗Ψ ](u) =
∑
α∈N̆

f̃ (Rα−2ur)e
−i〈Rα−2ur, 1

av(f )
Xf 〉

Ψ (α).

(3.24)

The last expression we need is:

[f̂ c(r1⊗̂r2)ϕ](u1, u2)

=
∑
α∈N̆

f̃ (R2α−u2r1 + R2α−u1r2)

× e
i〈R2α−u2 r1+R2α−u1 r2,

1
av(f )

Xf 〉
ϕ(u1 − α,u2 − α).

(3.25)

Formula (3.24) leads to:

[f̂ c(r1)
∗⊗̂f̂ c(r2)

∗ϕ(u1, u2)

=
∑

(α1,α2)∈N̆×N̆

f̃ (Rα2−2u2r1)f̃ (Rα1−2u1r2)

× e
−i〈Rα2−2u2 r1+Rα1−2u1 r2,

1
av(f )

Xf 〉
ϕ(α1, α2). (3.26)

Now, we can perform the computation of the General-
ized Fourier Descriptors. After computations based upon the
formulas just established, we get for the self adjoint matrix
I r

1 (f ) = f̂ (r) ◦ f̂ (r)∗:

I r
1 (f )l,k =

∑
j∈N̆

f̃ (Rl−2j r)f̃ (Rk−2j r)

× e
i〈(Rl−Rk)R−2j r, 1

av(f )
Xf 〉

,

and for the phase invariants I
r1,r2
2 (f ):

[I r1,r2
2 (f )Ψ ](u1, u2)

=
∑
j∈N̆

∑
(ω1,ω2)∈N̆

f̃ (R2j−u2r1 + R2j−u1r2)

× f̃ (Rω2−2u2+2j r1)f̃ (Rω1−2u1+2j r2)

× e
i〈(I−Rω2−u2)R2j−u2 r1+(I−Rω1−u1)R2j−u1 r2,

1
av(f )

Xf 〉

× Ψ (u1, u2).

Since N is odd, setting m = 2j , we get:

I r
1 (f )l,k =

∑
m∈N̆

f̃ (Rl−mr)f̃ (Rk−mr)

× e
i〈(Rl−Rk)R−mr, 1

av(f )
Xf 〉

, (3.27)

and also, we see easily that I
r1,r2
2 (f ) is completely deter-

mined by the quantities:

˜I
r1,r2
2 (f )(u1, u2,ω1,ω2)

=
∑
m∈N̆

f̃ (Rm−u2r1 + Rm−u1r2)f̃ (Rω2−2u2+mr1)

× f̃ (Rω1−2u1+mr2)

× e
i〈(I−Rω2−u2)Rm−u2 r1+(I−Rω1−u1)Rm−u1 r2,

1
av(f )

Xf 〉.
(3.28)

Setting u2 = −l2,ω2 − 2u2 = k2, u1 = −l1,ω1 − 2u1 =
k1, we get:

˜I
r1,r2
2 (f )(l1, l2, k1, k2)

=
∑
m∈N̆

f̃ (Rm+l2r1 + Rm+l1r2)f̃ (Rk2+mr1)

× f̃ (Rk1+mr2)e
i〈(Rl2 −Rk2 )Rmr1+(Rl1 −Rk1 )Rmr2,

1
av(f )

Xf 〉.
(3.29)

Remark 9 Consider the particular case l2 = k2, l1 = k1, and
set ξ1 = Rk2r1, ξ2 = Rk1r2, then, we get:

˜
I

ξ1,ξ2
2 (f )(l1, l2) =

∑
m∈N̆

f̃ (Rm(ξ1 + ξ2))f̃ (Rmξ1)f̃ (Rmξ2).

(3.30)

Note that this is just the discrete version of the (con-
tinuous) invariants of type 2, in formula (3.14). Note also
that, making the change of variables ξ1 = Rk2r1, ξ2 = Rk1r2,
ξ3 = Rl2r1 + Rl1r2, we get:

˜
I

ξ1,ξ2,ξ3
3 (f ) =

∑
m∈N̆

f̃ (Rmξ3)f̃ (Rmξ1)f̃ (Rmξ2)

× e
i〈Rm(ξ3−ξ1−ξ2),

1
av(f )

Xf 〉

which is the final (discrete form of our invariants).
Therefore, at the end, we have 3 sets of Generalized-

Fourier-Descriptors (type-1, type-2, type-3):

I r
1 (f )l,k,

˜
I

ξ1,ξ2
2 (f ) ⊂ ˜

I
ξ1,ξ2,ξ3
3 (f ),

I r
1 (f )l,k =

∑
m∈N̆

f̃ (Rl−mr)f̃ (Rk−mr)

× e
i〈(Rl−Rk)R−mr, 1

av(f )
Xf 〉

,
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˜
I

ξ1,ξ2
2 (f ) =

∑
m∈N̆

f̃ (Rm(ξ1 + ξ2))

× f̃ (Rmξ1)f̃ (Rmξ2),

˜
I

ξ1,ξ2,ξ3
3 (f ) =

∑
m∈N̆

f̃ (Rmξ3)f̃ (Rmξ1)f̃ (Rmξ2)

× e
i〈Rm(ξ3−ξ1−ξ2),

1
av(f )

Xf 〉
.

As we shall see these descriptors are weakly complete
(i.e. they discriminate over a residual subset of the set of
images under the action of motions of angle 4kπ

2n+1 , i.e. 2k′π
2n+1 ).

3.4.5 Completeness of the Discrete Generalized Fourier
Descriptors

This is a rather hard work. We try to follow the scheme of the
proof of Theorem 5, and at several points, there are technical
difficulties.

Here, as above, a compact K ⊂ R
2 is fixed, containing a

neighborhood of the origin (K is the “screen”), and an image
is an element of I , from Definition 8.

Let us consider the subset G ⊂ I of “generic images”,
defined as follows. For f ∈ I , f̃ t denotes the ordinary 2-
D Fourier transform of f c(0,X) as an element of L

2(R2).
Set as above X = (x, y) ∈ R

2 (but here X should be un-
derstood as a point of the frequency plane). The function
f̃ t (X) is a complex-valued function of X, analytic in X

(Paley-Wiener). For r ∈ R
2, denote by ωr ∈ C

N the vector
ωr = (f̃ t (R0r), . . . , f̃

t (Rθi
r), . . . , f̃ t (RθN−1r)).

Denote also by Ωr the circulant matrix associated to
ωr.If FN denotes the usual DFT matrix of order N (i.e. the
N × N unitary matrix representing the Fourier transform
over the Abelian group Z/NZ), then the vector of eigen-
values δr of Ωr meets δr = FNωr .

Definition 9 The generic set G is the subset of I of elements
such that Ωr is an invertible matrix for all r ∈ R

2, r �= 0,
except for a (may be countable) set of isolated values of r ,
for which Ωr has a zero eigenvalue with simple multiplicity.

The next Lemma shows that if N is an odd integer num-
ber, then G is very big.

Lemma 2 Assume that N is odd. Then, G is residual.

Proof We consider the following mappings �k : I×R
2\

{0} → R
2, k ∈ N̆ , �k(f, r) is the (real and imaginary part

of the) kth eigenvalue of Ωr (it makes sense to talk about
the kth eigenvalue since all circulant matrices are simultane-
ously diagonalized by the DFT FN). Lemma 13 from the ap-
pendix shows that, applying Abraham’s parametric transver-
sality Theorem [1] to �k , we find a residual subset Gk ⊂ I ,

such that �k(f ) is transversal to zero, for all f ∈ Gk. Here,
�k(f )(x) means �k(f, x). Set G = ⋂

k∈N̆
Gk. Clearly, G is

residual, and for f ∈ G (for dimension 2 and codimension 2
reasons) Ωr can have a zero eigenvalue at isolated points of
R

2\{0} only. A similar transversality argument shows that at
these special points the zero eigenvalue is simple. �

Remark 10 Notice that here, once more, the fact that N is
odd is crucial.

Now let us take f,g ∈ G, and assume that their discrete
Generalized Fourier descriptors from Sect. 3.4.4 are equal.

We can apply the reasoning of Sect. 3.3.2 to construct
a quasi-representation of the category π(M2,N ) at points
where Ωr(f ) and Ωr(g) are invertible only.

Recall the formula (3.23) for our Fourier Transform in
the case of M2,N :

[f̂ c(r)Ψ ](u)

=
∑
α∈N̆

f̃ (Ru−2αr)e
i〈Ru−2αr, 1

av(f )
Xf 〉

Ψ (α)

=
∑
α∈N̆

f̃ t (Ru−2αr)Ψ (α),

with f t (x) = f

(
x + Xf

av(f )

)
= f c(0, x),

by the basic property of the usual 2D Fourier transform with
respect to translations.

Since N is odd (a crucial point again), it is also equal to:

[f̂ c(r)Ψ ](u) =
∑
α∈N̆

f̃ t (Ru−αr)(CΨ )(α), (3.31)

where C is a certain universal unitary operator (permuta-
tion).

This formula can also be read, in a matrix setting, as:

f̂ c(r) = Ωr(f )C. (3.32)

Also, by the equality of the invariants, the points where
Ωr(f ) and Ωr(g) are non-invertible are the same.

Out of these isolated points, we can apply the same rea-
soning as in the compact case, Sect. 3.3.2. Hence, the equal-
ity of the first invariants gives:

f̂ c(r)f̂ c(r)∗ = Ωr(f )Ωr(f )∗

= ĝc(r)ĝc(r)∗ = Ωr(g)Ωr(g)∗.

Since at nonsingular points Ωr(f ) and Ωr(g) are invert-
ible, this implies that there is a unitary matrix U(r) such
that ĝc(r) = f̂ c(r)U(r).

Let I = {ri |Ωri is singular}. Out of I , U(r) is an analytic
function of r , since U(r) = [f̂ c(r)]−1ĝc(r).



J Math Imaging Vis (2008) 30: 43–71 63

Now, we will need some results about unitary represen-
tations, namely:

R1. Two finite dimensional unitary representations that
are equivalent are unitarily equivalent, and the more difficult
one, that we state in our special case only, and which is a
consequence of the “Induction-reduction” theorem of Barut
[3] (however, once one knows the result, he can easily check
it by direct computations in the special case).

R2. For r1, r2 ∈ R
2, the representation Tr1⊗̂r2

is equiva-
lent (hence unitarily equivalent by R1) to the direct Hilbert
sum of representations ⊕̇

k∈N̆
Tr1+Rkr2 .

This means that, if we take r1, r2 out of I , but r1 +
Rk0r2 ∈ I , and r1 + Rkr2 /∈ I for k �= k0 (which is clearly
possible), and if A denotes the unitary equivalence between
Tr1⊗̂r2

and ⊕̇
k∈N̆

Tr1+Rkr2 , setting ξk = r1 + Rkr2, we can

write that the block diagonal matrix �f = diag(f̂ c(ξ0), . . . ,

f̂ c(ξN−1)) satisfies:

�f = �gAU(r1)
∗⊗̂U(r2)

∗A−1. (3.33)

Indeed, this comes from the equality of the second-type
descriptors:

f̂ c(Tr1)⊗̂f̂ c(Tr2) ◦ f̂ c(Tr1⊗̂Tr2)
∗

= ĝc(Tr1)⊗̂ĝc((Tr2) ◦ ĝc(Tr1⊗̂Tr2)
∗, (3.34)

and since ĝc(χr1)⊗̂ĝc((Tr2) = f̂ c(Tr1)⊗̂f̂ c(Tr2) ◦ U(r1)

⊗̂U(r2) and both are invertible operators, then, replacing
in (3.34), we get:

f̂ c(Tr1⊗̂Tr2) ◦ f̂ c(Tr1)
∗⊗̂f̂ c(Tr2)

∗

= ĝc(Tr1⊗̂Tr2) ◦ U(r1)
∗⊗̂U(r2)

∗ ◦ f̂ c(Tr1)
∗⊗̂f̂ c(Tr2)

∗,

which implies,

f̂ c(Tr1⊗̂Tr2) = ĝc(Tr1⊗̂Tr2) ◦ U(r1)
∗⊗̂U(r2)

∗.

Using the equivalence A, we get:

Af̂ c(Tr1⊗̂Tr2)A
−1

= Aĝc(Tr1⊗̂Tr2)A
−1A ◦ U(r1)

∗⊗̂U(r2)
∗A−1.

This last equality is exactly (3.33).

Remark 11 The following fact is important: the matrix
A is a constant. This comes again from the “Induction-
Reduction” Theorem of [3] (or from direct computation):
the equivalence A : L

2(N̆ )⊗̂L
2(N̆) ≈ L

2(N̆ × N̆) →
⊕̇

k∈N̆
L

2(N̆), is given by Aϕ = ⊕̇
k∈N̆

ϕk , with ϕk(l) =
ϕ(l, l − k). Hence, its matrix is independent of r1, r2.

Let us rewrite (3.33) as �f = �gH , for some unitary
matrix H . Since N − 1 corresponding blocks in �f and �g

are invertible, it follows that H is also block diagonal. Since
it is unitary, all diagonal blocks are unitary. In particular,
the kth

0 block is unitary. Also, H = A ◦ U(r1)
∗⊗̂U(r2)

∗A−1

is an analytic function of r1, r2. Moving r1, r2 in a neigh-
borhood moves r1 +Rk0r2 in a neighborhood. If we read the
kth

0 line of the equality �f = �gH , we get �f (Tr1+Rk0 r2) =
�g(Tr1+Rk0 r2)Hk0(r1, r2), where Hk0(r1, r2) is unitary, and
analytic in r1, r2. It follows that, by analyticity outside I ,
that U(r) prolongs analytically to all of R

2\{0}, in a unique
way. The equality ĝc(r) = f̂ c(r)U(r) holds over R

2\{0}.
Now, for the characters K̂n, n ∈ Z/NZ, it is easily

computed that f̂ c(K̂n) = av(f )
∑

k e2πink/N . In particular
f̂ c(0) = Nav(f ).

The equality of the second type invariants imply that
av(f ) = av(g). Moreover, if f̂ c(K̂0) �= 0, ĝc(K̂0) = f̂ c(K̂0).
This implies the choice U(K̂0) = 1.

For n �= 0, note that f̂ c(K̂n) and ĝc(K̂n) are zero. Hence
we cannot define U(K̂n) in the same way. In fact, we will
consider the representations Tn,r ≈ Tr ,

Tn,r = K̂n ⊗ Tr . (3.35)

The representation Tn,r is equivalent to Tr , the equiva-
lence being An,

An(u) = e
2πi
N

un = εun. (3.36)

Also, we set

U(Tn,r ) = U(n, r) = [f̂ c(Tn,r )]−1ĝc(Tn,r ) = A−nU(r)An.

(3.37)

It follows that, wherever U(r) is defined, U(n, r) is also
defined. We set also:

U(K̂n)Id = U(r)∗A−nU(r)An = U(r)∗U(n, r). (3.38)

A-priori, U(K̂n) is ill defined, for several reasons. The
crucial Lemma 3 below shows not only that it is actually
well defined but also:

U(K̂n) = einθ0 , for some θ0 = 2πk0

N
. (3.39)

Remark 12 At this point, we could already conclude from
(3.39) directly (but not so easily) our result, i.e. h̃t (Rθ r) and
f̃ t (Rθ r) differ from a rotation Rθ0 . However it is rather easy
to see that this is in fact just “Chu-duality”.

Note that, to conclude (3.39), we need Lemma 3, which
is the most complicated among the series of lemmas just
below.

Let us define U(T ) for any p-dimensional representation
T (p arbitrary).
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As a unitary representation T is unitarily equivalent to
⊕̇p

i=1Tri ⊕̇k
i=1K̂ni

= ⊕̇Ti , ri ∈ S , i.e. T = A�TiA
∗, where

A is some unitary matrix, and �Ti is a block diagonal of
irreducible representations Ti .

We define U(T ) = A�U(Ti)A
∗.

The proof of the following Lemmas 3, 7, 8 are given
in Appendix 6. The proof of Lemma 7 requires the crucial
Lemma 14, Appendix 5, characterizing the convergence in
repn(M2,N ).

Lemma 3 U is well defined.

Lemma 4 At a point T = A(Tr1⊕̇ · · · ⊕̇Trp⊕̇K̂k1⊕̇ · · ·
⊕̇K̂kl)A

∗ = A(Tr⊕̇T
K̂

)A∗, where r1, . . . , rp /∈ I , we have:

U(T ) = A(· · · f̂ c(Tr)
−1ĝc(Tr)⊕̇ · · · eikθ0⊕̇ · · · )A∗.

Proof By definition of I at such points r1, . . . , rp , f̂ c(Tr)

and ĝc(Tr) are invertible. Also, by equality of the first de-
scriptors, f̂ c(Trj ) f̂ c∗

(Trj ) = ĝc(Trj ) ĝc∗
(Trj ), we have

ĝc(Trj ) = f̂ c(Trj )U(Trj ). Also, by definition, U(K̂j ) =
eijθ0 . This shows the result. �

Lemma 5 U(T ⊕̇T ′) = U(T )⊕̇U(T ′).

Lemma 6 If AT = T ′A, A unitary, then: AU(T ) =
U(T ′)A.

The Lemmas 5, 6 are just trivial consequences of the de-
finition of U(T ).

Lemma 7 U is continuous.

Lemma 8 U(T ⊗̂T ′) = U(T )⊗̂U(T ′).

Lemmas 3, 4, 5, 6, 7, show that U is a quasi-representat-
ion of the category π(M2,N ).

Since M2,N has the duality property, U(T ) = T (g0) for
some g0 ∈ M2,N .

Also, we have:
ĝc(Tr ) = f̂ c(Tr)U(Tr) = f̂ c(Tr)Tr(g0) = f̂ c

g0
(Tr), by

the fundamental property of the Fourier transform.
The support of the Plancherel’s measure being given

by the (non-character) unitary irreducible representations
Tr , by the inverse Fourier transform, we get gc = f c

g0
, for

some g0 ∈ M2,N , which is what we needed to prove. By
Lemma 12 we have shown our final result.

Theorem 8 If the (Three types of) Discrete Generalized
Fourier Descriptors of two images f,g ∈ G are the same,
and if N is odd, then the two images differ from a motion,
the rotation of which has angle 4kπ

N
(i.e. 2k′π

N
since N is odd)

for some k. Remind that G is a residual subset of the set of
images of size K .

4 Conclusion

In this paper, we have developed a rather general theory of
“Motion Descriptors”, based upon the basic duality concepts
of abstract harmonic analysis.

We have applied this theory to several motion groups, and
to the general case of compact groups, completing previous
results.

This theory leads to rather general families of invariants
under group actions operating on functions (images). We
have proved weak completeness -i.e. completeness over a
large (residual) subset of the set of images- in the case of
several special groups, including motion groups “with small
basic rotation”. These invariants are at most cubic expres-
sions of the functions (images).

A number of interesting theoretical questions remain
open (such as completeness for the usual group of motions
M2).

In the first part of the paper, we have applied our practi-
cal theory to four cases, namely the COIL data-base, The AR
and ORL data bases for human faces, and to a personal data-
base of cellular phones. We have also made several tests
of robustness with respect to lighting, using another special
data-base.

In our methodology, we have used the “Motion Descrip-
tors” provided by our theory in the context of a standard
SVM method (that we have recalled briefly). We have also
compared, in this context, our Descriptors to other classical
families of invariants, such as the Zernike moments.

About the theoretical results, let us point out the follow-
ing facts:

1. There is a final form of duality Theory, which is given
by “Tatsuuma Duality”, see [22, 49]. This is a general-
ization of Chu duality, to general locally compact (type
1) groups. In particular, it works for M2. Unfortunately,
huge difficulties appear when trying to use it in our con-
text. However this is a challenging subject.

2. Computation of the Generalized Fourier Descriptors re-
duces to usual FFT evaluations.

3. The first and second-type Descriptors, that arise via the
trivial or the cyclic lift have a very interesting practical
feature: they don’t depend on an estimation of the cen-
troid of the image. This is a strong point in practice.

4. Otherwise, the variables that appear in the Generalized-
Fourier-descriptors have clear frequency interpretation.
Hence, depending on the problem (a high or low fre-
quency texture), one can chose the actual values of these
frequency variables in certain adequate ranges.

We leave the reader to conclude that our results are at
least extremely promising.
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Appendix 1: A Few Technical Facts about Standard
Fourier Descriptors for Contours

We start with the statement of 3 very elementary lemmas,
the proof of which is easy and left to the reader.

Lemma 9 Let {an}, {bn}, n ∈ Z, be two sequences in
R/2πZ with a−n = −an, b−n = −bn, and for all m,n,

an + am − am+n = bm + bn − bn+m, (5.1)

then:

a0 = b0 = 0,

an

n
− am

m
= bn

n
− bm

m
, for all m,n �= 0.

(5.2)

Conversely, (5.2) implies an + am − am+n = bm + bn −
bn+m.

Lemma 10 Let f,g be real L
2 functions on the circle. Let

{fn}, {gn} be their respective Fourier series.
Assume that: (a) |fn| = |gn| �= 0,∀n ∈ Z, (b) fnfmf̄n+m =

gngmḡn+m ∀n,m. Then g is a translate of f .

Lemma 11 The set of real L
2 functions f on the circle, such

that fn �= 0 for all n ∈ Z (where fn is the Fourier series of
f ) is residual in L

2.

Appendix 2: Justification of the Concept of the
Cyclic-Lift

The lemma below justifies the use of the “cyclic lift” of a
function f over the plane to a function f c over one of our
motion groups M2 or M2,N .

Lemma 12 Two functions f,g ∈ L2(R2) with nonzero av-
erage differ from a motion (θ, a, b) = (θ,A) iff their cyclic
lifts differ from a motion, the rotation component of which
has angle θ

2 , and the translation is zero.

Proof Set g(X) = f (RωX + A) for (ω,A) ∈ G = M2 or
M2,N .

Then, av(g) = ∫
R2 f (RωX + A)dX = ∫

R2 f (RωX +
A)d(RωX) = ∫

R2 f (Y )d(Y ) = av(f ).
Also, centr(g) = Xg = ∫

R2 Xf (RωX + A)dX =
R−ω

∫
R2 RωXf (RωX + A)d(RωX) = R−ω

∫
R2(RωX + A)

f (RωX + A)d(RωX + A)) − R−ωA
∫

R2 f (RωX + A) ×
d(RωX + A))

= R−ωXf − R−ωAav(f ). Hence we get two first con-
clusions:

For g(X) = f (RωX + A),

1. av(g) = av(f ), (6.1)

2. Xg = R−ω(Xf − Aav(f )).

Now, consider the cyclic lifts f c, gc of f and g:

f c(α,X) = f

(
RαX + 1

av(f )
Xf

)
,

gc(α,X) = g

(
RαX + 1

av(g)
Xg

)
,

= f

(
Rω

(
RαX + 1

av(f )
R−ω(Xf − Aav(f ))

)

+ A

)
,

= f

(
Rω+αX + A + 1

av(f )
(Xf − Aav(f ))

)
,

= f

(
Rω+αX + 1

av(f )
Xf

)
.

Otherwise (λ,B)f c(α,X) = f (Rα+λ(RλX + B) +
1

av(f )
Xf )

= f (Rα+2λX + Rα+λB + 1
av(f )

Xf ). Therefore, choosing
λ = ω

2 and B = 0 we get:
(λ,B)f c(α,X) = f (Rα+ωX + 1

av(f )
Xf ) = gc(α,X).

Conversely, we assume that (λ,0)f c(α,X) = gc(α,X).
This means that f c(α+λ,RλX) = gc(α,X) which is equiv-
alent to:

f

(
Rα+λRλX + 1

av(f )
Xf

)
= g

(
RαX + 1

av(g)
Xg

)
.

This is true for all α,X. Let us take the particular case where
α = −2λ. It gives:

f

(
X + 1

av(f )
Xf

)
= g

(
R−2λX + 1

av(g)
Xg

)
.

This is true for all X. Let us set Y = X + 1
av(f )

Xf . Then

X = Y − 1
av(f )

Xf , and for all Y , we have:

f (Y ) = g

(
R−2λY + 1

av(g)
Xg − 1

av(f )
R−2λXf

)
.

f (Y ) = g(R−2λY + H),

for a certain H . This shows that f and g differ from a mo-
tion, with rotation angle 2λ. �

Appendix 3: A Crucial Transversality Result

The following lemma is a more or less obvious techni-
cal result we need in Sect. 3.4.5. A compact K ⊂ R

2 is
fixed, containing a neighborhood of the origin. The set
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H = L
2(K,R) is a closed subspace in the Hilbert space

L
2(R2,R), hence it is a Hilbert subspace. The set I of im-

ages (of size K) is the open subset of H formed by the
functions f with nonzero average. Let N ∈ N and r ∈ R

2

be fixed, r �= 0. Consider the map M : I →C
N , f →

ωr = (f̃ t (R0r), . . . , f̃
t (Rθi

r), . . . , f̃ t ((RθN−1r)), where f̃ t

is the usual 2D Fourier transform of f t as an element of
L

2(R2,R).

Lemma 13 M is a linear submersion if and only if N is
odd.

The proof is easy and left to the reader. A very simple
idea for the proof is to show that, for suitably chosen Xm ∈
K , the distributions that are linear real combinations f =∑

m αmδXm , where δXm is the Dirac function at Xm, provide
M(f ) which span the realification of C

N . Although, if N is
even, this is clearly not true.

Appendix 4: Computation of First-Type and
Second-Type
Generalized-Motion-Descriptors

There are two computational-steps for estimation of First-
Type and second-Type Motion-Descriptors:

− First, computation of the Fourier transform f̃ of the im-
age f .

− Second, computation of some integral expressions of f̃

over circles in the frequency-plane.

• Estimation of f̃ .
The Fourier transform f̃ is computed from FFT estima-

tion over the grid formed by pixels on the screen. We as-
sume the values of the grey levels (or color levels) to be con-
stant over each pixel. Hence we have to compute the Fourier
transform of a piecewise-constant function over the regular
pixel-grid.

FFT algorithm do not produce the exact value of the
Fourier transform. In particular for high frequencies there
is a large deviation. In usual situations in signal or image
processing it is a nonsense to consider this deviation: due
to respect of Shannon sampling rule, the deviation will be
negligible.

In our problem the situation might be very different: For
instance for a human face data-base, it is reasonable to work
after contour-extraction.8 In that case, after contours extrac-
tion, of course the sampling will not respect the Shannon

8By “contour” we mean here the result obtained after applying a stan-
dard contour filter. This “contour” contains information about the “tex-
ture” of the image. This contour notion has to be distinguished from the
(natural) notion of an “exterior-contour” also used here. If well defined,
the “exterior-contour” is a connected component of the “contour”.

rule. However, we have to compute the exact Fourier trans-
form f̃ of the image. Here the deviation will be significant
and we have to correct it.

To perform this correction we use the following remark
which is probably very naive and well known by signal
processing engineers.

For a function f constant over the cells of a regular grid
it is easily computed that the exact correction term from the
values of the FFT to values of the usual Fourier transform f̃

at the points of the grid, is given by:

f̃

(
r − 1√

N
,
s − 1√

N

)

=
(

e2πi
(r− N

2 )

N − 1

2πi
r− N

2√
N

)(
e2πi

(s− N
2 )

N − 1

2πi
s− N

2√
N

)
× FFTr,s . (8.1)

Notice the very important point that this correction term
preserves the N log2 N complexity of the FFT algorithm.

• Estimation of integrals over circles
We explain only the computation of the second Type

Motion-Descriptors. Computation of the integrals corre-
sponding to the first type are easier and based upon the same
principle.

We have to evaluate formula (2.6) for a function f con-
stant over each cell of the grid. The only approximation we
make is to consider the values of f̃ constant over the dual
grid of the frequency plane, and given by formula (8.1).
Therefore the value of I ξ1,ξ2(f ) will be equal to the sum of

the values of f̃ (Rθ (V1 +V2)f̃ (Rθ (V1))f̃ (Rθ (V2)) weighted
by the length of the arcs encountered.

V1 and V2 are two fixed vectors in the Fourier space
and V3 = V1 + V2 (see Fig. 12), then on some elementary
arcs (the length of which can be pre-computed once for
all as soon as the values of V1,V2 are given) the value of

f̃ (Rθ (V1 + V2)f̃ (Rθ (V1))f̃ (Rθ (V2)) is constant by our ap-
proximation. The contribution of this arc to I ξ1,ξ2(f ) will
be equal to this value times the length L of the arc. A trivial
undergraduate computation shows that:

L = R × θ,

with R the radius of the smallest among the three arcs and:

θ = arcsin

[√
1 − b2

R2

]
− arcsin

[
a

R

]
.

Here a (resp. b) is the x (resp y) coordinate of the first (resp.
second) endpoint of the arc (see Fig. 13).

Appendix 5: Convergence of Representations of M2,N

Now, we state and prove a lemma characterizing the conver-
gence of sequences on repn(M2,N ). This lemma is crucial to
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Fig. 12 The vectors positions in the Fourier-space

Fig. 13 Estimation of integrals in the discrete-Fourier-space

prove the continuity of the quasi-representation of π(M2,N )

that we construct in Sect. 3.4.5.
Let T p be a sequence of finite dimensional representa-

tions of M2,N of the same dimension n. Assume that:

T = T1 ⊗ Ik1⊕̇ · · · ·⊕ Tl ⊗ Ikl, (9.1)

where Tj is either a character Tj = K̂nj
(α,X) = einj α , or

an irreducible representation of the form Trj , rj ∈ S , and{
ri �= rj
ni �= nj

for i �= j .

Let Sε denote the “modified slice of cake”, i.e. Sε =
{(λ cosα,λ sinα), λ > 0, −ε ≤ α < 2π

N
−ε}. We can assume

that ε is small enough for rj ∈ Sε for all j .

Lemma 14 T p −→ T if and only if there exists Ap , a uni-
tary matrix, and �

p
i , np

i such that:

1.
{

�
p
i

−→ ri ∈Sε,

K̂
p
i

−→ K̂ni .

2. T p = Ap(⊕̇iT�
p
i
⊕̇i′K̂

p
ni′ )A

∗
p .

3. For all convergent subsequence Ap −→ A,
A = Ik1⊗̂Λ1⊕̇ · · · ⊕̇Ikl

⊗̂Λl , for certain unitary matrices
Λ1, . . . ,Λl .

Proof T p is completely reducible. Then:

T p = Ap�TpA∗
p,

where �Tp is a block-diagonal of irreducible representa-
tions (either Tr

p
j

or K̂n
p
j
). First, when p −→ +∞, all the r

p
j

remain bounded: it would contradict the equicontinuity on
any compact K ⊂ M2,N of the sequence T

p
|K (T p restricted

to K). Second, consider any convergent subsequence (still
denoted by Ap) and the corresponding subsequences (rp),
(np). Note that the vectors (rp) and (np) may have different
dimensions depending on p.

In the following we shall consider extracted subse-
quences such that (r

p
j ), (K̂

p
j ) both converge. We shall show

that all of them converge to the same required limit. Hence
the whole extracted sequence Ap will converge to a limit
with the required form.

Since (K̂
p
j ) converges, and since (K̂

p
j ) is bounded among

characters, K̂
p
j is constant, after a certain rank, K̂

p
j = K̂∗

j ,

and also, �
p
j −→ �∗

j .
The corresponding diagonal matrix we denote by �T ′.

We have Tp − T = (Ap − A)�TpA∗
p + A�Tp(A∗

p − A∗) +
A�TpA∗ − T .

This shows that A�TpA∗ − T −→ 0 (since (Ap −
A) −→ 0 and since all other terms remain bounded in re-
striction to any compact K ⊂ M2,N ). Now, �Tp −→ �T ′.
Hence A�TpA∗ −T = A(�Tp −�T ′)A∗ +A�T ′A∗ −T .
It follows that A�T ′A∗ −T = 0 (�Tp converges uniformly
to �T ′ on any compact K ⊂ M2,N ).

A�T ′ = T A. (9.2)

The representations �T ′ and T are unitarily equivalent.
This shows that K̂∗

j = K̂j , �∗
j = rj , with adequate multiplic-

ity.
Then, up to some relabelling, A�T = T A and A =

A1⊕̇ · · · ⊕̇Al .
Let us consider a non-character-block of this decomposi-

tion, the first block A1 say.
The relation A�T = T A gives (considering the block de-

composition of A1 in N × N dimensional blocks)
A1 = (A1i,j ):

A1i,j Tr1 = Tr1A1i,j . (9.3)

By Shur’s Lemma, A1i,j is a scalar multiple of the iden-
tity.

A1i,j = λij Id . This can be rewritten as:
A1 = Ik1⊗̂Λ1, A1(Tr1⊗̂Ik1) = (Tr1⊗̂Ik1)A1.
It follows since A1 is unitary that Λ1 is also unitary.

This ends the proof, since the converse statement is easily
checked. �

Appendix 6: Proofs of Technical Lemmas

Proof of Lemma 3 The constructed quasi-representation
U is well defined.
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First, we will show that U(K̂n) is well defined. To do this,
we set U0(n, r) = U(r)∗A−nU(r)An = U(r)∗U(n, r). By
Lemma 15, U0(n, r) and U(r) are circulant. In particular,
they commute.

By the end of the proof of Lemma 8, U(r1) ⊗ U(r2) =
U(Tr1) ⊗ U(Tr2) = U(Tr1 ⊗ Tr2) (when both are defined).
It follows that U(n1, r1) ⊗ U(n2, r2) = U(Tn1,r1 ⊗ Tn2,r2),
where U(n, r) = U(k̂n ⊗ Tr) = U0(n, r)U(r) = U(r) ×
U0(n, r). This implies:

U0(n1, r1)U(r1) ⊗ U0(n2, r2)U(r2)

= U(K̂n1+n2 ⊗ Tr1 ⊗ Tr2),

or:

U0(n1, r1) ⊗ U0(n2, r2)U(r1) ⊗ U(r2)

= A∗⊕̇kU(K̂n1+n2 ⊗ Tr1+Rkr2)A,

where A is an equivalence. Hence:

U0(n1, r1) ⊗ U0(n2, r2)A
∗⊕̇kU(Tr1+Rkr2)A

= A∗⊕̇kU0(n1 + n2, r1 + Rkr2)U(r1 + Rkr2)A,

and:

AU0(n1, r1) ⊗ U0(n2, r2) = ⊕̇kU0(n1 + n2, r1 + Rkr2)A.

This can be rewritten as: AkU0(n1, r1) ⊗ U0(n2, r2) =
U0(n1 + n2, r1 + Rkr2)A, and the equivalence between
Tr1 ⊗Tr2 and ⊕̇kTr1+Rkr2 is given by (Akϕ)(l) = ϕ(l, k − l).
Taking ϕ(k, l) = δi,kδj,l where δ is the Kronecker symbol,
we get:

U0(n1, r1)(u, i)U0(n2, r2)(u − k, j)

=
{

0 for k �= i − j,

U0(n1 + n2, r1 + Rkr2)(u, i) for k = i − j.

(10.1)

We know that the diagonal of U0 is a constant (U0 be-
ing circulant). Assume that U0(n2, r2)(u − k,u − k) = 0
(identically in r2, as an analytic function of r2 out of iso-
lated points), then, (10.1) implies that U0(n1 + n2, r1 +
Rkr2)(u, i) = 0 for all r1, n1, i, u �= i. Then, U0(n1 +
n2, r1 + Rkr2) is zero, which is impossible since it should
be unitary. Hence U0(n, r)(u,u) �= 0 whatever U .

By (10.1) again, U0(n, r)(u − k, j) = 0 for k �= u − j ,
or u − k �= j . Hence, U0 is diagonal, circulant. U0(n, r) =
eiθ0(n,r)Id . By (10.1) once more,

θ0(n1, r1) + θ0(n2, r2) = θ0(n1 + n2, r1 + Rkr2).

Therefore θ0(n, r) = nθ0, and finally U0(n, r) = einθ0Id .
Also, we get that θ0 = 2πk0

N
for some k0.

Second we have to show that two equalities (with A and
B unitary): T = A�TiA

∗ = B�TiB
∗, don’t lead to contrary

definitions of U(T ).
Then, B∗A�Ti = �TiB

∗A. Consider a primary-labeling
of �Ti :

�Ti = T1⊗̂Idk1
⊕̇ · · · ⊕̇Tl⊗̂Idkl

,

where Ti �= Tj for all i �= j.

With an argument similar to the one at the end of the proof
of Lemma 14 (from formula (9.3) on), we get that:

B∗A = (Idk1⊗̂Λ1)
·⊕ · · · ⊕̇(Idkp⊗̂Λl),

where Λ1, . . . ,Λl are certain unitary matrices.
Then we have to show that B∗A�U(Ti) = �U(Ti)B

∗A,
or equivalently:

B∗A�U(Ti)A
∗B = �U(Ti). (10.2)

This is true as soon as:

�U(Tj)⊗̂Idkj

= (Idkj
⊗̂Λj)(�U(Tj)⊗̂Idkj

)(Idkj
⊗̂Λj)

∗, (10.3)

for all j .
But (Idkj

⊗̂Λj)(�U(Tj)⊗̂Idkj
)(Idkj

⊗̂Λj)
∗ =

(Idkj
⊗̂Λj)(�U(Tj)⊗̂Idkj

)(Idkj
⊗̂Λ∗

j ) = (�U(Tj )⊗̂
Λj)(Idkj

⊗̂Λ∗
j ) = �U(Tj )⊗̂ΛjΛ

∗
j = �U(Tj )⊗̂Idkj

, since
Λj is unitary. This ends the proof. �

Proof of Lemma 7 Continuity of U . Assume that T p ∈
Repn(G)^, T p −→ T ′ set T ′ = B(T1⊗̂Ik1⊕̇ · · · ⊕̇Tl⊗̂
Ikl

)B∗ = BT B∗ with Ti �= Tj for i �= j .
Then, we apply to B∗T pB the result of Lemma (14).

B∗T pB tends to T iff B∗T pB meets the statements 1, 2,
3 of Lemma 14.

Using the notations of Lemma (14), it follows that
B∗T pB= Ap(⊕̇iT�

p
i
⊕̇i′K̂n

p
i
)A∗

p , with properties 1.2.3.

Set ε = e 2πi
N

, then U(K̂n) = εnθ0 , θ0 from (3.39). By de-
finition of U ,

U(B∗T pB) = Ap(⊕̇iU(T�
p
i
)⊕̇U(K̂n

p
i
))A∗

p

= Ap(⊕̇iU(T�
p
i
)

·⊕k εnk · · · )A∗
p,

and, for any convergent subsequence Ap ,

Ap −→ A = (Ik1⊗̂Λ1
·⊕ · · · ⊕̇Ikp⊗̂Λp) and using

Lemma 6,

U(B∗T pB) −→ A((U(T1)⊗̂Ik1
˙)⊕· · · ⊕̇(U(Tl)⊗̂Ikl

))A∗

B∗U(T p)B −→ ⊕̇j (Ikj ⊗̂Λj)(U(Tj )⊗̂Ikj
)(Ikj ⊗̂Λj)

∗.
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Then,

B∗U(T p)B −→ ⊕̇j (U(Tj )⊗̂Λj)(Ikj ⊗̂Λ∗
j ),

−→ ⊕̇j (U(Tj )⊗̂ΛjΛ
∗
j ),

−→ ⊕̇j (U(Tj )⊗̂Idkj ).

Therefore,

U(T p) −→ B(⊕̇jU(Trj )⊗̂Idkj )B
∗

= BU(T )B∗.

Hence by Lemma 6,

U(T p) −→ U(BT B∗)

= U(T ′).

Exhausting all convergent subsequences Ap −→ A (not
the same, may be) it remains only a finite number of
terms and for each corresponding subsequence U(T p) −→
U(T ′).

Therefore the whole sequence U(T p) meets:
U(T p) −→ U(T ′) and U is sequentially continuous

hence continuous. �

Proof of Lemma 8 Commutation of U (the constructed
quasi-representation) with tensor product.

T = A(T1⊕̇ · · · ⊕̇Tl)A
∗ = A�T A∗,

T ′ = B(T ′
1⊕̇ · · · ⊕̇Tp)B∗ = B�T ′B∗,

T ⊗̂T ′ = A(T1⊕̇ · · · ⊕̇Tl)A
∗⊗̂B(T ′

1

·⊕ · · · ⊕̇T ′
p)B∗

= (A⊗̂B)(T1⊕̇ · · · ⊕̇Tl)⊗̂A∗(T ′
1

·⊕ · · · ⊕̇T ′
p)B∗

= (A⊗̂B)(T1⊕̇ · · · ⊕̇Tl)⊗̂(T ′
1⊕̇ · · · ⊕̇T ′

p)(A∗⊗̂B∗)

= (A⊗̂B)(T1⊕̇ · · · ⊕̇Tl)⊗̂(T ′
1⊕̇ · · · ⊕̇T ′

p)(A⊗̂B)∗

= (A⊗̂B)(⊕̇i,j Ti⊗̂T ′
j )(A⊗̂B)∗.

U(T ⊗̂T ′) = (A⊗̂B)⊕̇i,jU(Ti⊗̂T ′
j )(A⊗̂B)∗

(by Lemmas 5, 6).
Assume that:

U(Tl⊗̂T ′
j ) = U(Tl)⊗̂U(T ′

j ). (10.4)

Then,

U(T ⊗̂T ′) = (A⊗̂B)⊕̇i,jU(Ti)⊗̂U(T ′
j )(A⊗̂B)∗

= (A⊗̂B)U(�T )⊗̂U(�T ′)(A⊗̂B)∗

= (AU(�T )⊗̂BU(�T ′))(A∗⊗̂B∗)

= AU(�T )A∗⊗̂BU(�T ′)B∗

= U(T )⊗̂U(T ′),

by Lemma 6.
It remains to prove (10.4).
If Tl and Tj are both characters, then (10.4) can be rewrit-

ten as eilθ0eijθ0 = ei(l+j)θ0 .
If Tl is not character and Tj is, (10.4) can be rewritten as:

U(Tr⊗̂K̂n) = U(Tr)⊗̂U(K̂n), (10.5)

which results from the definition of U(K̂n).
The last case is to show: U(Tr1⊗̂Tr2) = U(Tr1)⊗̂U(Tr2).
Actually, this is true if r1, r2 and r1 + Rkr2 /∈ I for

all k ∈ �

N : By the equality of the second Descriptors,
ĝc(Tr1⊗̂Tr2) = f̂ c(Tr1⊗̂Tr2)U(Tr1⊗̂Tr2), ĝc(Tr1)⊗̂
ĝc(Tr2) = f̂ c(Tr1)⊗̂f̂ c(Tr2)U(Tr1)⊗̂U(Tr2).

Then,

ĝc(Tr1⊗̂Tr2)ĝ
c(Tr1)

∗⊗̂ĝc(Tr2)
∗

= f̂ c(Tr1⊗̂Tr2)U(Tr1⊗̂Tr2)U(Tr1)
∗⊗̂U(Tr2)

∗

◦ f̂ c(Tr1)
∗⊗̂f̂ c(Tr2)

∗

= f̂ c(Tr1⊗̂Tr2)f̂
c(Tr1)

∗⊗̂f̂ c(Tr2)
∗.

But, since r1, r2, r1 +Rkr2 /∈ I , f̂ c(Tr1⊗̂Tr2) is invertible
(remind that Tr1⊗̂Tr2 ≈ ⊕̇kT(r1+Rkr2)).

Therefore, U∗(Tr1⊗̂Tr2)U(Tr1)⊗̂U(Tr2) = Id ,
U(Tr1⊗̂Tr2) = U(Tr1)⊗̂U(Tr2).
But, the set of (r1, r2) ∈ R

2\{0} × R
2\{0} such that this

holds is open, dense.
Otherwise, the mapping (T ,T ′) −→ T ⊗̂T ′ is clearly

continuous, and U is continuous by the Lemma 7. Also, the
mapping (r,α,X) −→ Tr(α,X) is continuous (it is analytic
in (r,α,X)). Hence, on any compact K ⊂ M2,N , the map-
ping r −→ Tr|K is continuous. Therefore, in the diagram,

(r1, r2) →Tr1⊗̂Tr2 → U(Tr1⊗̂Tr2)

↓ ↓
U(Tr1)⊗̂U(Tr2) → U∗(Tr1⊗̂Tr2)◦

U(Tr1)⊗̂U(Tr2)

all arrows are continuous maps.
It follows that U(Tr1⊗̂Tr2) = U(Tr1)⊗̂U(Tr2), since it is

true on a dense subset of R
2\{0} × R

2\{0}. �

Lemma 15 The matrices U0(n, r) and U(r) are unitary,
circulant.
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Proof We need some classical facts about circulant ma-
trices. A perfect reference is [16]. We set U0(n, r) =
U(r)∗A−nU(r)An.

First, U(r) is circulant: U(r) = f̂ c(r)−1ĥ(r) =
C∗Ωr(f )−1Ωr(h)C. Here C is the permutation matrix de-
fined in (3.31). But Ωr(f )C = C̃Ω̃r (f ) where C̃ is another
permutation, and Ω̃r(f ) is another circulant. This last point
follows from the following observation:

[f̂ c(r)Ψ ](u) =
∑
α∈N̆

f̃ t (Ru−2αr)Ψ (α) = [Ωr(f )CΨ ](u),

then, setting u = 2v modN , we get:

[f̂ c(r)Ψ ](v) =
∑
α∈N̆

f̃ t (R2(v−α)r)Ψ (α) = [C̃Ω̃r (f )Ψ ](v).

Therefore, U(r) = f̂ c(r)−1ĥ(r) = Ω̃r(f )−1Ω̃r (h),
which is circulant.

Hence U(r) = FN�F ∗
N , where � is diagonal, unitary,

and FN is the usual N -DFT matrix. We have:

U0(n, r) = FN�∗F ∗
NA−nFN�F ∗

NAnFNF ∗
N.

But F ∗
NA−nFN = R−n and F ∗

NAnFN = Rn, where Rn is
the n-shift matrix. Therefore, U0(n, r) = FN�∗R−n�Rn ×
F ∗

N . But R−n�Rn is diagonal, and �∗R−n�Rn is another
diagonal. It follows that U0(n, r) is circulant. �
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