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Abstract. This is the concluding work of our series devoted to evaluations of
the complexity and entropy of a motion planning problem for a sub-Riemannian
distribution. We consider some new cases of dimensions and codimensions
of the distribution, in particular (2, 3), (3, 4) and some which are one-step-
bracket-generating. We summarize all known estimations for low dimensional
generic systems. They include all generic systems of corank less than 4, and
other cases going up to corank 10.

1. Introduction

The motivations to study motion planning problems come from robotics [12].
The kinematic constraints of the robot are specified by a non-integrable distribution
∆ of dimension k and codimension p in the phase space R

n.
A Riemannian metric g on ∆ (called sub-Riemannian metric) allows to mea-

sure the length (practical cost) of the curves that may actually be realized by the
robot. These curves (called admissible) are absolutely continuous and are almost
everywhere tangent to the distribution.

The problem is to approximate a segment of smoothly embedded non-admissible
program curve Γ : [0, 1] → R

n, by an admissible one. In practice, this is a part
of the problem to choose the trajectory avoiding the obstacles for robot motion.
We assume there are plenty of obstacles, so we are interested in approximating,
or interpolating the curve Γ by admissible curves, ε-close (in the sub-Riemannian
sense), and we want to analyze what happens when ε tends to zero.

We define the entropy E(ε) of the problem as the asymptotics for ε → 0 of the
the minimal number of admissible arcs of length ≤ ε which interpolate the program
curve Γ. Notice that in all cases considered E(ε) can be shown to be double the
minimal number of ε-sub-Riemannian balls centered on Γ and covering Γ. Another,
less trivial consequence of our results, is that in all the cases treated E( ε

2 ) = EK(ε),
where EK(ε) is the Kolmogorov’s entropy, which is defined as the minimal number
of ε-sub-Riemannian balls covering Γ (and not necessarily centered on it). We leave
the detailed comparison of these definitions beyond the paper.

The complexity C(ε) is another similar characteristic which is the asymptotic
(for ε → 0) of the minimal length divided by ε of an admissible curve which belongs
to the ε- neighbourhood of the curve Γ and joins its end-points.
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In a series of our previous papers [1, 2, 3, 4] on complexity and entropy estima-
tions we considered generic configurations of ∆, g, Γ for a range of k and p values
and described an explicit procedure (synthesis) to get the optimal solution.

As usual, by generic systems we mean an arbitrary motion planning problem
from an open dense subset (with respect to the C∞-topology) of the space of all
problems.

In general, the estimations are either given by the integral along Γ of certain
positive numerical invariant of a germ of the system along Γ or by a sum of values
of the derived invariant upon the set of degenerate points along Γ.

The present paper is in a sense a conclusion of [1, 2, 3, 4] describing the range
of k and p where the estimations for generic motion planning problem are known,
including several new cases. We aim to to cover the most physically interesting
cases of low dimensions. Actually, up to corank 3, our classifcation covers all
generic systems.

The simplest results arise in the one-step-bracket-generating case that is when
∆′ = [∆, ∆] span the ambient space TmR

n at each point m ∈ Γ. In this case, of
course, p ≤ k(k−1)

2 .
In the paper [2] for any point m of Γ we have defined a principal invariant χ(m)

provided that the sub-Riemanian distribution is 1-step-bracket generating. Given
an orthonormal frame in ∆m at a point m on Γ the system determines an affine
subspace

A =

{
M +

s∑
i=1

λiLi

}
of dimension s = p−1 in the space of Ω of all skew-symmetric k×k matrices, which
represent the external differentials of 1-forms which vanish on the distribution and
take unit value on the velocity vector Γ̇ of the curve Γ (the curve is always assumed
to be transversal to the distribution). In particular, the one-forms corresponding
to Li vanish on Γ̇. The invariant χ defined as

(1.1) χ = min
λ

‖M +
∑

i

λiLi‖.

plays a key role. It provides an estimation from below of the system entropy and
in the strictly convex case it provides the precise estimation and simple optimal
strategy.

The problem is strictly convex at the point m ∈ Γ if there are two unit vectors
from the distribution space at m whose Lie bracket at m (defined modulo the distri-
bution) coincides with the velocity Γ̇/∆ at m. The complexity C of an everywhere
strictly convex problem is given by the simple basic formula

(1.2) C =
2
ε2

∫
γ

dt

χ(t)

The entropy in this case is proportional to the complexity with the factor 2π.
Generic one - step - bracket - generating systems with the codimension of the

distribution less than 4 are everywhere strictly convex [2].
The example of a different behaviour of the entropy was described in [4]. This is

the generic 4 dimensional distribution in 10 dimensional ambient space. The first
brackets form a free nilpotent algebra at each point. There is another invariant
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ρ ∈ [0, 1] of the affine subspace A at a point m ∈ Γ. The entropy is given by the
formula

(1.3) E(ε) =
2π

ε2

∫
γ

(3 − |ρ(t)|)dt

χ(t)
.

In the present paper we show that the last formula provides estimations of the
entropy for a rather wide range of systems. Generic systems with dimension 4
of the distribution and codimension p = 4 or 5 are one-step-bracket generating.
We present normal forms of the families of matrices A. They depend on several
invariants. For p = 5 we calculate the χ value in terms of these invariants. How-
ever, the precise formula for the entropy requires long computations which can be
replaced by a rough but easy inequality using a projection lemma. It relates the
value of entropy for the initial system and a system with higher codimension and
free 1-bracket algebra (treated in [4]).

It happens that the one-step-bracket-generating systems with 5 dimensional dis-
tribution are similar to that of 4-dimensional.

When the codimension p = 1
2k(k − 1), the first-bracket extension ∆′ = [∆, ∆] of

a generic system can fail to span the ambient space at some isolated points of Γ.
We call these points singular. We prove that, generically, if singular points exist,
then the leading term of the of the entire entropy asymptotics depends only on
the neighbourhoods of singular points. It is equivalent to the sum over the set of
singular points of terms proportional to ln ε

ε2 .
The lowest dimensional case k = 2, p = 2 when second brackets are needed to

span the ambient space was considered in [4]. The optimal interpolation happened
to be provided by inflectional periodic elliptic curves (Euler ”elastica”).

Here we extend there results for the following (2, 3) and (3, 4) generic systems,
including possible degenerate isolated points.

In the next section we list down all the known results mentioning the reference
for complete proof and the description of the optimal synthesis.

Throughout the paper we use the normal coordinates and normal forms intro-
duced in [1] to [9]. Those are useful generalizations to the sub-Riemannian case of
geodesic coordinates in Riemannian geometry. We refer to these papers for com-
plete settings and proofs.

In the papers [1] to [5] it was also shown that the existence of the following two
types of singularities along Γ has no influence on the estimates (that is why we omit
the discussion of these singularities in the paper):

1. Some invariants used in our estimates tend to infinity when Γ becomes tangent
to the initial distribution or to some bracket extension. For instance, in the 3-space
the points of tangency of a generic curve with a 2-distribution are unavoidable. In
fact, the estimates in the vicinity of these points are negligible.

2. At some isolated points the invariants fail to be smooth, but our formulas
still hold (see [1] to [5]). Therefore, almost everywhere in the paper we ignore this
possible non-smoothness.
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2. Preliminaries. List of known estimates.

Two functions f1(ε), f2(ε), tending to +∞ when ε tends to zero, are called
weakly equivalent (f1 � f2) if k1f1(ε) ≤ f2(ε) ≤ k2f1(ε), for certain strictly
positive constants k1, k2 and sufficiently small ε.

They are called it strongly equivalent ( f1 � f2) if lim
ε→0

f1(ε)
f2(ε) = 1.

We will write also f1 � f2 if lim inf
ε→0

f1(ε)
f2(ε) ≥ 1.

Consider the space of all motion planning problems with given dimension k
and codimension p of distribution, and assume that the system is generic (generic
distribution along generic curve).

The dimensions of the flag of successive bracket extensions ∆ ⊂ ∆′ ⊂ . . . at
a generic point are determined uniquely by k and p. In particular, the following
holds.

Prorosition 1. Generically, the first brackets extension ∆′
m/∆m has maximal

possible dimension k1 = 1
2k(k − 1), at each point m ∈ Γ, if p > 1

2k(k − 1).
For p < 1

2k(k − 1), generically ∆′
m = R

n at any m, and for p = 1
2k(k − 1)

∆′m = R
n for all m ∈ Γ except may be for some isolated singular points of Γ,

where dim(∆′′/∆) = 1, and dim(∆′/∆) = p − 1.

Proof. The space ∆′/∆ is spanned by the brackets [Xi, Xj ] at m of basic vector
fields from ∆. Each bracket determines a p-vector in R

n/∆. So the rank of the
p × k1 matrix B of these vectors is maximal outside the subvariety Σ of singular
points of codimension c which is the product of coranks c = 1×|p−k1−1|. Only for
p = k1 the codimension c = 1 and generic Γ intersects Σ. Clearly the intersection
is transversal, the singular point is a regular point of the hypersurface Σ and after
an appropriate linear transformation of the space TmR

n/∆ the matrix B takes the
form

B = (tb1(t),b2(t), . . . ,bk1−1(t)) + O(t2),

provided that

B∗ = (b1(0),b2(0), . . . ,bk1−1(0))

is not degenerate. Again, by the genericity assumption the vector b1(0) ∈ ∆′′.

For similar reasons, degenerations of the dimensions of the higher flag compo-
nents ∆ · · · ⊂ ∆s ⊂ . . . can happen at isolated points of Γ only when p equals
the sum of maximal possible dimensions of successive extensions ∆s/∆s−1, s =
1, . . . , r. At these points the dimension of ∆r/∆r−1 drops by 1.

For example, the lowest case of this kind (that is a degeneratioin for non one-step-
bracket generating), which is the only one considered in this paper, is k = 2, p = 3.
Here dim(∆′/∆) = 1, and dim(∆′′/∆′) = 2.

In the section 4 below we show that generically the invariants of the systems
used in the estimates are differentiable at singular points. The main lemma 3 of
the section implies all the estimates involving singular points.
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2.1. Known entropy estimations
. 1. If k = 2, p = 1 we have generically a contact distribution, with maybe several
singular Martinet points. This starting case was treated in [1, 10]. If there are no
Martinet points on Γ, then the entropy estimation is

(2.1) E(ε) � 4π

ε2

∫
Γ

dt

χ(t)
.

In this case χ(t) is the modulus of non-zero eigenvalue of the skew-symmetric
matrix M. In the presence of Martinet points w1, . . . , ws the estimation has to be
replaced by

(2.2) E(ε) � −
s∑

i=1

8π ln ε

|χ′(wi)|ε2
.

2. If k = 2, p = 2 then generically no singular points arise, ∆′ is three dimen-
sional, ∆′′ spans the ambient space, and

E(ε) � 2
3 σ ε3

∫
Γ

dt

δ(t)
.

where σ denotes a certain universal constant, σ ≈ 0.00580305, and the invariant δ(t)
was defined in [4] as follows: A canonical 3-frame which consists of the normalized
abnormal vector field in the distribution, its orthonormal and their commutator
determines a metric g′ on ∆′. The one-form γ vanishing on ∆′ and taking value 1
on Γ̇ corresponds to the following skew-symmetric endomorphisms of ∆′(Γ(t)) :

< Â(t)X, Y >g′= dγ(X, Y ) = γ([X, Y ]), ∀X, Y ∈ ∆′(Γ(t)).

We set:
δ(t) = ||Â(t)||g′ , ∀t ∈ [0, 1].

See [4] for the proof and description of optimal synthesis.

3. If k = 2, p = 3 and there are no singular points on Γ then

E(ε) � 2
3 σ ε3

∫
Γ

dt

γ1(t)
.

The invariant γ1(t) is defined in the section 3 below, where the proofs and the
description of optimal synthesis, reducing the problem to certain 2, 2-problem are
also given.

If still k = 2, p = 3, but there are singular points w1, . . . , wr on Γ then

E �
r∑

i=1

− 4π

3σγ′
1(wi)

ln ε

ε3

4. If k = 3, and p is either 1 or 2, the generic distribution is one-step-bracket
generating and has no singular points. The formula (2.1) is valid.

5. For k = 3, and p = 3, then isolated singular points are possible. Without
them the generic distribution is one-step-bracket generating and the formula (2.1) is
still valid. Respectively in the presence of singular points w1, . . . , wr the estimation
is given by the logarithm formula (2.2).
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6. If k = 3, and p = 4, then for a generic distribution ∆, the distribution ∆′′

spans the ambient space (no singular points are possible). The following inequality
holds

2
3 σ ε3

∫
Γ

dt

δa(t)
 E  2

σ ε3

∫
Γ

dt

δa(t)
,

where δa is an invariant of an associated (2, 2) problem defined in the section 8.

7. If k ≥ 4, and p ≤ 3 the generic problem is always strictly convex one-step
bracket generating (see [2]). The formula (2.1) is valid.

8. If k = 4, and p is either 4, or 5, the generic problem is one-step bracket
generating, but not always strictly convex. The inequality

(2.3)
4π

ε2

∫
Γ

dt

χ(t)
 E(ε)  6π

ε2

∫
Γ

dt

χ(t)
is proven in section 5. Moreover, for p = 5 this section contains an explicit formula
for χ in terms of the normal form of the affine family A of skew-symmetric matrices.

9. The case k = 4, and p = 6 without singular points was considered in [4], and
the invariant ρ ∈ [0, 1] of the normal form of the family A was introduced. Then
the asymptotics takes the form

E(ε) � −2π

ε2

∫
Γ

(3 − |ρ(t)|)dt

χ(t)
.

Consequently, the inequality 2.3 also holds. According to logarithm lemma 3, the
estimation is replaced by

E(ε) � −
r∑

i=1

4π ln ε

ε2

(3 − |ρ(wi)|)
χ′(wi)

,

if singular points w1, . . . , wr arise on the program curve.

10. For k = 5 and 4 ≤ p ≤ 10 as well as for k > 5 and 4 ≤ p ≤ 8 generic systems
are one-step-bracket generating and, as it is shown in sections 6,7 the inequality
2.3 still holds. Even for k = 5, p = 10 when the singular points w1, . . . , wr appear
similar inequality holds

−
r∑

i=1

8π ln ε

ε2|χ′(wi)|  E(ε)  −
s∑

i=1

12π ln ε

ε2|χ′(wi)|

Finally, notice that the inequality
4π

ε2

∫
Γ

dt

χ(t)
 E(ε)

always holds for an one-step-bracket generating system [1].

3. Normal form, invariants and entropy in the (2,3) case

Consider a 2-distribution ∆ = {F, G} in R
5 determined by an orthonormal frame

of two vector fields F, G. Assume that F, G, [F, G] has rank 3 everywhere along
the generic curve Γ (according to ”product of coranks” theorem the set where this
does not hold has generically codimension 3).

Assume also ∆′′ = [∆, ∆′] has rank 5 at all points of Γ. Generically it can vanish
at some isolated points of Γ. Then, as it can be easily seen, the Logarithm lemma
from the previous section can be applied.
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Lemma 1. Through each point of Γ there is a unique (up to reversing the orienta-
tion) arclength parametrized abnormal curve meeting the transversality conditions
of the Pontryagin Maximum Principle with respect to Γ.

Proof. Denote the adjoint vector of the system by P. The conditions for abnor-
malily and transversality to Γ are
(3.1)

P0F = P0G = 0, P0[F, G] = 0, P0Γ̇ = 0, P0[F, [F, G]]u0 + P0[G, [F, G]]v0 = 0,

u2
0 + v2

0 = 1.

This implies, since P0 is non-zero,

(3.2) det{Γ̇, F, G, [F, G], [F, [F, G]]}u0 + det{Γ̇, F, G, [F, G], [G, [F, G]]}v0 = 0,

By the genericity assumptions there is a unique (up to a sign) solution and a
unique p0 ∈ RP 4 meeting (3.1).

Now for small arclength s the equations

P [F, [F, G]]u + P [G, [F, G]]v = 0, u2 + v2 = 1

have a unique feedback solution u(P, x), v(P, x).

Then the Cauchy problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dx
ds = F (x)u(p, x) + G(x)v(p, x),

dp
ds = −pdF (x)

dx u(p, x) − pdG(x)
dx v(p, x),

x(0) = x0 ∈ Γ(t),

where p0 is as above, has a unique smooth solution for s small enough. Along
this solution PF = 0, PG = 0, P [F, G] = 0 by construction. The curve Γ being
compact, we can take a uniform bound s0 valid for all points of Γ. This ends the
proof.

Choose any smooth vector field F from the distribution having the abnormals
of lemma 1 as trajectories, and take its orthonormal G in ∆. Clearly, G is defined
by F up to a sign. Flows of vector fields H = [F, G], I = [F [F, G]], J = [G[F, G]]
determine the 3 dimensional parametrized surface

S(y, z, w) = exp(zJ) ◦ exp(yI)(Γ(w)),

which is transversal to the distribution.
Choose the normal coordinates with respect to S (in the sense of the papers [1]

to [9] ) meeting the extra conditions along Γ ⊂ S :

F (w) =
∂

∂x1
, G(w) =

∂

∂x2
.

Straightforward computations (see also, [4]) show now that inside the ε tube
around Γ the system takes the following form in these coordinates:
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(3.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = u + O(ε2)
ẋ2 = v + O(ε2)
ẏ = x2

2 u − x1
2 v + O(ε2)

ż = (β1x1 + β2x2)
(

x2
2 u − x1

2 v
)

+ O(ε3)

ẇ = (γ1x1 + γ2x2)
(

x2
2 u − x1

2 v
)

+ O(ε3).

Calculating the leading terms of the commutators, we get I = − 3
2β1

∂
∂z− 3

2γ1
∂

∂w ,

J = − 3
2β2

∂
∂z − 3

2γ2
∂

∂w up to terms of higher order. The vector field F corresponds
to u = 1, v = 0 and produces the abnormals, hence β1 = 0, β2 = − 2

3 , γ2 = 0.
Therefore, up to higher order terms, we have

⎧⎪⎨⎪⎩
F = ∂

∂x1
+ x2

2
∂
∂y − x2

2
3

∂
∂z + γ1x1x2

2
∂

∂w ,

G = ∂
∂x2

− x1
2

∂
∂y + x1x2

3
∂
∂z − γ1x2

2
2

∂
∂w ,

or equivalently

(3.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = u
ẋ2 = v
ẏ = x2

2 u − x1
2 v

ż = − 2
3x2

(
x2
2 u − x1

2 v
)

ẇ = γ1x1

(
x2
2 u − x1

2 v
)
.

Let ω be the unique (along Γ) one-form such that ω(∆′) = 0, ω(Γ̇) = 1, ω(J) =
1.

Then dω|∆′ = dx2∧dy− 3
2γ1dx1∧dy, hence − 2

3dω(F, [F, G]) = γ1 = ω([F [F, G]]).

Lemma 2. The values of ω([F, [F, G]]) at Γ do not depend on the choice of F apart
from the abnormal trajectories.

Proof. For another choice F̃ = F + αF + βG, G̃ = G + γF + δG we get

ω([F̃ , [F̃ , G̃]]) = dω(F̃ , [F̃ , G̃]) + [F̃ , G̃]ω(F̃ ) − F̃ω([F̃ , G̃]),

where the last two terms vanish. Clearly, [F̃ , G̃] = [F, G](1 + α)(1 + δ) + H,

where H ∈ ∆, and also [F̃ , [F̃ , G̃]] = [F (1 + α) + βG, [F, G](1 + α)(1 + δ) + H ] =
[F, [F, G]](1+α)2(1+δ)+[G, [F, G]]β(1+α)(1+δ)+H̃, where H̃ ∈ ∆′, and β|Γ = 0.

Hence, ω([F̃ , [F̃ , G̃]]) = ω([F, [F, G]]) at the points of Γ, as required.
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So reparamerizing z and therefore the surface S, the lowest order terms in normal
form of the system become as follows

(3.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = u
ẋ2 = v
ẏ = x2

2 u − x1
2 v

ż = x2

(
x2
2 u − x1

2 v
)

ẇ = γ1x1

(
x2
2 u − x1

2 v
)
.

Notice, that the normal form 3.5 differs (after an appropriate reparametrization
of Γ) from that for the ”car with a trailer” system from [4]

(3.6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ1 = u
ẋ2 = v
ẏ = x2

2 u − x1
2 v

ẇ = x1

(
x2
2 u − x1

2 v
)
.

only by an extra constraint equation for z.

Prorosition 2. The optimal ε-interpolation for 3.5 is given by the same syntesis
(”periodic elastica”) as for (3.6) involving Jacobi elliptic functions (see [4]):

v = 1 − 2 dn
(

K

(
1 +

4t

e

))2

,

u = −2 dn
(

K

(
1 +

4t

e

))
sn
(

K

(
1 +

4t

e

))
sin(

ϕ0

2
),

where K is the quarter period of the elliptic functions such that 2 Eam(K) = K,
and approximately ϕ0 = 130o.

Proof. Since the periodic elastica l provides the maximum of w|ε satisfying the
constrains y |0 = y|ε = 0, it will be sufficient to show that for this solution the
equality z|ε − z|0 = 0 also holds. We have

z|ε − z0 =
∫
l

x2dy = yx2 |ε0 −
∫
l

ydx2 = −
ε∫

0

yvdt

= −
ε∫

0

y

(
1 − 2dn

(
K

(
1 +

4t

ε

)))2

dt = 0

since the elliptic function has period ε
2 , is even with respect to the point ε

2 , and the
the function y(t) is odd with respect to the same point.



10 JEAN-PAUL GAUTHIER, VLADIMIR ZAKALYUKIN

4. Logarithmic singular points for the estimates

In this section we prove a lemma, which provides the entropy estimation in
presence of singular points on Γ. The lemma is a strong - equivalence analog of the
result from [12], which deals with weak equivalence only. Obviously, similar results
hold in more general setting. However, for the sake of shortness, we state and prove
the lemma only for one-step-bracket generating and (2, 3) cases.

The proposition 1 and our normal form techniques (see [1] to [7]) imply the
following

Prorosition 3. If for a generic system with p = k1 a point m ∈ Γ is singular then
in some normal coordinates (see [2, 4]) the nilpotent approximation of the system
near m = {w = 0} in the ε-tube around Γ has the form:

(4.1)

⎧⎨⎩
ẋi = ui + O(ε2), i = 1, . . . , k
ẏj = u∗Lj(w)x + O(ε2), j = 1, . . . , k1 − 1
ẇ = u∗(wM(w))x + O(ε3).

Here M(t), Lj(t) are skew-symmetric matrices smoothly depending on t with values
at the origin spanning the space Ω, and ∗ means the transposition.

In the (2, 3) case

Prorosition 4. If for a generic system with k = 2, p = 3 a point m ∈ Γ is singular
then in some normal coordinates the nilpotent approximation of the system near
m = {w = 0} in the ε-tube around Γ has the form:

(4.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = u + O(ε2)
ẋ2 = v + O(ε2)
ẏ = x2

2 u − x1
2 v + O(ε3)

ż = − 2
3x2

(
x2
2 u − x1

2 v
)

+ O(ε4)

ẇ = (wγ1(w)x1 + a(w)x2)
(

x2
2 u − x1

2 v
)

+ O(ε4).

Here γ1(w), a(w) are smooth functions in w, γ1(0) �= 0.

These normal forms and the definitions of the system invariants [2, 4] imply the
following.

Corollary 1. For a generic singular point there are well defined derivatives of the
invariants χ(w), in the first bracket generating case, and γ1 in (2, 3) case. Moreover
in the first bracket generating case when k = 4 there is a well defined limit for w → 0
of the invariant ρ(w).

Lemma 3. In the above generic cases the entropy asymptotic of the piece of Γ :
[−1, 1] �→ R

n containing a single singular point at the origin is given by:

E � − 8π ln ε

|χ′(0)|ε2

- in the one step bracket generating case with k = 2, or k = 3;
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E � −4π(3 − 2|ρ(0)|) ln ε

|χ′(0)|ε2

- in the one step bracket generating case with k = 4; and, finally,

E � − 4π ln ε

3σ|γ′
1(0)|ε3

in the (2, 3) case.

Proof. Consider a half of the curve Γ+[0, 1] → R
n. Set s = 2 in the one-step-

bracket generating case, and s = 3 for 2, 3 case. Introduce a metric on Γ, say,
determined by parameter t ∈ [0, 1]. Split Γ into two segments S0 = {t : t ∈ [0, ε]}
and the remaining piece S1 and estimate the entropy separetely along each of them.

The space ∆(s) coincides with the ambient tangent space at the origin and hence
in its vicinity. Hence, by the sub-Riemannian ball-box theorem ([11, 12, 13]) there
is a constant K0 such that the ε-sub-Riemannian ball centered at the origin contains
the K0ε

s ordinary Riemannian ball around the origin. Take now a value ε0 > 0
such that for any t ∈ [0, ε0] and for any ε ≤ ε0 the K

2 εs-Riemannian ball centered at
Γ(t) is contained in the ε-sub-Riemannian ball around the point Γ(t). For arbitrary
ε ≤ ε0 dividing the segment [0, ε] into 2

K ε1−s pieces, each of the length K
2 εs, there

exist an admissible curve ε-interpolating the segment t ∈ [0, ε] of Γ of total entropy
2
K ε1−s.

Now we will estimate the entropy over segment S1 similarly to the proof of
Lemma 4 in [4].

Divide the segment S1[ε, 1] into pieces of length ε. For arbitrary piece θ =
[tj , tj+1] besides the genuine system S defined by normal form from proposition
3 (respectively, 4 ) with w = t ∈ θ consider an approximate system S∗ defined by
the same normal form 3 or 4 with the coefficients of all terms (like Lj, γ1, etc.)
being fixed at the boundary instant tj . Take an ε-interpolation of θ by a sequence
of admissible arcs gi with end-points on Γ and of sub-Riemannian length ε of one
of these systems. An admissible arc g̃i of the other system with the the same ini-
tial data at the left end-point and the same control as gi deviates from the right
end-point of gi by the vector δi whose normal form coordinate components are uni-
formly bounded by ‖x‖ ≤ c1ε

2, ‖y‖ ≤ c2ε
3, ‖w‖ ≤ c3ε

3 in the one-step-bracket
generating case, and by ‖x‖ ≤ c4ε

2, ‖y‖ ≤ c5ε
3, ‖w‖ ≤ c6ε

4 in the (2, 3) case.
Here c1, . . . , c6 -are certain constants uniform for the entire Γ. Applying the sub-
Riemannian ball-box theorem adapted to the normal coordinates, the end-points
of δi can be joined by an auxiliary admissible arc δ̃i of the length cε1+q with some
positive constants q (in our cases q = 1/4) and c. The system of combined arcs g̃i

and δ̃i forms a ε(1 + cεq) interpolation of θ with the same number of segments but
admissible with respect to the other system.

The entropy of the system S∗ restricted to each θ is provided by either by the
expression

Eθ,S∗ � (ε)
4π|tj+1 − tj |

|χ(θ)|ε2
either by � 2π(3 − |ρ(θ)|)|tj+1 − tj |

|χ(θ)|ε2

in the one-step-bracket generating case (see [2, 4]) or by

Eθ,S∗ � 2π|tj+1 − tj |
3σ|γ1(θ)|ε2
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in (2, 3) case (section 3). So, summing up over all θ-pieces we get either

ES∗(ε) �
1∫

ε

4πdt

|χ(t)|ε2

or the other respective integral in the other cases. This implies either

ES∗(ε) � − 4π ln ε

|χ′(0)|ε2
,

or another respective appropriate expression.
In fact, the inverse of the integrand which we denote by f(t), is smooth and

vanishes at the origin. Hence in some vicinity of the origin f(t) = f ′(0)t(1 + th(t))
and 1

f(t) = 1
f ′(0)t − h̃(t) with some smooth functions h(t), h̃(t). So,

1∫
ε

dt

f(t)
=

1∫
ε

dt

f ′(0)t
−

1∫
ε

h̃(t)dt

f ′(0)
� − ln ε

f ′(0)
,

when ε → 0.
On the other hand, the constructed systems of arcs show (similarly to Lemma

4 from [4]) that ES∗(ε(1 + kεq)2) � ES(ε(1 + cεq)) � ES∗(ε). Hence ES(ε) �
ES∗(ε). Combining this with the estimates over S0, which is relatively negligible,
and multiplying by 2 for entire Γ, crossing the singular hypersurface, the required
estimates hold.

5. Generic one-step-bracket generating cases with k = 4 and p < 6

5.1. Normal forms. Denote by Py = R{L1, . . . , Ls} and by P = R{M, L1, . . . , Ls}
the vector subspaces associated to A. These matrices are defined up to a linear
transformation G of the space Ω of k × k skew symmetric matrices, which preserve
A, and an orthogonal transformation U of the distribution ∆. This pair acts on
{M, Li} as follows:

M �→ G(U−1MU), Li �→ G(U−1LiU).

A normal form of the system is an appropriate choice of the matrices from the
orbit of the action.

We describe now normal forms of the families A when the distribution is four
dimensional. We will use standard representation of a skew-symmetric 4×4 matrice
as a sum of pure quaternions, generated by i, j, k :

i =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠ , j =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , k =

⎛⎜⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠ ,

and anti-quaternions generated by ı̂, ĵ, k̂, with:

ı̂ =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , ĵ =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , k̂ =

⎛⎜⎜⎝
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎠ .
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Recall that, skew-symmetric matrices, which have double eigenvalues form two
3-dimensional mutually transversal subspaces Q (of pure quaternions) and Q̂ of
(anti-quaternions).

The case when p = 6 is maximal possible, that is when the first brackets form
a free nilpotent algebra, was treated in [4]. In particular, the normal form is
M = i + ρ̂i, {Li} = {̂i, , j, ĵ, k, k̂} where the invariant ρ satisfies 0 ≤ ρ ≤ 1.

Prorosition 5. The normal form of a generic system with k = 4, p = 5 is

(5.1) M = α̂i + βĵ; {L} = {i + ρ1̂i, j + ρ2ĵ, k, k̂}
with α, β, ρ1, ρ2 ∈ R.

Proof. The intersections of P 4
y with each of Q and Q̂ are at least one-dimensional.

Up to an appropriate action of the orthogonal group of ∆ which splits into the prod-
uct of the conjugations with quaternions and with anti-quaternions, we can always
assume, that P 4

y ∩ Q contains the vector k, and P 4
y ∩ Q̂ contains k̂.

Now the two-dimensional factor-space P 4
y /R{k, k̂} is spanned by two operators

L∗
1 = a11i + a12j + b11̂i + b12ĵ,

L∗
2 = a21i + a22j + b21̂i + b22ĵ

with some constants ai,j , bi,j which we organize into two matrices

A =
(

a11 a12

a21 a22

)
, and B =

(
b11 b12

b21 b22

)
.

An orthogonal transformation O1 of ∆ which preserves k, k̂, î, ĵ acts as a rotation
in i, j plane. Denote by O2 a similar rotation of î, ĵ plane. A change of basis in
R{L∗

1, L
∗
2} acts on A, B as the multiplication from the left by a non-degenerate 2×2

matrix V. Hence, the triple acts on A, B as A, B �→ V AO1, V BO2.
Assume the rank of A is 2. Due to the condition that L∗

1, L
∗
2 are independent,

the other cases are similar or trivial.
Represent the matrix A−1B as the product A−1B = O1DiagO−1

2 with some
diagonal matrix Diag and orthogonal O1, O2.

Take V = O−1
1 A−1, then V AO1 = Id, and V BO2 = O−1

1 A−1BO2 = Diag, and
get the required normal form.

Clearly, the values of α, β, ρ1, ρ2 are invariants of the system. In fact, modulo
Py, the matrix M takes the form M = α̂i + βĵ.

Remark 1. Similar arguments justify the following normal form for the generic
system with k = 4, p = 4 :

M = α̂i + βĵ + γk̂,

{Li} =
{
i + ρ1̂i; j + ρ2ĵ; k + ρ3k̂;

}
.
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5.2. Entropy exponent estimations for k = 4, p = 5. According to the normal
form from the previous subsection up to a multiplication of M by a scalar factor
we can take

M = cos θ̂i + sin θĵ, L1 = i + ρ1î, L2 = j + ρ2ĵ, L3 = k, L4 = k̂.

The formula
‖S‖ =

(
x2 + y2 + z2

) 1
2 +

(
x̂2 + ŷ2 + ẑ2

) 1
2

for the norm of the matrix S = xi + yj + zk + x̂̂i + ŷĵ + ẑk̂
implies that the entropy exponent takes the form

(5.2) χ = min
λ

((
λ2

1 + λ2
2 + λ2

3

) 1
2 +

(
(cos θ + ρ1λ1)2 + (sin θ + ρ2λ2)2 + λ2

4

) 1
2
)

Prorosition 6. The system is strictly convex if and only if the values of ρ1, ρ2

satisfy the inequality
ρ2
1 − 1

1 − ρ2
2

> 0

(the unit separates the squares). In this case the value of χ is

χ = |cos(θ + ξ)|

where tan ξ =
(

ρ2
1−1

1−ρ2
2

) 1
2

.

In the non-strictly convex case (when the inequality fails) the value of χ is the
maximum of 1 and cos2 θ

ρ2
1

+ sin2 θ
ρ2
2

.

Proof.
Clearly, to minimize the expression (5.2) we have to set λ3 = λ4 = 0.
The function

N =
(
λ2

1 + λ2
2

) 1
2 +

(
(cos θ + ρ1λ1)2 + (sin θ + ρ2λ2)2

) 1
2

fails to be smooth at λ1 = λ2 = 0 with the value N1 = 1, and at λ1 = − cos θ
ρ1

, λ2 =

− sin θ
ρ2

with the value N2 = cos2 θ
ρ2
1

+ sin2 θ
ρ2
2

. Outside these points differentiation of N

with respect to λ1 and λ2 provides a smooth critical point (λ∗
1, λ∗

2) given by the
formulas

(5.3) λ∗
1 = cos θ

c∗ρ1

1 − c∗ρ2
1

, λ∗
2 = sin θ

c∗ρ2

1 − c∗ρ2
2

,

where

c∗ =
1 −

(
ρ2
2−1

1−ρ2
1

) 1
2

tan θ

ρ2
2 −

(
ρ2
2−1

1−ρ2
1

) 1
2

ρ2
1

,

which hold in some subset D in (ρ1, ρ2).
The respective value of N takes the form

N∗ =
(
(λ∗

1)
2 + (λ∗

2)
2
) 1

2 +

((
λ∗

1

c∗ρ1

)2

+
(

λ∗
2

c∗ρ2

)2
) 1

2

= |cos(θ + ξ)|

where tan ξ =
(

ρ2
1−1

1−ρ2
2

) 1
2

.
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Recall that the system is strictly convex if and only if there exist a pair of
mutually orthogonal vectors x, u such that xMu = χ, xLiu = 0, that is the bracket
[x, u] is co-linear to the tangent vector Γ̇ of the program curve.

The required vectors u = (u1, . . . , u4), x = (x1, . . . , x4) satisfy the equations
xku = xk̂u = 0, which provide u1x4 − u4x1 = u2x3 − u3x2 = 0. Hence, u4 =
au1, x4 = ax1, u3 = bu2, x3 = bu2 for some constants a, b except for some obvious
cases (e.g., u1 = 0, x1 = 0) which can be treated similarly.

Orthogonality u · x = 0 and conditions ‖u‖ = ‖x‖ = 1 imply

x1 = −u2

(
1 + a2

1 + b2

) 1
2

, x2 = u1

(
1 + a2

1 + b2

) 1
2

.

Finally, the equations x(i + ρ1 î)u = 0 and x(j + ρ2ĵ)u = 0 imply that

(1 + ρ1)(1 + ρ2)
(1 − ρ2)(ρ1 − 1)

≥ 0.

The latter implies that the unit lies between ρ2
1 and ρ2

2 as required.
Calculating the values of

a2 =
(1 + ρ1)(1 + ρ2)
(1 − ρ1)(ρ2 − 1)

, b2 =
(1 − ρ1)(1 + ρ2)
(1 + ρ1)(ρ2 − 1)

,

a sequence of nice simplifications yields χ = xM∗u = |cos(θ + ξ)| which proves the
proposition.

Remark 2. If both ρ2
i , i = 1, 2 are either greater or smaller than 1, the value χ

is either 1 or cos2 θ
ρ2
1

+ sin2 θ
ρ2
2

. If all the invariants are constant along Γ the optimal
synthesis in this case can be found solving maximization problem with 4 constrains
(similar to the case k = 4, p = 6, solved in [4]). However, to get easy practi-
cally reasonable estimation of the entropy exponent it will be sufficient to apply the
projection Lemma 4 from the following section.

6. Generic systems with k = 5

Prorosition 7. A generic system with k = 5, and p = 10 which corresponds to a
free nilpotent algebra of 1-brackets on 5-dimensional distribution has the following
normal form:

M = αî; {Li} = {i + ρî, ĵ, j, k̂, k, dxs ∧ dx5, s = 1, 2, 3, 4}.
Here we write any skew-symmetric form on R

5 as a linear combination
∑

aijdxi∧
dxj of external two-forms on the tangent space equipped with some orthogonal
coordinates x1, . . . , x5. To underline the relation with the case k = 4 we keep the
quaternion notations for the following forms in x1, . . . x4 only: i = dx2∧dx1 +dx4∧
dx3, î = dx2 ∧ dx1 − dx4 ∧ dx3, etc.

Proof. The hyperplane Py which in this case has dimension 9 is determined by
a single linear equation on the coefficients aij of the form

Py = {aij :
∑
i,j

aijpij = 0}.
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Here pij form a skew-symetric set of constants. Let b = (b1, . . . , b5) be a kernel
vector of the skew-symmetric matrix (pij):

pijb
j = 0, i = 1, . . . , 5.

The orthogonal change of coordinates (xi) �→ (x′
i) such that x′

5 =
∑
j

bjxj has the

following property. For an arbitrary linear form G(x′
1, . . . , x

′
4), the external product

dG∧ dx′
5 belongs to Py . In fact, dx′

5 ∧ dxj = bjdxi ∧ dxj . Hence the coefficients aij

of the forms ωk = dx′
5 ∧ dxk are

aij(ωk) = biδj
k,

and
∑
ij

aij(ωk)pij =
∑
i

bipik = 0, as required.

The projection of Py to the space of 4×4 skew-symmetric matrices in x′
1, . . . , x

′
4

along the subspace spanned by the forms dx′
5 ∧ dx′

i is a hyperplane in the 6-
dimensional space. Now the normal form reduction obtained for matrices in four
variables provides

M = âi, L1 = i + ρ̂i, L2 = j, L3 = ĵ, L4 = k, L5 = k̂,

together with L6 = dx5 ∧ dx1, . . . , L9 = dx5 ∧ dx4. The proof is complete.

Remark 3. Using the normal coordinates along Γ associated with the coordinates
from Proposition 7 the entropy estimation reduces to the problem with k = 4 di-
mensional distribution only.

In fact, in these coordinates the nilpotent approximation splits into a subsystem
which depend only on x′ = (x1, . . . , x4), and u′ = (u1, . . . , u4) and further 5
constraint equations which involve x5, u5.

(6.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ′ = u′

ẋ5 = u5

ẏi = u′∗L′
iix

′, i = 1, . . . , 5
ẇ = u′∗Mx′

ẏ5+j = u5x
′
j − x5u

′
j, j = 1, . . . , 4

Clearly, the associated interpolation problem to find a trajectory of sub-Riemannian
length ε which maximizes w|ε − w|0, and which joins the points of Γ, has optimal
solution with u5(t) = 0, x5(t) = 0, since the projection to x′, u′, w variables of
any admissible trajectory is an admissible trajectory of the reduced nilpotent prob-
lem with 4-dimensional distribution. According to Lemma 4 from [4], the entropy
estimations of the one-step bracket generating system and that of its nilpotent
approximation coincide.

Remark 4. Notice that a similar reduction from k to k−1 is valid for any odd k. For
instance, the entropy estimation for everywhere one-step-bracket generating system
with k = 3, and p = 3 is provided by the respective contact nilpotent k = 2, p = 1
reduced system.

As we have seen, in the non-complete cases with p < 1
2k(k − 1) the normal form

of the nilpotent approximation depends on several invariants, and precise entropy
estimation in the non-strictly convex setting requires long calculations. Practically,
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it seems reasonable to have easier approximative formulas. The following lemma 4
combined with the results of ([4]) and of these sections provide a comparison of the
non-complete systems with a properly chosen complete extension.

Lemma 4. Given an affine s-dimensional family of skew-symmetric matrices M,
L1, . . . , Ls of size n×n there exist auxiliary skew-symmetric matrices Zs+1, . . . , Zm−1

where m = n(n−1)
2 such that M, Li, Zj form a basis in the ambient space of skew-

symmetric matrices of the given size and

(6.2) χ(M, Li) = min
λ

‖M +
∑

λiLi‖ = min
λ,µ

‖M +
∑

λiLi +
∑

µjZj‖

λ ∈ R
s, µ ∈ R

m−s−1.

In other words, we want to underline that any one-step-bracket-generating prob-
lem is a projection of a system with free algebra of the first brackets.

The results of ([4]) on a free algebra with 4-dimensional distribution in R
10

provide an ε- interpolating strategy which shows that the complexity (entropy) lies
inside the range [e, 3

2e] where e =
∫
Γ

2ds
ε2χ(s) - is the minimal estimation which is

attained in the strictly convex case.
Since χ is preserved under projection, the strategy and the estimations hold also

for any non-free system. Notice that the projection of an admissible trajectory is
of course an admissible trajectory of the projected system.

Proof. We will use induction upon the number of extra matrices. It is sufficient
to show that if Z is linearly independent with M, L1, . . . , Ls then for some value
of τ ∈ R the matrix Ẑ = Z + τM satisfies the equality

(6.3) min
λ∈Rs

‖M +
∑

λiLi‖ = min
λ ∈ R

s,
µ ∈ R

‖M +
∑

λiLi + µẐ‖.

At first, notice that the right hand side of (6.3) never exceeds the left hand side.
Assume that for τ = 0 it is strictly less (otherwise we just take Ẑ = Z), and the
minimal value m∗ of the right hand side is attained at µ1, λ̂. Assume also, that for
µ = 0 the minimum is m0 and is attained at λ0.

For each value of τ the function fτ (µ) = min
λ∈Rs

‖M +µẐ+
∑

λiLi‖ = min
λ∈Rs

‖M(1+

µτ) + µZ +
∑

λiLi‖ is convex (see e.g. [2]) in µ and is continuous in µ and τ.
Its minimal value mτ = min

µ
fτ (µ) and the minimum point(s) also depend con-

tinuously on τ. The value of fτ (µ) at µ = 0 is always m0. Let τ∗ = 2
µ1

, µ = −µ1,

and λ = −λ̂, then the value of

‖M + µẐ +
∑

λiLi‖ = ‖ − M − µ1Z −
∑

λ̂iLi‖ = m∗.

So, when τ runs from 0 to τ∗ the minimum point of fτ (µ) moves from µ1 to the
point at the other side of the origin. Hence for some τ it coincides with the origin
providing the minimal value m0, as required.
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7. Elimination of triple eigenvalues

Prorosition 8. For a generic system with k > 5 and p ≤ 8 the χ value is attained
at a matrix with at most 4 dimensional maximal eigenvalue subspace and hence the
optimal strategy for the restriction of the system to this subspace of the distribution

provides the entropy estimation interval
[∫
Γ

4πds
ε2χ(s) ,

3
2

∫
Γ

4πds
ε2χ(s)

]
.

Proof. The following lemma (5) implies that for generic Motion Planning Prob-
lems with p ≤ 8 the affine subspaces M +

∑
λiLi can meet the subvariety Σ3 of

the skew-symmetric n×n matrices with triple eigenvalue only at isolated points on
the program curve Γ. These isolated points make no contribution to the entropy
(complexity) since χ remains positive and continuous in their vicinity.

In a neighbourhood of a point m ∈ Γ outside this intersection, similarly to [1, 2],
and to the previous section, there exists a normal coordinate system along Γ such
that the normal form of the system contains a subsystem depending only on 4
coordinates x, such that the optimal interpolation corresponds to zero values of the
remaining coordinates.

Lemma 5. The subvariety Σ3 has codimension 8 in the space of all n × n skew-
symmetric matrices.

Proof of the lemma. The stationary subgroup SA ⊂ O(n) of the skew-

symmetric matrix A = diag(B, B, B, C) where B =
(

0 −1
1 0

)
, and C has

distinct eigenvalues different from ±√
(−1) consists of the exponentials of skew-

symmetric matrices commuting with A and has dimension 9 in the orthogonal
group O(n). So, the dimension of the O(n)-orbit of A is n(n−1)

2 − 9 and the variety
σ3 which at a regular point is the union of the orbits of λA, λ ∈ R has codimension
8.

8. (3,4) - case

Generic problem for a sub-Riemannian system with a growth vector (3,3,1) has
the following normal form of its nilpotent approximation.

(8.1) ẋ1 = u1, ẋ2 = u2, ẋ3 = u3, ẏi = x∗Jiu,

where i = 1, 2, 3 and Ji - is the basis of skew-symmetric 3×3 forms in x, and finally

(8.2) ẇ =
∑

i=1,2,3

Qi(x)ui,

where Qi are quadratic forms in x.

The optimal synthesis here is given by an interpolating curve γ in the x space,
which has length ε, starts and terminates at the origin, has zero integrals of ẏi

along, and maximizes the integral
∫
γ

ẇdγ. Of course, addition of a gradient of a

cubic form to the vector field Q = (Q1, Q2, Q3) does not affect the maximizing
integral.
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Remark 5. The problem can be stated in an ”isoperimetric” version. Find a loop
γ in R

3 of given length, which maximizes the flux of curl(Q) through the 2-chain
bounded by γ and providing the zero circulation of the vector fields Y = (xJiu), i =
1, 2, 3.

The proof of the following statement is straightforward.

Prorosition 9. The Hamilton equations of the Pontriagin Maximum Principle
applied to the problem stated are

(8.3) u̇ = (p + Ax) ∧ u, ẋ = u, ṗ = 0.

where Ax = curl(Q) (hence the matrix A is traceless), p -are the impulses adjoint
to the y coordinates. Along the required periodic curve they vanish.

Remarks. 1. The respective Hamiltonian function has the form H = (p1 +
Q1(x))2 + (p2 + Q2(x))2 + (p3 + Q3(x))2. The addition to Qi of the gradient of the
cubic form in x can be compensated by the canonical transformation p �→ p+gradF
which preserves the projections of the trajectories to the x space.

2. The O(3) action on x induces the action on A by conjugation.

Prorosition 10. A traceless matrix A can be reduced by an orthogonal transfor-
mation to the form

A =

⎛⎝ 0 a b
c 0 d
e f 0

⎞⎠
with zero diagonal entries.

Proof. The zero level set of the quadratic form (Ax, x) = 0 is a cone, since a
traceless matrix define a non-definite form. In canonical coordinates the equation
of the cone can be written as

αx2
1 + βx2

2 − δx2
3 = 0

with α + β − δ = 0, α, β, δ > 0.
Any plane section of the cone passing through the x3 axis is a union of two

straight lines. Each of them forms an angle > π
4 with the x3 axis. So for any

straight line ξ which belongs to the cone there is a unique choice of two other lines
also belonging to the cone and forming together with ξ an orthogonal frame. In
this frame the matrix A has the required form.

Lemma 6. Entropy estimation. The maximal admissible value of
∫
γ

ẇdγ be-

longs to the interval [χ0, 3χ0] where χ0 is the maximum of the respective solutions
(provided by elastica [4]) of the three (2, 2) motion planning problems

ẋ1 = u1,
ẋ2 = u2,
ẏ = 1

2u1x2 − 1
2x1u2,

ẇ = a1x
2
2u1 + a2x

2
1u2

with the pairs of constants either a, b either c, d or e, f.
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Proof. The flux of the vector field

curl(Q) = (ay + bz)
∂

∂x
+ (cy + dz)

∂

∂y
+ (ex + fy)

∂

∂z

through a 2- chain bounded by γ is the sum of the fluxes of the coordinate fields.
Each of these fields separately corresponds to the (2, 2) integrable problem dis-

cussed in [4]. Taking a projection of an admissible curve to a coordinate plane
we get an admissible curve for the (2, 2) problem (with the inequality ≤ ε length
constraint). So the result does not exceed three times the maximal value of the
respective estimations of the (2, 2) Motion planning problems. On the other hand,
any elastica coordinate plane curve is admissible for the initial three dimensional
problem. So the estimation from below is the maximum of the entropy exponents
of the coordinate plane (2, 2) problems.

Remark 6. When determining the normal form of A one degree of freedom re-
mains. Rotating the vector ξ along the cone the values of a, b, . . . , f constants vary.
By an appropriate choice of ξ we get a better estimation max

ξ
χ0 instead of χ0.

References

[1] J.P. Gauthier, V.M. Zakalyukin, On the codimension one motion planning problem, Journal
of Dynamical and Control Systems, 11(2005), n 1, pp.73 -89.

[2] J.P. Gauthier, V.M. Zakalyukin, On the One-Step-Bracket Generating Motion Planning Prob-
lem, Journal of Dynamical and Control Systems, 11(2005), n 2, pp. 215 - 235.

[3] J.P. Gauthier, V.M. Zakalyukin, Robot Motion Planning: A Wild Case, Proceedings of the
Steklov Institute of Mathematics, 250 (2005), pp. 56 - 69.

[4] J.P. Gauthier, V.M. Zakalyukin, On the Motion Planning Problem, Complexity, Entropy
and Nonholonomic Interpolation, to appear in Journal of Dynamical and Control Systems,
12(2006), 27 pp.

[5] J.P. Gauthier, V.M. Zakalyukin, Nonholonomic Interpolation: A General Methodology for
Motion Planning in Robotics, to appear in the Proceedings of MTNS 2006 Conference, Kyoto,
Japan, July 2006, 12 pp.

[6] A.A. Agrachev, H.E.A. Chakir, J.P. Gauthier, Subriemannian Metrics on R3, in Geometric
Control and Nonholonomic Mechanics, Mexico City 1996, pp. 29-76, Proc. Can. Math. Soc.
25, 1998.

[7] A.A. Agrachev, J.P. Gauthier, Subriemannian Metrics and Isoperimetric Problems in the
Contact Case, in honor L. Pontriaguine, 90th birthday commemoration, Contemporary
Maths, Tome 64, pp. 5-48, 1999 (Russian). English version: journal of Mathematical sci-
ences, Vol 103, N◦6, pp. 639-663.

[8] G. Charlot Quasi Contact SR Metrics: Normal Form in R
2n, Wave Front and Caustic in R

4;
Acta Appl. Math., 74, N◦3, pp. 217-263, 2002.

[9] H.E.A. Chakir, J.P. Gauthier, I.A.K. Kupka, Small Subriemannian Balls on R3, Journal of
Dynamical and Control Systems, Vol 2, N◦3, , pp. 359-421, 1996.

[10] J.P. Gauthier, F.Monroy-Perez, C. Romero-Melendez, On complexity and Motion Planning
for Corank one SR Metrics, COCV, v.10, 2004, p.634 - 655.

[11] M. Gromov, Carnot Caratheodory Spaces Seen from Within, Eds A. Bellaiche, J.J. Risler,
Birkhauser, pp. 79-323, 1996.

[12] F. Jean, Complexity of Nonholonomic Motion Planning, International Journal on Control,
Vol 74, N◦8, pp 776-782, 2001.

[13] F. Jean, Entropy and Complexity of a Path in SR Geometry, COCV, v. 9, 2003, p. 485 - 506.
[14] F. Jean, E. Falbel, Measures and transverse paths in SR geometry, Journal d’Analyse
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