
Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Programming Level-up
An Introduction to Pandas

Jay Morgan



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Outline

1 Pandas

Introduction

Manipulating data

Inspecting our data

Operations

Different types of data



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

What is Pandas?

Pandas a library to make the representation and manipulation of
tabular data easier in Python.
A table of data is called a ’Dataframe’ that consists of named
columns and (optionally) named rows.
https://pandas.pydata.org/

https://pandas.pydata.org/


Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Installing and importing pandas

To install pandas, we can either use conda:

1 conda install pandas

or with pip:

2 pip install pandas

After pandas has been installed. We shall import it into our scripts
(using the common convention of aliasing the library as pd):

3 import pandas as pd



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Creating a dataframe

Now that pandas has been successfully imported, we’re ready to
create and manipulate our own dataframes. To create a dataframe,
we first need to organise our data in appropriate format. Perhaps one
of the most simple formats for this data is a dictionary, where each
value is a list:

4 data = {"col1": [1, 2], "col2": [3, 4]}

We see that each ’key’ is the representation of a column of data, and
the value of this key is a list of data for this column. To convert this
data to a dataframe, we need only to call the DataFrame class:

5 df = pd.DataFrame(data)



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Creating a dataframe

df (dataframe for short) is now our representation of the dataframe:

We see that each column is named using the keys in our data
dictionary, and the values of the column correspond to the elements
in the list. To the left of the dataframe we have a numerical index
starting at 0.



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Access elements in our dataframe

Extracting particular values from this dataframe can be accomplished
using the loc and iloc class methods. First let’s look at using loc,
and later on we’ll investigate the differences between these two
methods.

Let’s say we want to get all the data for the first row of our
dataframe:

6 df.loc[0]

This returns a ’Series’, which is just a representation of a vector of
data.



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Access elements in our dataframe

To access a single value from this series, we can specify the column
name:

7 df.loc[0]["col1"] # returns one

Or, we can more simply add the column name into the loc:

8 df.loc[0, "col1"]

If we wanted to retrieve a subset of columns, we supply a list of
column names:

9 df.loc[0, ["col1", "col2"]]



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Access elements in our dataframe

We can also use the slice notation to access multiple rows:

10 df.loc[0:2, "col1"]

This retrieves the values in col1.

Or if we just wanted to get the entire column of data, we could
instead do:

11 df["col1"]



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Reading a CSV file

Instead of manually constructing our data and then passing it to a
DataFrame, we can use pandas to read directly from a CSV file and
return a DataFrame:

Let’s say we have a CSV file of measurements of Iris flowers called
iris.csv. We can read this CSV file using the pd.read_csv
method.

12 df = pd.read_csv("iris.csv")



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Selecting a subset of data

With this more complex dataset, we can use more fancy methods of
indexing. For example, let’s select all the rows where the sepal length
is less than 5 cm.

13 df[df["sepal length (cm)"] < 5]

Instead of the 150 rows we had before, this returns just 22. We can
also specify only the columns we want with this conditional
expression:

14 df[df["sepal length (cm)"] < 5]["sepal width (cm)"]



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Creating new columns

We can add new columns to this dataset by using the assignment
operator. In this example, we’re creating a new column called ’sepal
sum’ to be the sum of both the ’sepal width’ and ’sepal length’:

15 df["sepal sum"] = df["sepal width (cm)"] + df["sepal length
(cm)"]↪→



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Shape of the data

We can also further see that our new column has been added by
inspecting the shape of the data.

16 df.shape

(150, 5)

This returns a tuple corresponding to the number of rows (150) and
the number of columns (5).



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Getting the names of columns

To find out what the names of the columns are we can use the
columns attribute:

2 df.columns

Index(['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
'petal width (cm)', 'sepal sum'],

dtype='object')

This returns an Index that can itself be indexed in the usual way:

4 df.columns[0]

'sepal length (cm)'



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Head/tail

We can get the first/last few rows of the data using the .head() or
.tail() methods. These take an optional argument specifying the
number of rows to view. By default, it will show 10 rows.

2 df.head() # shows the first 10 rows
3 df.head(5) # shows the first 5 rows
4

5 df.tail() # shows the last 10 rows
6 df.tail(5) # shows the last 5 rows



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Operations on data

Pandas comes with a few standard methods to perform some basic
operations. For example, you can calculate the mean of a column:

7 df["sepal length (cm)"].mean()

And you can use the apply() method to apply a function to every
element (i.e. map a function to every element):

8 df["sepal length (cm)"].apply(lambda x: x * 2)

Apply takes a function as an argument, and here we’re using an
anonymous (unnamed function) using a lambda expression
https://docs.python.org/3/tutorial/controlflow.html#
lambda-expressions

This lambda expression will double its input, and therefore applying
this function to every element will double all values in ’sepal length
(cm)’.

https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions


Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Apply operation to entire row

In the previous example, we saw the use of .apply, where a function
is applied to each individual element in a column. With apply, it’s
also possible to apply a function to each row of a dataframe, by
specifying axis=1 in the call to apply:

9 # some df with value column defined here
10

11 def window_sum(row, window=5):
12 """Take a sum of rows within a window"""
13 curr_index = row.name # access the row index number using

.name↪→

14 row["moving_avg"] = df.loc[curr_index-window:curr_index,
"value"].sum()↪→

15 return row # return the updated row
16

17 updated_df = df.apply(moving_avg, axis=1)



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Merge

Many pandas dataframes can be combined together using the
concat method that requires a list of dataframes as input.

18 data1 = pd.DataFrame({"col1": [0, 1], "col2": [0, 1]})
19 data2 = pd.DataFrame({"col1": [2, 3], "col2": [2, 3]})
20

21 combined = pd.concat([data1, data2])



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

More on indexing

Notice how the indexes are repeated. We can also verify this using
the .index attribute:

22 combined.index

Int64Index([0, 1, 0, 1], dtype='int64')

We can see two ’0’s and two ’1’s. Normally, this is not a problem,
but it does have an effect on when we index our data with loc.



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

More on indexing

2 combined.loc[1]

Notice how loc has returned two rows because it sees two rows with
the index label of 1. If instead we simply meant: give me the second
row we should use iloc:

3 combined.iloc[1]

Which will give us the desired outcome.



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Resetting indexes

Alternatively we can reset the index labels:

4 combined.reset_index()

This will compute a new series of indexes for our data, and then
using loc again will only return the one row.



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Resetting indexes

To save the result of reset_index() we need to overwrite our
original data:

5 combined = combined.reset_index()

Or specify inplace:

6 combined.reset_index(inplace=True)



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Categorical data

So far, we’ve only seen numerical data. One of the advantages of
using pandas for tabular data is that we can represent various other
types of data that makes our manipulation and operations on
different data types simpler. For example, we can represent
’categorical data’ where there is a finite set of values or categories.

7 df = pd.DataFrame({"col1": ["a", "b", "c", "a"],
8 "col2": [1, 2, 5, 4]})

Right now, df is simply representing ’col1’ as strings, but we can
change the representation to categorical elements with:

9 df["col1"] = df["col1"].astype("category")



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Categorical data

With categorical data, we can perform operations on these groups a
lot quicker than if we were just to represent them on strings. For
instance, lets compute the sum of ’col2’ for each group.

10 df.groupby("col1").sum()

If we have lots of data, having ’col1’ astype(’category’) will be a
lot more computationally efficient than leaving them as strings.



Programming
Level-up

Jay Morgan

Pandas
Introduction

Manipulating
data

Inspecting our
data

Operations

Different types of
data

Dates and times

If you have a column that represents a date or time, you can convert
that column to a true datetime representation with pd.to_datetime

11 df = pd.DataFrame({"col1": ["2002/01/30", "2010/05/16"]})
12 df["col1"] = pd.to_datetime(df["col1"])

In addition to make indexing by dates a lot faster, it also provides us
with some convienant methods to extract particular components from
the data. Such as the year:

13 df["col1"].dt.year # or df["col1"].dt.month etc


	Pandas
	Introduction
	Manipulating data
	Inspecting our data
	Operations
	Different types of data


