
Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Programming Level-up
An Introduction to using Linux

Jay Morgan

7th October 2022

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Outline

1 Linux

What is Linux

The command line

2 Shell Scripting

Writing bash scripts

3 High Performance Cluster

Getting started

Submitting jobs

A guided walk through

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

What is Linux?

Linux is a popular operating system (OS) like Windows, or
MacOS.
Unlike these other two OSs, Linux is open source, which means
the source code is freely available to look at and modify.
As its open source, its very possible for anyone to build their
own version of Linux or build on top of Linux to create their own
Distribution of Linux.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

What’s a Distribution?

A distribution can be considered like a flavour or version of Linux.
There are many popular flavours that attempt to meet different
needs from different users. For example:

Ubuntu – typically the first Linux experience people will have.
Attempts to be very user friendly.
Fedora – stable and secure distribution while also providing
up-to-date packages.
Arch Linux – strong focus on customisability rather than user
friendliness with bleeding edge packages.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

What’s a Distribution?

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Defining Traits of Linux

While we have said that Linux is open source, there are many other
traits that make it stand out from other operating systems:

Complete control of how the system operates.
The level of flexibility and automation that you can get from
using the Linux command line.

While there are many other traits, these two are going to be what
we’re going to focus on.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

What’s a command?

While many recent versions of Linux makes things more accessible via
GUIs, they will never be a substitute for using the command line.
We’re going to learn how to control the system via the command
line, via a shell. A shell, like the Python REPL we’ve already seen, is
waits for you to input commands, executes the command, and prints
the output if there is output to print.

A Linux command is a call to a program optionally followed by some
arguments. For example, if we want list out the files and folders in
the directory, we would use the ls (list) command:

1 ls

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

What is a command?

The ls command comes with a number of optional flags and
arguments that we can add onto the call. When calling a command a
flag is something that begins with a - , for example -l tells ls to list
the directory in a list format.

2 ls -l

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

What is a command?

We have supplied the -l flag. There are many other flags for ls, like
for example, the human readable file systems with -h or show hidden
files (files that start with a period) with -a.

When we’re using multiple flags we could write

3 ls -l -h -a

Or:

4 ls -lha

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

What is a command?

Sometimes commands take optional positional arguments. Going
back to our list directory command, where, by default, it will list the
current directory. But instead we can tell the command to list a
particular directory by supplying the path as an argument

5 ls images/ -lha
6 # or ls -lha images/ works too

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

What is a command?

How do I know how to use a command? Well that’s where another
command comes in. It’s called man (short for manual). If you pass
another command to the man command, the documentation will be
shown in the terminal, e.g.:

7 man ls # display the documentation for ls

The documentation should list all the different flags and arguments,
describe what they mean, and sometimes give example or most
common usage of a command.

When the ’man page’ is display, you can scroll up and down the page
using your arrow keys, and page-up and page-down. When you’re
done reading, just hit the ’q’ character

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful commands

I am going to go through some of the most common commands just
to make sure that you’re familiar with the typical usage.

We’ve already seen ls to list a directory. The command to move to a
directory is cd (change directory), that takes an argument of filepath
to move to:

8 cd ~ # tilde is short-hand for the 'home directory'
9 cd ~/Documents/My\ Files # go to Documents and then to "My

Files"↪→

10 cd # no argument, by default goes to the home directory

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful commands – mkdir

Sticking with the them of directories, to make a new directory we use
mkdir, whose argument takes the name of the directory we want to
create:

11 mkdir my_new_directory

You can create a many level nested directory structure all at once
using the -p (parents) flag, that tells mkdir if the parent directory of
the target directory doesn’t exist, create it.

12 mkdir photos/2020/01/05 # won't work unless photos/2020/01 exist
13 mkdir -p photos/2020/01/05 # this will work

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful commands – cp

To copy a file or directory, we can use the cp command. Here we are
copying a file, where the first argument is the filepath of the file you
want to copy and the second argument is the filepath where the copy
should be placed.

14 cp my_old_file my_new_file

By default (without a flag), cp will not work with directories, for that
you have to use the -r (recursive) flag

15 cp -r data/ data-backup

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful commands – mv

The syntax of moving a file is similar to that of cp:

16 mv old_file new_file

Except that it works for both files and directories without any flags.
mv can also be used to rename files, that’s all renaming is: moving a
file to the same directory under a different name.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful commands – rm

To remove a file us rm:

17 rm file_to_delete

If you want to delete a directory, use the -r (recursive) flag:

18 rm -r directory_to_delete/

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful commands – cat

cat stands for concatenate, i.e. concatenating the contents of two or
more files:

19 cat file1 file2

The result is that the concatenation of these two files will be printed
to the screen. If you wanted to put the result into its own file you
would redirect the output using >

20 cat file1 file2 > newfile

Since cat reads the file and prints it to screen it is a very handy way
to view the contents of a file, even if it was not intended for that.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful commands – pwd

Sometimes you may get lost when moving directories. pwd prints the
current working directory from the root directory, i.e. the path that is
printed is an absolute path.

21 pwd

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful commands – find

If we want to list all files of a certain type, we can use the wildcard *
that we’ve seen before:

22 ls *.jpg # list all files that end with .jpg

However, this will only list for the current directory. Perhaps the
better way to find files will be using the find command:

23 find . -type f -name *.jpg

The first argument is the directory to start the search, then we define
the type f being files, and then specify the name. Find will
recursively search through directories and sub-directories to find all
files that match that name.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful commands – grep

How about if we want to find files that have a certain contents? For
that we can use grep. Grep will read a file and print (by default) the
lines that contains your pattern. i.e.:

24 grep 'Linux' lecture.org

This will print the lines that contain the word Linux in lecture.org. If
we just want the matched value, we use the -o flag.

25 grep -o '[0-9]' lecture.org

This prints all occurrences of numbers in lecture.org

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful commands – less/head/tail

If a file is very long, we may not want to read the file using cat, as it
will have to print the entire file. Instead we could use less, which
will allow us to navigate through the file, using arrow keys to move
and q to quit.

26 less filename

If we just want to view the first few lines, or the last few lines of a
file we can use head/tail, respectively:

27 head filename
28 tail -n 20 filename # last 20 lines
29 tail -F filename # constantly read the file

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful commands – wc

Often times we just want to count the number of something. For
example, if we want to count the number of files/folders in the
directory we can do:

30 ls -l | wc -l

We’re first printing all files and folders in a list format (one per line),
then passing (piping_) the result to wc, which with the -l line flag, is
counting the number of lines. Therefore we get a count of the
number of files and folders. Here is another example where we’re
counting how many times the word bash appears in these lecture
notes:

31 grep -o 'bash' lecture.org | wc -l

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful commands – piping

The purpose of piping is to pass data around between commands.
We have just seen how we can pass the output of, say, the ls
command to the input of wc. This allows use to construct very
sophisticated pipelines to do some quite complex things from the
combination of very simple commands.

32 find . -name '*.txt' -type f -print0 | xargs -0 grep "something"

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very useful basic commands

In summary we have seen the following commands:

ls - List a directory
cd - Change/move to a directory
mkdir - Make a new directory
cat - Concatenate files
cp - Copy a file/directory
mv - Move files/folders
rm - Remove files and folders
pwd - Display the current absolute path
find - Find files
grep - Find occurrences of a pattern in a file
less/head/tail - Read a file
wc - Count

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very first bash script

Let’s start with the classic ’Hello, World’ example. We’ll create a
new file called ’hello.sh’ and enter the following:

33 #!/bin/bash
34

35 echo "Hello, World!"

First thing to notice is that the first line contains what we call a
’shebang’ or ’hashbang’. It tells Linux which shell interpreter will be
used to run the script, in this case: /bin/bash

The next (non-empty) line in the file is echo ’Hello, World’. This
is exactly the same as the other commands we’ve just seen.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Very first bash script

Now that we’ve created and saved our bash script, we will want to
run it. We have two alternative methods to run this script:

36 bash hello.sh # run the script via bash

The second, requires that we have executable privileges for the script:

37 chmod +x hello.sh # add executable 'x' privileges
38 ./hello.sh # execute it

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Variables

The variables we create in our bash scripts are very much the same
as the environment variables we’ve seen before. Take for example:

39 #!/bin/bash
40 AGE="35"
41 PERSON_NAME="Jane"
42 echo "$PERSON_NAME is $AGE years old"

We create a variable AGE with the = assignment operator. Note we
don’t put spaces either side of the equals sign in bash. To refer to
the variable, we use $AGE, using the $ dollar sign.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Interpolation in bash strings

You would have noticed in the previous example that we included the
variable directly into the string we’re echoing out. This is something
similar to what we’ve seen with f-strings in Python.

When we use double quotes: "..." in bash, the variable will be
integrated into the resulting string. We can even call bash functions
from directly inside the string:

43 echo "I am logging in as: $(who)"

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Bash strings – the sharp edges

You might be tempted to use a variable when generating a path:

44 TRAIN_PROCESS="training"
45 TEST_PROCESS="testing"
46

47 touch "./data/$TRAIN_PROCESS_error.txt"
48 touch "./data/$TEST_PROCESS_error.txt

But this will create an error as underscores can be part of the variable
name, so bash will be looking for a variable named:
$TRAIN_PROCESS_error which has never been created. To get
around this, we can wrap our variable in curly braces:

49 touch "./data/${TRAIN_PROCESS}_error.txt"

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Stopping interpolation in bash strings

We can also use single quotes for strings in bash. When we use these
strings, the string itself is not interpreted, and thus it will ignore any
variables or bash commands:

50 echo 'I am logging in as: $(who)'

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Input/Output

If we want to read the input from keyboard into a variable, we use
the read command:

51 #!/bin/bash
52

53 echo "Enter your name:"
54 read NAME
55

56 echo "Hello, $NAME"

read in this context will read in the input and create the variable
with that value. As we’ve already seen, we can then output this value
to the console using the echo command.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Booleans

Technically, bash does not have built in data types for true and false,
but Linux has the commands true and false which we could use in
place. The implementation of how these commands work is not
important.

57 FILE_EXISTS=true
58

59 if ["$FILE_EXISTS" = true]; then
60 echo "The file exists!"
61 fi

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Conditionals

When we’re creating if expressions, we use the following syntax:

62 if <<conditional>>; then
63 # do something
64 else
65 # do something else
66 fi

We can also use elif

67 if <<conditional>>; then
68 # do something
69 elif <<conditional>>; then
70 # do something else
71 else
72 # something else entirely
73 fi

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Conditionals

Writing condition expressions can be a little more cumbersome than
in Python. These can be many pain points for new bash
programmers, take for example:

74 FILE_EXISTS=false
75

76 if [$FILE_EXISTS]; then
77 echo "The file exists!"
78 fi

This is because we have used the [...] single bracket syntax for the
test. But there are others:

No brackets: we could omit the brackets in which case it would
run the false command not print the statement.
Single paranthesis (...) creates a sub-shell.
Double paranthesis ((...)) for arithmetic operation
Single square bracket [...] calls test
Double square bracket [[...]]

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Conditionals

What if we write:

79 VAR_1="Mr Foo Bar"
80 VAR_2="Mr Foo Bar"
81 if [$VAR_1 = $VAR_2]; then
82 echo "They are the same"
83 fi

We would get an error because test expands the arguments into:
Mr Foo Bar = Mr Foo Bar

With the spaces included. To prevent this from happening, we have
to wrap the variables in quotation marks.

2 VAR_1="Mr Foo Bar"
3 VAR_2="Mr Foo Bar"
4 if ["$VAR_1" = "$VAR_2"]; then
5 echo "They are the same"
6 fi

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Conditionals

If we use [[in if statement, then we can do more sophisticated
things like pattern matching:

7 FILENAME="testing.png"
8 if [["$FILENAME" = *.png]]; then
9 echo "Its a png file"

10 fi

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Loops

Like in Python, we can iterate in bash

11 for i in {1..10}; do
12 echo $i
13 done

This iterates with i starting at 1 upto 10 (inclusive). Or we could do:

14 for ((i=1; i <= 10; i++)); do
15 echo $i
16 done

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Loops

We can also iterate over a list of files/folders in a directory:

17 for FILE in ./images/*; do
18 echo $FILE
19 done

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Loops

Using the while form, we can continue looping until our conditional
is false. For example, we could loop testing our internet connection,
until its been established:

20 while ! ping -c 1 google.com; do
21 echo "No internet yet"
22 sleep 1
23 done
24

25 echo "Internet is available!"

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Functions

To create a function, we use the following syntax:

26 function_name() {
27 # do something
28 }

And to call the function, you just need to use the function name:

29 function_name # this called function name

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Functions

Here is another example:

30 say_hello() {
31 echo "Hello, $1"
32 }
33

34 say_hello "Jane"

Notice that we didn’t need to include any argument list. We just
used $1 for the first argument passed to the function.

35 say_hello() {
36 echo "$1, $2"
37 }
38

39 say_hello "Hi" "Jane"

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Functions

Returning values is ’interesting’ as, coming from other languages, you
think could do something like this:

40 say_hello() {
41 return "hello"
42 }
43 RESULT="$(say_hello)"
44 echo $RESULT

This didn’t work like we expected, the value wasn’t returned and
assigned to RESULT. So how do we return a value?

45 say_hello() {
46 echo "Hello"
47 }
48 RESULT="$(say_hello)"
49 echo "This is before the printing of result"
50 echo $RESULT

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

What is the Cluster?

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

How to login

51 ssh <<username>>@saphir2.lis-lab.fr

Then:

52 ssh <<username>>@sms-ext.lis-lab.fr

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

How to login

Typing both these commands can become tiresome very quickly. But
we can make it a lot easier by updating our ~/.ssh/config file to
include something like:

Host saphir2
HostName saphir2.lis-lab.fr
User <<username>>

Host cluster
HostName sms-ext.lis-lab.fr
User <<username>>
ProxyCommand ssh saphir2 -W %h:%p

Then to login to the cluster, we just need to type:

9 ssh cluster

And we should be prompted for our password.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

How to login

If you trust the machine your on, you can remove password
authentication and move to key-based authentication:

10 ssh-copy-id saphir2
11 ssh-copy-id cluster

When we next login to the server, we shouldn’t be prompted for a
password.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

How to copy files to and from the cluster

We have a number of options for transferring files to and from the
cluster. Firstly, let’s look at the command scp. It takes two
arguments, the first argument is the file you want to send, the second
argument is the destination of the sent file.

12 scp <<origin>> <<destination>>

Similar to commands like cp, scp by default only works for files, not
folders. To send folders/directories, we use the -r flag just like cp.

13 scp -r <<origin_folder>> <<destination_folder>>

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Copying files – rsync

One of the downsides about scp is that it will copy every file you give
it. Even if the file at the destination is exactly the same. What if we
only want to copy files that need to be copied, i.e. that are outdated,
thus saving time? For that, we can use rsync. Rsync will copy files
from one source to a destination only if the destination needs to be
updated. This can save a lot of time by skipping files that already
exist at the destination:

14 rsync <<source>> <<destination>>

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

The Login- and Compute Nodes

When you login to the cluster, you are logging into the login node.
Note that no computation should be run on this node. If you want to
run scripts, you will have to submit a job to the compute nodes.

On the login node there is a system installed called ’SLURM’.
SLURM is a job scheduler program that receives your requests for
executing scripts, it will queue them and assign them to available
compute nodes.

We will take a look at how to request and manage jobs using the
various commands that SLURM provides.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

How to launch a job – srun

The first command we will look at it is srun. This command will run
request a job for execution in ’real-time’. By real-time, we mean that
the shell will wait until the job has been submitted.

15 srun <<compute node options>> <<command to run>>

Let’s take a look at an example where we want to run an interactive
bash shell on the compute shell (similar to ssh’ing into the compute
node).

16 srun --time=00:10:00 --pty bash -l

This will request a job on any available compute node for 10 minutes.
When a node becomes available, bash will execute, dropping you into
the shell. You will notice that the shell prompt has changed from sms
to the name of the node.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

How to launch a job – salloc

There is another method we can use to create an interactive job. We
could use the salloc command to allocate resources for a task.
After the resources have been allocated and our job is ready, we can
ssh into the node with the allocated resources.

17 salloc --time=10:00:00 &
18 ssh <name>

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

How to launch a job – options

In the previous command, we used the --time option to specify how
long the job will run for. But there are other options we can use to
be more specific about the jobs we want to run.

--cpus-per-task can be used to request more than one CPU to be
allocated. This is especially helpful when we have a multithreaded
process we want to run.

--mem specifies how much memory should be allocated to the job.
For example: --mem=16G tells SLURM to allocate 16 GB of memory.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

How to launch a job – GPU allocation

If we need to use a GPU, we need to use a few options. Firstly, we
can specify that our job is on a compute node with GPU. There will
usually be a group of nodes in a ’GPU’ group or partition, and thus
we can specify to use one of these partitions:

19 srun --time=00:10:00 --partiton=gpu --pty bash -l

But you will notice that you still do not have access to a GPU.
You’re running on the GPU node, but you haven’t actually requested
a GPU be allocated to your job. For that you will use --gres:

20 srun --time=00:10:00 --partition=gpu --gres=gpu:1 --pty bash -l

Here we are requesting one GPU, but if we use --gres:gpu:2 we are
requesting 2 GPUs etc.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

How to launch a job – GPU allocation

There are many different types of GPUs available, some older than
others. If you wanted to allocate a job with a specific type of GPU
you can use the --constraint flag:

21 srun --time=00:10:00 \
22 --partition=gpu \
23 --gres=gpu:1 \
24 --constraint='cuda61' \
25 --pty bash -l

This command requests that our job run on the GPU partition, with 1
GPU allocated that has the capability of running CUDA compute 61.

Or we can specify the type of GPU in the gres option:

26 srun --time=00:10:00 \
27 --partition=gpu \
28 --gres=gpu:2080:1 \
29 --pty bash -l

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Learning more about nodes

To understand what each compute node has we can use the
scontrol command.

30 scontrol show nodes

Will list out all nodes and all capabilities of each node. Or just one
node:

31 scontrol show node lisnode2

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

How to launch a job – sbatch

It can be quite inconvenient to launch an interactive job to run some
compute, and wait for the job to be allocated. If, instead, you have a
long running experiment that you want to run without any
intervention from you, you can use sbatch.

Sbatch will require us to write a small bash script that specifies how
to run a job and what to do once its allocated.

32 #!/bin/bash
33

34 #SBATCH --time=00:01:00
35 #SBATCH --job-name=my_new_job
36 #SBATCH --output=my_new_job.out
37 #SBATCH --error=my_new_job.err
38

39 echo $HOSTNAME

And run it:

40 sbatch my_job.sh

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

How to launch a job – sbatch

Notice that instead of supplying options to sbatch, we can instead
record them directly into the script using the #SBATCH. SLURM will
examine this file, looking for lines starting with this comment, and
infer that the rest of the line contains the options.

There are a few other options we’ve included that are very useful
when running non-interactive jobs. Firstly, we’ve given the job a
name (my_new_job). This is so we can different between many jobs
that we might run at the same time. To list out the jobs we currently
have running we use squeue.

41 squeue

By default, squeue will list all of the active jobs, even other peoples.
To specify only your jobs user the --user option:

42 squeue --user=jay.morgan

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

How to launch a job – sbatch

The other two options, --output and --error specify where the
printed output and printed errors will be stored. Since the job is
being run on a different node, by a non-interactive process, if you
didn’t include these lines, you wouldn’t be able to see what was being
printed by echo or by any other process such as print in Python.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Job Management – squeue

When we list the jobs using squeue it will give us multiple columns
of information, such as:

JOBID – the referable id of the job.
PARTITION – the partition on which the job has been requested
for.
NAME – the name of the job.
USER – the user who submitted the job.
ST – the status, is the job currently running, waiting, or exiting?
TIME – how long the job has been running for.
NODES – how many nodes have been allocated to the job.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Job Management – scancel

Let’s say that we’ve submitted a job, but we’ve noticed that there
was an error in the code, and want to stop the job. For that, we use
scancel and specify the id of the job we wish to cancel:

43 scancel 158590

After running this command, we should see, using squeue, that
either the job is finishing, or that its disappeared from our list
(meaning that its completely stopped).

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Job Management – sacct

If our job has finished, or exited and is no longer in squeue, we can
use sacct to get a history of the jobs.

sacct will list all of your jobs within some default window of time. If
we want to change this window we can use the --starttime and
--endtime options.

Valid time formats are:

HH:MM[:SS][AM|PM]
MMDD[YY][-HH:MM[:SS]]
MM.DD[.YY][-HH:MM[:SS]]
MM/DD[/YY][-HH:MM[:SS]]
YYYY-MM-DD[THH:MM[:SS]]
today, midnight, noon, fika (3 PM), teatime (4 PM)
now[{+|-}count[seconds(default)|minutes|hours|days|weeks]]

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Job Task Arrays – motivation

Task arrays allow you to submit many jobs of the same type. Why
might this be useful? Suppose you have a list of files that take a long
time to process:

file_0.txt

file_1.txt

file_2.txt

Or you have some computation script, such as deep learning training
script, that takes uses a hyperparameter which can be tuned to
achieve different performance results:

44 python train.py --learning-rate 0.001

Instead of a creating a sbatch script for each value of
hyperparameter, or sequentially enumerating the values, you can use
a job task array to spawn multiple jobs with slightly different values.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Job Task Arrays – how to

First, we will look at how to actually submit an array of tasks. To
create an task array, you will need to add the --array options to
your sbatch script:

45 #!/bin/bash
46

47 #SBATCH --job-name=my_task_array
48 #SBATCH --array=1-5
49

50 ...

Here we are creating an array of tasks numbered from 1-5. When you
submit this script, you will see five tasks submitted to the queue.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Job Task Arrays – how to

Now that we know how to create an array of tasks, we will want to
do something useful with it. When you create an array, each
individual task will have a unique variable called
SLURM_ARRAY_TASK_ID. So for example, if we launch an array of 5
tasks, the first task will have the value 1. Why is this useful? Well,
we can use this variable to alter the program slightly. Take for
example our list of files we need to process:

51 #!/bin/bash
52 #SBATCH --job-name=my_task_array
53 #SBATCH --array=0-4
54 #SBATCH --time=00:10:00
55

56 FILENAME="file_${SLURM_ARRAY_TASK_ID}.txt"
57 python process.py $FILENAME

This will create a new bash variable called FILENAME by
concatenating file_ the current task’s (i.e. 0, for the first task, 1
for the second task, etc) and .txt.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Job Task Arrays – how to

If we run the previous example, we will see that we have five jobs
named exactly the same thing my_task_array. This is okay, but we
can be a little bit more clear as to which task is running, i.e. which
task is processing which file?

We can use some special variables in our bash script to make this
more clear. These are %A that is the main job id, and %a that is the
task array id.

58 #!/bin/bash
59

60 #SBATCH --job-name=my_task_array.%A_%a
61 #SBATCH --output=my_task_array.%A_%a.out
62 ...

Now, every task in our array will have a slightly different name
because of the %a and therefore we will be able to determine which
job is processing which file.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Job Task Arrays – how to

Let’s move on to the second example, where we have a Deep
Learning training program and we want to try different parameters.
In this case, we can again use a task array.

63 #!/bin/bash
64

65 #SBATCH --array=1-10

We could either pass the SLURM_ARRAY_TASK_ID as a command line
argument to the script:

66 python training.py --learning-rate $SLURM_ARRAY_TASK_ID

But in this case, we could have to properly calculate the correct
learning rate from the SLURM_ARRAY_TASK_ID value (remember that
in my sbatch script I set --array=1-5). But bash only performs
integer arithmetic, therefore we will need to calculate the correct
learning rate in something else.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Job Task Arrays – how to

Instead of passing the learning rate via a command line argument.
We can get the value directly from our python script and calculate
the value.

67 import os
68

69 task_id = int(os.environ["SLURM_ARRAY_TASK_ID"])
70 learning_rate = task_id / 100

Here we are using the builtin os module in Python, getting the
environment variable from the dictionary environ and parsing the
value as an integer. Then we can calculate the appropriate learning
rate using this value. So for example, if SLURM_ARRAY_TASK_ID is
set to 1. Our learning rate would be 0.01 for this task.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Job Task Arrays – how to

If you’re creating a job task array, you may want to create hundreds
of jobs. And of course, you don’t want to use up the entire cluster
leaving no resources for anybody else! Therefore, you will only want a
maximum number of tasks to run at any one time.

71 #!/bin/bash
72

73 #SBATCH --array=1-100%5

This will create a job task array of 100 jobs numbered from 1 to 100.
But we have added an additional argument %5 which means that only
5 jobs can run at any one time for this task array. If you have five
tasks running, the other 95 tasks will wait.

If, at any point, you want to change how many jobs can run
simultaineously, you can update this ’throttle’ value using scontrol:

74 scontrol update ArrayTaskThrottle=<count> JobId=<jobID>

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Job Task Arrays – how to

So if we’ve already launched a job task array with the job id of
50602 that has a throttle value of 5 (only 5 tasks will run at once),
we can change it to 10 using:

75 scontrol update ArrayTaskThrottle=10 JobId=50602

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

A guided walk through – environment

In this section we’re going to give an example walk through of
working with the HPC cluster. In this example, we’re going to write
our scripts locally, including the slurm submission script, and when
they’re ready, we’ll send them to the cluster to perform the actual
computation.

Let’s imagine we’re starting a new project, and are programming our
scripts in Python. Now is a good time to create a new conda
environment to install our packages we’re going to use for our
research. We’ll create this environment with (replacing <env-name>
with whatever we want to call this environment):

76 conda create --name <env-name>

and then activate it:

77 conda activate <env-name>
78 conda install python=3.9

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Writing our scripts

Let us also image we’ve just wrote the following script to create a
lorenz attractor: lorenz.py

The specific implementation of this script is not particularly
important for this walk through. Just know that we’re importing a
few packages such as numpy and matplotlib. Then, we’re performing
some computation, and saving the results to analyse later. As this
script uses external libraries, we need to install them:

79 conda install numpy matplotlib

https://pageperso.lis-lab.fr/jay.morgan/resources/2021-programming-level-up/lectures/week-5/lorenz.py

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Writing our job submission script

Since we want our calculations to be performed on the cluster, we
will need to also write a job submission script (let’s call this
submit-job.sh) in bash to pass to SLURM.

80 #!/bin/bash
81

82 #SBATCH --job-name=lorenz_attractor
83 #SBATCH --output=lorenz_attractor.log
84 #SBATCH --error=lorenz_attractor.log
85 #SBATCH --time=00:10:00
86

87 python lorenz.py

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Replicating our environment on the cluster

As we’ve installed external packages in our local development
environment, we will want to ensure that when we run the
calculations on the cluster, it will be using the same versions of
packages. Conda makes this a lot easier. First, we export our
environment to a recipe file:

88 conda env export --no-builds > environment.yml

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Sending our scripts to the cluster

All of our scripts are ready! We can now transfer them from our
personal computer, to the cluster. The files we need to transfer are:

lorenz.py

environment.yml

submit-job.sh

While we can send a folder (and the containing files), let’s send them
one at a time:

89 scp lorenz.py <hostname>:<destination-path>
90 scp environment.yml <hostname>:<destination-path>
91 scp submit-job.sh <hostname>:<destination-path>

where <hostname> is the hostname/IP address that you’ve used to
connect to the login node on the cluster before.
<destination-path> is the path to where you want to save the
files.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Logging into the cluster

Now that our files are on the cluster, we can login:

92 ssh <username>@<hostname>

At which point, we’ve logged into the login node, and then we need
to change directory to where we saved the files:

93 cd <destination-path>

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Re-creating our development environment

Now that we’re in the same folder as our scripts, we’re almost ready
to submit our job. First, we need to recreate our development
environment from our environment.yml file.

94 conda env create -f environment.yml

And activate our newly created environment:

95 conda activate <env-name>

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Submitting our job

Now we can submit our job:

96 sbatch submit-job.sh

We can check the progress of our job with squeue, or its already
completed, look at the job history with sacct.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Downloading the results

If our job runs successfully, a data.pkl file will be created. Back on
our local computers, we will need to run the following to download it:

97 scp <hostname>:<destination-path>/data.pkl ./

This will download the file into the current directory.

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Analysing the results

With the data.pkl file downloaded, we can visualise the results
using plot_lorenz.py: https://pageperso.lis-lab.fr/jay.
morgan/resources/2021-programming-level-up/lectures/
week-5/plot-lorenz.py

If everything has been run correctly, you should see a plot of the
lorenz attractor.

https://pageperso.lis-lab.fr/jay.morgan/resources/2021-programming-level-up/lectures/week-5/plot-lorenz.py
https://pageperso.lis-lab.fr/jay.morgan/resources/2021-programming-level-up/lectures/week-5/plot-lorenz.py
https://pageperso.lis-lab.fr/jay.morgan/resources/2021-programming-level-up/lectures/week-5/plot-lorenz.py

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Useful features – X11 Forwarding I

If we’re performing analysis interactively using the cluster, we’ll often
want to visualise the results, using matplotlib for example. To see our
plots display like they would on our local machine when we call
plt.plot or plt.show(), we will need to ensure that we’re using
something called X11 Forwarding. To enable X11 Forwarding, we
use the -X option when ssh’ing into the cluster and compute nodes
(i.e. it will need to be enabled on every ’hop’ so to speak).

98 ssh -X <<remote-host>>

If want to enable it by default, we can enable it in our ssh config file:

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Useful features – X11 Forwarding II

99 Host saphir2
100 HostName saphir2.lis-lab.fr
101 ForwardX11 yes
102 User <<username>>
103

104 Host cluster
105 HostName sms-ext.lis-lab.fr
106 FowardX11 yes
107 User <<username>>
108 ProxyCommand ssh -X saphir2 -W %h:%p

After setting up X11 Forwarding correctly, and when logged into the
remote host, we should be able to echo a variable called $DISPLAY.

109 echo $DISPLAY

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Useful features – X11 Forwarding III

If $DISPLAY has a value, we know that X11 Forwarding has been
setup correctly, and we’re ready to do some plotting!

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Useful features – Jupyter Notebooks I

We’ve talked about how good jupyter notebooks are for performing
analysis and exploration. But often times, we will need a lot of
compute resources (more than our local computers can handle) to do
this analysis. This is where using jupyter notebook on the
supercomputers comes in handy. However, it is not as simple as
starting the jupyter notebook server and opening up your web
browser. First, we will need to setup a ’reverse ssh tunnel’.

In a nut-shell, a reverse ssh tunnel allows you to redirect data on a
remote port to a local port.

Therefore, we can, using a reverse ssh tunnel, start a jupyter
notebook on the supercomputer and access it using the web browser
on our local computer!

To begin, we can create an interactive job on the cluster:

110 srun --time=01:00:00 --pty bash -l

Programming
Level-up

Jay Morgan

Linux
What is Linux

The command
line

Shell Scripting
Writing bash
scripts

High
Performance
Cluster
Getting started

Submitting jobs

A guided walk
through

Useful features – Jupyter Notebooks II

And start our jupyter notebook, specifying a port that will not be in
use:

111 jupyter notebook --port 30333

With our notebook server now started on the 30333 port, we will
want to create an ssh tunnel from our local computer, to the cluster’s
login node, and then a tunnel from the login node to the specific
compute node where the job is running:

112 ssh -L 30333:localhost:30333 <<cluster-login-node>> ssh -L
30333:localhost:30333 <<cluster-compute-node>>↪→

If everything goes well, we should now be able to open up our web
browser, navigate to localhost:30333 and see our jupyter
notebooks.

	Linux
	What is Linux
	The command line

	Shell Scripting
	Writing bash scripts

	High Performance Cluster
	Getting started
	Submitting jobs
	A guided walk through

