
Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Programming Level-up
Lecture 3 - Modules & Development Environments

Jay Morgan

20th September 2022

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Outline

1 Modules

Python Modules

2 Working with Files and Directories

Paths

Files
3 Package Management

Package Management

Anaconda

Pip

4 Better development environments

PyCharm

Jupyter

5 Style guide-line

Styles

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Importing in python

https://xkcd.com/353/

https://xkcd.com/353/

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

The basic structure of importing

Modules or packages are other scripts or programs that can be
imported into other scripts. This definition is very general, but we
shall see how flexible importing in Python can be.

The basic syntax of importing is:

1 import <package_name>
2

3 <package_name>.<function/class/variable/etc>

If we import <package_name> using this syntax, we always have to
use the dot . syntax to refer to something within this package.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

The basic structure of importing

Let’s take a look at a very basic example.

4 import math
5

6 radius = 6.4 # cm
7 circum = 2 * math.pi * radius

In this example, we are importing the built-in math package. This
package contains a bunch of useful functions and variables. We’re
not going to take a look at them here, as we’re focusing on
importing, but you can see we’re referring to a variable called pi to
calculate the circumference of a circle.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Importing specific items

If we didn’t always want to specify the package name when we only
want to use something specific from a package, we can directly
import that something.

8 from <package_name> import <function/class/variable/etc>
9

10 <function/class/variable/etc>

As you can see, we’re using the from ... import ... syntax.

11 from math import pi
12

13 circumference = 2 * pi * radius

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Don’t do this!

When using from ... import ..., there is a wildcard * that we
could use. You may sometimes see this style of importing when
looking at documentation online:

14 from <package_name> import *
15

16 <function/class/variable/etc>

However, this can create many problems with reading your program
code

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Don’t do this!

Which module does my_function() originate? Are there are
common names between the two? Which would be used?

17 from my_module import *
18 from my_second_module import *
19

20 my_function()

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Alias

When importing, we can optionally create an alias to a symbol. Here
we’re creating an alias to the existing pi in math.

21 from math import pi as decilious_pi
22

23 circumference = 2 * delicious_pi * radius

There are some very common conventions of aliasing very highly used
packages that we will definitely revisit in another lecture!

24 import numpy as np
25 import pandas as pd
26 import matplotlib.pyplot as plt

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Importing local libraries

let’s consider a hypothetical local directory:

27 main.py
28 src/
29 |-- my_module.py
30 |-- module_1/
31 |-- cats.py
32 |-- dogs.py

If we wanted to import something from my_module.py we would do:

33 from src.my_module import MyAwesomeClass
34

35 my_class = MyAwesomeclass()

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Importing local libraries

36 main.py
37 src/
38 |-- my_module.py
39 |-- module_1/
40 |-- cats.py
41 |-- dogs.py

Here is another example for increased nesting of directories:

42 from src.module_1 import cats
43 from src.module_1.dogs import Dog
44

45 cat = cats.Cat()
46 dog = Dog()

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Quick exercise – imports

Create a directory to store your scripts
In this directory, create a file called main.py.
Create a sub-directory called src. In src create another file
called library.py.
In library.py create a class (that doesn’t do anything right
now) called Database.
In main.py, create an instance of Database.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Shortcuts with __init__.py

Let’s say you often import Cat and Dog. We can use a file called
__init__.py to help us and make the imports shorter. This fill gets
executed when its module is imported.

47 main.py
48 src/
49 |-- my_module.py
50 |-- module_1/
51 |-- __init__.py
52 |-- cats.py
53 |-- dogs.py

In __init__.py:

54 from cats import Cat
55 from dogs import Dog

In main.py:

56 from src.module_1 import Cat, Dog

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

What is __main__?

Consider a file with the following:

57 x = 2
58 y = 1
59 z = x + y
60

61 class MyAwesomeClass:
62 ...

If we import this file in another script, x, y, and z will be
computed. In this very simple case this will have very little impact.
But what if the computation of these takes a very long time?

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

What is __main__?

Here we are wrapping any global computations into a appropriate
functions. This prevents the global variables being computed as soon
as the script is imported.

Now, if we wanted to compute x, y, and z if this script is run, we
could use:

63 if __name__ == "__main__":
64 # do something

Anything within the scope of the if function will only be run if the
current file is the script that is being run directly (i.e. python
<the-file>.py). If the script is being imported, the statements
within this if scope will not be run.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

What is __main__?

So if we wanted to run compute() if this file is being run directly, we
would write:

65 def compute():
66 x = 2
67 y = 1
68 z = x + y
69

70 class MyAwesomeClass:
71 ...
72

73 if __name__ == "__main__":
74 compute()
75 # we can of course use MyAwesomeClass as well
76 my_class = MyAwesomeClass()
77 my_class.do_something()

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Current working directory

The folder in which you run Python will be the current working
directory (CWD). We can print this value with the os.getcwd()
function, or change the directory with os.chdir(...). Its important
to know what your CWD is as all relative paths (paths that do not
start with a ’/’) will be relative to your CWD.

78 import os
79

80 print(os.getcwd())
81 os.chdir("../")
82 print(os.getcwd())
83 os.chdir("week-3")

Results:
=> [...]/Programming Level-up/week-3
=> [...]/Programming Level-up

I’ve replaced the full path printed by Python with [...] so you can
see the differences in the paths!

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Listing directories

Continuing with our usage of the os package, we can use the
listdir function to list all files within a directory.

4 print(os.listdir())
5 print(os.listdir("images/"))

Results:
=> ['images', '__pycache__', 'lecture.pdf', 'lecture.tex', 'data', 'test_file_1.py', 'lecture.org', '_minted-lecture', 'test_file_2.py']
=> ['legend-2.png', 'fig-size.png', 'basic.png', 'subplots.png', 'python.png', 'pycharm01.png', 'installing-scikit-learn.png', 'pycharm02.png', 'PyCharm_Icon.png', 'axis.png', 'legend.png', 'complex-pycharm.jpg']

This returns a list of files and directory relative to your current
working directory. Notice how from this list you cannot tell if
something is a file or directory (though the filename does provide
some hint).

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Testing for files or directories

In the previous example we saw that the items returned by listdir
does not specify if the item is a file or directory. However, os
provides an isfile function in the path submodule to test if the
argument is a file, else it will be a directory.

4 for path in os.listdir():
5 print(f"{path} => is file: {os.path.isfile(path)}")

Results:
=> images => is file: False
=> __pycache__ => is file: False
=> lecture.pdf => is file: True
=> lecture.tex => is file: True
=> data => is file: False
=> test_file_1.py => is file: True
=> lecture.org => is file: True
=> _minted-lecture => is file: False
=> test_file_2.py => is file: True

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Using wildcards

If we wanted to get all files within a directory, we could use the glob
function from the glob package. glob allows us to use the *
wildcard. E.g. *.png will list all files that end with .png. test-*
will list all files that start with test-*.

11 from glob import glob
12

13 for fn in glob("images/*"):
14 print(fn)

Results:
=> images/legend-2.png
=> images/fig-size.png
=> images/basic.png
=> images/subplots.png
=> images/python.png
=> images/pycharm01.png
=> images/installing-scikit-learn.png
=> images/pycharm02.png
=> images/PyCharm_Icon.png
=> images/axis.png
=> images/legend.png
=> images/complex-pycharm.jpg

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Pathlib – a newer way

pathlib is a somewhat recent addition to the Python standard
library which makes working with files a little easier. Firstly, we can
create a Path object, allowing us to concatenate paths with the /.
Instead of using the glob module, a Path object has a glob class
method.

14 from pathlib import Path
15

16 data_dir = Path("data")
17 processed_data = data_dir / "processed"
18

19 data_files = processed_data.glob("*.txt")
20

21 for data_file in data_files:
22 print(data_file)

Results:
=> data/processed/data-2.txt
=> data/processed/data.txt

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Pathlib – convenient functions

pathlib allows us to easily decompose a path into different
components. Take for example getting the filename of a path with
.name.

4 from pathlib import Path
5

6 some_file = Path("data/processed/data.txt")
7

8 print(some_file.parts) # get component parts
9 print(some_file.parents[0]) # list of parent dirs

10 print(some_file.name) # only filename
11 print(some_file.suffix) # extension

Results:
=> ('data', 'processed', 'data.txt')
=> data/processed
=> data.txt
=> .txt

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Converting Path into a string

As pathlib is a recent addition to Python, some functions/classes
are expecting a str representation of the path, not a Path object.
Therefore, you may want to use the str function to convert a Path
object to a string.

6 str(Path("data/"))

Results:
=> 'data'

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Quick exercise – locating files

In the same directory of scripts you created in the last exercise,
create another directory called data.
In data, create 3 text files, calling them <book_name>.txt.
These each text file should contain the information from table
below in the format:

Name: <book_name>
Author: <author>
Release Year: <release_year>

Title Author Release Date
Moby Dick Herman Melville 1851
A Study in Scarlet Sir Arthur Conan

Doyle
1887

Frankenstein Mary Shelley 1818
Hitchhikers Guide to
the Galaxy

Douglas Adams 1979

From main.py, print out all of the text files in the directory.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Reading files

To read a file, we must first open it with the open function. This
returns a file stream to which we can call the read() class method.

You should always make sure to call the close() class method on
this stream to close the file.

read() reads the entire contents of the file and places it into a string.

4 open_file = open(str(Path("data") / "processed" / "data.txt"))
5 contents_of_file = open_file.read()
6 open_file.close() # should always happen!
7 print(contents_of_file)

Results:
=> this is some data
=> on another line

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Reading files – lines or entire file?

While read works for the last example, you may want to read files in
different ways. Luckily there are a number of methods you could use.

4 open_file.read() # read entire file
5 open_file.readline() # read a single line
6 open_file.readline(5) # read 5 lines
7 open_file.readlines() # returns all lines as a list
8

9 for line in open_file: # read one line at a time
10 do_something(line)

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Reading files

It can be a pain to remember to use the .close() every time you
open a file. In Python, we can use open() as a context with the
with keyword. This context will handle the closing of the file as soon
as the scope is exited.

The syntax for opening a file is as follows:

11 with open("data/processed/data.txt", "r") as open_file:
12 contents = open_file.read()
13

14 # the file is automatically closed at this point
15

16 print(contents)

Results:
=> this is some data
=> on another line

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Writing files

The syntax for writing a file is similar to reading a file. The main
difference is the use "w" instead of "r" in the second argument of
open. Also, instead of read(), we use write().

4 data = ["this is some data", "on another line", "with another
line"]↪→

5 new_filename = "data/processed/new-data.txt"
6

7 with open(new_filename, "w") as open_file:
8 for line in data:
9 open_file.write(line + "\n")

10

11 with open(new_filename, "r") as open_file:
12 new_contents = open_file.read()
13

14 print(new_contents)

Results:
=> this is some data
=> on another line
=> with another line

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Appending to files

Every time we write to a file, the entire contents is deleted and
replaced. If we want to just append to the file instead, we use "a".

5 data = ["this is some appended data"]
6 new_filename = "data/processed/new-data.txt"
7

8 with open(new_filename, "a") as open_file:
9 for line in data:

10 open_file.write(line + "\n")
11

12 with open(new_filename, "r") as open_file:
13 new_contents = open_file.read()
14

15 print(new_contents)

Results:
=> this is some data
=> on another line
=> with another line
=> this is some appended data

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Quick exercise – reading/writing files

Using the same text files from the previous exercise, we will want
to be able to read each text file, and parse the information
contained in the file.
The output of reading each of the text files should be a list of
dictionaries, like we have seen in previous lectures.
We will go through a sample solution together once you’ve had
the chance to try it for yourself.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Reading CSV files – builtin

When working with common file types, Python has built-in modules
to make the process a little easier. Take, for example, reading and
writing a CSV file. Here we are importing the csv module and in the
context of reading the file, we are creating a CSV reader object.
When reading, every line of the CSV file is returned as a list, thus an
entire CSV file is a list of lists.

6 import csv # built-in library
7

8 data_path = "data/processed/data.csv"
9

10 # read a csv
11 with open(data_path, "r") as csv_file:
12 csv_reader = csv.reader(csv_file, delimiter=",")
13 for line in csv_reader:
14 print(line)

Results:
=> ['name', 'id', 'age']
=> ['jane', '01', '35']
=> ['james', '02', '50']

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Writing a CSV file – builtin

Writing a CSV file is similar except we are creating a CSV writer
object, and are using writerow instead.

5 # write a csv file
6 new_data_file = "data/processed/new-data.csv"
7 new_data = [["name", "age", "height"], ["jane", "35", "6"]]
8

9 with open(new_data_file, "w") as csv_file:
10 csv_writer = csv.writer(csv_file, delimiter=",")
11 for row in new_data:
12 csv_writer.writerow(row)

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Quick exercise – reading/writing CSV files

Given the parsed data from the previous exercise, write a new
CSV file in the data directory.
This CSV file should contain the headings: name, author,
releasedata.
The data in the CSV file should be the 3 books with data in the
correct columns.
Test that you can read this same CSV file in python.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Read JSON files – builtin

Like CSV, json is a common format for storing data. Python includes
a package called json that enables us to read/write to json files with
ease.

Let’s first tackle the process of reading:

13 import json
14

15 json_file_path = "data/processed/data.json"
16

17 # read a json file
18 with open(json_file_path, "r") as json_file:
19 data = json.load(json_file)
20 print(data)
21 print(data.keys())
22 print(data["names"])

Results:
=> {'names': ['jane', 'james'], 'ages': [35, 50]}
=> dict_keys(['names', 'ages'])
=> ['jane', 'james']

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Write JSON files – builtin

While we used json.load to read the file, we use json.dump to
write the data to a json file.

5 new_data = {"names": ["someone-new"], "ages": ["NA"]}
6

7 # write a json file
8 with open("data/processed/new-data.json", "w") as json_file:
9 json.dump(new_data, json_file)

10

11 with open("data/processed/new-data.json", "r") as json_file:
12 print(json.load(json_file))

Results:
=> {'names': ['someone-new'], 'ages': ['NA']}

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Introduction

When working on projects, we may want to use external packages
that other people have written. There are tools in Python to install
these packages. However, we may want to use specific versions, again
these tools help us to manage these dependencies between different
packages and these versions of packages.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Virtual Environments

When installing packages, by default, the packages are going to be
installed into the system-level Python. This can be a problem, for
example, if you’re working on multiple projects that require different
versions of packages.

Virtual environments are ’containerised’ versions of Python that can
be created for each different project you’re working on.

We will take a look at package management and virtual environments
in Python.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

What is Anaconda?

Distribution of Python and R designed for scientific computing.
We’re going to focus on Conda, a package manager in the
Anaconda ecosystem.
Helps with package management and deployment.
Create virtual environments to install packages to avoid conflicts
with other projects

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Installing Anaconda

We’re going to install miniconda (a minimal installation of anaconda).
https://docs.conda.io/en/latest/miniconda.html

The steps to install Miniconda are roughly:

Download Miniconda3 Linux 64-bit
Save the file to the disk
Open up a terminal and run the following commands:

3 chmod +x <miniconda-file>.sh
4 ./<miniconda-file>.sh

Follow the installation instructions (most of the time the defaults are
sensible).

https://docs.conda.io/en/latest/miniconda.html

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Working with Anaconda – creating an environment

Conda is a command line tool to manage environments. We’re going
to highlight some of the most used commands. But for the full list of
management, you can use the instructions at:
https://conda.io/projects/conda/en/latest/user-guide/
tasks/manage-environments.html

If you’re creating a brand new environment, use:

5 conda create --name <name-of-env>

This will prompt you to confirm you want to create a new
environment, whereupon you enter either a y or n. If y your new
environment will be created, but start using the environment, you will
first have to activate it.

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Working with Anaconda – activating an environment

Once you’ve created a new environment, you can activate it. This is
as simple as:

6 conda activate <name-of-env>

You will notice that your command line prompt has changed from
(base) to (<name-of-env>). And whenever you start a new
terminal it will always be (base).

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Working with Anaconda – de-activating an
environment

To deactivate an environment, just use:

7 conda deactivate

or:

8 conda activate base

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Working with Anaconda – installing using conda

Let’s say we want to install a package, say scikit-learn (if we’re
doing some data processing or machine learning). To install this
package in conda, use:

9 conda install scikit-learn

Conda will then check what packages are needed for scikit-learn
to work, and figure out if anything needs to be upgraded/downgraded
to match the required dependencies of other packages.

When Conda has finalised what packages need to change, it will tell
you these changes and ask to confirm. If everything seems okay type
y, and enter.

scikit-learn is a package in the anaconda repository. For a list of
packages, you can use: https://anaconda.org/anaconda/repo

https://anaconda.org/anaconda/repo

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Working with Anaconda – package versions

10 conda install <package-name>=<version-number>

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Installing a specific version of Python

If we wanted to, we could also change the python version being used
in the virtual environment.

11 conda install python=3.9

This will try to install Python version 3.9 providing that the packages
you already have installed support it.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Working with Anaconda – conda-forge and other
repositories

Let’s say that the package is not within the basic anaconda repository.
You can specify another repository or channel using the -c flag.

12 conda install -c <channel> <package>

For example, PyTorch (https://pytorch.org/) uses their own
channel:

13 conda install -c pytorch pytorch

https://pytorch.org/

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Working with Anaconda – exporting an environment

We will want to share our research and work with others. To allow
others to use the exact same packages and especially the versions of
packages we’re using, we want to export a snapshot of our
environment. Conda includes an export command to do just this:

14 conda env export --no-builds > environment.yml

Here we exporting our currently activated environment to a file called
environment.yml (common convention) file. I am using the
--no-builds flag to improve compatibility with other operating
systems such as Mac OS.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Working with Anaconda – creating environment
from existing

To create an environment from an existing environment.yml file, you
can use the following command:

15 conda env create -f environment.yml

This will create an environment with the same name and install the
same versions of the packages.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Deleting an Environment

At later points in our project life-cycle – we have finished our project
and we don’t want to have the environment installed anymore
(besides we already have the environment.yml to recreate it from if
we need to!).

We can remove an environment using:

16 conda env remove --name <name-of-env>

This will remove the environment from Anaconda.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Cleaning up

If you use Anaconda for a long time, you may start to see that a lot
of memory is being used, this is because for every version of the
package you install, a download of that package is cached to disk.
Having these caches can make reinstalling these packages quicker as
you won’t need to download the package again. But if you’re running
out of hard drive space, cleaning up these cached downloads is an
instant space saver:

17 conda clean --all

This command will clean up the cache files for all environments, but
doesn’t necessarily affect what’s already installed in the environments
– so nothing should be broken by running this command.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

What is Pip?

Pip is another package installer for python. If you’re reading
documentation online about how to install a certain Python package,
the documentation will normally refer to pip.

Pip, like conda, uses a package repository to locate packages. For pip
it is called Pypi (https://pypi.org)

We’re going to take a look at the most commonly used commands
with pip.

https://pypi.org

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Installing packages with pip

If you want to install a package, its as simple as pip install.

18 pip install <package-name>

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Installing specific versions

Sometimes, though, you will want to install a specific package
version. For this use ’==<version-number>’ after the name of the
package.

19 pip install <package-name>==<version-number>

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Upgrade packages with pip

If you want upgrade/install the package to the latest version, use the
--upgrade flag.

20 pip install <package-name> --upgrade

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Export requirements file

Like exporting with conda, pip also includes a method to capture the
currently installed environment. In pip, this is called freeze.

The common convention is to call the file requirements.txt.

21 pip freeze > requirements.txt

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Installing multiple packages from a requirements file

If we want to recreate the environment, we can install multiple
packages with specific versions from a requirements file with:

22 pip install -f requirements.txt

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Anaconda handles both conda and pip

Conda encompasses pip, which means that when you create a virtual
environment with conda, it can also include pip. So I would
recommend using conda to create the virtual environment and to
install packages when you can. But if the package is only available
via pip, then it will be okay to install it using pip as well. When you
export the environment with conda, it will specify what is installed
with pip and what is installed via conda.

23 conda env create -f environment.yml

When the environment is re-created with conda, it will install the
packages from the correct places, whether that is conda or pip.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

PyCharm

So far we have been using a very basic text editor. This editor is only
providing us with syntax highlighting (the colouring of keywords, etc)
and helping with indentation.

PyCharm is not a text editor. PyCharm is an Integrated Development
Environment (IDE). An IDE is a fully fledged environment for
programming in a specific programming language and offers a suite
of features that makes programming in a particular language (Python
in this case), a lot easier.

Some of the features of an IDE are typically:

Debugging support with breakpoints and variable inspection.
Prompts and auto-completion with documentation support.
Build tools to run and test programs in various configurations.

We will use PyCharm for the rest of this course.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

PyCharm – installing

Using Ubuntu snaps:

24 snap install pycharm-community --classic

Or we can download an archive with the executable. The steps to run
goes something like:

25 tar xvf pycharm-community-<version>.tar.gz
26 bash pycharm-community-<version>/bin/pycharm.sh

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

PyCharm – using PyCharm

We shall take a look at the following:

Creating a new project.
Specifying the conda environment.
Creating build/run instructions.
Adding new files/folders.
Debugging with breakpoints.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

What is a Jupyter notebook?

Jupyter notebooks are environments where code is split into cells,
where each cell can be executed independently and immediate results
can be inspected.

Notebooks can be very useful for data science projects and
exploratory work where the process cannot be clearly defined (and
therefore cannot be immediately programmed).

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Installing Jupyter

We first need to install Jupyter. In you conda environment type:

27 conda install jupyter
28 # or pip install jupyter

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Starting the server

With Jupyter installed, we can now start the notebook server using:

29 jupyter notebook

A new browser window will appear. This is the Jupyter interface.

If you want to stop the server, press Ctrl+c in the terminal window.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Using the interface

We shall take a look at the following:

Creating a new notebook
Different cell types
Executing code cells
Markdown cells
Exporting to a different format
How the notebook gets stored

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Markdown 101

We will revisit markdown in a later lecture, but since we’re using
notebooks, some of the cells can be of a type markdown. In these
cells, we can style the text using markdown syntax.

https://www.markdownguide.org/basic-syntax/

https://www.markdownguide.org/basic-syntax/

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

A slightly better environment – jupyterlab

The notebook environment is fine, but there exists another package
called jupyter-lab that enhances the environment to include a
separate file browser, etc.

30 conda install jupyterlab -c conda-forge
31

32 jupyter-lab

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

A sense of style

Now that we have looked at syntax you will need to create Python
projects, I want to take a minute to talk about the style of writing
Python code.

This style can help you create projects that can be maintained and
understood by others but also yourself.

Python itself also advocates for an adherence to a particular style of
writing Python code with the PEP8 style guide:
https://www.python.org/dev/peps/pep-0008/. Though, I will
talk through some of the most important ones, in my opinion.

https://www.python.org/dev/peps/pep-0008/

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Meaningful names

What does this code do?

33 def f(l):
34 x = 0
35 y = 0
36 for i in l:
37 x += i
38 y += 1
39 return x / y
40

41 a = range(100)
42 r = f(a)

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Meaningful names

What about this one?

43 def compute_average(list_of_data):
44 sum = 0
45 num_elements = 0
46 for element in list_of_data:
47 sum += element
48 num_elements += 1
49 return sum / num_elements
50

51 dataset = range(100)
52 average_value = compute_average(dataset)

They are both the same code, but the second version is a lot more
readable and understandable because we have used meaningful names
for things!

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Use builtins where possible

Don’t re-invent the wheel. Try to use Python’s built-in
functions/classes if they exist, they will normally be quicker and more
accurate than what you could make in Python itself. For example:

53 dataset = range(100)
54 average_value = sum(dataset) / len(dataset)

or maybe even:

55 import numpy as np
56 dataset = range(100)
57 average_value = np.mean(dataset)

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Use docstrings and comments

58 def compute_average(list_of_data, exclude=None):
59 """
60 Compute and return the average value of an iterable list.
61 This average excludes any value if specified by exclude
62

63 params:
64 - list_of_data: data for which the average is computed
65 - exclude: numeric value of values that should not be taken
66 into account
67

68 returns:
69 The computed average, possibly excluding a value.
70 """
71 sum = 0
72 num_elements = 0
73 for element in list_of_data:
74 if exclude is not None and element == exclude:
75 continue # skip this element
76 sum += element
77 num_elements += 1
78 return sum / num_elements

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Using agreed upon casing

snake_casing for functions and variables
Classes should use CamelCasing

79 def this_if_a_function(data_x, data_y):
80

81

82 class BookEntry:

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Use type-annotations if possible

Type annotations can helper your editor (such as PyCharm) find
potential issues in your code. If you use type annotations, the editor
can spot types that are not compatible. For example, a string being
used with a division.

https://docs.python.org/3/library/typing.html
https://realpython.com/python-type-checking/

83 def compute_average(list_of_data: list[int],
84 exclude: Optional[int] = None) -> float:
85 ...

https://docs.python.org/3/library/typing.html
https://realpython.com/python-type-checking/

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Organise your imports

Make the distinction between standard library imports, externally
installed imports, and your own custom imports.

86 # internal imports
87 import os
88 from math import pi
89

90 # external imports
91 import numpy as np
92 import pandas as pd
93 import matplotlib.pyplot as plt
94

95 # custom imports
96 from src.my_module import DAGs

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Functions should do one thing only

Do one thing and do it well. Docstrings can help you understand
what your function is doing, especially if you use the word ’and’ in
the docstring, you might want to think about breaking your single
function into many parts.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Functions as re-usability

If you find yourself doing something over and over, a function call
help consolidate duplication and potentially reduce the chance of
getting things wrong.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Be wary of God classes

God classes/God object is a class that is doing too many things or
’knows’ about too much. When designing a class, remember that like
a function, in general, it should manage one thing or concept.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Documentation

Comments that contradict the code are worse than no com-
ments. Always make a priority of keeping the comments
up-to-date when the code changes! – PEP 8 Style Guide

Ensure that comments are correct.
Don’t over document (i.e. if something is self explanatory, then
comments will distract rather than inform). An example from
PEP 8:

97 x = x + 1 # Increment x
98 x = x + 1 # Compensate for border

Document what you think will be difficult to understand without
some prior knowledge, such as why a particular decision was
made to do something a certain way. Don’t explain, educate the
reader.

Programming
Level-up

Jay Morgan

Modules
Python Modules

Working with
Files and
Directories
Paths

Files

Package
Management
Package
Management

Anaconda

Pip

Better
development
environments
PyCharm

Jupyter

Style
guide-line
Styles

Perform testing!

Make sure to write tests, for example, using unittest
(https://docs.python.org/3/library/unittest.html).
Writing tests can help find source of bugs/mistakes in your code, and
if you change something in the future, you want to make sure that it
still works. Writing tests can automate the process of testing your
code.

https://docs.python.org/3/library/unittest.html

	Modules
	Python Modules

	Working with Files and Directories
	Paths
	Files

	Package Management
	Package Management
	Anaconda
	Pip

	Better development environments
	PyCharm
	Jupyter

	Style guide-line
	Styles

