
Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Programming Level-up
Lecture 2 - More advanced Python & Classes

Jay Morgan

20th September 2022

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Outline

1 Proxy

Univ-tln proxy

2 Dealing with Errors

Exceptions

3 OOP

Classes

4 Exercise

Exercise

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Setting up a proxy in Linux – environment variables

Environment variables are variables that are set in the Linux
environment and are used to configure some high-level details in
Linux.

The command to create/set an environment is:

export VARIABLE_NAME=''

Exporting a variable in this way will mean VARIABLE_NAME will be
accessible while you’re logged in. Every time you log in you will have
to set this variable again.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Setting up a proxy in Linux – univ-tln specific

In the université de Toulon, you’re required to use the university’s
proxy server to access the internet. Therefore, in Linux at least, you
will have to tell the system where the proxy server is with an
environment variable.

2 export HTTP_PROXY='<username>:<password>@proxy.univ-tln.fr:3128'
3 export HTTPS_PROXY='<username>:<password>@proxy.univ-tln.fr:3128'
4 export FTP_PROXY='<username>:<password>@proxy.univ-tln.fr:3128'

NOTE: Watch out for special characters in your password! They will
have to be URL encoded.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Setting up a proxy in the .bashrc

If you don’t wish to set the variable every time log in, you should
enter the same commands into a .bashrc in your home directory.

5 export HTTP_PROXY='...'
6 export HTTPS_PROXY='...'
7 export FTP_PROXY='...'

When you log in, the .bashrc file will be run and these variables will
be set for you.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Dealing with Errors

When programming, its good to be defensive and handle errors
gracefully. For example, if you’re creating a program, that as part of
its process, reads from a file, its possible that this file may not exist
at the point the program tries to read it. If it doesn’t exist, the
program will crash giving an error such as: FileNotfoundError.

Perhaps this file is non-essential to the operation of the program, and
we can continue without the file. In these cases, we will want to
appropriately catch the error to prevent it from stopping Python.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Try-catch

Try-catches are keywords that introduce a scope where the
statements are executed, and if an error (of a certain type IndexError
in this example) occurs, different statements could be executed.

In this example, we are trying to access an element in a list using an
index larger than the length of the list. This will produce an
IndexError. Instead of exiting Python with an error, however, we
can catch the error, and print a string.

8 x = [1, 2, 3]
9

10 try:
11 print(x[3])
12 except IndexError:
13 print("Couldn't access element")

Results:
=> Couldn't access element

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Try-catch – capturing messages

If we wanted to include the original error message in the print
statement, we can use the form:

except <error> as <variable>

This provides us with an variable containing the original error that we
can use later on in the try-catch form.

2 x = [1, 2, 3]
3

4 try:
5 print(x[3])
6 except IndexError as e:
7 print(f"Couldn't access elements at index beacuse: {e}")

Results:
=> Couldn't access elements at index beacuse: list index out of range

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Types of exceptions

There are numerous types of errors that could occur in a Python.
Here are just some of the most common.

IndexError – Raised when a sequence subscript is out of range.
ValueError – Raised when an operation or function receives an
argument that has the right type but an inappropriate value
AssertionError – Raised when an assert statement fails.
FileNotFoundError – Raised when a file or directory is requested
but doesn’t exist.

The full list of exceptions in Python 3 can be found at:
https://docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Assertions

One of the previous errors (AssertionError) occurs when an assert
statement fails. Assert is a keyword provided to test some condition
and raise an error if the condition is false. It typically requires less
code than an if-statement that raises an error, so they might be
useful for checking the inputs to functions, for example:

3 def my_divide(a, b):
4 assert b != 0
5 return a / b
6

7 my_divide(1, 2)
8 my_divide(1, 0)

Here we are checking that the divisor is not a 0, in which case
division is not defined.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Introduction to classes

A class is some representation (can be abstract) of an object. Classes
can be used to create some kind of structure that can be
manipulated and changed, just like the ways you’ve seen with lists,
dictionaries, etc.

Classes allow us to perform Object-oriented Programming (OOP),
where we represent concepts by classes.

But to properly understand how classes work, and why we would
want to use them, we should take a look at some examples.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Basic syntax

We’re going to start off with the very basic syntax, and build up
some more complex classes.

To create a class, we use the class keyword, and give our new class a
name. This introduces a new scope in Python, the scope of the class.

Typically, the first thing we shall see in the class is the __init__
function.

9 class <name_of_class>:
10 def __init__(self, args*):
11 <body>

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Init method

The __init__ function is a function that gets called automatically
as soon as a class is made. This init function can take many
arguments, but must always start with a self.

In this example, we are creating a class that represents an x, y
coordinate. We’ve called this class Coordinate, and we’ve defined
our init function to take an x and y values when the class is being
created.

Note its more typical to use titlecase when specifying the class name.
So when reading code its easy to see when you’re creating a class
versus calling a function. You should use this style.

12 class Coordinate:
13 def __init__(self, x, y):
14 self.x = x
15 self.y = y

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Instantiating

To create an instance of this class, call the name of the class as you
would a function, and pass any parameters you’ve defined in the init
function.

In this example, we are creating a new vector using Vector(...)
and we’re passing the x and y coordinate.

16 class Vector:
17 def __init__(self, x, y):
18 self.x = x
19 self.y = y
20

21

22 point_1 = Vector(5, 2)

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Class variables

In the previous example, we’ve been creating a class variables by
using self.<variable_name>. This is telling Python this class
should have a variable of this name.

It allows then to reference the variable when working with the class.

23 class Vector:
24 def __init__(self, x, y):
25 self.x = x
26 self.y = y
27 self.length = self.x + self.y
28

29 point_1 = Vector(5, 2)
30 print(point_1.x)
31 print(point_1.y)
32 print(point_1.length)

Results:
=> 5
=> 2
=> 7

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Class Methods

A class can have many methods associated with it. To create a new
method, we create a function within the scope of the class, remember
that the first parameter of the function should be self.

Even in these functions, we can refer to our self.x and self.y
within this new function.

You’ll notice that to call this function, we using the .length()
method similar to how we’ve worked with strings/lists/etc. This is
because in Python, everything is an object!

5 class Vector:
6 def __init__(self, x, y):
7 self.x = x
8 self.y = y
9

10 def length(self):
11 return self.x + self.y
12

13

14 my_point = Vector(2, 5)
15 print(my_point.length())

Results:
=> 7

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

dunder-methods

While we could, for example, create a function called .print(),
sometimes we would like to use the in built functions like print().
When creating a class, there is a set of dunder-methods
(double-under to reference the two ’__’ characters either side of the
function name).

One of these dunder-methods is __repr__, which allows us to
specify how the object looks when its printed.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

dunder-methods

3 class OldVector:
4 def __init__(self, x, y):
5 self.x = x
6 self.y = y
7

8 print(OldVector(2, 5))
9

10 class Vector:
11 def __init__(self, x, y):
12 self.x = x
13 self.y = y
14

15 def __repr__(self):
16 return f"Vector({self.x}, {self.y})"
17

18 print(Vector(2, 5))

Results:
=> <__main__.OldVector object at 0x7f658721e250>
=> Vector(2, 5)

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

dunder-methods

There are many more dunder-methods you should know when
creating classes. We shall go through:

__len__ – specify how the length of the class should be
computed.
__getitem__ – how to index over the class
__call__ – how to use the class like a function
__iter__ – what to do when iteration starts
__next__ – what to do at the next step of the iteration

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

__len__

The __len__ function allows us to specify how the len() function
acts on the class. Take this hypothetical dataset. We create a
__len__ function that returns the length of the unique elements in
the dataset.

4 class Dataset:
5 def __init__(self, data):
6 self.data = data
7

8 def __len__(self):
9 """Return the length of unique elements"""

10 return len(set(self.data))
11

12 data = Dataset([1, 2, 3, 3, 3, 5, 1])
13 print(len(data))

Results:
=> 4

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

__getitem__

Next __getitem__ allows us to index over a class. This new function
must include self and a variable to pass the index. Here I’ve used
idx. In this function I am simply indexing on the on the classes
self.data.

3 class Dataset:
4 def __init__(self, data):
5 self.data = data
6

7 def __getitem__(self, idx):
8 return self.data[idx]
9

10 data = Dataset([1, 2, 3, 3, 3, 5, 1])
11 print(data[2])

Results:
=> 3

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

__call__

In a small number of cases, it is nice to use the class just like a
function. This is what __call__ allows us to do. In this function we
specify what should happen when class is ’called’ like a function. In
this simple example, we are creating a function that prints the type of
food being used as a parameter to the function.

3 class Jaguar:
4 def __call__(self, food):
5 print(f"The jaguar eats the {food}.")
6

7 food = "apple"
8 animal = Jaguar()
9

10 animal(food)

Results:
=> The jaguar eats the apple.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

__iter__ and __next__

__iter__ and __next__ allow us to make our class iterable, i.e. we
can use it in a for loop for example.

The __iter__ function should define what happens when we start
the iteration, and __next__ defines what happens at every step of
the iteration.

Let’s take a look at an example where we have an iterable set of
prime numbers.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

__iter__ and __next__

3 class Primes:
4 def __init__(self):
5 self.primes = [2, 3, 5, 7, 11]
6

7 def __iter__(self):
8 self.idx = 0
9 return self

10

11 def __len__(self):
12 return len(self.primes)
13

14 def __next__(self):
15 if self.idx < len(self):
16 item = self.primes[self.idx]
17 self.idx += 1
18 return item
19 else:
20 raise StopIteration

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

__iter__ and __next__

And now we can iterate over this class

21 prime_numbers = Primes()
22

23 for prime_number in prime_numbers:
24 print(prime_number)

Results:
=> 2
=> 3
=> 5
=> 7
=> 11

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Inheritance

One special thing about OOP is that its normally designed to provide
inheritance – this is true in Python. Inheritance is where you have a
base class, and other classes inherit from this base class. This means
that the class that inherits from the base class has access to the
same methods and class variables. In some cases, it can override
some of these features.

Let’s take a look an example.

7 class Animal:
8 def growl(self):
9 print("The animal growls")

10

11 def walk(self):
12 raise NotImplementError

Here we have created a simple class called Animal, that has two
functions, one of which will raise an error if its called.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Inheritance

We can inherit from this Animal class by placing our base class in ()
after the new class name.

Here we are creating two classes, Tiger and Duck. Both of these new
classes inherit from Animal. Also, both of these classes are overriding
the walk functions. But they are not creating a growl method
themselves.

13 class Tiger(Animal):
14 def walk(self):
15 print("The Tiger walks through the jungle")
16

17 class Duck(Animal):
18 def walk(self):
19 print("The Duck walks through the jungle")

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Inheritance

Look at what happens when we create instances of these classes, and
call the functions. First we see that the correct method has been
called. I.e. for the duck class, the correct walk method was called.

20 first_animal = Tiger()
21 second_animal = Duck()
22

23 first_animal.walk()
24 second_animal.walk()

Results:
=> The Tiger walks through the jungle
=> The Duck walks through the jungle

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Inheritance

But what happens if we call the .growl() method?

4 first_animal.growl()
5 second_animal.growl()

Results:
=> The animal growls
=> The animal growls

We see that it still works. Even though both Duck and Tiger didn’t
create a .growl() method, it inherited it from the base class
Animal. This works for class methods and class variables.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

An object based library system

We’re going to improve on our library system from last lecture.
Instead of a functional style of code, we’re going to use a OOP
paradigm to create our solution.

Like last time, we’re going to create our solution one step at a time.

First, we need to create our class called Database. This database is
going to take an optional parameter in its init function – the data. If
the user specifies data (represented as a list of dictionaries like last
time), then the class will populate a class variable called data, else
this class variable will be set to an empty list.

Summary:

Create a class called Database.
When creating an instance of Database, the user can optionally
specify a list of dictionaries to initialise the class variable data
with. If no data is provided, this class variable will be initialised
to an empty list.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Adding data

We will want to include a function to add data to our database.

Create a class method called add, that takes three arguments (in
addition to self of course), the title, the author, and the release
date.

This add function adds the new book entry to the end of data.
Populate this database with the following information.

Title Author Release Date

Moby Dick Herman Melville 1851
A Study in Scarlet Sir Arthur Conan

Doyle
1887

Frankenstein Mary Shelley 1818
Hitchhikers Guide to
the Galaxy

Douglas Adams 1879

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Locating a book

Create a class method called locate by tile that takes the title of the
book to look up, and returns the dictionary of all books that have
this title. Unlike last time, we don’t need to pass the data as an
argument, as its contained within the class.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Updating our database

Create a class method called update that takes 4 arguments:, 1) the
key of the value we want to update 2) the value we want to update it
to 3) the key we want to check to find out if we have the correct book
and 4) the value of the key to check if we have the correct book.

4 db.update(key="release year", value=1979, where_key="title",
5 where_value="Hitchhikers Guide to the Galaxy")

Use this to fix the release data of the Hitchhiker’s book.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Printed representation

Using the __str__ dunder-method (this is similar to __repr__ as we
saw before), create a function that prints out a formatted
representation of the entire database as a string. Some of the output
should look like:

6 Library System
7 --------------
8

9 Entry 1:
10 - Name: Moby Dick
11 - Author: Herman Melville
12 - Release Date: 1851
13 ...

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Extending our OOP usage

So far we’ve used a list of dictionaries. One issue with this is that
there is no constraints on the keys we can use. This will certainly
create problems if certain keys are missing.

Instead of using dictionaries. We can create another class called Book
that will take three arguments when it is initialised: name, author,
and release_date. The init function should initialise three class
variables to save this information.

Modify the database to, instead of working with a list of dictionaries,
work with a list of Book objects.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Dealing with
Errors
Exceptions

OOP
Classes

Exercise
Exercise

Printed representation – challenge.

Improve upon the printed representation of the last exercise but
instead of bulleted lists, use formatted tables using f-string
formatting (https://zetcode.com/python/fstring/).

The output should look like this:

14 Library System
15 --------------
16

17 | Name | Author | Release Data |
18 |----------------|------------------|--------------|
19 | Moby Dick | Herman Melville | 1851 |
20 ...

Notice how Release date is right justified, while Name and Author are
left justified.

https://zetcode.com/python/fstring/

	Proxy
	Univ-tln proxy

	Dealing with Errors
	Exceptions

	OOP
	Classes

	Exercise
	Exercise

